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Abstract— We present an extension of our previously pro-
posed IS-MPC method for humanoid gait generation aimed at
obtaining robust performance in the presence of disturbances.
The considered disturbance signals vary in a range of known
amplitude around a mid-range value that can change at
each sampling time, but whose current value is assumed to
be available. The method consists in modifying the stability
constraint that is at the core of IS-MPC by incorporating the
current mid-range disturbance, and performing an appropriate
restriction of the ZMP constraint in the control horizon on
the basis of the range amplitude of the disturbance. We derive
explicit conditions for recursive feasibility and internal stability
of the IS-MPC method with constraint modification. Finally, we
illustrate its superior performance with respect to the nominal
version by performing dynamic simulations on the NAO robot.

I. INTRODUCTION

Enabling humanoid robots to move in an unstructured and
uncertain environment is a rather complex control problem.
While interesting results have been achieved in humanoid lo-
comotion, a great effort is still required to improve the robot’s
behavior with respect to uncertainties and disturbances.

Most techniques for humanoid gait generation are based
on the Zero Moment Point (ZMP, the point on the ground
for which the horizontal components of the contact moments
become zero), which ensures dynamic balance if it is kept
inside the robot’s support polygon. The ZMP can be in-
directly controlled by generating an appropriate Center of
Mass (CoM) trajectory, which is then kinematically tracked.
However, the dynamics relating CoM and ZMP are complex
and simplified models are in general used instead. The most
widespread is the Linear Inverted Pendulum (LIP) [1].

When constraints are taken into account, for example on
the ZMP, the linear Model Predictive Control (MPC) formu-
lation has proven to be very effective [2], [3], [4], [5], [6].
Nonlinear extensions have also been used successfully [7],
[8]. In particular, interesting variations allowing CoM height
variations have been presented [9], [10], [11], [12].

To avoid the divergence of the CoM with respect to the
ZMP, we have introduced an explicit stability constraint
in the MPC formulation [13], leading to the Intrinsically
Stable MPC (IS-MPC). This constraint, based on the idea
of boundedness [14], [15], [16], extends the classic terminal
constraint used in MPC formulations for set-point control.
It has been shown that, using some preview information,
the IS-MPC ensures recursive feasibility (i.e., the ability to
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recursively guarantee a solution satisfying the constraints)
and internal stability.

In humanoid gait generation, robustness remains a crit-
ical issue due to model uncertainty and external distur-
bances [17], [18]. In a general MPC scheme, disturbances
can cause constraint violations, and possibly lead to instabil-
ity. If a bound on the disturbance is available, a possible
solution is to restrict the constraints based on a robust
positive invariant set [19], [20], [21], [22]. In order for this
set to exist, the system needs to be stabilized. This idea
has been applied to humanoids in [23], [24] where the LIP
dynamics is stabilized around a reference trajectory provided
by the MPC. The robust positive invariant set can then be
computed and a constraint restriction is found accordingly.

In the presence of external disturbances a possible alter-
native, complementary to the previous approach, consists
of using an estimate of the disturbance, provided by a
disturbance observer, to counteract the disturbance itself.
Examples in humanoid balance or gait generation are given
by [25], [26], [27]. We explored a closely related idea in
[28], where a modified version of the stability constraint led
to a form of indirect compensation of the disturbance.

In this paper we present an extension of our IS-MPC
method for humanoid gait generation aimed at obtaining
robust gait generation in the presence of disturbances. This
is achieved by explicitly including the mid-range disturbance
in the stability constraint, and by performing an appropriate
ZMP restriction during the control horizon, based on the
disturbance range amplitude. We also present conditions
which guarantee recursive feasibility and stability for the IS-
MPC with constraint modification.

The paper is organized as follows. In Sect. II we briefly
recall the IS-MPC scheme and the corresponding stability
constraint. The class of considered disturbances is defined
in Section III where both the robust stability constraint and
the restricted ZMP constraint are also introduced. Recursive
feasibility and stability are also analyzed in this new context.
Dynamic simulations are presented in Sect. IV. Section V
addresses conclusions and future work.

II. BACKGROUND

Internal stability is a fundamental issue in humanoid gait
generation. In fact, even if dynamic balance is guaranteed
through the ZMP criterion, the CoM can still diverge with
respect to the ZMP, ultimately leading to a failure due the
robot’s inability to realize the gait.
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A. Nominal model

Denote the position of the humanoid CoM and ZMP as
(xc, yc, zc) and (xz, yz, 0), respectively. The balance of mo-
ments around the ZMP provides a relationship between the
evolution of the latter and that of the CoM [29]. Assuming
that motion takes place on flat horizontal ground with the
CoM traveling at constant height z̄c, and neglecting angular
momentum contributions around the CoM, we obtain the
simplified model known as Linear Inverted Pendulum (LIP),
which has identical and decoupled x-axis (sagittal) and y-
axis (coronal) dynamics. For illustration, consider the sagittal
dynamics

ẍc = η2(xc − xz), (1)

with η =
√
g/z̄c, where g is the gravity acceleration. Note

that the ZMP position xz acts as an input in this model.
The LIP dynamics (1) can be decomposed into a stable

and an unstable subsystem using the following change of
coordinates:

xu = xc + ẋc/η (2)
xs = xc − ẋc/η. (3)

The unstable component xu, also known as divergent com-
ponent of motion [30] or capture point [31], evolves as

ẋu = η (xu − xz).

B. IS-MPC for the nominal case

Intrinsically Stable MPC(IS-MPC) is a scheme for hu-
manoid gait generation that uses a stability constraint to
guarantee that the CoM remains bounded with respect to the
ZMP, i.e., that the gait is internally stable. Below we summa-
rize IS-MPC for the simplified case in which the footsteps are
assigned and have constant orientation. Since their positions
are not decision variables, no kinematic constraints must be
enforced in this case. See [32] for further details.

The prediction model is a dynamically extended LIPẋcẍc
ẋz

 =

 0 1 0
η2 0 −η2
0 0 0

xcẋc
xz

+

0
0
1

 ẋz, (4)

with the ZMP velocity ẋz now acting as input. We assume
piecewise-constant inputs, i.e., ẋz(t) = ẋiz for t ∈ [ti, ti+1],
with δ = ti+1 − ti the duration of a sampling interval. The
control horizon of the MPC is Tc = C · δ.

Dynamic balance is guaranteed by the following constraint
on the ZMP

xmz (t) ≤ xz(t) ≤ xMz (t), t ∈ [tk, tk+C ], (5)

with the upper and lower bounds extracted from the footstep
plan at time t. Note that the size of admissible ZMP region
is constant

xMz (t)− xmz (t) = d,

provided that a moving constraint is used during double
support [5].

In spite of the instability of the LIP dynamics, xu (and
hence xc) would remain bounded with respect to xz if the
following condition were satisfied [14]:

xku = η

∫ ∞
tk

e−η(τ−tk)xz(τ)dτ. (6)

This is however a non-causal relationship, because it links
xku, the value of xu at the current instant tk, to the profile
of xz after tk.

To derive a causal version of (6), observe that the profile
of xz inside Tc is obtained by integration of the velocities
ẋkz , . . . , ẋ

k+C−1
z , i.e., the MPC decision variables; whereas

the profile of xz outside Tc depends on the unknown veloc-
ities ˙̃xk+Cz , ˙̃xk+C+1

z , . . . , collectively referred to as the tail,
which must be instead conjectured. In particular, an antic-
ipative tail can be built by using the information encoded
in the footstep plan up to a preview horizon Tp = P · δ
and zeroing all successive velocities. The resulting causal
stability constraint takes the form

C−1∑
i=0

e−iηδẋk+iz = −
P−1∑
i=C

e−iηδ ˙̃xk+iz +
η

1− e−ηδ
(xku − xkz),

(7)
where ˙̃xk+iz , i = C, . . . , P − 1 are the conjectured velocities
in the preview horizon.

Collecting the MPC decision variables as

Ẋk
z = (ẋkz . . . ẋk+C−1z )T

the following Quadratic Programming (QP) problem is
solved at each iteration of IS-MPC:

min
Ẋk

z

‖Ẋk
z ‖2 subject to:

• ZMP constraint (5);
• stability constraint (7).

Once the solution is found, the first sample ẋkz of the
optimal input sequence is used to integrate the prediction
model (4). This results in a reference trajectory for the
humanoid CoM that is tracked using a standard kinematic
controller.

It can be shown that IS-MPC at tk is feasible if and only
if

xk,mu ≤ xku ≤ xk,Mu , (8)

where

xk,mu = η

∫ tk+C

tk

e−η(τ−tk)xmz dτ + η

∫ ∞
tk+C

e−η(τ−tk)x̃zdτ

xk,Mu = η

∫ tk+C

tk

e−η(τ−tk)xMz dτ + η

∫ ∞
tk+C

e−η(τ−tk)x̃zdτ

are the limits of the feasibility region.
Based on the feasibility analysis, in [32] it is proven that

IS-MPC with the anticipative tail is recursively feasible if
the preview horizon Tp is sufficiently long. Moreover, it is
shown that recursive feasibility also implies internal stability
of the CoM with respect to the ZMP.
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Fig. 1. A typical disturbance (in red) in the considered class.

III. IS-MPC FOR THE PERTURBED CASE

We now present a modification of the previously described
IS-MPC algorithm for achieving robustness.

Consider an additive disturbance w acting on the LIP
dynamics

ẍc = η2(xc − xz) + w. (9)

This disturbance can represent external forces acting on the
humanoid as well as dynamics that are unmodeled in the
LIP [23]. Applying the same change of variables (2–3), the
dynamics of the unstable component xu becomes:

ẋu = η (xu − xz) + w/η. (10)

A. Disturbance model

We now define precisely the disturbance model considered
in this paper. In particular, we shall deal with disturbances
of the form

w(t) = wkm + ∆w(t) t ∈ [tk, tk+1), (11)

where |∆w(t)| ≤ ∆max (see Fig. 1). The value wkm is
the mid-range disturbance in [tk, tk+1) and satisfies the
additional requirement

|wk+1
m − wkm| ≤ ∆max. (12)

We assume that the maximum and minimum disturbance
value — and thus wkm — are known in each interval. The
simplifying assumption that the range amplitude ∆max is
constant can always be met by taking the maximum ∆w(t)
over the sampling intervals.

The above model encompasses a large variety of possible
disturbances. For example, it can represent the reaction force
that arises on the CoM when the humanoid is pushing
an object, say, a cart. In general, such force will not be
constant, but it can be kept bounded by an arm compliance
controller [33].

A special case occurs when wim = wm for all i, i.e., the
mid-range disturbance is the same in all intervals. This could
represent the situation in which a humanoid walks on an
inclined plane. In fact, the total disturbance in this case will
consist of the constant push/pull plus the unmodeled dynam-
ics. If wm = 0, the disturbance w can represent the effect of
unmodeled dynamics during an otherwise unperturbed gait.

B. Robust stability constraint

To guarantee internal stability for the perturbed LIP
model (9), condition (6) must be modified as follows:

xku = η

∫ ∞
tk

e−η(τ−tk)xz(τ)dτ − 1

η

∫ ∞
tk

e−η(τ−tk)w(τ)dτ.

(13)
This condition requires the knowledge of w after tk. To
obtain a causal version of (13), we should use only the
available knowledge of w at tk. One possibility1 is to replace
w(·) with the mid-range disturbance wkm in tk, obtaining

η

∫ tk+C

tk

e−η(τ−tk)xz(τ)dτ=−η
∫ ∞
tk+C

e−ω(τ−tk)x̃z(τ)dτ+xku+
wkm
η2

(14)
which, by evaluating integrals for our piecewise-linear ZMP
trajectory, leads to the robust stability constraint

C−1∑
i=0

e−iηδẋk+iz =−
P−1∑
i=C

e−iηδ ˙̃xk+iz +
η

1− e−ηδ
(xku−xkz+

wkm
η2

).

(15)
Including the known part wkm of the disturbance in the
stability constraint leads to an IS-MPC scheme where the
control inputs (the ZMP velocities within the control horizon)
are modified by w, realizing a form of indirect disturbance
compensation [28].

Consistently with the above discussion, also the prediction
model (4) is modified to include the mid-range disturbance
wkmẋcẍc

ẋz

=

 0 1 0
η2 0 −η2
0 0 0

xcẋc
xz

+

0
0
1

 ẋz+

0
1
0

wkm (16)

and will be used to propagate at time tk+1 the effect of the
first sample ẋkz of the QP solution.

C. Restricted ZMP constraint

The main tool introduced in this paper to guarantee robust-
ness with respect to bounded disturbances is the restriction of
the ZMP constraint. Intuitively, enforcing a tighter constraint
on the ZMP creates a safety margin for absorbing the effect
of disturbances. In the following, we formalize this idea and
rigorously prove its effectiveness.

Define a restriction function R(t) as a non-decreasing2

function over [0, Tc] such that

|R(t)| ≤ d/2, (17)

with d the size of the ZMP constraint. Accordingly, the
restricted ZMP constraint is

xmz (t) +R(t− tk) ≤ xz(t) ≤ xMz (t)−R(t− tk) (18)

for t ∈ [tk, tk+C ].

1This corresponds to replacing all future values of w in the stability
condition (13) with the current mid-range disturbance wk

m, rather than using,
if available, also the future values wk+1

m , wk+2
m , . . . .

2This property is instrumental for simplifying the proof of Prop. 1 but
not strictly necessary.
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Fig. 2. Using a linear restriction function R(t−tk) = r(t−tk) to modify
the original ZMP constraint (blue). Note the restricted constraint for the QP
problem at tk (solid red) and for the QP problem at tk+1 (dashed red).

For illustration, we will use a linear restriction function

R(t) = r t (19)

where the slope r is a design parameter. Note that it must
be

r ≤ d

2Tc
(20)

in order to guarantee (17). The effect of a linear restriction
on the ZMP constraint is shown in Fig. 2.

It is important to understand that the restriction proce-
dure only affects the constraint inside the control horizon,
leaving the ZMP bounds at the current time tk unchanged3.
This means that the actual ZMP will always use the full
unrestricted support polygon.

D. Recursive feasibility for the perturbed case

We now establish the main result of the paper, i.e., a
sufficient condition for recursive feasibility of IS-MPC with
modified constraints (both stability and ZMP) in the presence
of additive disturbances of the form (11).

Considering the robust stability constraint in the integral
form (14) and using the restricted ZMP constraint (18), the
feasibility region (8) at tk is modified as

x̄k,mu ≤ xku ≤ x̄k,Mu (21)

with

x̄k,mu = xk,mu +

∫ tk+C

tk

e−η(τ−tk)R(τ − tk)dτ − wkm
η2

x̄k,Mu = xk,Mu −
∫ tk+C

tk

e−η(τ−tk)R(τ − tk)dτ − wkm
η2

.

The following proposition clarifies how robust recursive
feasibility can be achieved by properly choosing the slope r
of the linear restriction function (19).

3This is true as long as R(0) = 0, which certainly holds for linear
restriction functions

Proposition 1: Assume an additive disturbance of the
form (11–12) is present. Then, IS-MPC with the robust
stability constraint (15) and the linearly restricted ZMP
constraint (18–19) is recursively feasible if

1

δ(1− e−ηTc)

(
∆maxeηδ

η2
+ µmax

)
≤ r ≤ d

2Tc
. (22)

Proof. The upper bound comes directly from (20). For the
lower bound, see the Appendix.

In the left-hand side of (22), µmax is a bound on the tail
mismatch, a term arising from the variation over time of the
ZMP velocity tail due to the preview horizon Tp being finite.
This mismatch exists independently of the disturbance, which
instead affects the first term in the left-hand side through
its range amplitude ∆max. See the proof for an explicit
expression of µmax.

In the special case of constant mid-range disturbance it is
possible to tighten the previous result.

Proposition 2: Assume an additive disturbance of the
form (11–12) is present, with wim = wm for all i. Then, IS-
MPC with the robust stability constraint (15) and the linearly
restricted ZMP constraint (18–19) is recursively feasible and

1

δ(1− e−ηTc)

(
∆max(eηδ − 1)

η2
+ µmax

)
≤ r ≤ d

2Tc
.

(23)

Proof. See the Appendix.

A few remarks are in order.
• The lower bound in (23) is smaller (hence, less restric-

tive) than in (22) because the assumption wm = wim
for all i means that the robust stability constraint (15)
actually takes into account all the future mid-range
disturbances rather than only the current.

• By equating the right- and left-hand side of (22)
(or (23)) one obtains an upper bound on the disturbance
range amplitude ∆max which can be tolerated in order
to maintain recursive feasibility of IS-MPC algorithm.

• If the whole footstep plan is known a priori (i.e, Tp =
∞), the tail mismatch µmax is zero.

• Increasing the control horizon Tc decreases the lower
as well as the upper bound on the slope r. This is
due to the choice of a linear restriction function R(t).
Other choices are possible, such as linear/saturated or
exponential.

Wrapping up, the proposed approach may be paraphrased
as follows: the robust stability constraint indirectly compen-
sates for the known part wkm of the disturbance, while the
ZMP restriction takes care of its uncertain part in a preventive
way based on the range amplitude ∆max.

To conclude this section, we claim that robust recur-
sive feasibility guarantees robust internal stability, i.e., the
boundedness of the CoM trajectory with respect to the ZMP
trajectory. In fact, since the disturbance is bounded and the
restriction function is linear (and thus exponential of order
0), Prop. 6 of [32] still holds.
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Fig. 3. Simulation 1. NAO walking on horizontal ground and subject
to a constant lateral push starting from t = 2.5 s (top). CoM and ZMP
trajectories (bottom); the red tick identifies the start of the lateral push.

IV. DYNAMIC SIMULATIONS

To validate the proposed approach, we performed
some dynamic simulations in DART (Dynamic Animation
Robotics Toolkit) for NAO, a small humanoid robot with
CoM height z̄c = 0.33 m.

A square footprint with a side of d = 0.05 m is used to
define the ZMP constraint (5). The duration of the single
and double support phase is 0.3 s and 0.2 s, respectively. IS-
MPC uses a sampling interval δ = 0.05 s, a control horizon
Tc = 1 s and a preview horizon Tp = 2 s. The controller
itself runs at 100 Hz.

In the first simulation, shown in Fig. 3, NAO is walking
on horizontal ground. From t = 2.5 s on, a lateral constant
push of 3.2 N is applied from the right, corresponding to a
disturbance w = 0.71 m/s2 in (9). This value is unknown to
the robot, which however reconstructs a real-time estimate
ŵ(tk) of w using the ZMP-based observer proposed in [34].
The mid-range disturbance is then guessed as wkm = ŵ(tk),
while the range amplitude ∆max = 0.08 m/s2 around wkm is
assumed to be known. The results show that the proposed
IS-MPC method produces an internally stable gait thanks to
the use of modified constraints; namely, the robust stability
constraint (15) and a linearly restricted ZMP constraint (18–
19) with r = 0.071 computed from eq. (22). Observe, in
particular, how the CoM trajectory is shifted towards the
right of the robot, indicating that the robot is actually ‘leaning
against the disturbance’ in order to compensate it (a behavior
already observed in [28]). In contrast, nominal IS-MPC
(i.e., IS-MPC with unmodified constraints) quickly becomes
unfeasible, resulting in a failure. See the accompanying video
for a side-by-side clip comparison.

In the second simulation, shown in Fig. 4, the robot is
walking on a sequence of ramps whose slope is unknown but
always in the range −1.6◦ ÷ 1.6◦. Any nonzero slope will
obviously generate a sagittal disturbance on the robot CoM
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Fig. 4. Simulation 2. NAO walking on a sequence of ramps of unknown
slope (top). CoM and ZMP trajectories (bottom).

because the gravity force is not completely compensated
by the ground reaction force. Considering the maximal and
minimal disturbance g sin(±1.6◦) = ±0.28 m/s2 leads to
a range amplitude ∆max = 0.28 m/s2, with mid-range
disturbance wim = 0 for all i. Equation (23) indicates that
a linearly restricted ZMP constraint (18–19) with r = 0.035
will guarantee4 recursive feasibility and, hence, produce an
internally stable gait in spite of the disturbance, as confirmed
by the simulation. Once again, nominal IS-MPC fails (see the
accompanying video).

Note that the bottom plots in Figs. 3 and 4 show the unre-
stricted ZMP constraints, as the restriction is only active in
prediction inside the control horizon. As already mentioned,
the actual ZMP is allowed to use the full unrestricted area.

Finally, it is important to note that, while control design is
based on the simplified LIP model, the motion of the robot
in the above simulations actually obeys the full nonlinear
model. This means that dynamics that are neglected in the
LIP represent an additional source of persistent perturbation
which is unknown to the controller. The resulting stable gaits
confirm then that the proposed version of IS-MPC achieves
a significant degree of robustness with respect to external
disturbances as well as unmodeled dynamics.

V. CONCLUSIONS

We have presented an extension of our previously pro-
posed IS-MPC method for humanoid gait generation aimed at
obtaining robust performance in the presence of disturbances.
The considered disturbance signals vary in a range of known
amplitude around a mid-range value that can change at each
sampling time, but whose current value is assumed to be
available, possibly via estimation. The method consists in:

4In this case, the nominal and robust stability constraints, respectively (7)
and (15), actually coincide because the mid-range disturbance is zero.
Robustness is then the result of ZMP constraint restriction only.



• modifying the stability constraint that is at the core of
IS-MPC by incorporating the current mid-range distur-
bance;

• performing an appropriate linear restriction of the ZMP
constraint in the control horizon on the basis of the
range amplitude of the disturbance.

We have derived explicit conditions for recursive feasibil-
ity and internal stability of the proposed IS-MPC method
with constraint modification. Finally, we have illustrated its
superior performance with respect to the nominal version by
performing dynamic simulations on the NAO robot.

Future work will address several points, such as:

• integrating the disturbance observer of [28] for esti-
mating the mid-range disturbance in the robust stability
constraint;

• developing a compliant foot trajectory generation to
allow robust stepping when the disturbance is the result
of non-horizontal ground;

• performing experiments on a real humanoid robot.

APPENDIX

Proof of Proposition 1

The proof goes through a set of upper and lower inequalities.
We omit the lower inequalities for compactness.

Assume that the robust stability constraint in the integral
form (14) and restricted ZMP constraint (18) are satisfied at
tk. The first step is to derive a bound on xk+1

u . Integration
of (10) gives

xk+1
u =eηδxku−η

∫ tk+1

tk

eη(tk+1−τ)xz(τ)dτ+
1

η

∫ tk+1

tk

eη(tk+1−τ)w(τ)dτ.

Plugging (14) into this and using (18), we can write

xk+1
u ≤ η

∫ tk+C

tk+1

e−η(τ−tk+1)(xMz −R(τ − tk))dτ +

η

∫ ∞
tk+C

e−η(τ−tk+1)x̃z(τ)dτ +

1

η

∫ tk+1

tk

eη(tk+1−τ)w(τ)dτ − wkme
ηδ

η2
.

On the other hand, xu belongs to the feasibility region at
time tk+1 if

xk+1
u ≤ η

∫ tk+C+1

tk+1

e−η(τ−tk+1)(xMz −R(τ − tk+1))dτ +

η

∫ ∞
tk+C+1

e−η(τ−tk+1)x̃′z(τ)dτ − wk+1
m

η2
,

where x̃′z(τ) is the ZMP position obtained by integration of
the tail at tk+1.

A sufficient condition for recursive feasibility is obtained
by imposing that the right-hand side of the penultimate
inequality is smaller than that of the last one. Rearranging

leads to

η

∫ tk+C

tk+1

e−η(τ−tk+1)(R(τ − tk)−R(τ − tk+1))dτ +

η

∫ tk+C+1

tk+C

e−η(τ−tk+1)(xMz −R(τ − tk+1)− x̃z(τ))dτ +

η

∫ ∞
tk+C+1

e−η(τ−tk+1)(x̃′z(τ)− x̃z(τ))dτ +

−w
k+1
m − wkm
η2

− 1

η

∫ tk+1

tk

eη(tk+1−τ)(w(τ)− wkm)dτ ≥ 0.

We can neglect the second integral, which is always positive
and much smaller than the other terms; this leads to a
slightly conservative result, but considerably simplifies the
computation. Rewrite the resulting inequality as

β ≤ µ+ γ, (24)

where we have set

β = η

∫ tk+C

tk+1

e−η(τ−tk+1)(R(τ − tk)−R(τ − tk+1))dτ

µ = η

∫ ∞
tk+C+1

e−η(τ−tk+1)(x̃z(τ)− x̃′z(τ))dτ

γ =
wk+1
m − wkm
η2

+
1

η

∫ tk+1

tk

eη(tk+1−τ)(w(τ)− wkm)dτ.

For the considered linear restriction (19), β is computed as

β = rδ(1− e−ηTc).

As for µ, this term is the tail mismatch, which arises from
the variation over time of the ZMP velocity tail due to the
preview horizon Tp being finite. As shown in [32], µ can be
bounded as

µ ≤ e−ηTp
1− e−ηδ

η
vmax
z = µmax,

where vmax
z is the maximum velocity of the ZMP in the

anticipative tail. Finally, γ can be bounded as

γ ≤ ∆maxeηδ

η2
,

having used (12) and the fact that |∆w(t)| ≤ ∆max. By
plugging the expression of β and the bounds on µ and γ
into (24), the thesis follows.

Proof of Proposition 2

Repeating the proof of Prop. 1 with wk+1
m = wkm = wm the

bound on γ is modified as

γ ≤ 1

η

∫ tk+1

tk

eη(tk+1−τ)∆w(τ)dτ ≤ ∆maxeηδ

η2
(eηδ − 1)

which proves the thesis.
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