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Sharp Lp estimates for Schrödinger groups

on spaces of homogeneous type

The Anh Bui, Piero D’Ancona and Fabio Nicola

Abstract. We prove an Lp estimate

‖e−itLϕ(L)f‖p � (1 + |t|)s‖f‖p, t ∈ R, s = n
∣
∣
∣
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p

∣
∣
∣

for the Schrödinger group generated by a semibounded, self-adjoint oper-
ator L on a metric measure space X of homogeneous type (where n is the

doubling dimension of X). The assumptions on L are a mild Lp0 → Lp′0

smoothing estimate and a mild L2 → L2 off-diagonal estimate for the cor-
responding heat kernel e−tL. The estimate is uniform for ϕ varying in
bounded sets of S (R), or more generally of a suitable weighted Sobolev
space.

We also prove, under slightly stronger assumptions on L, that the
estimate extends to

‖e−itLϕ(θL)f‖p � (1 + θ−1|t|)s‖f‖p, θ > 0, t ∈ R,

with uniformity also for θ varying in bounded subsets of (0,+∞). For
nonnegative operators uniformity holds for all θ > 0.

1. Introduction

Bounds in Lp for the Schrödinger group eitΔ have applications in harmonic analysis
and to nonlinear dispersive equations. The group itself is not bounded in Lp for
p �= 2, but (1 −Δ)−seitΔ is Lp bounded for s sufficiently large. A sharp estimate
can be written if one introduces a frequency cutoff ϕ ∈ C∞

c (Rn): for all 1 ≤ p ≤ ∞,
k ∈ Z, t ∈ R, we have

(1.1) ‖eitΔϕ(2−k(−Δ)1/2)f‖Lp � (1 + 22k|t|)s‖f‖Lp, s = n
∣∣∣1
2
− 1

p

∣∣∣,
see [4], [30], [21].
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This result can be regarded as an elementary example of Lp estimates with
loss of derivatives for FIOs, in the spirit of [28]. However, our goal here is to
extend (1.1) in a different direction, namely, to Schrödinger groups eitL generated
by a semibounded, self-adjoint operator L on a metric measure space X endowed
with a doubling measure. This framework covers a large variety of situations which
go far beyond the classical FIO setting.

Many properties of L and functions of L can be deduced from suitable estimates
on the corresponding heat kernel e−tL. A common assumption in the Euclidean
case (see [17], [15]) is the Gaussian upper estimate

|e−tL(x, y)| � t−n/m exp
(− b

(
t−1/m |x− y|)m/(m−1))

, t > 0, x, y ∈ R
n,

for some b > 0, m > 1. This includes Schrödinger operators perturbed with an
electromagnetic potential (in this case m = 2: see [6], [7] for some applications),
and fractional Laplacians (−Δ)m/2 with m even. Note that these operators are
already outside the reach of the classical theory of singular operators.

In order to include more general operators, one can weaken the assumptions
on the heat kernel. In [13] we proposed, in the Euclidean case, to replace the
Gaussian upper estimate with a weak Lp0 → Lp′

0 smoothing estimate on dyadic
cubes, and an even weaker off-diagonal L2 → L2 algebraic decay (see (1.4), (1.5)
below). These conditions are much more inclusive, as discussed in Remark 1.1
below, but they still allow to recover the estimate (1.1) at least in the restricted
range p ∈ [p0, p

′
0].

Here we study the more general situation of metric measure spaces of homo-
geneous type. More precisely, in the following we shall assume that (X, d, μ) is a
metric space with distance d, equipped with a nonnegative Borel measure μ which
satisfies the doubling property: there exists a constant c1 > 0 such that

(1.2) μ(B(x, 2r)) ≤ c1 μ(B(x, r))

for all x ∈ X and r > 0, where B(x, r) is the open ball of radius r and center x. We
recall that the doubling property (1.2) implies the existence of C > 0 and n > 0
such that

μ(B(x, λr)) ≤ Cλnμ(B(x, r)), ∀λ > 0.

We shall also assume that X satisfies a reverse doubling condition: there exist
κ ∈ [0, n] and C > 0 such that for all x ∈ X, 0 < r < diam(X)/2 and 1 ≤ λ <
diam(X)/(2r), one has

(1.3) Cλκμ(B(x, r)) ≤ μ(B(x, λr))

where diam(X) = supx,y∈X d(x, y). Note that the reverse doubling condition is
always satisfied with κ = 0, thus (1.3) is restrictive only when κ ∈ (0, n].

It was proved in [10] that it is always possible, for each ν ∈ Z, to define an
almost covering Dν of open sets, with diameter 	 2−ν, which are called dyadic
cubes and enjoy properties very similar to the standard dyadic cubes in Rn; see
Lemma 2.1 below for precise definitions and more details.

In this setting, we consider an operator L on L2(X) satisfying the following
assumption, where 1Q denotes the characteristic function of the cube Q:
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Assumption (L0): L is a self-adjoint operator on L2(X) with L +M0 ≥ 0 for
some constant M0 ≥ 0, satisfying the following estimate. There exist p0 ∈ [1, 2),
m1,m2 > 0 and C ≥ 0 such that for all t > 0 and ν ∈ Z with either 2−ν ≤ t1/m1 <
2−ν+1, 0 < t < 1 or 2−ν ≤ t1/m2 < 2−ν+1, t ≥ 1 we have

(1.4)
∑

Q∈Dν

‖1Qe−tL1Q′‖p0→2 +
∑

Q∈Dν

‖1Qe−tL1Q′‖2→p′
0

≤ CeM0t (t
n/m1

>1 + t
κ/m2

≤1 )1/2−1/p0

for all Q′ ∈ Dν , where t>1 = t · 1(1,+∞)(t) and t≤1 = t · 1(−∞,1](t), and

(1.5) sup
Q′∈Dν

∑
Q∈Dν

(1+2νdist(Q,Q′))N‖1Qe−tL1Q′‖2→2 ≤ C eM0t, N = �n/2�+1.

Remark 1.1. The previous assumptions include of course the typical Gaussian
upper estimates for Schrödinger operators on Rn. Indeed, in the particular case
m1 = m2 = m, conditions (1.4) and (1.5) are a direct consequence of the following
estimate:

(1.6) ‖1B(x,t1/m)e
−tL1B(y,t1/m)‖p0→p′

0

≤ C eM0t μ(B(x, t1/m))−1/p0+1/p′
0 exp

(
− d(x, y)m/(m−1)

ct1/(m−1)

)
,

for all t > 0, and all x, y ∈ X. Note that the presence of an exponentially growing
factor eM0t allows to include some interesting cases like non-positive Schrödinger
operators −Δ+ V (x), see [29].

However, the converse implication may be false. An example is given by the
fractional fractional Laplacian (−Δ)α, α > 0 on Rn. It is well known that the
kernel e−t(−Δ)α(x, y) of e−t(−Δ)α has a upper bound

e−t(−Δ)α(x, y) � 1

tn/2α

(
1 +

|x− y|
t1/2α

)−(n+2α)

for all x, y ∈ R
n and t > 0. As a consequence, that for 2α > �n/2� + 1, (−Δ)α

satisfies (1.4) and (1.5) for p0 = 1 and m = 2α, but not (1.6). See for example [13].
Moreover, the estimate (1.6) does not imply the condition (1.4). However, if

we assume in addition that (X, d, μ) satisfies the non-collapsing condition

(1.7) μ(B(x, 1)) � 1, ∀x ∈ X,

then (1.4) is a consequence of (1.6).

Then we can prove:

Theorem 1.2. Assume L satisfies (L0). Let p ∈ [p0, p
′
0] and s = n|1/2 − 1/p|.

Then the estimate

‖e−itLϕ(L)f‖p � (1 + |t|)s ‖f‖p, t ∈ R,

holds uniformly for ϕ in bounded subsets of S (R).
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Remark 1.3. The previous result is still valid for functions ϕ of Sobolev regularity.
More precisely, the estimate is true and uniform in ϕ provided the following norm:

(1.8)
∑

j≤n+1

‖〈λ〉2+n+j+n/m1 ϕ(j)(λ)‖L2 .

remains bounded. This condition is not sharp; see Remark 2.13 for further details.

We now examine a few directions in which one can relax the assumptions of
Theorem 1.2. In order to do this we introduce some definitions. The amalgam
space X1,p

ν , with 1 ≤ p ≤ ∞ and ν ∈ Z, is the space of measurable functions on X

such that the following norm is finite:

(1.9) ‖f‖X1,p
ν

:=
∑

Q∈Dν

‖f‖Lp(Q).

Moreover, we say that w : X×X → R is a weight function if it is equivalent to the
distance function, in the sense that

(1.10) K−1
0 d(x, y) ≤ |w(x, y)| ≤ K0 d(x, y)

for some constant K0 > 0.
Let w be a weight function and let D(w) be any topological vector space asso-

ciated to w satisfying the following conditions:

(i) D(w) is dense in L2(X) (w.r.t. the L2(X) norm);

(ii) w(x, ·)N f ∈ D(w) for all f ∈ D(w), x ∈ X and N ∈ N.

Denote by D ′(w) the dual space of D(w).

Remark 1.4. In applications, in Subsections 3.1–3.10, we will choose w(x, y) =
d(x, y) and D(w) = L2

c(X) which is a space of all functions in L2 with compact
support. In Subsection 3.13, as X = Rn we will choose D(w) = C∞

0 (Rn). We will
not recall this in Section 3.

Denoting by wx the multiplication operator by the function w(x, ·), the com-
mutators Adk+1

x (T ) : D(w) → D ′(w) of order k of an L2(X)-bounded linear oper-
ator T with the weight w are defined as follows:

Ad0x(T ) = I, Ad1x(T ) = [wx, T ], Adk+1
x (T ) = [wx,Ad

k
x(T )].

In view of the applications, we shall also consider a more general kind of vector
valued weight functions w = (w1, . . . , w�) : X × X → R�, defined again by condi-
tion (1.10) (where now |w| = (w2

1+ · · ·+w2
� )

1/2). In the vector valued case Adk
x(T )

will denote the �-tuple of commutators with w1, . . . , w�, that is to say we define,
for j = 1, . . . , �,

Ad0j,x(T ) = I, Ad1j,x(T ) = [wj,x, T ], Adk+1
j,x (T ) = [wj,x,Ad

k
x(T )].

(where wj,x is multiplication by wj(x, ·)) and Adk
x(T ) := (Adk

1,x(T ), . . . ,Ad
k
�,x(T )).

Note that the simplest choice of a weight satisfying (1.10) is given by the distance
function itself, with � = 1.
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We can now state our second set of assumptions on L.

Assumption (L): L is a self-adjoint operator on L2(X) with L +M0 ≥ 0 for
some constant M0 ≥ 0, satisfying the following estimates. There exist p0 ∈ [1, 2),
m1,m2 > 0 and C ≥ 0 such that for all t > 0 and ν ∈ Z with either 2−ν ≤ t1/m1 <
2−ν+1, 0 < t < 1 or 2−ν ≤ t1/m2 < 2−ν+1, t ≥ 1 we have

(1.11) ‖e−tL‖
X

1,p0
ν →X1,2

ν
+ ‖e−tL‖

X1,2
ν →X

1,p′
0

ν

≤ C eM0t(t
n/m1

>1 + t
κ/m2

≤1 )1/2−1/p0

where t>1 = t · 1(1,+∞)(t) and t≤1 = t · 1(−∞,1](t). Moreover, there exists a weight
function w(x, y) and a constantM1 > M0 such that the resolvent R(z) = (L+z)−1

satisfies, for all x ∈ X,

(1.12) ‖Adkx(R(M1))‖2→2 ≤ C, 0 ≤ k ≤ �n/2�+ 1.

Remark 1.5. The reason why condition (1.12) is interesting, besides being much
weaker than (1.5), is that it is very easy to check directly for differential operators,
and even some pseudodifferential ones, in the Euclidean setting. See Section 3.13.

Then we can prove:

Theorem 1.6. Assume L satisfies (L). Let p ∈ [p0, p
′
0] and let s = n|1/2− 1/p|.

Then the estimate

‖e−itLϕ(L)f‖p � (1 + |t|)s ‖f‖p, t ∈ R,

holds uniformly for ϕ in bounded subsets of S (R).

Remark 1.7. Comparing the two sets of assumptions we see that

Assumption (L0) =⇒ Assumption (L).

Indeed, the implication

condition (1.4) =⇒ condition (1.11)

is obviously true. On the other hand, one has

condition (1.5) =⇒ condition (1.12), with w(x, y) = d(x, y),

but this is more delicate and will be proved in Propositions 2.5 and 2.6 below.

One notices that estimate (1.1) for the standard Laplacian is uniform also for
rescaling in frequency ∼ 2k, k ∈ Z. This is a direct consequence of the scaling
properties of Rn and its Lebesgue measure, which are not available on a general
metric measure space X. Uniformity in frequency is an important property, espe-
cially useful when doing dyadic analysis on Sobolev or Besov spaces generated by
the operator L. We can recover uniformity under slightly stronger assumptions on
the operator L.
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Assumption (L1): L is a self-adjoint operator on L2(X), with L + M0 ≥ 0
for some constant M0 ≥ 0, satisfying condition (1.11) with m1 = m2 = m > 0.
Moreover, there exists a weight function w(x, y) such that the resolvent R(z) =
(L+ z)−1 satisfies, for all 0 ≤ j ≤ �n/2�+ 1,

(1.13) ‖Adjx(R(M))‖2→2 ≤ C (M −M0)
−1−j/m, ∀M > M0, x ∈ X.

Remark 1.8. Note that when m1 = m2, the following implication holds:

Assumption (L0) =⇒ Assumption (L1) (with w(x, y) = d(x, y))

(compare with Remark 1.7). This is proved in Propositions 2.5 and 2.6 below.

Under this assumption we can prove:

Theorem 1.9. Assume L satisfies Assumption (L1). Let p ∈ [p0, p
′
0] and let

s = n|1/2− 1/p|. Then we have

‖e−itLϕ(θL)f‖p � (1 + θ |t|)s ‖f‖p, t ∈ R,

and the estimate is uniform for ϕ in bounded subsets of S (R) and θ in bounded
subsets of (0,+∞). In the special case when κ = n and M0 = 0 the estimate is
uniform for all θ > 0.

Remark 1.10. Like for Theorems 1.2 and 1.6, the previous estimate is valid and
uniform in the more general case of functions ϕ varying in any bounded subset for
the weighted Sobolev norm (1.8).

As an intermediate step in the proof of the previous theorems, we obtain uni-
form Lp estimates for operators of the form ϕ(L) which are of independent interest,
see Theorem 2.14. (This result can be recovered from the statement of Theorem 1.9
choosing t = 0).

Our results are based on a commutator argument and a reduction to amalgam
spaces, following the methods of Jensen–Nakamura [19]. The adaptation of the
argument from [19] to a multi-scale setting was introduced in [13] and was inspired
by the ideas of [32]. Moreover, our approach can be adapted to study the Lp-
boundedness for Schrödinger group on an open subset of the space of homogeneous
type X.

We finally consider a self-adjoint operator L on L2(Ω), where Ω is an open
subset of X. This case can not be reduced to the previous results since Ω may
not satisfy the doubling condition. However, if we assume that L +M0 ≥ 0 for
some M0 ≥ 0 and the kernel pt(x, y) of heat semigroup e−tL satisfies the following
estimate: ∃C ≥ 0, m > 1 such that

(1.14) |pt(x, y)| ≤ CeM0t

μ(B(x, t1/m))
exp

(
− d(x, y)m/(m−1)

ct1/(m−1)

)
for all t > 0 and x, y ∈ Ω, then we can prove:
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Theorem 1.11. Let L be a nonnegative self-adjoint operator on L2(Ω), where Ω
is an open subset of X. Assume that L satisfies (1.14). Let p ∈ [1,∞] and let
s = n|1/2− 1/p|. Then we have

‖e−itLϕ(θL)f‖Lp(Ω) � (1 + θ |t|)s ‖f‖Lp(Ω), t ∈ R,

and the estimate is uniform for ϕ in bounded subsets of S (R) and θ in bounded
subsets of (0,+∞). In the special case κ = n and M0 = 0 the estimate is uniform
for all θ > 0.

The proofs of the theorems, and some additional estimates, are given in the
next section. The third, and final, section of the paper is devoted to an exten-
sive list of applications: we consider Laplace–Beltrami operators on Riemannian
manifolds with or without Gaussian heat kernel bounds; the operator associated
to the Sierpinski gasket; Hörmander type operators generated by vector fields
on homogeneous groups; Bessel operators; Schrödinger operators with potentials
on manifolds; Euclidean Schrödinger operators with singular potentials of inverse
square type; the sub-Laplacian on Heisenberg groups; and Dirichlet Laplacian on
open connected domains. The list is not exhaustive and is intended to show the
variety of possible applications and the generality of Assumption (L).

2. Proof of the theorems

With the notation V (x, r) = μ(B(x, r)), the doubling property (1.2) implies the
existence of C > 0 and n > 0 such that

(2.1) V (x, λr) ≤ CλnV (x, r), ∀λ > 0, x ∈ X,

and

(2.2) V (x, r) ≤ C
(
1 +

d(x, y)

r

)n

V (y, r), ∀r > 0, x, y ∈ X.

As a consequence of (2.2), we have V (x, r) 	 V (y, r) when d(x, y) ≤ r.

We recall the fundamental covering lemma from [10].

Lemma 2.1. There exists a collection of open sets {Qk
τ ⊂ X : k ∈ Z, τ ∈ Ik},

where Ik denotes certain (possibly finite) index sets depending on k, and constants
ρ ∈ (0, 1) c0 ∈ (0, 1] and C0, C1 ∈ (0,∞) such that

(i) μ(X\ ∪τ Q
k
τ ) = 0 for all k ∈ Z ;

(ii) if � ≥ k and τ ∈ I�, β ∈ Ik, then either Q�
τ ⊂ Qk

β or Q�
τ ∩Qk

β = ∅ ;
(iii) for k ∈ Z, τ ∈ Ik and each � < k, there exists a unique τ ′ ∈ I� such that

Qk
τ ⊂ Q�

τ ′ ;

(iv) the diameters of the sets satisfy diam(Qk
τ ) ≤ C1ρ

k ;

(v) for k ∈ Z, τ ∈ Ik there exists xQk
τ
∈ X such that

B(xQk
τ
, c0ρ

k) ⊂ Qk
τ ⊂ B(xQk

τ
, C0ρ

k).
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Remark 2.2. (a) The constants ρ, c0 and C0 are inessential for our purposes, thus,
without loss of generality, we may assume that ρ = a0 = 1/2 and C0 = 1. We then
fix a collection of open sets in Lemma 2.1 and denote this collection by D. We call
these open sets the dyadic cubes in X and xQk

τ
the center of the cube Qk

τ . We also
write Dν := {Qν

τ : τ ∈ Iν} for each ν ∈ Z. We have then �Q := diam Q ∼ 2−ν for
all Q ∈ Dν .

(b) From the doubling property (2.1), there exists a constant C such that for
any x ∈ X and k ∈ N there are at most C2kn dyadic cubes in D0 which cover the
ball B(x, 2k).

2.1. Amalgam spaces

For 1 ≤ p, q ≤ ∞ and ν ∈ Z, we define the space Xp,q
ν as the vector space of all

measurable functions f : X → C such that the following norm is finite:

(2.3) ‖f‖Xp,q
ν

:=
( ∑

Q∈Dν

‖f‖pLq(Q)

)1/p

,

with the usual modification when p = ∞. We also write Xp,q = Xp,q
0 .

The following embedding holds.

Proposition 2.3. For 1 ≤ p ≤ q ≤ ∞ and ν ∈ Z we have

‖f‖Xp,q ≤ C
(
1 + 2−νn(1/p−1/q)

) ‖f‖Xp,q
ν
,

where C depends only on the constant c1 in the doubling property (1.2).

Proof. The proof of this proposition is elementary and we leave it to the reader. �

Recall that Adjx(T ) denotes the j-th order commutator of an operator T with
the weight function wx(·) = w(x, ·), w : X× X → R�, satisfying (1.10).

Theorem 2.4. Let T be a bounded operator on L2(X). Assume that Adkz can be
extended to be a bounded operator on L2(X) and there exists some constant B0 ≥ 1
so that

‖Adkz(T )‖2→2 ≤ Bk
0

for all 0 ≤ k ≤ �n/2�+ 1 and all z ∈ X.

Then for 1 ≤ p ≤ 2 we have

‖T ‖Xp,2→Xp,2 ≤ CB
n(1/p−1/2)
0 ,

where C is a constant depending only on n, ‖T ‖2→2 and K0 (from (1.10)).

Proof. We first note that the L2-boundedness of T implies

‖T ‖X2,2
ν0

→X2,2
ν0

≤ C.

Hence, by interpolation it suffices to prove that

‖T ‖X1,2→X1,2 ≤ CB
n/2
0 .
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To prove this, let w = (w1, . . . , w�) be the weight function and recall that
Adkj,z(T ) denotes the commutator of order k with multiplication by wj,z := wj(z, ·).
We use a combinatorial identity from Lemma 3.1 in [19] and we write

wm
j,zT =

m∑
k=0

cm,k Ad
k
j,z(T )w

m−k
j,z , j = 1, . . . , �,

where cm,k are appropriate constants. Denote also by dz the multiplication op-
erator by d(z, ·). Then, we have for every xQ with Q ∈ D0 and N,m ∈ N with
0 ≤ m ≤ N ≤ �n/2�+ 1,

‖|wj,xQ |mT [1 + dxQ ]
−N‖2→2 ≤

m∑
k=0

cm,k ‖Adkj,xQ
(T )‖2→2 ‖wm−k

j,xQ
[1 + dxQ ]

−N‖2→2

≤ CBm
0 ,

since |wj | is dominated by d. Summing over j = 1, . . . , � and recalling (1.10) we
obtain, for 0 ≤ N ≤ �n/2�+ 1,∥∥[1 + dxQ ]

N T [1 + dxQ ]
−N

∥∥
2→2

≤ CBN
0 .

This implies

(2.4)
∥∥dNxQ

T 1Q
∥∥
2→2

≤ CBN
0 , ∀Q ∈ D0.

Let f ∈ D(w). For each cube Q, write fQ = f 1Q. Then we have

‖Tf‖X1,2 =
∑

Q′∈D0

‖1Q′Tf‖2 ≤
∑

Q∈D0

∑
Q′∈D0

‖1Q′TfQ‖2.

Let now α be a constant which will be precised later; for the moment we assume
only α ≥ 2 supQ∈D0

diam Q. For each Q ∈ D0 we can write

(2.5)
∑

Q′∈D0

‖1Q′TfQ‖2 = I + II,

where

I =
∑

Q′:d(xQ,xQ′)>α

d(xQ, xQ′)−Nd(xQ, xQ′)N‖1Q′TfQ‖2,

II =
∑

Q′:d(xQ,xQ′)≤α

‖1Q′TfQ‖2.

On the other hand, by Remark 2.2 we get

(2.6) �{Q′ ∈ D0 : d(xQ, xQ′) ≤ α} � αn.

This, in combination with Hölder’s inequality, implies that

II ≤
( ∑

Q′:d(xQ,xQ′)≤α

1
)1/2( ∑

Q′:d(xQ,xQ′)≤α

‖1Q′TfQ‖22
)1/2

� αn/2 ‖TfQ‖2 � αn/2‖T ‖2→2 ‖fQ‖2.
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On the other hand, for x′ ∈ Q′ we have d(xQ, x′) ≥ d(xQ, xQ′)−diam(Q′), thus
if d(xQ, xQ′) ≥ α we have d(xQ, x

′) � d(xQ, xQ′) by the assumption on α. Then
we can write

I ≤
( ∑

Q′:d(xQ,xQ′)≥α

d(xQ, xQ′)−2N
)1/2( ∑

Q′:d(xQ,xQ′)≥α

d(xQ, xQ′)2N‖1Q′TfQ‖22
)1/2

�
( ∑

Q′:d(xQ,xQ′)≥α

d(xQ, xQ′ )−2N
)1/2

‖d(·, xQ)NTfQ‖2 ,

which along with (2.4) and (2.6) yields

I � α−N+n/2BN
0 ‖fQ‖2

provided that N > n/2.
Inserting the estimates of I and II into (2.5) and taking α = CB0 for a suit-

able C (depending only on supQ∈D0
diam Q), we obtain∑

Q′∈D0

‖1Q′TfQ‖2 � (1 + ‖T ‖2→2) · Bn/2
0 ‖fQ‖2.

Therefore,

‖Tf‖X1,2 � (1 + ‖T ‖2→2) ·Bn/2
0 ‖f‖X1,2 , f ∈ D(w).

Since X1,2 ↪→ L2(X), D(w) is dense in X1,2. It follows

‖Tf‖X1,2 � (1 + ‖T ‖2→2) · Bn/2
0 ‖f‖X1,2, f ∈ X1,2.

On the other hand, since T is bounded on L2, we have

‖Tf‖X2,2 � ‖T ‖2→2 ‖f‖X2,2.

Interpolating between the two estimates, we get the claim. �

We conclude this section by proving that assumption (1.5) implies (1.12) and
(1.13), as stated in the Introduction.

Proposition 2.5. Let the weight function be w(x, y) = d(x, y). Assume that L
is a self-adjoint operator in L2(X) with L +M0 ≥ 0 for some M0 ∈ R, satisfying
the following condition : there exist p0 ∈ [1, 2), m1,m2 > 0 and C ≥ 0 such
that for all t > 0 and ν ∈ Z with either 2−ν ≤ t1/m1 < 2−ν+1, 0 < t < 1 or
2−ν ≤ t1/m2 < 2−ν+1, t ≥ 1 we have

(2.7) sup
Q′∈Dν

∑
Q∈Dν

(1+2νdist(Q,Q′))N‖1Qe−tL1Q′‖2→2 ≤ CeM0t, N = �n/2�+1.

Then there exist C1 ≥ 0 such that for all t and ν as above we have

(2.8) ‖Adkx(e−tL)‖2→2 ≤ C1 e
M0t 2−kν , 0 ≤ k ≤ �n/2�+ 1, x ∈ X.
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Proof. By considering the nonnegative operator L̃ = L +M0 instead of L, we see
that we can assume M0 = 0. If pt(x, y) is the kernel of the heat semigroup e−tL

we obtain the representation

Adk
z(e

−tL)f(x) =

∫
X

(dz(x) − dz(y))
k pt(x, y)f(y) dμ(y)

and our goal is to prove that the operator

Af(x) = 2νk
∫
X

(dz(x) − dz(y))
k pt(x, y)f(y) dμ(y)

for 0 < t < 1 and 2−ν ≤ t1/m1 < 2−ν+1, or for t ≥ 1 and 2−ν ≤ t1/m2 < 2−ν+1,
satisfies ‖A‖2→2 ≤ C with C independent of ν.

We shall now prove the estimate

(2.9) sup
Q′∈Dν

∑
Q∈Dν

‖1QA1Q′‖2→2 ≤ C1

with constants independent of ν. This implies the dual estimate

sup
Q′∈Dν

∑
Q∈Dν

‖1Q′A1Q‖2→2 ≤ C1

and by the Schur test for sequences the two estimates together imply that A is
bounded on Xp,2

ν with norm not larger than C1, for all p ∈ [1,∞] and all ν ∈ Z.
Since L2 = X2,2

ν for all ν ∈ Z, this concludes the proof.

It remains to prove (2.9). We write the kernel of 1QA1Q′ as

1QA1Q′(x, y) = 2νk (dz(x) − dz(y))
k 1Q(x) pt(x, y) 1Q′(y),

and we use the estimate

|dz(x)− dz(y)| ≤ d(xQ, xQ′ ) + d(x, xQ) + d(y, xQ′), x ∈ Q, y ∈ Q′

where Q ⊂ B(xQ, 2
−ν) and Q′ ⊂ B(xQ′ , 2−ν) according to Remark 2.2. We now

expand

|1QA1Q′(x, y)|
≤

∑
α+β+γ=k

k!

α!β!γ!
(2νd(xQ, xQ′))α(2νd(x, xQ))

β1Q(x)pt(x, y)1Q′(y)(2νd(y, xQ′ ))γ .

We have trivially

‖(2νd(x, xQ))β1Q‖2→2 ≤ C and ‖(2νd(y, xQ′))γ1Q‖2→2 ≤ C,

and recalling assumption (2.7) we see that the proof is concluded. �

From condition (2.8) it is fairly easy to deduce (1.12), thus concluding the proof
of the implication (1.5) ⇒ (1.12), (1.13).
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Proposition 2.6. Let the weight function be w(x, y) = d(x, y). Assume L sat-
isfies (2.8) and L +M0 ≥ 0. Then for all M > M0 we have, for all z ∈ X and
0 ≤ k ≤ �n/2�+ 1,

‖Adkz((L +M)−1)‖2→2 � (M −M0)
−1−k/m1 + (M −M0)

−1−k/m2 ,

with a constant independent of z and M .

Proof. By spectral calculus we can represent R = (M + L)−1 in the form

R = (M + L)−1 =
∫∞
0
e−Mt e−tL dt

which implies

Adk
z(R) =

∫ ∞

0

e−Mt Adkz(e
−tL) dt.

By assumption (2.8), since 2−ν 	 t
1/m2

for t < 1 and 2−ν 	 t
1/m1

for t > 1, we
obtain

‖Adkz(R)‖2→2 �
∫ 1

0

e(M0−M)t tk/m2 dt+

∫ +∞

1

e(M0−M)t tk/m1 dt ,

and the claim follows easily. �

2.2. Estimates for the heat semigroup

The following result gives an estimate for the semigroups e−tL on almagam spaces
which plays an important role in the sequel.

Proposition 2.7. For every t > 0 we have

‖e−tL‖Lp0→Xp0,2 ≤ CeM0t
(
t−

n
m1

(1/p0−1/2) + t
n−κ
m2

(1/p0−1/2)),
where C depends only on the constants C in assumption (1.11) and c1 in (1.2).

Proof. By redefining L̃ = L + M0, we see that it is not restrictive to assume
M0 = 0. Now fix ν ∈ Z and t > 0 such that either 2−ν ≤ t1/m1 < 2−ν+1, 0 < t < 1
or 2−ν ≤ t1/m2 < 2−ν+1, t ≥ 1. By assumption (1.11), using duality we have

‖e−tL‖X∞,p0
ν →X∞,2

ν
≤ C

(
2νκ(1/p0−1/2) + 2νn(1/p0−1/2)

)
and interpolating with (1.11) we have, for all 1 ≤ p ≤ ∞,

‖e−tL‖Xp,p0
ν →Xp,2

ν
≤ C

(
2νκ(1/p0−1/2) + 2νn(1/p0−1/2)

)
We choose p = p0 and notice that Xp0,p0

ν = Lp0 ; thus we have proved

‖e−tL‖
Lp0→X

p0,2
ν

≤ C
(
2νκ(1/p0−1/2) + 2νn(1/p0−1/2)

)
By the embedding in Proposition 2.3 this implies

‖e−tL‖Lp0→Xp0,2 ≤ C
(
2νκ(1/p0−1/2) + 2νn(1/p0−1/2)

)(
1 + 2−νn(1/p0−1/2)

)
	 2ν(κ−n)(1/p0−1/2) + 2νn(1/p0−1/2),

and recalling the conditions on t, we obtain the claim. �
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As a consequence we obtain the following result.

Proposition 2.8. Let M > M0 and γ = n
m1

(1/p0 − 1/2) + ε, with ε > 0. Then

‖(M + L)−γf‖Xp0,2 ≤ C
(
ε−1 + (M −M0)

γ+n−κ
m2

(1/p0−1/2))‖f‖p0 ,

where C depends only on the constants C in assumption (1.11) and c1 in (1.2).

Proof. It is sufficient to apply Minkowski’s inequality and Proposition 2.7 to the
standard representation

(M + L)−γ =
1

Γ(γ)

∫ ∞

0

tγ e−Mt e−tL dt

t
. �

2.3. Estimate of ϕ(L)

We shall now prove that if ϕ is in a suitable weighted Sobolev space then ϕ(L) is
bounded on Lp. The proof will be achieved through a series of Lemmas, some of
which are of independent interest.

In the following, L is an operator satisfying Assumption (L), and we can take R
as the resolvent operator

R = (M1 + L)−1

with M1 > M0 as in (L).

Lemma 2.9. We have the estimate

‖e−iξRf‖Xp0,2 ≤ c(n)C (1 + |ξ|)n(1/p0−1/2) ‖f‖
Xp0,2

, ξ ∈ R,

where C is the constant in assumption (1.12) and c(n) depends only on n.

Proof. From

e−iξRwz(·) eiξR − wz(·) =
∫ ξ

0

∂s(e
−isRwz(·)eisR) ds

we obtain the formula

Adz(e
−iξR) = −i

∫ ξ

0

e−isR Adz(R)e
−i(ξ−s)R, ds

and by (1.12) we get
‖Ad1z(e−iξR)‖2→2 ≤ C |ξ|.

Using repeatedly this identity and proceeding by induction we obtain

‖Adkz(e−iξR)‖2→2 ≤ C (1 + |ξ|)k, k = 0, . . . , �n/2�+ 1,

uniformly in z ∈ X, and by Theorem 2.4 we obtain the claim. �

Lemma 2.10. For any sufficiently smooth function ψ on R we have the estimate

‖ψ(R)f‖Xp0,2 ≤ c(n)C ‖(1 + |ξ|)n(1/p0−1/2) ψ̂(ξ)‖L1 ‖f‖Xp0,2

with c(n) and C as in Lemma 2.9.
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Proof. It is sufficient to use the identity

ψ(R) = (2π)−1

∫
eiξR ψ̂(ξ) dξ

and apply the previous result. �

We introduce a seminorm for functions ψ : R → C, depending on the constant
M1 ≥ 0 and on the integer N ≥ 0:

|||ψ|||N := ‖ψ‖L2(−M1,∞) +
∑N

j=0 ‖(λ+M1)
j+N∂jψ(λ)‖L2(−M1,∞).

Lemma 2.11. Let N = �n/p0�+ 1 and let ψ : R → C. Then we have

‖(L+M1)
2ψ(L)f‖Xp0,2 ≤ c(n)C |||ψ|||N · ‖f‖Xp0,2 ,

with c(n) and C as in Lemma 2.9.

Proof. Define ρ(ξ) := 0 for ξ ≤ 0, and

ρ(ξ) := ξ−2 · ψ(1/ξ −M1) for ξ > 0

and note that (λ+M1)
2ψ(λ) = ρ((M1 + λ)−1) for λ in the spectrum of L, so that

(L+M1)
2ψ(L) = ρ(R). By the previous result we get

‖(L+M1)
2ψ(L)f‖Xp0,2 ≤ c(n)C ‖(1 + |ξ|)n(1/p0−1/2) ρ̂(ξ)‖L1 ‖f‖Xp0,2 .

It remains to estimate the norm of ρ. We proceed as follows:

‖(1 + |ξ|)n(1/p0−1/2) ρ̂(ξ)‖L1 � ‖(1 + |ξ|)N ρ̂ ‖L2 = ‖ρ‖HN (R+).

We note the elementary identity for ξ > 0, k ≥ 0,

∂kξ ρ(ξ) =
∑k

j=0 cj,k · ∂jψ(1/ξ −M1) · ξ−(j+k+2)

(for suitable constants cj,k). This gives

‖∂kξ ρ‖L2(0,∞) ≤ c(n)
∑k

j=0 ‖(λ+M1)
j+k∂jψ(λ)‖L2(−M1,∞).

Using the last estimate for k = 0 and k = N we obtain

‖ρ‖HN (R+) ≤ c(n)‖ψ‖L2(−M1,∞) + c(n)
∑N

j=0 ‖(λ+M1)
j+N∂jψ(λ)‖L2(−M1,∞)

and we obtain the claim. �

Lemma 2.12. Let N = �n/p0� + 1, β ≥ 0 with β + 2 > n
m1

(1/p0 − 1/2) and
ψ : R → C. Then for p ∈ [p0, p

′
0] we have the estimate

‖ψ(L)f‖Lp � ‖f‖Lp.

The norm of ψ(L) : Lp → Lp can be estimated by

C (1 + (M1 −M0)
β+2+n−κ

m2
(1/p0−1/2))|||(λ +M1)

βψ(λ)|||N ,

where C depends on c1 in the doubling property (1.2), on supQ∈Q0
μ(Q) and on

the constants in Assumption (L), but is independent of M0,M1, ψ.
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Proof. We apply the previous lemma to the function ψ̃(λ) = (λ+M1)
β+2ψ(λ):

‖ψ̃(L)f‖Xp0,2 = ‖(L+M1)
2ψ(L)(L+M1)

βf‖Xp0,2

≤ c(n)C |||(λ+M1)
βψ|||N ‖f‖Xp0,2 .

Since ψ(L) = ψ̃(L)Rβ+2, we can write, using Proposition 2.8,

‖ψ(L)f‖Xp0,2 ≤ ‖ψ̃(L)‖Xp0,2→Xp0,2‖Rβ+2f‖Xp0,2 � ‖ψ̃(L)‖Xp0,2→Xp0,2‖f‖Lp0 ,

where the implicit constant has the form

C (1 + (M1 −M0)
β+2+n−κ

m2
(1/p0−1/2)),

with C depending on c1 in the doubling property (1.2) and on the constants in As-
sumption (L), but independent of M0,M1. Since X

p0,2 is continuously embedded
in Lp0 with embedding norm ≤ supQ∈Q0

μ(Q)1/p0−1/2, we have proved that ψ(L)
is bounded on Lp0 with the same norm. By duality and interpolation, we conclude
the proof. �

Remark 2.13. The dependence on ψ of the norm of ψ(L) is particularly inter-
esting. The quantity |||(λ + M1)

βψ(λ)|||N is uniformly bounded if ψ varies in a
bounded subset of C∞

c (R) or of S (R), and M1 is bounded. More generally, we
can write

|||(λ+M1)
βψ(λ)|||N � ‖λβψ(λ−M1)‖L2(R+)+

∑N
j=0 ‖λj+N+β∂jψ(λ−M1)(λ)‖L2(R+)

and we see that the quantity is uniform for ψ varying in any bounded subset of
a suitable weighted Sobolev space, provided M1 is bounded (which is always the
case in our applications). For instance, we can take the weighted Sobolev space
with norm

(2.10)
∑

j≤n+1

‖〈λ〉2+n+j+n/m1ψ(j)(λ)‖L2 .

Theorem 2.14. Under Assumption (L), the following estimate holds : for all
p ∈ [p0, p

′
0],

‖ϕ(L)f‖Lp ≤ C ‖f‖Lp,

and the estimate is uniform for ϕ in bounded subsets of S (R) (or, more generally,
in bounded subsets for the norm (2.10)).

If the stronger Assumption (L1) holds, then for all θ > 0 we have

‖ϕ(θL)f‖Lp ≤ C ‖f‖Lp,

and the estimate is uniform for ϕ in bounded subsets of S (R) (or, more generally,
in bounded subsets for the norm (2.10)) and θ in bounded subsets of (0,+∞). If in
addition we assume κ = n and M0 = 0, then the estimate is uniform for all θ > 0.
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Proof. The first claim is just a special case of the previous lemma. Thus we assume
that (L1) holds and we focus on the second claim. Clearly it is sufficient to prove
the result for all θ > 0 of the form

θ = 2−mγ for some γ ∈ Z.

Thus we fix a θ = 2−mγ > 0 and define a new metric measure space (X, d, μ) by
multiplying d and μ by fixed constants, as follows:

X = X, d = 2γd, μ = 2nγμ.

Note the relation
‖u‖Lp(X,dμ) = 2nγ/p ‖u‖Lp(X, dμ).

Writing
Dν = Dν+γ

we see that the Dν form a collection of dyadic cubes for the space X, and with
respect to the new distance d we have diam Q ∼ 2−ν for all Q ∈ Dν . Then if we
define the amalgam spaces X

p,q

ν as in (2.3) but with Dν instead of Dν and with
the Lq(Q) norms computed in the measure μ, we get

‖f‖Xp,q
ν

= 2nγ/q ‖f‖Xp,q
ν+γ

.

Next, we denote by L the operator θL, which is self-adjoint on L2(X) and
satisfies L +M0 ≥ 0 with M0 = θM0. To prove the claim, it will be sufficient
to prove that the operator L satisfies the conditions of Assumption (L), with
constants independent of θ in the prescribed range. By the first part of the theorem,
the claim will follow.

Fix a t > 0 and ν ∈ Z as in condition (1.11) with m1 = m2 = m, i.e.,

2−ν ≤ t1/m < 2−ν+1.

Consider the first term in (1.11) (the second one is handled in a similar way):

‖e−tL‖
X

1,p0
ν →X

1,2
ν

= ‖e−(θt)L‖
X

1,p0
ν+γ→X1,2

ν+γ
· 2nγ(1/2−1/p0);

using assumption (1.11) (with m1 = m2 = m), since 2−(ν+γ) ≤ (θt)1/m = 2−γt <
2−(ν+γ)+1 we get

≤ C eM0(θt)((θt)n/m ∧ (θt)κ/m)1/2−1/p0 · 2nγ(1/2−1/p0)

= CeM0t(tn/m ∧ tκ/m · 2(n−κ)γ)1/2−1/p0 .

Thus we see that the operator L also satisfies condition (1.11) with m1 = m2 = m.
Note that the estimate is uniform in γ provided γ ≥ γ0 for some fixed γ0, or
equivalently, provided θ is bounded from above; moreover, M0 is also uniformly
bounded from above. It is also clear that if κ = n and M0 = 0 the condition is
uniform for all γ ∈ Z, i.e., for all θ > 0.
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It remains to check condition (1.12); we choose as weight function and the space
of “test functions”

w(x, y) = 2γw(x, y), and D(w) = D(w).

Writing Ad
j

x for the commutators with the new weight function w, we have

Ad
j

x((L+M)−1) = 2mγ 2jγ Adjx((L + 2mγM)−1)).

By (1.13) we have then

‖Adjx((L+M)−1)‖2→2 ≤ C 2mγ 2jγ (2mγM −M0)
−1−j/m

provided 2mγM > M0. Now, if γ ≥ γ0 is bounded from below, we can choose
M =M1 = 2−mγ0(M0 + 1) and we get

≤ C 2mγ 2jγ (2m(γ−γ0))−1−j/m ≤ C′

for some constant independent of γ. Note that if M0 = 0 we have

‖Adjx((L+M)−1)‖2→2 ≤ C 2mγ 2jγ (2mγM)−1−j/m = CM−1−j/m

for all M > 0, thus we can pick simply M1 = 1 without restrictions on γ ∈ Z. The
proof is concluded. �

2.4. Proof of Theorems 1.6, 1.9 and 1.11

We keep using the notation

Adx(A) = [wx, A], Adkx(A) = [wx,Ad
k−1
x (A)]

for a generic operator A and a R� valued weight function wx(·) = w(x, ·).
Lemma 2.15. For any k ≥ 1 and z ∈ X, the following identities hold :

Adz(R
2ke−itL) =

k∑
α=0

RαAdz(R)e
−itLR2k−α−1 +

k∑
α=0

R2k−α−1e−itLAdz(R)R
α

+ i

∫ t

0

e−isLRk−1Adz(R)R
k−1ei(s−t)Lds,

Adz(R
2k+1e−itL) =

k∑
α=0

RαAdz(R)e
−itLR2k−α +

k+1∑
α=0

R2k−αe−itLAdz(R)R
α

+ i

∫ t

0

e−isLRk−1Adz(R)R
kei(s−t)Lds.

Proof. The first identity is proved by induction on k.
It can be verified that

Adz(Re
−itLR) = Adz(R)e

−itLR+ e−itLRAdz(R) + i

∫ t

0

e−isLAdz(R)e
i(s−t)Lds
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which is the first formula for k = 1. To prove the step k → k + 1 we write

Adz(R · (R2ke−itL) · R) = Adz(R)e
−itLR2k+1 +R2k+1e−itLAdz(R) + I,

where
I = R · Adz(R2ke−itL) ·R,

and using the inductive assumption for the case k we easily obtain the claim. The
second formula is deduced from the first one writing

Adz((R
2ke−itL) ·R) = Adz(R

2ke−itL)R+ R2ke−itLAdz(R). �

Lemma 2.16. For 0 ≤ � ≤ k and 1 ≤ k ≤ �n/2�+ 1 we have

‖Ad�z(R2ke−itL)‖2→2 ≤ C (1 + |t|)�,
with C independent of z ∈ X and t ∈ R.

Proof. We proceed by induction on k = 1, . . . , �n/2�+ 1. When k = 1, recalling
the formulas from the previous Lemma and assumption (1.12), we obtain the claim
immediately. Assume now the result is true for a certain k and let us prove it for
k + 1. If � = 1 the estimate follows again from the first identity in the previous
Lemma. If the estimate is true for some � < k, we prove it for �+ 1 writing

Ad�+1
z (R2ke−itL) = Ad�

z(Adz(R
2ke−itL)),

expanding the term Adz(R
2ke−itL) via the first identity of the previous lemma,

and distributing the adjoint via the formula

Ad�
z(A1 . . . An) =

∑
j1+···+jn=�

�!

j1! · · · jn! Ad
j1
z (A1) . . .Ad

jn
z (An).

It is easy to check that all the terms obtained are bounded operators on L2, either
using the inductive assumption or (1.12). The proof is concluded. �

Lemma 2.17. Let k = �n/2�+ 1. Then we have the estimates

‖R2ke−itL‖Xp0,2→Xp0,2 ≤ C (1 + |t|)n(1/p0−1/2)

and, for all p ∈ [p0, p
′
0] and β >

n
m1

(1/p0 − 1/2),

‖R2k+βe−itL‖Lp→Lp ≤ C (1 + |t|)n|1/p−1/2|.

Proof. The first result is a direct application of Lemma 2.16 and Theorem 2.4.
Moreover, by Proposition 2.8 we have

‖R2k+βe−itL‖Xp0,2→Lp0 � ‖R2ke−itL‖Xp0,2→Xp0,2 ‖Rβ‖Xp0,2→Lp0

� (1 + |t|)n(1/p0−1/2)

and by the embedding Xp0,2 ⊂ Lp0 we obtain

‖R2k+βe−itL‖Lp0→Lp0 � (1 + |t|)n(1/p0−1/2).

Finally, by duality and interpolation, we obtain the second claim. �
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We can now conclude the proof of our main results (Theorems 1.6 and 1.9).

Theorem 2.18. Assume that L satisfies (L). Let p ∈ [p0, p
′
0] and s = n|1/2−1/p|.

Then we have the following estimate :

‖e−itLϕ(L)f‖p � (1 + |t|)s ‖f‖p, t ∈ R,

uniformly for ϕ in bounded subsets of S (R) (or, more generally, in bounded subsets
for the norm (2.10)).

If Assumption (L1) holds, we have

‖e−itLϕ(θL)f‖p � (1 + θ−1|t|)s ‖f‖p, θ > 0, t ∈ R,

and the estimate is uniform for θ in bounded subsets of (0,+∞) and ϕ in bounded
subsets of S (R) (or, more generally, in bounded subsets for the norm (2.10)). If in
addition we assume κ = n and M0 = 0, the estimate is uniform also for all θ > 0.

Proof. For the first claim it is sufficient to write

e−itLϕ(L) = (I + L)2k+βe−itL · (I + L)−2k−βϕ(L)

and use the previous lemma and Lemma 2.12. The second claim is proved by a
rescaling argument exactly as in the proof of Theorem 2.14. �

Proof of Theorem 1.11. Since the proof is quite similar to that of Theorem 1.9, we
just sketch the main steps.

Denote by pXt (x, y) the kernel of 1Ω e
−tL1Ω, regarded as an operator on func-

tions defined on the entire space X. Then it is easy to see that

pXt (x, y) =

{
pt(x, y), if x, y ∈ Ω,

0, otherwise.

This, along with (1.14), implies

|pXt (x, y)| ≤
CeM0t

μ(B(x, t1/m))
exp

(
− d(x, y)m/(m−1)

ct1/(m−1)

)
for all t > 0 and x, y ∈ X.

As a consequence, the assumption (1.4) and (1.5) hold true with m1 = m2 = m
and 1Ωe

−tL1Ω taking place of e−tL.
Arguing similarly to the proof of Proposition 2.5, ν ∈ Z with 2−ν ≤ t1/m <

2−ν+1, there exist C ≥ 0 such that for all t and ν as above we have

‖Adkx(1Ωe−tL1Ω)‖2→2 ≤ C eM0t 2−kν , 0 ≤ k ≤ �n/2�+ 1, x ∈ X.

We then argue as in the proof of Proposition 2.6 to find that for all M > M0 we
have, for all z ∈ X and 0 ≤ k ≤ �n/2�+ 1,

‖Adkz(1Ω(L +M)−11Ω)‖2→2 � (M −M0)
−1−k/m

with a constant independent of z,M , where w(x, y) = d(x, y).
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The argument used in the proof of Proposition 2.8 allows us to obtain that for
M >M0 and γ = n/(2m) + ε, with ε > 0. Then

‖1Ω(M + L)−γ 1Ωf‖X1,2 ≤ C
(
ε−1 + (M −M0)

γ+n−κ
2 m

) ‖f‖1.
Fix M1 > M0 and set R = (M1 + L)−1. Then we can verify that

Adz(1Ω e
−iξR1Ω) = −i

∫ ξ

0

1Ω e
−isR Adz(1ΩR1Ω) e

−i(ξ−s)R 1Ω ds.

Hence, similarly to Lemma 2.9, we obtain

‖1Ω e−iξR1Ωf‖X1,2 ≤ C (1 + |ξ|)n/2‖f‖
X1,2 , ξ ∈ R.

This, along with the identity

1Ωψ(R)1Ω = (2π)−1

∫
1Ω e

iξR 1Ω ψ̂(ξ) dξ,

implies that

‖1Ωψ(R)1Ωf‖X1,2 ≤ C ‖(1 + |ξ|)n/2ψ̂(ξ)‖L1 ‖f‖X1,2

for any sufficiently smooth function ψ on R.
Arguing similarly as in Theorem 2.14, for all θ > 0 we have

‖1Ωϕ(θL)1Ωf‖Lp ≤ C ‖f‖Lp

and the estimate is uniform for ϕ in bounded subsets of S (R). Moreover, if κ = n,
then the estimate is uniform for all θ > 0.

As this stage, arguing, mutatis mutandis, as in the proof of Theorem 1.9 we
obtain that for any p ∈ [1,∞] and s = n|1/2− 1/p|,

‖1Ω e−itLϕ(θL)1Ωf‖p � (1 + θ |t|)s ‖f‖p, t ∈ R,

and the estimate is uniform for ϕ in bounded subsets of S (R) and 0 < θ ≤ θ0, for
any fixed θ0 > 0. If, in addition, κ = n and M0, then the estimate is uniform for
all θ > 0. This completes our proof. �

3. Applications

Our framework is sufficiently general to include a large variety of applications; in
this section we survey a few of the most interesting cases.

3.1. Laplace–Beltrami operators with a Gaussian heat kernel bound

Let X be a complete connected non-compact n-dimensional Riemannian manifold.
The geodesic distance and the Riemannian measure are denoted by d and μ, re-
spectively. The Laplace–Beltrami operator L = −Δ on X is nonnegative and
self-adjoint.
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We assume that the Riemannian measure μ satisfies the volume doubling prop-
erty (1.2) and the non-collapsing condition

μ(B(x, 1)) ≥ c

for all x ∈ X and for some fixed constant c > 0.

It is well-known (see [23]) that if the Ricci curvature of X is non-negative, then
the heat kernel of the heat semigroup e−tL satisfies the estimate

(3.1) e−tL(x, y) � 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
.

It can be verified that the Gaussian upper bound (3.1) implies (1.5). Moreover,
the upper bound (3.1) also yields that for ν ∈ Z and 2−ν ≤ t1/2 < 2−ν+1, we have∑

Q∈Dν

‖1Q e−tL 1Q′‖1→∞ ≤ C μ(Q′)−1, for all Q′ ∈ Dν .

This, in combination with the non-collapsing condition and (2.1), implies that∑
Q∈Dν

‖1Qe−tL 1Q′‖1→∞ ≤ C (1 + 2νn), for all Q′ ∈ Dν ,

and this proves (1.4) and (1.5).

Hence, Assumption (L0) is satisfied with m1 = m2 = 2 and p0 = 1.

3.2. Laplace–Beltrami operators without Gaussian heat kernel bound

Let X be a complete connected non-compact Riemannian manifold. The geodesic
distance and the Riemannian measure are denoted by d and μ, respectively. We
assume that the Riemannian measure μ satisfies the volume doubling property (1.2)
and the non-collapsing condition (1.7).

Let L = −Δ be the non-negative Laplace–Beltrami operator on X. We assume
that the kernel e−tL(x, y) of the semigroup e−tL satisfies the following sub-Gaussian
heat kernel upper estimate with exponent m > 0:

(3.2) e−tL(x, y) ≤
⎧⎨⎩

C
μ(B(x,

√
t))

exp
(

d(x,y)2

ct

)
, 0 < t < 1,

C
μ(B(x,t1/m))

exp
(

d(x,y)m/(m−1)

ct1/(m−1)

)
, t ≥ 1,

for all x, y ∈ X.

Typical examples that satisfy (1.2), (1.7) and (3.2) include certain fractal man-
ifolds and infinite connected locally finite graphs. For further details, we refer
to [3], [8].

By a similar argument as in Subsection 3.1 one can prove that L satisfies
Assumption (L0) with m1 = 2, m2 = m and p0 = 1.
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3.3. Sierpinski gasket SG in Rn

Let X be the unbounded Sierpinski gasket SG in Rn. Let d be the induces metric
on SG and μ be the Hausdorff measure on SG of dimension α = log2(n+ 1). It is
well-known that the Hausdorff measure μ satisfies the doubling property (1.2);
moreover,

(3.3) μ(B(x, r)) � rα,

for all x ∈ X and r > 0.
It was also proved in [2] that SG admits a local Dirichlet form E which gener-

ates a nonnegative self-adjoint operator L; moreover, the kernel e−tL(x, y) of e−tL

satisfies the sub-Gaussian estimate

e−tL(x, y) � 1

tα/m
exp

(
− d(x, y)m/(m−1)

ct1/(m−1)

)
where m = log2(n+ 3) is called the walk dimension.

Note that the assumption (1.5) is a direct consequence of the kernel upper
bound above whereas the assumption (1.4) is a consequence of the same kernel
upper bound, the doubling property (1.2) and (3.3). Theorefore, L satisfies As-
sumption (L0) with m1 = m2 = m and p0 = 1.

3.4. Homogeneous groups

Let G be a Lie group of polynomial growth and let X1, . . . , Xk be a system of
left-invariant vector fields on G satisfying the Hörmander condition. We define
the Laplace operator L on L2(G) by

(3.4) L = −
k∑

i=1

X2
i .

Denote by d the distance associated with the system X1, . . . , Xk, and let B(x, r)
be the corresponding balls. Then (see [34]) there exist positive numbers d,D ≥ 0
such that

(3.5) μ(B(x, r)) ∼
{
rd, r ≤ 1,

rD, r > 1.

Hence (G, d, μ) satisfies the doubling property (1.2).
The group G is called a homogeneous group (see [16]) if there exists a family

of dilations (δt)t>0 on G, that is to say, a one-parameter group (δt ◦ δt = δts) of
automorphisms of G determined by

δtYj = tdj Yj ,

where Y1, . . . , Y� is a linear basis of the Lie algebra of G and dj ≥ 1 for 1 ≤ j ≤ �.
We say that the operator L defined by (3.4) is homogeneous if δtXi = tYi for
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1 ≤ i ≤ k. It well known that the heat kernel of the heat semigroup e−tL satisfies
the estimate

e−tL(x, y) � 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
.

This upper bound together with (3.5) implies that L satisfies (1.4) and (1.5)
with m1 = m2 = 2 and p0 = 1, and hence L satisfies Assumption (L0) with
m1 = m2 = 2 and p0 = 1.

3.5. Bessel operators

Let X = ((0,∞)m, dμ(x)) where dμ(x) = dμ1(x1) · · · dμn(xm) and dμk = xαk

k dxk,
αk > −1, for k = 1, . . . ,m (dxj being the one dimensional Lebesgue measure). We
endow X with the distance d defined for x = (x1, . . . , xm) and y = (y1, . . . , ym) ∈ X

as

d(x, y) := |x− y| =
( m∑

k=1

|xk − yk|2
)1/2

.

Then it is clear that

μ(B(x, r)) ∼ rm
m∏

k=1

(xk + r)αk .

Note that this estimate implies the doubling property (1.2) with n = m + α1 +
· · ·+ αn and the non-collapsing condition (1.7).

For an element x ∈ Rm, unless specified otherwise, we shall write xk for the k-th
component of x, k = 1, . . . ,m. Moreover, for λ ∈ Rm, we write λ2 = (λ21, . . . , λ

2
m).

We consider the second order Bessel differential operator

L = −Δ−
m∑

k=1

αk

xk

∂

∂xk
,

whose system of eigenvectors is defined by

Eλ(x) :=

n∏
k=1

Eλk
(xk), Eλk

(xk) := (xkλk)
−(αk−1)/2J(αk−1)/2(xkλk), λ, x ∈ X,

where J(αk−1)/2 is the Bessel function of the first kind of order (αk−1)/2 (see [22]).
It is known that L(Eλ) = |λ|2Eλ. Moreover, the functions Eλk

are eigenfunctions
of the one-dimension Bessel operators

Lk = − ∂2

∂xk 2
− αk

xk

∂

∂xk

and indeed Lk(Eλk
) = λ2kEλk

for k = 1, . . . ,m.
It is well known that L is nonnegative and self-adjoint; moreover, the kernel

e−tL(x, y) of e−tL satisfies the Gaussian estimate

(3.6) e−tL(x, y) � 1

μ(B(x,
√
t))

exp
(
− d(x, y)2

ct

)
.
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Hence, the Gaussian upper bound (3.6), along with the doubling and the non-
collapsing properties imply Assumption (L0) with m1 = m2 = m and p0 = 1.

3.6. Schrödinger operators with real potentials on manifolds

Let X be a complete connected non-compact Riemannian manifold. The geodesic
distance and the Riemannian measure are denoted by d and μ, respectively. We
assume that the Riemannian measure μ satisfies the doubling property (1.2) and
the non-collapsing condition (1.7). We also assume that the heat kernel pt(x, y) of
the Laplace–Beltrami operator −Δ satisfies the standard Gaussian upper bound

(3.7) pt(x, y) ≤ C

μ(B(x,
√
t))

exp
(
− d2(x, y)

ct

)
.

We now consider the Schrödinger operator L = −Δ+ V , V ∈ L1
loc(X). If the

potential V is nonnegative, then the kernel of the semigroup {e−tL}t>0 generated
by L satisfies the same Gaussian bound (3.7); in the general case, we must impose
some conditions on the negative part of V . Denote by V + and V − the positive
and negative parts of V , respectively. We define

Q(u, v) =

∫
X

∇u∇v dμ+

∫
X

V +uv dμ−
∫
X

V −uv dμ

with domain

D(Q) =
{
u ∈ W 1,2(X) :

∫
X

V +u2 dμ <∞
}
.

Then we assume that the positive part V + ∈ L1
loc and the negative part V − satisfy

the following condition:∫
X

V −u2 dμ ≤ α
[ ∫

X

|∇u|2 dμ+

∫
X

V +u2 dμ
]
, ∀u ∈ D(Q),

for some α ∈ (0, 1).

It was proved in [1], Theorem 3.4, that for any ( 2
1−√

1−α
)′ < p0 < 2 there exist

C, c > 0 and β > 0 such that

‖1B(x,r)e
−sL1B(y,r)‖p0→p′

0

≤ Cμ(B(x, r))−1/p0+1/p′
0

(
max

( r√
s
,

√
s

r

))β

exp
(
− dist(B(x, r), B(y, r))2

ct

)
for all r, s > 0 and x, y ∈ X.

This, in combination with the volume doubling property (1.2) and the non-
collapsing condition (1.7), implies that Assumption (L0) is satisfied with m1 =
m2 = 2 and any ( 2

1−√
1−α

)′ < p0 < 2.
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3.7. Schrödinger operators with inverse-square potentials

Consider the following Schrödinger operators with inverse square potential on Rn,
n ≥ 3:

La = −Δ+
a

|x|2 with a ≥ −
(n− 2

2

)2

.

Set

σ :=
n− 2

2
− 1

2

√
(n− 2)2 + 4a.

The Schrödinger operator La is understood as the Friedrichs extension of −Δ+ a
|x|2

defined initially on C∞
c (Rn\{0}). The condition a ≥ −((n − 2)/2)2 guarantees

that La is nonnegative. It is well known that La is self-adjoint and the extension
may not be unique as −((n − 2)/2)2 ≤ a < 1 − ((n − 2)/2)2. For further details,
we refer the readers to [20], [27], [33]. For the corresponding heat kernel, we have
the following result.

Theorem 3.1 ([26], [24]). Assume n ≥ 3 and a ≥ −((n−2)/2)2. Then there exist
two positive constants C and c such that for all t > 0 and x, y ∈ Rn\{0},

|e−tLa(x, y)| ≤ C
(
1 +

√
t

|x|
)σ(

1 +

√
t

|y|
)σ

t−n/2 e−
|x−y|2

ct .

Set nσ = n/σ if σ > 0 and nσ = ∞ if σ ≤ 0. From Theorem 3.1 and
Theorem 3.1 in [5], for any n′

σ < p ≤ q < nσ there exist C, c > 0 such that for
every t > 0, any measurable subsets E,F ⊂ Rn, and all f ∈ Lp(E), we have:

‖e−tLaf‖Lq(F ) ≤ C t−
n
2 (1/p−1/q) e−

d(E,F )2

ct ‖f‖Lp(E).

Hence, with the standard dyadic systems in R
n, this implies that Assumption (L0)

is satisfied with m1 = m2 = 2 and any n′
σ < p0 < 2. Moreover, in this situation

the reverse doubling condition (1.3) is valid with κ = n.

3.8. Fourth-order Schrödinger operators with singular potentials

Consider the following Schrödinger operator with singular potentials on Rn with
n ≥ 5:

L = (−Δ)2 − c

|x|4
where c < (N(N − 4)/4)2.

It was proved in [18] that for any 2n/(n + 4) < p ≤ q < 2n/(n − 4), there
exist C, c > 0 such that for every t > 0, any measurable subsets E,F ⊂ Rn, and
all f ∈ Lp(E), we have

‖e−tLf‖Lq(F ) ≤ C t−
n
4 (1/p−1/q) e

− d(E,F )4/3

ct1/3 ‖f‖Lp(E).

Hence, with the standard dyadic systems in Rn, this implies that Assumption (L0)
is satisfied with m1 = m2 = 4 and p0 = 2n/(n + 4). Moreover, in this situation
the reverse doubling condition (1.3) is valid with κ = n.
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3.9. Schrödinger operators with singular potentials on L2((0,∞),rn−1dr)

Let (X, d, μ) = ((0,∞), | · |, rn−1dr) with n > 2. We now consider the following
operator on L2(X):

Lf = − d2

dr2
f − n− 1

r

d

dr
f +

a

r2
f

where a > −(n− 2)2/4. It was proved in [25] that for any p′a < p ≤ q < pa there
exist C, c > 0 such that for every t > 0, any measurable subsets E,F ⊂ X :=
(0,∞), and all f ∈ Lp(E), we have∥∥e−tLf

∥∥
Lq(F )

≤ C t−
n
2 (1/p−1/q) e−

d(E,F )2

ct ‖f‖Lp(E)

where pa = n/σ and σ = (n−2)/2−√
(n− 2)2/4 + c as a < 0 and pa = 1 if a > 0.

Hence, with the standard dyadic systems in (0,∞), this implies that Assump-
tion (L0) is satisfied with m1 = m2 = 2 and any a′a < p0 < 2.

3.10. Sub-Laplacian operators on Heisenberg groups

Let Hd be a (2d + 1)-dimensional Heisenberg group. Recall that a (2d + 1)-
dimensional Heisenberg group is a connected and simply connected nilpotent Lie
group with the underlying manifold R2d × R. The group structure is defined by

(x, s)(y, t) =
(
x+ y, s+ t+ 2

d∑
j=1

(xd+j yj − xj yd+j)
)

The homogeneous norm on Hd is defined by

|(x, t)| = (|x|4 + |t|2)1/4 for all (x, t) ∈ H
d.

See for example [31].
This norm satisfies the the triangle inequality and hence induces a left-invariant

metric d((x, t), (y, s)) = |(−x,−t)(y, s)|. Moreover, there exists a positive con-
stant C such that |B((x, t), r)| = Crn, where n = 2d + 2 is the homogeneous
dimension of Hd and |B((x, t), r)| is the Lebesgue measure of the ball B((x, t), r).
Obviously, the triplet (Hd, d, dx) satisfies the doubling condition (1.2), the reverse
doubling condition (1.3) with κ = n, and the non-collapsing condition (1.7).

A basis for the Lie algebra of left-invariant vector fields on Hd is given by

X2d+1 =
∂

∂t
, Xj =

∂

∂xj
+ 2xd+j

∂

∂t
, Xd+j =

∂

∂xd+j
− 2xj

∂

∂t
, j = 1, . . . , d.

The sub-Laplacian ΔHd is defined by

ΔHd = −
2d∑
j=1

X2
j .
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Furthermore, it is well known that the sub-Laplacian ΔHd satisfies the Gaussian
upper bound

e−tΔ
Hd ((x, u), (y, s)) ≤ C

tn/2
exp

(
− d((x, u), (y, s)2

ct

)
.

In Hd, we consider the standard dyadic system consists of the cubes

2−k((0, 1]2d + j)× 4−k((0, 1] + �), k ∈ Z, j ∈ Z
2d, � ∈ Z.

Hence, the Gaussian upper bound yields the assumption (L0) with m1 = m2 = 2
and p0 = 1.

3.11. Dirichlet Laplacians on open domains

Let X = (Rn, | · |, dx). Then X is a space of homogeneous type satisfying (1.3) with
κ = n and the non-collapsing condition (1.7).

Let Ω be a connected open subset of Rn. Note that Ω may not satisfy the
doubling condition. Let ΔD be Dirichlet Laplacian on the domain Ω. It is well
known that the semigroup kernel e−tΔD(x, y) of e−tΔD satisfies the Gaussian upper
bound

e−tΔD(x, y) ≤ 1

(4πt)n/2
exp

(
− |x− y|2

4t

)
,

for all t > 0 and all x, y ∈ Ω.
Hence, all assumptions in Theorem 1.11 are satisfied with X = (Rn, | · |, dx),

L = ΔD and κ = n.

3.12. Schrödinger operators with singular potentials

For our last example, we recall the definition of the Kato class Kn of potentials.
The measurable function V : Rn → R belongs to Kn if the following conditions are
satisfied:

1. If n ≥ 3, lim
α↓0

sup
x

∫
|x−y|≤α

|x− y|2−nV (x) dx = 0.

2. If n = 2, lim
α↓0

sup
x

∫
|x−y|≤α

log(|x− y|−1)V (x) dx = 0.

3. If n = 1, sup
x

∫
|x−y|≤1

V (x) dx <∞.

Moreover, we say that V ∈ Kn,loc if 1BV ∈ Kn for all balls B.

We consider a Schrödinger operator of the form L = −Δ+ V (x) on R
n, n ≥ 1.

We assume that the positive part V+ of V is in Kn,loc while the negative part V− is
in Kn. Then the results of [29] (see in particular Proposition B.6.7) imply that L
can be realized as a semibounded self-adjoint operator in L2(Rn), and that the
heat kernel e−tL satisfies

(3.8) |e−tL(x, y)| ≤ C t−n/2 eM0t e−
|x−y|2

ct , with C, c > 0.
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Thus Assumption (L1) is satisfied, with M0 ≥ 0. If in addition we assume that
the negative part satisfies

(3.9) supx

∫
|x− y|2−n V−(y) dy < 2

πn/2

Γ(n/2− 1)

in dimension n ≥ 3 (or V− = 0 in dimensions 1, 2) then in [14] it is proved that
one can take M0 = 0, so that the uniform estimates of Theorem 1.9 apply.

Moreover, one can consider the same operator L with Dirichlet boundary con-
ditions on L2(Ω), for an open subset Ω of Rn. If we assume for simplicity V ≥ 0,
then by the maximum principle we obtain that the heat kernel is nonnegative
and satisfies again the upper Gaussian estimate (3.8), with M0 = 0 i.e., all the
assumptions of the second part of Theorem 1.11 are satisfied.

Similar results can be proved for the magnetic Schrödinger operators of the
form (i∇ + A(x))2 + V (x), using the heat kernel estimates proved in [12], and
for elliptic operators with fully variable coefficients on exterior domains, via the
results of [7]. We omit the details.

3.13. Magnetic Schrödinger operator

Consider the magnetic Schrödinger operator on Rn defined by

L = (i∇+A(x))2 + V (x),

with magnetic potential A = (A1, . . . , An) and electric potential V (x).

If we choose as weight function w(x, y) = x − y : R2n → Rn and D(w) =
C∞

0 (Rn), then we have

Ad1x(L) = 2∇+ 2iA, Ad2
x(L) = (2, . . . , 2) and Adj

x(L) = 0 for j ≥ 2.

The vector of operators Ad2
x(L)R is obviously bounded on L2; since R is also

bounded from L2(Rn) to H1(Rn), if the magnetic potential satisfies

‖Af‖L2 � ‖f‖H1

then also Ad1x(L)R is bounded on L2. Moreover, by elementary computations one
can write Adkx(R) as a linear combination of terms

R Adk1
x (L) R Adk2

x (L) . . . R AdkN
x (L) R

with k ≥ ki, N ≥ 1 and k1 + · · ·+ kN = k. For instance, in dimension n ≥ 3 it is
sufficient to assume that |A| ≤ C + C|x|−1, thanks to Hardy’s inequality.

As a consequence, it follows the condition (L).
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