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Abstract

Understanding the effects of defects is crucial due to their deliberate or unintentional presence in many materials. Classi-
cal theory of elasticity may not be the best candidate to describe behaviour of structures with defects of comparable size
of its underlying material organization, as it lacks in internal scale parameters. In this respect, present study focused on
comparison of two well-established non-local theories; ‘implicit/weak’, as micropolar (Cosserat), and ‘explicit/strong’,
as Eringen’s, models with that of classical model to highlight their differences in a common case study: infinite plates
weakened with an elliptic hole of different aspect ratios, under remote uniaxial tension. Fraction coefficient, providing
identical stress concentration factor with micropolar plates, is searched for two-phase local/nonlocal Eringen’s model.
Results are obtained by adopting finite element method with quadrilateral elements. To account for the discontinuities
within domain, Eringen’s model is modified by using geodetical distance instead of Euclidean one, and computationally
very efficient procedure is developed to exploit the symmetric character of the problem without losing long-range interac-
tions. The results suggest that non-local effects, reducing the maximum stress, become more pronounced with increasing
geometric discontinuity quantified by the aspect ratio of ellipse which also influences equivalency between characteristic
lengths of non-local models.

Key words: Non-local elasticity, micropolar elasticity, stress concentration factor, finite elements, defects, geodetical
distance

1. Introduction

The studies of Voigt [1, 2] and Poincaré [3]1 can be con-
sidered as the foundation of what we call today as non-
local media, which, in general, is characterized by the pres-
ence of internal length parameters and spatial dispersion
properties [8–10].

It has been now well-acknowledged that resorting to
non-classical continuum formulations for representing the
behaviour of materials with internal structure (compos-
ites, nanomaterials, biomaterials, etc.) is actually very
tempting due to their ability on maintaining the infor-
mation of underlying material organization, with partic-
ular reference to material’s internal lengths, yet utilizing
the advantage of field description at coarse level [11–16].
Thereby, many non-classical theories, with scale param-
eters referring to different physical features from nano-
orders (e.g. distance between atoms in a graphene sheet)
to meso/macro-orders (e.g. size of a particle in a compos-
ite medium or size of a block in masonry wall) have been
proposed, while a systematic treatise can be achieved by
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1The readers refer to [4], [5], [6], [7] for a comprehensive survey

on discrete to continuum approaches.

following the classification of [12], [14], [15], adopted in
[17], as ‘weak/implicit’ and ‘strong/explicit’. As the focus
of the present study is limited to implicit-type micropolar
(Cosserat) and explicit-type Eringen’s non-local models,
the mentioned categorization is explained on the basis of
these two.

Micropolar theory belongs to a group of generalised con-
tinua with additional degrees of freedom (DOFs). Here,
the material body is considered as a collection of rigid
particles that are enriched with rotational DOFs, and in-
teract through not only forces but also couples [15, 18–
21]. Since non-locality is introduced to the model solely
through additional (non-standard) kinematic and their
work-conjugated dynamic descriptors, the theory main-
tains a weak non-local character, and appears as the best
fit for describing the materials with presence of parti-
cle rotations (e.g. heterogeneous materials with inclu-
sions/voids such as; fiber-reinforced composites, and het-
erogeneous materials with microstructure such as; cellular
material, jointed rock, masonry) [22–35]. On the other
side, as one of the most resorted ’explicit’ type non-local
theory, Eringen’s non-local model interests with material
bodies in which all points interact with each other de-
pending inversely on the distance in-between [36, 37]. The
theory covers the long-range interactions through an at-
tenuation type kernel function that is directly included in
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the constitutive equation, hence yielding a strong non-local
character. Wherefore, Eringen’s theory –with its enhanced
versions– seems to be mainly conducted in investigation of
structures exhibiting neighbouring attractions (e.g. nano
or micro sized materials such as; molecular arrays, carbon
nanotubes, atomic-sized sensors) [38–50].

Possessing additional kinematic and dynamic descrip-
tors significantly enriches the description of the non-local
theories, while in order to better understand their capabili-
ties, limitations and similarities, many comparative studies
have been conducted [51–56]. With a similar motivation,
the focus here is on plates having either –easier to handle–
circular hole or –more generic– elliptic hole. Literature
survey shows that; besides a recent paper of the authors
[56], the considered problem has been investigated only
on the basis of micropolar theory looking for numerical or
exact solutions [15, 57–63].

In order to compare these two non-local solutions to
that of classical one, stress fields of infinite plates weak-
ened with a central elliptic hole of different aspect ra-
tios, subjected to remote uniaxial tension are examined
in terms of local Cauchy, non-local ‘implicit’, as micropo-
lar (Cosserat), and non-local ‘explicit’, as Eringen’s theo-
ries. The numerical solutions are obtained by employing
finite element (FE) method within linear elastic frame-
work and considering isotropy. The domain is discretised
with a generic mesh configuration consisting of four-node
linear quadrilateral elements. Stress concentration factors
(SCF) of infinite Cauchy and micropolar (Cosserat) plates
are compared with analytical results reported in literature
[57, 64] for validation of the FE models. To increase the
computational efficiency, all the simulations are performed
using symmetric models. Although such rearrangement in
the FE models of Cauchy and micropolar (Cosserat) plates
are straightforward (i.e. considering only quarter portion
of the domain with imposing symmetry related bound-
ary conditions is sufficient), a new approach that conveys
the necessary long range effects, yet reduces total degrees
of freedom, is introduced for Eringen’s model. The con-
cept can be regarded as a generalisation of what has been
proposed by [65], while here we exploit direct evaluation
method instead of an iterative approach. As the existence
of geometric discontinuities within the domain necessitates
the incorporation of geodetical path for correct evaluation
of the long range interactions [66], a robust and effective
strategy is presented to customise the Eringen’s formu-
lation. As the last step, the non-locality of two phase
local/nonlocal Eringen’s model is tuned through fraction
coefficient to have stress concentration factors in accor-
dance with micropolar plates. The selection of fraction
coefficient to this aim is justified with the consideration of
computational burden brought by the requirement to alter
the influence zone and to calculate the stiffness matrices
with changing non-local parameter.

2. Materials and methods

2.1. Overview

This section provides general information on micropo-
lar theory and integral form of two phase local/nonlocal
Eringen’s theory, presenting their limit cases leading to
Cauchy continua. Corresponding two-dimensional (2D)
displacement-based FE formulations are presented for a
generic non-uniform spatial discretisation using quadrilat-
eral elements under the assumption of linear elasticity and
plane-strain. The structure under investigation is a plate
of uniform thickness, h, with an elliptic void, and is made
of linear and isotropic material. Regarding Eringen’s the-
ory, a special attention has been paid to boundary con-
ditions which enables to exploit symmetry for FE model
along with the incorporation of geodetical distance. A
Cartesian coordinate system is used for parametrization
with z axis along the thickness. The superscripts M and
E, refer to micropolar (Cosserat) and Eringen’s non-local
models respectively, used to distinguish the parameters
emerged in both. The FE formulations are implemented
to an in-house Mathematica code for performing the sim-
ulations.

2.1.1. Micropolar (Cosserat) model

In the so-called implicitly non-local micropolar theory,
the material particles can be conceived as a collection of
rigid bodies, which undergo both translations and rota-
tions. Hence, in a 2D framework, out of plane micro-
rotation component (φz) is added to the classical in-plane
displacement components (ux, uy) to define the motion of
the body. Let us consider a linearised theory; the strain
measures are represented by the strain (εMij ) and curva-
ture (χkj) tensor. The kinematic compatibility equations
write:

εMij = ui,j + eijkφk, χkj = φk,j (1)

where eijk is permutation symbol. Unlike the classical
theory of elasticity, the presence of relative rotation (i.e.
the difference between micro and macro rotations);

φk − 1

2
ekmnun,m 6= 0 (2)

spoils the symmetry of strain tensor, which can be recov-
ered only if micro rotations (φk) are forced to follow the
local rigid rotation (macrorotation: 1

2ekmnun,m), yielding
a couple stress continua [22, 67–69].

In the absence of body forces and couples, conservation
of linear and angular momentums, along with Green’s the-
orem, provides the following bulk balance equations:

σM
ij,j = 0, µkj,j − eijkσ

M
ij = 0 (3)

with the surface balance equations:

tMi = σM
ij nj , mk = µkjnj (4)

Here σM
ij and µkj refer to non-symmetric and couple stress

tensors respectively, while tMi and mk denote traction and
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couple traction. nj is the unit outward normal vector to
the boundary.

In the context of linear elasticity and isotropy, the con-
stitutive relations between strain/curvature and the work-
conjugated stress/couple-stress tensors are expressed in
the following form:

σM
ij = λεMkkδij + (µ+ χ)εMij + µεMji ,

µkj = αχiiδkj + βχjk + γχkj

(5)

where λ and µ refer to generalised Lamé constants:

λ =
Eν

(1 + ν) (1− 2ν)
, µ = G− χ

2
(6)

Then the Poisson’s ratio, ν, is expressed as

ν =
λ

2 (λ+G)
=

λ

2λ+ 2µ+ χ
(7)

with α, β, γ and χ being constants related to micropolar
theory.

Eq. (5) can be reorganized to a matrix form as

{
σ

M

µ

}

=

[

DM
ε 04×2

02×4 Dχ

]{
ε
M

χ

}

(8)

where strain, curvature, stress and couple-stress compo-
nents are respectively ordered in the following vectors:

σ
M =

{
σM
11 σM

22 σM
12 σM

21

}T
, µ =

{
µ31 µ32

}T

ε
M =

{
εM11 εM22 εM12 εM21

}T
, χ =

{
χ31 χ32

}T

(9)
For plane-strain, elasticity matrices take the following
forms:

DM
ε =










λ+ 2G λ 0 0
λ λ+ 2G 0 0

0 0 G+
χ

2
G− χ

2

0 0 G− χ

2
G+

χ

2










,

Dχ =

[
γ 0
0 γ

]

(10)

The theory incorporates size effects and relative rotations
through internal characteristic length, lc, and coupling
number, N [70].

l2c =
γ

2(2µ+ χ)
, N2 =

χ

2(µ+ χ)
(11)

In the light of Eqs. (10) and (11), it is fair to interpret
that the bending moduli Dχ is responsible for scale effects.

In the case in which lc and N are small enough, for a
material that belongs at least to orthotetragonal symmetry
class as the isotropic one, the micropolar model reduces to
Cauchy continua [71].

2.1.2. Eringen’s model

Explicitly non-local Eringen’s theory holds the primal
fields (ux, uy) and kinematic relations of classical elastic-
ity:

εEij =
1

2
(ui,j + uj,i) (12)

For the continuum to be in balance, interactions between
material points, that are characterized through traction
forces (tEi ), based on Cauchy’s theorem, are described in
terms of symmetric stress tensor, (σE

ij), and unit normal
vector (nj):

tEi = σE
ijnj (13)

Similar considerations which provided Eq. (3), lead to,
in the absence of body forces and non-local residuals,

σE
ij,j = 0. (14)

For a linear elastic and isotropic solid in the domain Ω,
the convolution type constitutive relation of integral form
of two-phase local/nonlocal Eringen’s model is written as
[72, 73]:

σE
ij = ξ

(
λεEkkδij + 2GεEij

)

+(1− ξ)

∫

Ω

τ (r, κ)
(
λεEkk (x̄) δij + 2GεEij (x̄)

)
dΩ (x̄)

(15)
Here ξ ∈ [0, 1] is the fraction coefficient which controls
the weight of local and non-local parts in the constitu-
tive equation. τ(r, κ) denotes the kernel function which
accounts for the long-range effects between source point
x and neighbouring points x̄. Kernel function can take
many different forms from bell-shaped to conical-shaped
as long as the necessity requirements defined by [74] are
fulfilled. Considering its advantages in terms of calculation
and implementation, a bi-exponential type kernel function
is adopted throughout the study:

τ (r, κ) =
e−

r

κ

2πd−1κd
(16)

where d is the dimension of the space in which the body
of interest is defined, r refers to distance between the two
interacting points, and κ denotes the nonlocal parameter
conveying information about material’s internal structure.
r generally refers to Euclidean distance; however, in the
lack of material continuity, it may also be regarded as the
shortest distance between the points inside the body. An
alternative strategy to calculate this distance is provided
in the subsequent sections of the manuscript.

Eq. (15) may be written in matrix form;

σ
E = ξDE

ε
E + (1− ξ)

∫

A

e−
r

κ

2πκ2
DE

ε
E (x̄) dA(x̄) (17)

with following positions, for plane-strain assumption,

DE
ε =





λ+ 2G λ 0
λ λ+ 2G 0
0 0 G



 (18)
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σ
E =

{
σE
11 σE

22 σE
12

}T
, ε

E =
{

εE11 εE22 2εE12
}T

(19)

Cauchy continua is recovered for ξ = 1 or very small
values of κ/L ≈ 0 where L refers to the characteristic
length of the structure at macro scale.

Incorporation of geodetical path.

The use of geodetical path concept was introduced by
[66] as a refinement to the Eringen’s non-local model. The
motivation was to incorporate the deteriorating effect of
cracks, holes, incisions and re-antrent boundaries on long-
range interactions.

According to [66], the assumption on “non-locality ef-
fects propagate in all directions via straight lines (i.e. Eu-
clidean path)” fails in the presence of geometric anisotropy
(lack of material continuity). This inadequacy was handled
by admitting the use of geodetical path concept. Cor-
respondingly, the distance measure r appeared in kernel
function is proposed to be defined as the length of the
shortest interior path not intersecting the boundary sur-
faces of the body. Hence, r, equals to Euclidean distance
if and only if the straight line joining corresponding pair
((x, x̄) ∈ V ) does not transit any boundary surface ∂V ;
r (x, x̄) = |x− x̄|, while r (x, x̄) ≥ |x− x̄| holds for any
nonconvex domain.

In a recent paper [43], a similar approach is followed
for a problem involving central crack. In that study,
distorting effect of the crack on diffusion process is sim-
ply accounted by intercepting the long-range interactions
traversing it. However, for more complex structures with
multiple holes and curved outer boundaries, a robust al-
gorithm that automatically establishes the geodetic path
between any point pair is required [75].

Considering the herein presented example with an ellip-
tic hole of different aspect ratios, which can be considered
as a generalisation of the problem treated in an authors’
previous article [56], the formulation of Eringen’s model
is customised to include the geodetical distance into the
kernel function. Accordingly, for any two points in a do-
main that the diffusion process cannot follow a straight
line, geodetical path will be calculated by following the
steps described below.

Let us assume points M and N , with coordinates xM =
{xM , yM} and xN = {xN , yN}, (xM ,xN ) ∈ V , as the
corresponding pair between which the geodetical path is
to be calculated, while elliptic hole is centred at the origin
with a minor radius b and major radius a (see Fig. 1).

1. After determining whether the Euclidean path tra-
verses the boundary surface of the elliptic hole as in
Fig. 1, the algorithm detects tangents to the ellipse
from points M and N by exploiting the equivalency
between slope of the tangent and derivative of the el-
liptic curve at corresponding tangent point:

y − yM(N)

x− xM(N)
= −a2x

b2y
(20)

 

y 

x 

M 

N 

b 

a 

Euclidean path 

Geodetic path 1 

Geodetic path 2 

auxiliary lines 

T
M1 

T
N
 
1 

T
N
 
2 

T
M
 
2 

Figure 1: Illustration of geodetic and Euclidean paths for points M
and N .

Pairs of x and y that satisfy Eq. (20) and the following
equation of the ellipse:

x2

b2
+

y2

a2
= 1 (21)

indicate each tangent points:
(
xTM1

,xTM2

)
∈ ∂V and

(
xTN1

,xTN2

)
∈ ∂V .

2. In this step, circumferential length, s, between tan-
gent points of opposite pairs is calculated, exploiting
the parametric representation of the ellipse:

x = b cos θ, y = a sin θ (22)

with θ refers to the eccentric angle at the centre mea-
sured from the x axis counter-clockwise. To this
end, first, eccentric angles of corresponding points
are obtained by substituting their rectangular coor-
dinates into θ = arctan(by/ax), then, the arc length
in-between is measured using following equation:

s =

θ2∫

θ1

ds =

θ2∫

θ1

(
b2sin2θ + a2cos2θ

)

︸ ︷︷ ︸

f(θ)

dθ for θ1 < θ2

(23)
which results in two separate outcomes: s1 and s2 for
each case.

3. In the last step, the geodetical distance to be used
in calculations is determined by comparing the total
length of both paths: r = Min (r1, r2). Here each op-
tion includes one arc length and two tangents. For
instance; considering the illustration in Fig. 1, geode-
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tical paths are obtained as following:

r1(2) =
∣
∣
∣xM(N) − xTM2

(TN2
)

∣
∣
∣+

θTN1
(TM1

)
∫

θTM2
(TN2

)

f (θ) dθ

+
∣
∣
∣xN(TM1

) − xTN1
(M)

∣
∣
∣

(24)

With minor adjustments, the presented algorithm and re-
lated formulas can be used for any regularly shaped do-
main including an oval void.

2.2. Finite element formulations

In the present study, the FE formulation is derived using
the principle of minimum total potential Π:

∂Π [d]

∂di

= 0, i = 1, 2, . . . , Ntotal (25)

where di and d, respectively, denote the nodal displace-
ment vector of ith element and whole model, consisting of
Ntotal elements. Weak non-local character of micropolar
(Cosserat) model allows the total potential to be repre-
sented as follows

ΠM [d] =

Ntotal∑

i=1

ΠM
i =

Ntotal∑

i=1

ΠM
i

[
dM
i

]
(26)

which, along with Eq. (25), leads to,

∂ΠM
i

∂dM
i

= 0, i = 1, 2, . . . Ntotal (27)

Such a simplified form is not possible for Eringen’s non-
local model due to its strong non-local character account-
ing for long-range interactions;

ΠE [d] =

Ntotal∑

i=1

ΠE
i =

Ntotal∑

i=1

ΠE
i

[
dE

]

=

Ntotal∑

i=1

ΠE
i

[
dE
1 ,d

E
2 , . . . ,d

E
Ntotal

]
(28)

Correspondingly, for any element number i, all the deriva-
tives in Eq. (25) are recovered.

∂ΠE
i

∂dE
1

= . . . =
∂ΠE

i

∂dE
Ntotal

= 0, i = 1, 2, . . . , Ntotal (29)

For a domain discretised with four-noded linear quadri-
lateral elements, Jacobian and inverse Jacobian matrices of
each element must be calculated beforehand, for a proper
transformation between natural (ζ, η) and physical (x, y)
coordinates:

Ji =












∂
4∑

j=1

N j (ζ, η)xj

∂ζ

∂
4∑

j=1

N j (ζ, η) yj

∂ζ

∂
4∑

j=1

N j (ζ, η)xj

∂η

∂
4∑

j=1

N j (ζ, η) yj

∂η












i

(30)

where xj and yj refer to x and y coordinates of jth node
of ith element, while N j denotes the corresponding inter-
polation function:

N1 =
(1− ζ) (1− η)

4
, N2 =

(1 + ζ) (1− η)

4

N3 =
(1 + ζ) (1 + η)

4
, N4 =

(1− ζ) (1− η)

4

(31)

2.2.1. Micropolar (Cosserat) model

In accordance with the theory, each node possesses three
DOFs; in-plane displacements and out-of-plane micro-
rotation, which leads to following nodal unknown vector
for an element e:

dM
eε =

{
ũ1
x ũ1

y . . . ũ4
x ũ4

y

}T

e
,

dM
eφ =

{

φ̃1
z · · · φ̃4

z

}T

e
,

dM
e =

{
dM
eε dM

eφ

}T

(32)

Here over tilde symbol is used to indicate the nodal val-
ues and superscripts refer to the node number. The field
variables within the elements are approximated by interpo-
lating the nodal values of corresponding element via linear
shape functions,

uM
e (ζ, η) = Nud

M
eε , ϕe (ζ, η) = Nφd

M
eφ (33)

Nu =

[
N1 0
0 N1 . . .

N4 0
0 N4

]

,

Nφ =
[
N1 . . . N4

]
(34)

The usual procedures of FEM is followed to obtain the
formulation. Strain, and curvature fields of the element
are expressed in the form:

ε
M
e (ζ, η) =

[
LM
e Nu MNφ

]
dM
e = BM

eεd
M
e

χe (ζ, η) =
[
02×8 ∇eNφ

]
dM
e = BM

eχd
M
e ,

(35)

where LM
e , M, and ∇e respectively refer to the differential

matrix operator, permutation vector and gradient opera-
tor which are, in natural coordinate system,

LM
e =














∂

∂ζ
J−1
11 +

∂

∂η
J−1
12 0

0
∂

∂ζ
J−1
21 +

∂

∂η
J−1
22

∂

∂ζ
J−1
21 +

∂

∂η
J−1
22 0

0
∂

∂ζ
J−1
11 +

∂

∂η
J−1
12














e

,

M =







0
0
+1
−1






, ∇e =






∂

∂ζ
J−1
11 +

∂

∂η
J−1
12

∂

∂ζ
J−1
21 +

∂

∂η
J−1
22






e

(36)
Inserting Eqs. (35) into (8), with positions in Eq. (10),
the work-conjugated stress and couple-stress become as
follows,

σ
M
e (ζ, η) = DM

eεB
M
eε (ζ, η)d

M
e ,

µ
M
e (ζ, η) = DM

eχB
M
eχ (ζ, η)dM

e

(37)
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Lastly, with substituting the elastic strain energy

UM
m =

h

2

1∫

−1

1∫

−1

((
ε
M
m

)T
σ

M
m + (χm)

T
µm

)

det |Jm| dζdη

(38)
and work potential (WM

m ) of an element (ΠM
m = UM

m +
WM

m ) into the Eq. (27), the element formulation is derived:

fMm =
(
kM
mε + kM

mχ

)
dM
m

kM
mε = h

1∫

−1

1∫

−1

(
BM

mε

)T
DM

mεB
M
mε det |Jm| dζdη

kM
mχ = h

1∫

−1

1∫

−1

(
BM

mχ

)T
DM

mχB
M
mχ det |Jm| dζdη

(39)

The above-given integrations require a numerical integra-
tion scheme, such as Gauss Quadrature Method. As per
usual practice in FEM, 2×2 Gauss points provide sufficient
accuracy for the linear element used herein, and resulting
in following formulation:

kM
m = h

2∑

p=1

2∑

r=1

wpwrB
M
m (ζp, ηr)

T
DM

mBM
m (ζp, ηr) det |Jm|

(40)
where subscripts p and r refer to components of
either weights (w) {1.0, 1.0} or coordinates (ζ, η)
{−1/

√
3,+1/

√
3}.

2.2.2. Eringen’s model

FE formulation of a solid obeying Eringen’s constitutive
equations admits identical degrees of freedom, and strain
interpolation over each element to those of classical theory.

dE
e =

{
ũ1
x ũ1

y . . . ũ4
x ũ4

y

}T

e
,

uE
e (ζ, η) = Nud

E
e ,

ε
E
e (ζ, η) = LE

e Nud
E
e = BE

e d
E
e

(41)

where differential matrix operator for an element e takes
the following form in natural coordinate system:

LE
e =










∂

∂ζ
J−1
11 +

∂

∂η
J−1
12 0

0
∂

∂ζ
J−1
21 +

∂

∂η
J−1
22

∂

∂ζ
J−1
21 +

∂

∂η
J−1
22

∂

∂ζ
J−1
11 +

∂

∂η
J−1
12










e

(42)

On the other hand, due to convolution type constitutive
equation of Eringen’s theory (Eq. (17)), the relation be-
tween elemental stress and strain requires more attention.
Indeed, a close look to kernel function reveals that the
long-range interactions practically vanish beyond a certain
limit. This limit is called as influence zone, and eliminates
the necessity to consider the interaction of all elements

 

 
 

(a) 

(b) 

Figure 2: (a) First and (b) final steps of formation of nonconven-
tional symmetric FE model for a sample problem with L/a = 3.0
and b/a = 1.0 (red: padding region, black: conventional quarter
symmetric model).

with each other. This situation provides a great advantage
in computational terms, limiting the number of elements
which contributes to the stress of a generic eth element.
Therefore, the constitutive relation becomes,

σ
E
e (ζ, η) = ξeD

E
e B

E
e (ζ, η)dE

e +

(1− ξe)
∑

i∈RIe

1∫

−1

1∫

−1

e−
r

κ

2πκ2
DE

i B̄
E
i

(
ζ̄ , η̄

)
dE
i det

∣
∣J̄i

∣
∣ dζ̄dη̄

(43)
where the over bar indicates that the corresponding ma-
trix is written in terms of ζ̄ , η̄, while RIe refers to the list
of elements that fall into the influence zone of eth element
(Please see Fig. 2 in [55]). Inserting the constitutive re-
lation in (43) into the elastic strain energy of an element,
which is,

UE
m =

h

2

1∫

−1

1∫

−1

(
ε
E
m

)T
σ

E
m det |Jm| dζdη (44)
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and performing derivations in Eq. (29), following element
formulation is obtained.

fEm = ξmkE
mdE

m + 2 (1− ξm)kE
mmdE

m

+(1− ξm)
∑

n∈RIm

kE
mnd

E
n + (1− ξn)

∑

n∈RIm

(
kE
nm

)T
dE
n

(45)
Here third and fourth terms on the right side represent the
long-range effects such that third term emerges due to con-
tribution of other elements to mth element, while fourth
term appears by virtue of mth element’s contribution to
others.

kE
m = h

1∫

−1

1∫

−1

(
BE

m

)T
DE

mBE
m det |Jm| dζdη,

kE
mn =

h

2

1∫

−1

1∫

−1

1∫

−1

1∫

−1

Kmn det
∣
∣J̄n

∣
∣ det |Jm| dζ̄dη̄dζdη,

Kmn =
e−

r

κ

2πκ2

(
BE

m

)T
DE

n B̄
E
n

(46)
It is clear from expression in Eq. (46)2 that, for a homo-
geneous solid, as in this study, following relations hold:

ξm = ξn,
(
kE
nm

)T
= kE

mn (47)

The integrations are obtained using Gauss Quadrature
Method. This time, the numbers of Gauss sampling points
should be decided upon κ/le on which the functions to
be integrated highly depend. As this ratio decreases, the
number of Gauss points should be increased due to increas-
ing gradient of the integrand, to reduce numerical errors.
Corresponding integration procedure for kE

mn is provided
below.

kE
mn =

h

2

NQm∑

p=1

NQm∑

r=1

NQn∑

s=1

NQn∑

q=1

wpwrwswq

e−
r

κ

2πκ2

BE
m(ζp, ηr)

T
DE

n B̄
E
n

(
ζ̄s, η̄q

)
det

∣
∣J̄n

∣
∣ det |Jm|

(48)
whereNQm andNQn indicate the number of Gauss points
in mth and nth elements, respectively, while r equals to ei-
ther Euclidean or geodetical distance between correspond-
ing Gauss sampling points.

2.2.3. Formation of symmetric FE models

Exploiting the symmetry in finite element analysis is
favoured due to computational concerns. With a con-
venient symmetry model, the total number of degree of
freedoms is drastically reduced, yet the identical results
with full model would be obtained. Considering our ex-
ample problem, quarter symmetric FE models of Cauchy
and micropolar (Cosserat) plates can simply be achieved
by submitting the appropriate boundary conditions. Al-
though Cauchy plate does not require any further con-
straint (other than those already mentioned), the micro
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Figure 3: Illustration of example problem.

rotations of nodes located at x = 0 and y = 0 should be
restricted for micropolar plate. However, for plate models
conducting Eringen’s theory, the existence of long-range
effects leads to a non-conventional type symmetry model.
As the shortcoming of conventional symmetric model is
the absence of neighbour elements that should have inter-
act with the elements in quarter portion due to non-local
effects, the problem can be tackled by adapting the con-
cept of padding region to the FE model. Padding region
is originally introduced for concurrent partitioned-domain
multiscale models to provide a full neighbour environment
to the sub-atomic domain [76]. Herein we consider it as a
continuum region with imaginary padding elements, whose
energy is not explicitly included in the energy functional,
but deformation is traced to properly build the cross stiff-
ness matrices kmn of real elements in quarter model. The
dimension of padding region is directly related to non-
locality of model, and can be easily determined by fol-
lowing a two-step algorithm:

1. First, all elements in the remaining three quarter of
the full model are assumed as possible candidates for
padding region (Fig. 2(a)).

2. Then, padding elements that do not interact with any
of the real elements are removed from the model (Fig.
2(b)).

Although the presence of padding elements may seem
to increase the total DOFs, in fact, the global equation
system submitted to the solver has the same dimensions
with conventional quarter symmetry model because of the
existence of multi freedom constraints (MFCs). In general,
depending on the level of complexity of the constraints, dif-
ferent techniques are available to treat them [77–79], while
for homogeneous and linear constraints, the master-slave
approach [80] can be conducted. In master-slave approach,
an auxiliary equation system is generated to represent the
kinematic relation between master and slave nodes. This
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Model 1 (b/a = 1.00) Model 2 (b/a = 0.50) Model 3 (b/a = 0.25) 

   

   
 

Figure 4: Mesh configuration of quarter symmetry FE models for Cauchy, micropolar (Cosserat) (top) and Eringen’s (bottom) plates.

linear system ensures that any node at padding region dis-
places in accordance with the corresponding node in quar-
ter model.

d = Td̂ (49)

Here d̂ and d respectively denote the nodal displacements
of quarter (conventional) and enlarged (nonconventional)
symmetric models. Due to simplicity of the symmetry
conditions, the matrix T consists of 0 and ±1. This matrix
is then used for congruential transformation of the model
to produce the modified system of equations:

K̂ = TTKT

f̂ = TT f

d̂ = K̂−1f̂

(50)

With this technique, the global stiffness equations are re-
duced to a form: K̂d̂ = f̂ having same dimensions with the
quarter symmetry model (therefore the solution phase re-
quires quite similar computational effort to that of Cauchy
plate). Nevertheless, the main advantage of this technique
is the reduced time needed to form the global stiffness ma-
trix, due to decreased number of long-range interactions.
For instance, for the model illustrated in Fig. 2(b), the
number of cross stiffness matrices, kmn, to be calculated
are 69.6% less than its full model. Resemblances between
the proposed nonconventional symmetry model and the

one recently presented by [65] are easy to observe. In the
work of [65], an iterative approach is proposed to satisfy
the constraints between master and slave nodes for a uni-
formly meshed model.

The nonconventional (enlarged) symmetric model of
the present study is validated by comparing displace-
ment/stress fields of the model in Fig. 2(b), with the
corresponding full model in [56], and identical results are
obtained.

3. Numerical simulations

In this section, a comparison between local Cauchy,
’implicitly/weakly’ non-local micropolar (Cosserat) and
’explicitly/strongly’ non-local Eringen’s models is made
through an example problem of practical importance: an
infinite plate weakened with a central elliptical hole.

As illustrated in Fig. 3, the square shaped, linear, elas-
tic plate has an edge length of 2L, while the semi-major
and semi-minor axes of the ellipse are denoted as a and b,
respectively. To be in accordance with authors previous
paper; [55], the fixed radius a equals to 0.05 m, while the
edge length is assumed sufficiently large (i.e. L/a = 20.0),
approximating the infinite plate. The simulations are re-
peated for three different values of minor radius; b/a = 1.0
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Figure 5: Relation between fraction coefficient, ξ, in Eringen’s model
and non-dimensionalised internal characteristic length, a/lc, in mi-
cropolar model, yielding identical stress concentration factors for var-
ious aspect ratios (b/a): 1.0 (triangle), 0.5 (square) and 0.25 (circle).

(Model 1), b/a = 0.5 (Model 2), b/a = 0.25 (Model 3) to
study the effect of non-locality on sharp edges. The uni-
form tensile stress subjected parallel to the minor axis of
the ellipse has a magnitude of σ0 = 100 MPa, while the
vertical displacement of x axis (v(x, 0) = 0) and horizon-
tal displacement of y axis (u(0, y) = 0) are restricted to
impose the essential boundary conditions.

The FE analysis are performed by further submitting
the symmetry related boundary conditions introduced in
previous section. To capture the increasing curvature of
the ellipse, the spatial discretisation at the vicinity of the
hole is increased for decreasing ratios of b/a, which leads
to 320 elements (and 357 nodes), 576 elements (and 627
nodes) and 1040 elements (and 1107 nodes) for Models
1, 2 and 3, respectively (see Fig. 4). For mesh sensi-
tivity analysis the results of Model 1 are compared with
[56] considering same material parameters. Although, the
number of elements in the present study is increased by
25% with respect to the ones in [56], the stress concen-
tration factor at point A, (i.e. SCF = (σxx)A/σ0) only
changed by 1.4%. Note that, stresses are recovered by di-
rect evalution method, that is, calculating the stresses di-
rectly at the nodes for each element, and averaging them in
nodes shared by multiple elements. For sufficiently dense
discretisation, this technique does not bring considerable
amount of numerical error than extrapolation method, and
it is much easier to employ. Considering Cauchy model,
SCF is recovered slightly higher than analytical solution
(e.g. the relative difference with exact solution [64] is
about 9% for b/a = 1.0) due to the use of linear elements
in a region with high stress gradient. Note that this situa-
tion is not the same in non-local models (e.g. the relative
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Figure 6: Variation of stress concentration factor of local Cauchy
(grey) and non-local micropolar (Cosserat) and Eringen’s models
(white) considering different internal characteristic lengths (or frac-
tion coefficients) for various aspect ratios (b/a).

difference with exact solution [57] is about 3% for implic-
itly non-local plate with b/a = 1.0), whether implicit or
explicit, since the stress distribution is relatively smooth
by virtue of non-locality [55].

For all the calculations, Poisson’s ratio and shear mod-
ulus are assumed as ν = 1/3, and G = 1.0 GPa. For
micropolar plate, the coupling number is N = 0.9, while
different values of internal characteristic length are consid-
ered in the interval lc/a ∈ [1/128, 2]. To have a reasonable
comparison between micropolar (Cosserat) and Eringen’s
non-local models, an equivalency in terms of a character-
istic quantity between the two is looked for. Among many
alternatives, SCF seems to be a reasonable candidate for
this purpose, especially in computational terms [55]. To
this end, for each aspect ratio, (b/a), and internal charac-
teristic length of ’implicit’ model (a/lc) considered herein,
fraction coefficient (ξ) of ‘explicit’ model is tailored to have
SCFs in accordance with the ‘implicit’ one, with the fol-
lowing objective function to be minimized either by trial
and error or by an optimization technique, such as; Differ-
ential Evolution Method (DEM) [81]2:

f (ξ) =

∣
∣
∣
∣

SCFE (ξ)

SCFM

− 1

∣
∣
∣
∣

(51)

As clearly seen, the tuning of the non-locality of Erin-
gen’s model is performed through the fraction coefficient
ξ ∈ [0, 1] for an arbitrarily chosen, yet reasonable nonlo-
cal parameter; κ = 0.2a [39]. Although tailoring nonlocal
parameter instead of fraction coefficient is an option, it is
not favoured due to computational concerns.

2For the details, the readers are referred to [56] and [82].
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Figure 7: Stress variation along y axis for (a) b/a = 1.0, (b) b/a =
0.5, (c) b/a = 0.25

Fig. 5 presents the relation between internal character-
istic length (lc) in micropolar model and fraction coeffi-
cient (ξ) in Eringen’s model which leads to equal SCF.
A dependence of these iso-SCF curves on aspect ratio is
observed, which leads to the conclusion that having a uni-
fied value for fraction coefficient, ξ, that is acceptable for
all aspect ratios could not be obtained, at least for the
nonlocal parameter κ = 0.2a, since the dimensions of the
hole strongly affects the stiffness of Eringen’s model: for a
fixed non-local parameter, κ, and fraction coefficient, ξ, a
decrease in aspect ratio corresponds to less missing neigh-
bour relations for the elements located around the vicinity
of the hole; hence, a stiffer structure. That is why, the
non-locality of Eringen’s model has to be tuned by in-
creasing the contribution of non-local part in two-phase
constitutive relation to end up with a softer plate that
yields identical SCFs with corresponding micropolar one.

Variation of SCF with non-locality for different aspect
ratios are illustrated in Fig. 6. Note that, even if the hor-
izontal axis (in log scale) denotes the non-dimensionalised
internal characteristic length a/lc in micropolar model, it
may be replaced with the equivalent fraction coefficient
ξ in Eringen’s model, with the aid of Fig. 5. For small
values of a/lc (or ξ), the non-local effects are more pro-
nounced and SCF are much less than those estimated by
local elasticity. It should be noted here that even if the
resulting SCF are equal in both non-local models, a dif-
ference in stress distribution might be expected, and will
be demonstrated. For micropolar model, as the ratio a/lc
increases, the SCF converges to a value which is close (but
not equal since N = 0.9) to those of local elasticity.

In calculation of long-range interactions in Eringen’s
theory, geodetic distance, which covers 0.81% (for b/a =
1.0), 10.56% (for b/a = 0.5) and 19.04% (for b/a = 0.25) of
cross stiffness matrices is adopted. However, the numerical
experiences of the authors reveal that using geodetic dis-
tance does not affect the numerical results considerably
for the problem at hand: even for highest non-locality
(i.e. κ = 0.2a, ξ = 0.205) and least aspect ratio (i.e.
b/a = 0.25), the difference between the SCFs, obtained
using Euclidean and geodetic distance measures, is only
0.18%. This is because the radius of influence zone for
considered non-local parameter is comparable with the di-
mensions of the ellipse. Therefore, the conclusion of using
Euclidean and geodetical distance lead to similar numer-
ical results is limited with the problems and numerical
parameters considered in this study.

In Fig. 7, alteration of normal stress σxx along y axis is
plotted for a fixed internal characteristic length a/lc = 1.0
(in micropolar theory), and its correspondent fraction co-
efficients ξ = 0.3857, 0.2714, 0.2109 (in Eringen’s theory)
for various aspect ratios (b/a = 1.0, 0.5, 0.25). Note that,
if attaining a unified relation between internal character-
istic length lc and fraction coefficient ξ that satisfies all
aspect ratios were possible, the curves in Fig. 5 would coin-
cide, and thereby fraction coefficient, ξ, would take a single
value for each a/lc. It is clearly seen from the figure that,
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SCF of both non-local models begin with the same value
as they are forced to do so with the aid of Eq. (51), while
local case always provides higher maximum stress. How-
ever, for y > 0 a sharper decrease, which becomes more
severe for smaller aspect ratios, is observed for Eringen’s
theory. Such a behaviour is attributed to increased non-
locality of Eringen’s model in order to keep its maximum
stress value in accordance with the corresponding microp-
olar plate as suggested by Fig.5. As an inevitable outcome
of more pronounced non-local character, the overall Erin-
gen’s plate is softened leading to better load distribution
capacity. Indeed, for b/a = 0.5, 0.25, Eringen’s estimation
of stress is less than those of Cauchy and micropolar up to
y ≈ 0.065m, while the results of all theories become very
close to each other for y > 0.15m. This is also evident
from distribution of normal stress component σxx that is
plotted in Fig. 8 for various aspect ratios. The left half
of these figures corresponds to micropolar (Cosserat) solu-
tion and the right halves are the estimations of Eringen’s
model solution, which provides identical SCF to microp-
olar model. Note that this is a close-up look around the
elliptic hole, for which the boundary effects (explained in
[55]) in Eringen’s model vanishes. As expected by previous
discussions, an equivalency at a single point increases the
difference of stress distributions on the region, especially
for sharper holes.

4. Final Remarks

According to the classification of [12], [14], and [15],
adopted in [17], non-local theories can be considered as
’implicit/weak’ and ’explicit/strong’ based on the percep-
tion of internal length parameters through which the in-
formation of underlying material organization is preserved.
In the present paper, a comparison between the response
of local (Cauchy) and non-local models, both of ’implicit’,
micropolar (Cosserat), and ’explicit’, Eringen’s, type, in
the presence of geometric singularities is provided, by
means of an example problem of practical importance: an
infinite weakened with a central elliptic hole. The solu-
tions have been obtained using finite elements (FE) mod-
els, specifically formulated to treat the two non-local cases.
In the case of Eringen’s model in particular, the procedure
is customised by adopting geodetical distance, instead of
Euclidean one, in order to account for the distorting effect
of the hole on diffusion process. For the sake of com-
putational efficiency, conventional and non-conventional
(enlarged) symmetric FE models have been adopted for
Cauchy, micropolar and Eringen plates, respectively. The
incorporation of geodetical distance alongside with a val-
idated symmetric finite element model allowed the prob-
lem to be examined in the framework of Eringen’s nonlo-
cal model, for the first time. Different aspect ratios (b/a)
for the hole, and parameters (lc, ξ) both introducing non-
locality to the two models, respectively, have been con-
sidered. As a key feature, the criterion to search for an
equivalency between the two non-local models is chosen to
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Figure 8: Zoom-in looks of contour plots of normal stress field of
micropolar (Cosserat) (left) and Eringen (right) non-local models
for (a) b/a = 1.0, (b) b/a = 0.5, (c) b/a = 0.25.

be the stress concentration factor (SCF), the detection of
which provides great simplification in computational terms
while tuning the fraction coefficient in Eringen’s theory.
The identification process discloses that the resulting frac-
tion coefficient, ξ, for a given internal characteristic length,
lc, (or visa versa) turns out to be dependent on the as-
pect ratio of the elliptic hole due to the strong non-local
character of Eringen’s model, in which case the stiffness
of elements around the hole is significantly influenced by
missing neighbour relations quantified by the aspect ra-
tio. Correspondingly, increasing non-locality of Eringen’s
model for sharper holes, in order to keep SCFs identical
with its micropolar counterparts leads to softer plates that
are able to better distribute the load.

Meanwhile, comparison between local Cauchy and non-
local micropolar/Eringen’s, models emphasizes the impor-
tance of adopting non-classical theories for problems with
accountable size-effects. Since the classical theory lacks
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the internal length parameters, its prediction of SCF at
the tip of the hole is always greater than the one obtained
by employing non-classical theories, independent of how
they incorporate the size effects. This well-known result
of classical theory might be, therefore, misleading for com-
plex microstructured materials and can be corrected by
using a non-local model which may either be of implicit or
explicit type. However, in computational terms, micropo-
lar model is more effortless compared to Eringen’s model,
which requires the consideration of long-range interactions
for each material point due to its convolution type consti-
tutive equation. This relatively complicated relation be-
tween stress and strain measures manifests itself both on
integration operations of element stiffness matrices, and
formation of the global stiffness matrix.

The present study is expected to offer a different per-
spective for handling the materials with defects of com-
parable size of its microstructure by focusing on the ad-
vantages of two different non-local approaches although
their usual application fields are quite different. The study
can be broaden by looking for possible equivalences be-
tween non-local models focusing on global response of the
structures, or mechanical problems of practical importance
for which such equivalences can be sought. Moreover,
the calculations can be extended considering other non-
local theories (e.g. second gradient models), and geome-
tries/materials/problems that indicate a large disparity
between models.
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