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Abstract. In this paper we consider a partial overdetermined mixed boundary value problem

in domains inside a cone as in [18]. We show that in cones having an isoperimetric property
the only domains which admit a solution and which minimize a torsional energy functional

are spherical sectors centered at the vertex of the cone. We also show that cones close in the

C1,1-metric to an isoperimetric one are also isoperimetric, generalizing so a result of [1]. This
is achieved by using a characterization of constant mean curvature polar graphs in cones which

improves a result of [18].

1. Introduction

In this paper we complement and extend some results recently obtained in [18] about partially
overdetermined problems in bounded domains in cones and about constant mean curvature sur-
faces in cones satisfying suitable gluing conditions.
Let ω be an open connected set on the unit sphere SN−1, N ≥ 2, and let us denote by Σω the
open cone in RN with vertex at the origin O given by

Σω = {tx : x ∈ ω, t ∈ (0,+∞)}.
We will assume that ∂Σω is Lipschitz-continuous. As in [18] we consider a sector-like domain in
Σω which is a bounded domain Ω ⊂ Σω whose boundary is Lipschitz-continuous and is given by

∂Ω = Γ ∪ Γ1 ∪ ∂Γ

where Γ is the relative (to Σω) boundary, i.e. Γ is the part of ∂Ω which is contained in Σω,
Γ1 = ∂Ω r Γ and ∂Γ = ∂Γ1 = Γ ∩ Γ1. We require that HN−1(Γ) > 0, HN−1(Γ1) > 0 where
HN−1(·) denotes the (N − 1)-dimensional Hausdorff measure.
Particular cases of sector-like domains are the spherical sectors centered at the vertex of the cone,
we denote them by Sω,R i.e.

Sω,R = BR ∩ Σω, R > 0

where BR is the ball of radius R centered at the origin.
Then we consider the partially overdetermined problem

(1.1)


−∆u = 1 in Ω,

u = 0 on Γ,
∂u
∂ν = −c < 0 on Γ,
∂u
∂ν = 0 on Γ1 r {O},
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where ν denotes the exterior unit normal to ∂Ω whenever is defined. We will sometimes write νx
for x ∈ ∂Γ, meaning that νx is the normal to Γ.
If ∂Σω r {O} and Γ are smooth hypersurfaces, then the following result is proved in [18]

Theorem A [Theorem 1.1 in ([18])]. Let c > 0 be fixed, and consider a convex cone Σω
such that ∂Σω r {O} is smooth. Assume that Ω is a sector-like domain having a smooth relative
boundary Γ with smooth ∂Γ ⊂ ∂Σω r {O}. If there exists a classical C2(Ω) ∩ C1(Γ ∪ Γ1 r {O})-
solution u of problem (1.1) such that u ∈W 1,∞(Ω) ∩W 2,2(Ω), then

Ω = Σω ∩BR(p0), and u(x) =
N2c2 − |x− p0|2

2N
,

where BR(p0) denotes the ball centered at a point p0 ∈ RN and radius R = Nc.
Moreover, one of the following two possibilities holds:

(i) p0 = O;
(ii) p0 ∈ ∂Σω and Γ is a half-sphere lying over a flat portion of ∂Σω.

Let us observe that the hypothesis that the solution u belongs to W 1,∞(Ω) ∩ W 2,2(Ω) is
automatically satisfied when Γ and Γ1 intersect orthogonally, as proved in [18]. We also refer the
reader to the recent works [6, 9, 13].
The previous theorem gives a characterization of sector-like domains Ω in which a solution of the
partially overdetermined problem (1.1) exists. The claim is that either Ω is a spherical sector
centered at the vertex of the cone or is a half ball centered at a point ∂Σω r {O}. The last
case can happen only when ∂Σω has a flat portion. One of the aims of this paper is to show
a connection between problem (1.1) and a suitable torsional energy function Tω(Ω) that can be
defined for sector-like domains (see (4.1)). We prove that in any smooth cone the domains Ω
which are stationary for Tω(Ω), under a volume constraint, are the ones for which (1.1) admits
a weak solution (see Proposition 4.3). Consequently, if the cone Σω is convex the stationary
sector-like domains which are smooth enough can be characterized by Theorem A.
Moreover we show that a conical version of the classical Saint-Venant principle (see, e.g., [12])
holds. More precisely we prove in Theorem 4.5 that if the cone has an isoperimetric property (but
is neither necessarily convex nor smooth) then the only sector-like domains which minimize Tω(Ω)
under a volume constraint are the spherical sectors Sω,R. These results are analogous to those
holding for the classical torsional rigidity problem (see [20]). The proof of Theorem 4.5 is easily
obtained by using the ω-symmetrization which is well defined in isoperimetric cones (see Section
3). This implies that Theorem A can be extended to the class of isoperimetric cones (which
not only includes convex cones, see Section 3) relatively to the characterization of the sector-like
domains Ω which admit a solution of problem (1.1) and which also minimize the functional Tω(Ω).
In this case, up to rescaling, the only domain is the spherical sector Sω,1, i.e. the alternative ii)
of Theorem A does not hold.
By an isoperimetric cone we mean a cone which has the property that the only sets which
minimize the relative (to Σω) perimeter under a volume constraint are the spherical sectors Sω,R
(see Definition 3.1). It was proved in [16] that any smooth convex cone is isoperimetric (see also
[4, 8, 21]).
Recently Baer and Figalli ([1]) have extended the isoperimetric property to almost convex cones
satisfying an uniform C1,1 condition.
Here we generalize the result of [1] by proving that the convexity of the cone is not needed in
the sense that any cone close to an isoperimetric cone is also isoperimetric (see Theorem 3.3). In
other words the set of the isoperimetric cones is open with respect to the C1,1-distance on SN−1.
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Moreover we shorten considerably the proof given in [1]. Indeed the proof of Theorem 1.2 in [1] is
made in two steps. The first one consists in showing that in the almost convex cones the relative
boundary of the minimizers are C1-polar graphs. Then the second step aims to prove that if the
relative boundary is a polar graph then the minimizer is actually a spherical sector. The second
step is achieved by means of a refined Poincaré inequality obtained in convex cones and is the
longest part of the proof. To prove Theorem 3.3 we observe that, in order to reduce to consider
only minimizers whose boundary is a polar graph, the convexity of the limit cone is not needed
but is enough to require it to have the isoperimetric property (see the details in Section 3). Then
we just use the characterization of constant mean curvature polar graphs (or equivalently strictly
starshaped hypersurfaces) intersecting any cone orthogonally provided by Theorem 1.1 below to
conclude that in almost isoperimetric cones the only minimizers are spherical sectors.

Theorem 1.1. Let Σω be any cone in RN such that ω is strictly contained in SN−1
+ = {x =

(x1, . . . , xN ) : xN > 0, |x| = 1} and it has C1,1-smooth boundary. Let Γ ⊂ Σω be a smooth
(N − 1)-dimensional manifold which is relatively open, bounded, orientable, connected and with
C1,1-smooth boundary ∂Γ contained in ∂Σωr{O}. Assume that Γ and ∂Σω intersect orthogonally
at the points of ∂Γ and that the mean curvature of Γ is a constant H > 0. If Γ is strictly starshaped
with respect to O, then Γ is the (relative to Σω)-boundary of the spherical sector Sω, 1

H
.

This theorem is an improvement of Theorem 6.4 in [18] which, in turn, is a particular case of
Theorem 1.3 of [18] where a more general gluing condition between Γ and Σω is assumed. The
differences between Theorem 1.1 and Theorem 6.4 of [18] rely on the regularity assumptions on
ω and on the fact that in [18] it was proved that Γ = ∂B 1

H
(p0) ∩ Σω for some p0 ∈ ∂Σω, but we

could not claim that p0 is actually the vertex of the cone, while this is asserted in Theorem 1.1.
The problem of identifying the center of the sphere on which Γ lies is studied in Section 2. We
also observe inside the proof of Theorem 1.1 that H > 0 is a necessary condition, and hence it is
not really an hypothesis.

The paper is organized as follows. In Section 2 we prove Propositions 2.3 and 2.5, together
with other geometric properties needed for the proof of Theorem 1.1. In Section 3 we define
the isoperimetric cones and prove in Theorem 3.3 the generalization of the result of [1]. In the
same section we recall the ω-symmetrization in isoperimetric cones and show the analogous of
the Polya-Szego inequality with the characterization of the equality case. Finally in Section 4 we
study the torsional energy functional and prove the characterization of its stationary points, as
well as the Saint-Venant type principle in isoperimetric cones.

2. Some geometric results

In this section, to the aim of proving Theorem 1.1, we study the following geometrical question:

Let Σω be a cone in RN , N ≥ 3, and assume that Γ is a portion of a sphere inside Σω, centered
at a point p0 ∈ RN , i.e. Γ = ∂BR(p0) ∩ Σω. Assume further that Γ and ∂Σω intersect

orthogonally at every point of ∂Γ ∩ ∂∗Σω, where ∂∗Σω denotes the set of regular points of ∂Σω.
Can we claim that p0 must be O, i.e. the vertex of the cone?

In the paper [21] it is proved that if Σω is a smooth convex cone then either p0 = O, or p0 ∈
∂Σωr{O} and Γ is a half-sphere lying over a flat portion of ∂Σω. Thus, in particular, if the cone
is strictly convex, the answer to the question is affirmative.
However, this cannot be used in Theorem 1.1 since no convexity assumptions on the cone are
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made. In Proposition 2.3 we prove, in particular, that it is enough to have a point x̄ ∈ ∂Γ of strict
convexity for ∂Σω to get that the center p0 of the sphere is the vertex of the cone. Moreover, if
Γ is a polar graph on a C1-domain ω, we prove in Proposition 2.5 that p0 = O unless ω is an
half-sphere (i.e. Σω is an half-plane).

We start by fixing some notations. For a cone Σω we denote by ∂∗Σω the set of smooth points
of ∂Σω, i.e. points where ∂Σω is of class C1. In particular we have ∂∗Σω = ∂Σω r {O} if ω is
a C1-domain. We note that x ∈ ∂∗Σω iff λx ∈ ∂∗Σω for every λ > 0. Moreover, whenever M is
a manifold locally C1 around x ∈ M , we denote by TxM the tangent space of M at x. If M is
of codimension 1, we denote by νMx a choice of the unit normal at x (the outward choice, if M is
the boundary of a bounded set).
In the case M = ∂Σω, it is helpful to have in mind that the following facts hold true for all x ∈
∂∗Σω: Tx∂Σω coincides with the affine space x+ Tx∂Σω, and the halfline 〈x〉+ := {λx : λ > 0}
is contained in ∂Σω ∩ Tx∂Σω.

Lemma 2.1. Let Γ be the portion of a sphere inside a cone Σω, i.e. Γ = ∂Br(p0) ∩ Σω where
BR(p0) denotes the ball of radius r > 0 and center p0 ∈ RN . If Γ intersects ∂Σω orthogonally at
a point x ∈ ∂Γ ∩ ∂∗Σω, then

p0 ∈ Tx∂Σω.

Proof. The fact that Γ intersects ∂Σω orthogonally at x says that the scalar product
〈
νΓ
x , ν

∂Σω
x

〉
=

0 where νΓ
x denotes the normal to Γ at x and ν∂Σω

x the normal to ∂Σω at x. Since νΓ
x = x−p0

r

because Γ is a portion of a sphere and
〈
x, ν∂Σω

x

〉
= 0 by the cone property, the statement readily

follows. �

Remark 2.2. The previous lemma, although very simple, allows to locate p0 in some situations.
We give a couple of examples, in the case when Γ intersects ∂Σω orthogonally at every point of
∂Γ ∩ ∂∗Σω.
We can consider the case of two distinct hyperplanes intersecting on a (N −2)-dimensional space
l. These define a cone Σ for which ∂∗Σ = ∂Σ r l. There are two possibilities: either ∂Γ touches
both the hyperplanes and then p0 ∈ l since it must belong to the intersection of all tangent planes
which are just the two given hyperplanes, or ∂Γ touches only one of the two hyperplanes and then
p0 lies on the same hyperplane and it is easy to see that Γ is forced to be a half-sphere because of
the orthogonality condition.
We can also consider the case of a pyramid-shaped cone, i.e. a cone constructed by a collection of
a finite number of hyperplanes (facets) intersecting just at O. In such case, the previous lemma
tells us that p0 = O if ∂Γ touches more than two facets, otherwise the same two alternatives of
the previous case arise.

Denote by ∂∗2Σω the set of points x ∈ ∂Σω around which ∂Σω is of class C2. We recall
that, for x ∈ ∂∗2Σω, the second fundamental form hx of ∂Σω is the bilinear symmetric form on
Tx∂Σω × Tx∂Σω which can be defined on a orthonormal frame {e1, . . . , eN−1} as

hx(ei, ej) =
〈
∇eiν∂Σω

x , ej
〉
, for i, j ∈ {1, . . . , N − 1}.

Moreover the cone has the property that
〈
x, ν∂Σω

x

〉
= 0 for any x ∈ ∂∗Σω. Thus, the radial

direction is not only a tangent direction for ∂Σω, but it is also a direction of complete flatness in
the sense that hx(x, ·) ≡ 0. As a matter of fact, for any tangent direction e ∈ Tx∂Σω, we have
hx(x, e) = −

〈
ν∂Σω
x ,∇ex

〉
= −

〈
ν∂Σω
x , e

〉
= 0.

If N ≥ 3 we give the following definitions:
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- we say that a point x ∈ ∂∗2Σω is transversally nondegenerate if the quadratic form
hx restricted to the tangent directions to ∂Σω which are orthogonal to x has all the
eigenvalues different from zero. In other words, all principal curvatures of ∂Σω at x are
non-zero except for that in the x-direction;

- we say that a point x ∈ ∂∗2Σω is a point of strict convexity (resp. strict concavity) for
∂Σω if the quadratic form hx is strictly positive (resp. strictly negative) definite when it
is restricted to the tangent directions which are orthogonal to x.

Proposition 2.3. Let N ≥ 3. Consider a portion of a sphere Γ = ∂Br(p0)∩Σω which intersects
orthogonally ∂Σω at every point of ∂Γ∩∂∗Σω. Suppose there exists a point x̄ ∈ ∂Γ∩∂∗2Σω which
is transversally nondegenerate. Then

p0 = O.

Proof. Let us split the proof in two steps, and assume the point x̄ ∈ ∂Γ ∩ ∂∗2Σω is transversally
nondegenerate.
Step I. We claim that there exist a point x̃ ∈ ∂Γ ∩ ∂∗2Σω and an open neighborhood Ux̃ of x̃ in
∂∗2Σω such that every point x ∈ Ux̃ is transversally nondegenerate and such that V := {tx : x ∈
Ux̃ ∩ ∂Γ, t ∈ ( 1

2 ,
3
2 )} is an open neighborhood (relatively to ∂Σω) of x̃ in ∂Σω.

To prove this, we notice that in a small neighborhood of x̄ we can find a point x̃ ∈ ∂Γ ∩ ∂∗2Σω
which is transversally nondegenerate and such that x̃ /∈ Tx̃∂Γ. In fact, if this was not true then
in a neighborhood of x̄ the manifold ∂Γ (which is (N − 2)-dimensional) would contain a straight
segment and this is not possible since ∂Γ ⊂ ∂Br(p0). By continuity, also at the points close to
x̃ the radial direction has non-vanishing component which is transversal to ∂Γ: this says that an
open tubular neighborhood of ∂Γ in ∂∗2Σω around x̃ is contained in V .
Step II. We now complete the proof of the lemma. Take the point x̃ whose existence is guaranteed
by Step I. We can write an orthonormal frame for Tx∂Σω, for x in an open neighborhood V1 ⊆
V , as { x|x| , e1, . . . , eN−2}. We can always pick the ej ’s such that they diagonalize the second

fundamental form hx. By the nondegeneracy property we have hx(ej , ej) = λj(x) 6= 0 for any
j ∈ {1, . . . , N − 2}. On the other hand, we know from Lemma 2.1 that

〈
p0, ν

∂Σω
x

〉
= 0. By

differentiating such relation in V1 along ej , we get

0 = ej (〈p0, νx〉) = λj(x) 〈p0, ej〉

for all j. Therefore, the tangent vector p0, being orthogonal to every ej , has to be parallel to x.
Since this holds true for any x in an open (i.e. (N − 1)-dimensional) neighborhood of x̃, p0 is
then forced to be O. �

Remark 2.4. By the previous proposition we deduce that if p0 6= O then at all points of ∂Γ∩∂∗Σω
some of the principal curvatures in the directions orthogonal to x must vanish. Some cases when
this happens are those described in Remark 2.2.

Let us turn our attention on C1-polar graph. In this case we can identify completely the point
p0.

Proposition 2.5. Consider a cone Σω such that ∂ω is C1-smooth. Suppose Γ = ∂Br(p0) ∩ Σω
is a strictly starshaped hypersurface with respect to O which intersects orthogonally ∂Σω at every
point of ∂Γ ⊂ ∂Σω r {O}. Then one of the following two possibilities holds:

(i) p0 = O;
(ii) p0 ∈ ∂Σω and Σω is an half-space.
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Proof. Arguing as in [21, Proof of Lemma 4.10] (see also the details given in [18, Lemma 2.4,
Step I and II]) one can prove that p0 ∈ ∂Σω. Suppose that p0 6= O, and denote q0 = p0

|p0| . Since Γ

is a polar graph over ω, the points of ∂Γ are in correspondence with the points of ∂ω. Recalling
that Tx∂Σω = Tλx∂Σω for any λ > 0, we have from Lemma 2.1 that

∂ω 3 q0 ∈ Tx∂Σω for all x ∈ ∂ω.

Therefore, the vector field

Vx = q0 − 〈q0, x〉x, for x ∈ SN−1,

is tangent to ∂ω at every point x ∈ ∂ω. The vector field Vx vanishes only at the antipodal points
±q0. Moreover, the flow lines of V are the great circles passing through q0: here, according to the
standard notation (see, e.g. [14, pg. 137]), by great circle we mean the intersection of the sphere
with a 2-dimensional linear subspace. As a matter of fact it is easy to see that, for any x̄ ∈ SN−1

different from ±q0, the flow line of V starting at x̄ is given by the great circle span{q0, x̄}∩SN−1.
Then ∂ω, which is a closed (N − 2)-dimensional C1 manifold, contains all great circles passing
through q0 and any point x ∈ ∂ω. Observing that any great circle belongs to the boundary of
an half sphere, we deduce that ∂ω must be itself the boundary of an half-sphere (which is indeed
ω). Hence Σω is an half-space, and this concludes the proof. �

We conclude this section proving Theorem 1.1.

Proof of Theorem 1.1. The proof consists of two parts. We first show that

(2.1) ∃p0 ∈ RN such that Γ = ∂Br(p0) ∩ Σω,

and then we conclude that Γ is in fact a spherical sector by using Proposition 2.5.
The assertion (2.1) is already proved in [18, Theorem 6.4], where it is deduced from the more
general [18, Theorem 1.3]. Here we show a self-contained and more direct proof of (2.1) holding
when Γ and ∂Σω intersect orthogonally and ∂ω is C1,1-smooth. We start by recalling the relation

(2.2) divΓ

(
x−

〈
x, νΓ

〉
νΓ
)

= (N − 1)− (N − 1)H
〈
x, νΓ

〉
,

which holds for all x belonging to the smooth hypersurface Γ. Moreover, the vector field F (x) =
x−

〈
x, νΓ

〉
νΓ is Lip-smooth up the boundary since we are assuming that Γ is C1,1-smooth up to

the boundary. The orthogonality assumption (and the fact that Σω is a cone) tells us that

〈F (x), nx〉 = 0 ∀x ∈ ∂Γ

since the outward unit conormal nx to ∂Γ coincides in fact with ν∂Σω . Hence, by integrating
(2.2) over Γ, we get the first Minkowski formula

(2.3)

∫
Γ

(
1−H

〈
x, νΓ

〉)
dσ = 0.

Incidentally, since H is constant, we also deduce that H is necessarily positive because we have

H = |Γ|∫
Γ
〈x,νΓ〉 = |Γ|

N |Ω| > 0. This is why we have assumed H > 0 from the beginning. It is proved

in [5, Proposition 1] that also higher order Minkowski formulas hold true under the orthogonality
assumption. In particular we have the validity of the following second Minkowski formula

(2.4)

∫
Γ

(
H − σ2(h)

〈
x, νΓ

〉)
dσ = 0,
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where σ2(h) denotes the second elementary symmetric function of the eigenvalues of h, i.e.
σ2(h) = 2

(N−1)(N−2)

∑
1≤i<j≤N−1 kikj where ki’s are the principal curvatures of Γ. The for-

mula (2.4) is obtained in [5] by making a variation of the formulas (2.2)-(2.3) along the normal
direction νΓ and differentiating along this direction (we recall that in our assumptions the vector
νΓ is Lip-smooth up to ∂Γ). By using (2.3), (2.4), the fact that H is a positive constant, and the
arithmetic-geometric inequality σ2(h) ≤ H2, we get

(2.5) 0 = H

∫
Γ

(
1−H

〈
x, νΓ

〉)
dσ =

∫
Γ

(
H −H2

〈
x, νΓ

〉)
dσ ≤

∫
Γ

(
H − σ2(h)

〈
x, νΓ

〉)
dσ = 0.

We explicitly remark that we have exploited in the previous inequality the strict starshapedness
of Γ, i.e.

〈
x, νΓ

〉
> 0. The relation (2.5) shows that it holds in fact the equality case in the

arithmetic-geometric inequality σ2(h) ≤ H2, which says that the second fundamental form h is
at every point of Γ a multiple of the identity and so h = HIN−1. It is then a classical fact that
such umbilicality property implies that Γ is a portion of a sphere (see e.g. [18, Section 5] for the
details) as claimed in (2.1).
Once (2.1) is proved, we can use Proposition 2.5 to infer that p0 = O, i.e. Γ is a spherical

sector. The case of the half-space cannot occur since ω is strictly contained in SN−1
+ . We stress

that, by invoking Proposition 2.5, we are using again the starshapedness and the orthogonality
assumptions. The proof is then complete. �

3. Isoperimetric cones and symmetrization

We start by defining isoperimetric cones.

Definition 3.1. We say that Σω is an isoperimetric cone if the only sets contained in Σω which
minimize the relative (to Σω) perimeter under a volume constraint are the spherical sectors. This
can be equivalently expressed saying that for any measurable set E ⊂ Σω with |E| < +∞ the
following isoperimetric inequality holds

(3.1) Pω(E) ≥ Nω
1
N

N |E|
N−1
N

ad equality is achieved if and only if E is a spherical sector Sω,R, R > 0.
In (3.1) Pω is the relative perimeter of E in Σω and ωN = |Sω,1|.

In [16] it has been proved that any smooth convex cone is isoperimetric (see [4, 8, 21] for alternative
proofs), in the trivial case when Σω is an half-space this holds up to translation. We observe that
the proof of [8] also holds for nonsmooth convex cones.
Here we show that any C1,1-smooth cone sufficiently close to an isoperimetric cone, with respect
to the C1,1-distance on the sphere, is also isoperimetric.
More precisely, for η > 0, let us consider the spherical cap

SN−1
+ (η) =

{
x = (x1, . . . , xN ) ∈ SN−1 : xN > η

}
and (as in [1]) let us define the class of uniform C1,1 open sets on the sphere:

Definition 3.2. Given η > 0, r > 0, we denote by Π+(η, r) the class of open sets ω ⊂ SN−1

such that ω ⊂⊂ SN−1
+ (η) and for every x ∈ ∂ω there exists a ball B+

r ⊂ ω and a ball B−r ⊂
SN−1 ∩

(
SN−1 r ω

)
both of radius r, such that x ∈ ∂B+

r ∩ ∂B−r .

The previous definition means that at every point of ∂ω an interior and an exterior ball
condition holds and the radius of the balls can be taken equal to r > 0, for all points in ∂ω.



8 F. PACELLA AND G. TRALLI

In the sequel, for ω, ω′ ⊂ SN−1, we denote by dL∞(∂ω, ∂ω′) the Hausdorff distance between ∂ω
and ∂ω′, with respect to the intrinsic metric on the sphere.

Theorem 3.3. Let N ≥ 3 and let Σω be a isoperimetric cone belonging to Π+(η, r) for some
η, r > 0. Then there exists ε > 0 such that for any domain ω′ ∈ Π+(η, r) with dL∞(∂ω, ∂ω′) < ε
the corresponding cone Σω′ is also isoperimetric.

Proof. Let us argue by contradiction and assume that there exists a sequence of cones Σω′n , with
ω′n ∈ Π+(η, r), such that

dL∞(∂ω, ∂ω′n)→ 0 as n→∞ but Σω′n are not isoperimetric.

Note that by [21, Section 3], the minimizers of the relative perimeter Pω′n with a volume constraint

exist, for all fixed volume, because ω′n ⊂⊂ SN−1
+ . Since we are assuming that Σω′n are not

isoperimetric cones, there exists a sequence of sets En ⊂ Σω′n such that En is not a spherical
sector Sω′n,R though En minimizes Pω′n under a volume constraint which, by the invariance under
rescaling, we can assume to be |En| = 1.
Now we follow the first part of the proof of Theorem 1.2 of [1] to deduce that ∂En ∩ Σω′n are

C1-graphs over ω′n (i.e. strictly starshaped with respect to O).
First we observe that the sets En are almost minimizers for the perimeter functional Pω′n (or
(Λ, r0)-perimeter minimizers in the sense of Almgren, for some Λ ≥ 0, r0 > 0), see [17, Section
21] or [7, Definition 1.8]. Then, using the arguments of [21, Theorem 3.4] and [17, Proposition
21.13 and Theorem 21.14] we get the existence of a set of finite perimeter E∗ ⊂ RN such that,
up to a subsequence,

|En∆E∗| → 0 as n→∞, and

PΣω
(E∗) ≤ lim inf

n→∞
PΣω′n

(En).

By standard arguments we then have that E∗ is a minimizer for PΣω with the volume constraint
|E∗| = 1. Thus, E∗ is a spherical sector Sω,R for some R > 0 because we are assuming that Σω
is an isoperimetric cone. By the regularity theory for almost minimizers, both in the interior [17,
Part III] and up to the boundary [7], we get that ∂En ∩ Σω′n is a C1,γ (γ ∈ (0, 1

2 )) manifold in a

neighborhood of any x ∈
(
∂En ∩ Σω′n

)
r Σ1,n, with Σ1,n closed and HN−1 (Σ1,n) = 0, while for

every x ∈
(
∂En ∩ ∂Σω′n

)
r Σ2,n, with Σ2,n closed, the closure of ∂En ∩ Σω′n is a C1, 12 -manifold

and HN−2 (Σ2,n) = 0.
Now we want to use the closeness of En to the smooth set E∗ = Sω,R to show that the singular
sets Σ1,n and Σ2,n are empty for n sufficiently large.
To do this we use the characterization of the singular sets by the spherical excess (see [17, Section
22] and [7, Section 3]) which essentially asserts that at any singular point the spherical excess
must be bigger than a constant δ > 0 which depends only on the dimension N . Then, using
the continuity of the excess with respect to the L1-convergence of the almost minimizers ([17,
Section 22], [7, Remark 3.6]), the convergence of sequences of points xn ∈ En to points in E∗
([17, Theorem 21.14], [7, Theorem 2.9]), and the fact that E∗ does not have singular points, we
get that Σ1,n and Σ2,n are empty, for n sufficiently large.
Finally, by the convergence of the outer unit normals ([17, Theorem 26.6]) we deduce that
En ∩ Σω′n is a strictly starshaped C1 hypersurface, i.e. is a C1-polar graph. Higher regular-
ity then follows by standard elliptic regularity theory.
On the other side, since En are minimizers for Pω′n with a volume constraint, by [21]-[24] we know
that ∂En has constant mean curvature and intersects ∂Σω′n orthogonally. Hence, by Theorem 1.1
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we have that ∂En must be a portion of a sphere centered at the origin, in other words En is a
spherical sector Sω′n,R for some R > 0 which gives a contradiction. �

Corollary 3.4. The set of isoperimetric cones in Π+(η, r) is an open set with respect to the
C1,1-distance of the boundaries.

Remark 3.5. Theorem 3.3 is a generalization of [1, Theorem 1.2] where it is proved that almost
convex cones are isoperimetric. We do not require the limit cone to be convex since we conclude
by using Theorem 1.1 which does not require the convexity of the cone. The use of Theorem 1.1
also allows to shorten the proof of [1] as explained in the Introduction.

Remark 3.6. As a consequence of Theorem 1.1 we have that, if a cone contained in the hemi-
sphere is not isoperimetric then a smooth, volume constrained minimizer F cannot be a strictly
starshaped set with respect to the vertex of the cone. This is because ∂F ∩ Σω must have con-
stant mean curvature and intersect ∂Σω orthogonally, so Theorem 1.1 would give a contradiction
because then F would be a spherical sector Sω,R.

Now we define the ω-symmetrization for functions defined in sector-like domains in isoperimet-
ric cones. This symmetrization was introduced in [19] for more general domains in RN , N ≥ 3,
and in [2] for N = 2 (see also [15]).
Let Σω be an isoperimetric cone and Ω ⊂ Σω a sector-like domain. For a measurable function
u : Ω −→ R, we denote by µ(t) its distribution function

µ(t) = |{x ∈ Ω |u(x)| > t}|, t ∈ [0,+∞),

and by u] the decreasing rearrangement

u](s) = inf {t ≥ 0 µ(t) < s}, s ∈ [0, |Ω|].
Then, for R > 0, consider a spherical sector Sω,R = Σω ∩ BR where BR is the ball centered at
O (the vertex of the cone) with radius R and denote by Sω(Ω) the spherical sector having the
same measure as Ω. The ω-symmetrization is defined as the transformation which associates to
a function u the radial decreasing function u∗ω(x) defined as:

u∗ω(x) = u](ωN |x|N ), x ∈ Sω(Ω),

where ωN is the measure of the unit spherical sector Sω,1. As pointed out in [19], this sym-
metrization has the same properties as the Schwarz symmetrization. In particular:

(3.2)

∫
Ω

|u(x)|p dx =

∫
Sω(Ω)

|u∗ω(x)|p dx ∀p > 0.

Now we consider the Sobolev space

W 1,p
0 (Ω ∪ Γ1) = {u ∈W 1,p(Ω) such that u = 0 on Γ}, p ≥ 1.

Let us observe that if u ∈ W 1,p
0 (Ω ∪ Γ1) then u∗ω = 0 on Γ̃ = Sω(Ω) ∩ Σω. However it is not

obvious that u∗ω ∈W
1,p
0 (Sω(Ω)∪ Γ̃1), where Γ̃1 = ∂Sω(Ω)∩∂Σω. If the cone is isoperimetric then

this is true and actually an analogous of the Polya-Szego inequality holds and also the equality
case can be completely characterized. More precisely we have:

Theorem 3.7. Let Σω be an isoperimetric cone, and Ω ⊂ Σω a sector-like domain. Let 1 ≤ p <
∞ and u ∈W 1,p

0 (Ω ∪ Γ1) with u ≥ 0. Then

(3.3)

∫
Sω(Ω)

|∇u∗ω(x)|p dx ≤
∫

Ω

|∇u(x)|p dx.
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In particular u∗ω ∈ W
1,p
0 (Sω(Ω) ∪ Γ̃1). Moreover equality holds in (3.3) if and only if Ω = Sω(Ω)

and u = u∗ω.

Proof. The statement (3.3) is already included in [15, Proposition 1.2] without any proof, since
it can be obtained by the same proof of the analogous inequality for the Schwarz symmetrization
just replacing the classical isoperimetric inequality by (3.1) everywhere. We refer to [25] and to
the book [12, Theorem 2.3.1]. If equality holds in (3.3) then, following for example the detailed
proof of Theorem 2.3.1 in [12], it is easy to see that almost all level sets Et = {u > t}, t ≥ 0,
of u must satisfy the equality in the isoperimetric inequality in (3.1). Then, since the cone is
isoperimetric, this implies that the level sets form a decreasing family of concentric spherical
sectors. This implies that Ω = Sω(Ω) and u = u∗ω. �

Remark 3.8. Let us point out that if we consider the classical Polya-Szego inequality, i.e. (3.3)

in the space W 1,p
0 (Ω) using Schwarz symmetrization, then it is not true that the equality case holds

if and only if Ω is a ball and u ≡ u∗ (being u∗ the Schwarz symmetrization of u). Indeed, see [12,
Section 2.3], though one can easily deduce that almost all level sets of u are balls, it can happen
that the centers of them are different (see Example 3.1 in [12]) so that u 6≡ u∗. A remarkable
result of [3] shows that this can be prevented by assuming that the set of the points where ∇u∗(x)
vanishes has zero measure. In the case of the ω-symmetrization this difficulty does not arise since
the vertex of the cone Σω is fixed and the optimal sets for (3.1) are spherical sectors with the
same center.

4. Saint-Venant type principle

We want to exploit the properties of the ω-symmetrization in isoperimetric cones in order to
minimize a suitable torsional energy. In this way we are going to prove the analogous, in our
conical setting, of the classical Saint-Venant principle. We will see in Proposition 4.3 that this
is closely related to the partially overdetermined problem (1.1) in sector-like domains studied in
[18].
Fix an isoperimetric cone Σω. For any sector-like domain Ω ⊂ Σω we can define

(4.1) Tω(Ω) = inf
v∈W 1,2

0 (Ω∪Γ1), v 6=0
−
(∫

Ω
v(x) dx

)2
2
∫

Ω
|∇v(x)|2 dx

where W 1,2
0 (Ω∪Γ1) denotes the Sobolev space of functions in W 1,2(Ω) whose trace vanishes on Γ

(recall that ∂Ω = Γ ∪ Γ1 ∪ ∂Γ). The functional Tω(Ω) is well-defined by the Poincaré inequality,

which holds true in W 1,2
0 (Ω ∪ Γ1) (see, e.g., [11, Remark 2.3.3]). On the other hand, one can

rewrite (4.1) as

(4.2) Tω(Ω) = inf
v∈W 1,2

0 (Ω∪Γ1)
J(v),

where

J(v) =
1

2

∫
Ω

|∇v(x)|2 dx−
∫

Ω

v(x) dx.

Since J is convex, it attains its unique minimum at the unique weak solution u = uΩ of the mixed
boundary value problem

(4.3)


−∆u = 1 in Ω,

u = 0 on Γ,
∂u
∂ν = 0 on Γ1 r {O}.
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Such a solution is positive in Ω and we have∫
Ω

uΩ(x) dx =

∫
Ω

|∇uΩ(x)|2 dx.

Therefore, we get

(4.4) Tω(Ω) = −1

2

∫
Ω

|∇uΩ(x)|2 dx = −1

2

∫
Ω

uΩ(x) dx.

Remark 4.1. The fact that (4.1) and (4.2) are equivalent follows from the fact that, for all

v ∈W 1,2
0 (Ω ∪ Γ1) with v 6= 0, we have

J(v) = −
(∫

Ω
v(x) dx

)2
2
∫

Ω
|∇v(x)|2 dx

+
1

2

(∫
Ω

|∇v(x)|2 dx

) 1
2

−
∫

Ω
v(x) dx(∫

Ω
|∇v(x)|2 dx

) 1
2

2

.

Hence, if the infimum of the functional in (4.1) (which is homogeneous of degree 0) is attained

at some function w ∈ W 1,2
0 (Ω ∪ Γ1) with w 6= 0, it is also attained at w̄ = λw with λ =

∫
Ω
w∫

Ω
|∇w|2 .

Since
∫

Ω
w̄ =

∫
Ω
|∇w̄|2 we have

J(v) ≥ −
(∫

Ω
v(x) dx

)2
2
∫

Ω
|∇v(x)|2 dx

≥ −
(∫

Ω
w̄(x) dx

)2
2
∫

Ω
|∇w̄(x)|2 dx

= J(w̄) ∀v ∈W 1,2
0 (Ω ∪ Γ1), v 6= 0.

On the other hand, if the infimum of J is attained at the non-null function u ∈ W 1,2
0 (Ω ∪ Γ1),

then for any v ∈W 1,2
0 (Ω ∪ Γ1) with v 6= 0 we can consider v̄ = λv where λ =

∫
Ω
v∫

Ω
|∇v|2 . As before,

we have
∫

Ω
v̄ =

∫
Ω
|∇v̄|2 and we thus get

−
(∫

Ω
v(x) dx

)2
2
∫

Ω
|∇v(x)|2 dx

= −
(∫

Ω
v̄(x) dx

)2
2
∫

Ω
|∇v̄(x)|2 dx

= J(v̄) ≥ J(u) ≥ −
(∫

Ω
u(x) dx

)2
2
∫

Ω
|∇u(x)|2 dx

.

The goal is to minimize Tω(Ω) in the class of sector-like domains with a volume constraint.
We then define

Cω = {Ω ⊂ Σω : Ω is a sector-like domain with |Ω| = 1}.
We want to characterize

(4.5) inf
Ω∈Cω

Tω(Ω).

Remark 4.2. As in the isoperimetric problem (3.1) there is a natural invariance by rescal-
ing. This is due to the fact that a dilated sector-like domain t · Ω is still a sector-like do-
main for any t > 0, and the functions in W 1,2

0 (Ω ∪ Γ1) are in natural correspondence with

the functions in W 1,2
0 (t · Ω ∪ (t · Γ1)). This allows, as in the classical Saint-Venant problem,

to write Tω(|Ω|− 1
N · Ω) = |Ω|−N+2

N Tω(Ω) and to reformulate the minimization problem in (4.5)

as inf
{
|Ω|−N+2

N Tω(Ω) : Ω is a sector-like domain contained in Σω

}
or in the alternative form

inf {Tω(Ω) : Ω is a sector-like domain contained in Σω with |Ω| ≤ 1}.

Given Ω ∈ Cω, we say that Ωt = ϕt(Ω) is a volume preserving deformation of Ω if |Ωt| = |Ω| = 1
for t small and ϕt is a one-parameter group of diffeomorphisms associated with a smooth vector
field V (which we can think with compact support) such that V (x) ∈ Tx∂Σω for all x ∈ ∂Σωr{O}
and V (O) = 0. In particular Ωt ∈ Cω for t small: in this case we use the notations Γt and Γt1
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respectively for ∂Ωt ∩ Σω and ∂Ωt r Γ
t
.

We then say that Ω ∈ Cω is stationary (or critical point) for Tω under the volume constraint if

d

dt |t=0
Tω(Ωt) = 0

for every volume preserving deformation.
In the next proposition we characterize the stationary points of Tω(Ω) via the domain-derivative
technique, as for other similar problems [10, 13, 22, 23].

Proposition 4.3. Let Σω be any cone such that ∂Σω r {O} is smooth. Consider Ω ∈ Cω having
a smooth relative boundary Γ with smooth ∂Γ ⊂ ∂Σω r {O}, and assume that the unique weak
solution uΩ of (4.3) belongs to W 1,∞(Ω) ∩W 2,2(Ω). Then, Ω is a stationary point for Tω under
the volume constraint if and only if uΩ satisfies the overdetermined condition |∇uΩ| ≡ constant
on Γ.

Proof. Consider any volume preserving deformation Ωt, which is determined by the vector field
V as above, so that Ωt ∈ Cω for t ∈ (−δ, δ), for some δ > 0. The fact that the volume is preserved
implies

(4.6) 0 =
d

dt |t=0
|Ωt| =

∫
∂Ω

〈V, ν〉dσ =

∫
Γ

〈V, ν〉dσ,

where in the last equality we used that V is smooth and is tangent to ∂Σω at every point of
∂Σω r {O}. On the other hand, we can consider the weak solution ut relative to the mixed
boundary value problem (4.3) in Ωt. Since we have

W 1,2
0 (Ω ∪ Γ1) = {v ◦ ϕt : v ∈W 1,2

0 (Ωt ∪ Γt1)},

we can consider

ût = ut ◦ ϕt ∈W 1,2
0 (Ω ∪ Γ1).

The fact that ut is a solution can be expressed as∫
Ωt

〈∇ut(x),∇v(x)〉 dx−
∫

Ωt

v(x) dx = 0 ∀v ∈W 1,2
0 (Ωt ∪ Γt1).

We can transfer this relation on ût as follows:∫
Ω

〈Mt∇ût(x),∇w(x)〉 Jt(x) dx−
∫

Ω

w(x)Jt(x) dx = 0 ∀w ∈W 1,2
0 (Ω ∪ Γ1),

where Jt(x) = det(Jϕt(x)) and Mt = Jϕ−1
t (ϕt(x))

(
Jϕ−1

t (ϕt(x))
)T

. Let us now consider

F : (−δ, δ)×W 1,2
0 (Ω ∪ Γ1) −→

(
W 1,2

0 (Ω ∪ Γ1)
)∗

defined as

F (t, v) = −div (Mt∇v)− Jt.
We know that F (t, ût) = 0 for every t. One can show that F is smooth and the Gateaux derivative

∂vF (0, uΩ) = −∆v (this defines an isomorphism since for every f ∈
(
W 1,2

0 (Ω ∪ Γ1)
)∗

there exists

a unique v ∈W 1,2
0 (Ω ∪ Γ1) such that −∆v = f). Therefore t 7→ ût is smooth, and then

t 7→ ut = ût ◦ ϕ−1
t is differentiable.
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We denote by u′ and û′ respectively the derivatives with respect to t of ut and ût computed at
t = 0. We have that

(4.7) u′ = û′ − 〈∇uΩ, V 〉 .

Since Ω is smooth except for ∂Γ and the vertex O, so are uΩ, u
′. We have then ∆u′ = 0 in Ω.

Being û′ ∈W 1,2
0 (Ω ∪ Γ1), we have also u′ = −〈∇uΩ, V 〉 on Γ. Finally, since ∂Σω is mapped into

itself by ϕt, the points in Γ1 stay in Γ1 for some small t. Differentiating in t variable the relation〈
∇ut(ϕt(x)), νϕt(x)

〉
= 0,

we get

0 = 〈∇u′(x), νx〉+ V (〈∇u, ν〉) = 〈∇u′(x), νx〉
for every x ∈ Γ1 r {O}. Hence u′ is a solution to the mixed boundary value problem

−∆u′ = 0 in Ω,

u′ = −∂uΩ

∂ν 〈V, ν〉 on Γ,
∂u′

∂ν = 0 on Γ1 r {O}.

We can also compute the derivative with respect to t of the torsion functional. From (4.4) we get

d

dt |t=0
Tω(Ωt) = −1

2

∫
Ω

û′(x) dx− 1

2

∫
Ω

uΩ(x)div(V )(x) dx

= −1

2

∫
Ω

u′(x) dx− 1

2

∫
Ω

div(uΩV )(x) dx

= +
1

2

∫
Ω

u′(x)∆uΩ(x) dx = −1

2

∫
Ω

〈∇u′(x),∇uΩ(x)〉 dx+
1

2

∫
Ω

div (u′∇uΩ) (x) dx

= −1

2

∫
Ω

div(uΩ∇u′)(x) dx− 1

2

∫
Γ

|∇uΩ|2 〈V, ν〉dσ

= −1

2

∫
Γ

|∇uΩ|2 〈V, ν〉dσ.(4.8)

To justify the previous applications of the divergence theorem we can make use of [18, Lemma
2.1], which requires a certain degree of integrability for the relevant vector fields. The assumption
that uΩ ∈W 1,∞(Ω)∩W 2,2(Ω) is sufficient for these purposes. We notice in particular that, under
this assumption, from (4.7) we have u′ ∈W 1,2(Ω).
The desired statement then follows from (4.8) and (4.6). As a matter of fact, if uΩ satisfies the
overdetermined condition |∇uΩ| ≡ constant on Γ, then it is now obvious that Ω is a stationary
point for Tω. Viceversa, if we have a stationary point for Tω, then

∫
Γ

(
|∇uΩ|2 − c

)
〈V, ν〉 = 0 for

all constants c and any V admissible and satisfying (4.6) (see e.g. [24] for the construction of
volume preserving deformations starting from admissible vector fields with the property (4.6)).
If we assume by contradiction that |∇uΩ| is not constant on Γ, we could then find a compact set
K included in Γ where |∇uΩ| is not constant. We could then pick a nonnegative cut-off function
ψ which is 1 on K and with support compactly contained in the cone, and we could choose
c = 1∫

Γ
ψ

∫
Γ
ψ|∇uΩ|2 and build a deformation starting from V = ψ(|∇uΩ|2 − c)ν: the stationary

condition would then imply that
∫
K

(
|∇uΩ|2 − c

)2
= 0, giving a contradiction. �

From Proposition 4.3 and Theorem A we deduce the following
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Corollary 4.4. Let Σω be a convex cone such that ∂Σω r {O} is smooth. Consider Ω ∈ Cω
having a smooth relative boundary Γ with smooth ∂Γ ⊂ ∂Σω r {O}, and assume that the unique
weak solution uΩ of (4.3) belongs to W 1,∞(Ω)∩W 2,2(Ω). If Ω is a stationary point for Tω under
the volume constraint, then Ω = Σω ∩BR(p0) and one of the following two possibilities holds

(i) p0 = O;
(ii) p0 ∈ ∂Σω and Γ is a half-sphere lying over a flat portion of ∂Σω.

We remark that, by a direct computation, one can see that in this situation we have Tω(Σω ∩
BR(O)) < Tω(half-ball) (unless Σω is an half-space). Therefore, we know that Σω ∩ BR(O) are
the smooth minimizers for the torsional function under the hypotheses of the previous corollary.

We are finally going to prove that in isoperimetric cones (not just in smooth convex cones)
we can always characterize the minimum point for Tω under the volume constraint (with no
additional assumption on the smoothness of the competitor Ω, nor on the summability of the
related uΩ).

Theorem 4.5. Let Σω be a isoperimetric cone. Then the spherical sector Sω,R with |Sω,R| = 1
is the unique minimizer for Tω under the volume constraint, i.e. we have

Tω(Ω) ≥ Tω(Sω(Ω)) ∀Ω ∈ Cω
and equality holds if and only if Ω = Sω(Ω).

Proof. This is a consequence of Theorem 3.7. As a matter of fact, for any sector-like domain
Ω ⊂ Σω we have

Tω(Ω) =
1

2

∫
Ω

|∇uΩ(x)|2 dx−
∫

Ω

uΩ(x) dx

≥ 1

2

∫
Sω(Ω)

|∇ (uΩ)
∗
ω (x)|2 dx−

∫
Sω(Ω)

(uΩ)
∗
ω (x) dx ≥ Tω(Sω(Ω)),

where in the first inequality we used (3.2) and (3.3) (respectively with p = 1 and p = 2), and in

the second inequality we used the fact that (uΩ)
∗
ω ∈W

1,2
0 (Sω(Ω)∪ Γ̃1) (which is also a byproduct

of Theorem 3.7; we recall that uΩ ≥ 0).
The equality case follows from the equality case of (3.3). �
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20. G. Pólya, G. Szegö, Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies, no.
27, Princeton University Press, 1951
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