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SUMMARY

Functional dyspepsia is characterized by duodenal hyper-
sensitivity to acid and low-grade inflammation. An impaired
release of palmitoylethanolamide underlies the acid-induced
activation of mast cells and sensitization of enteric neurons.
Palmitoylethanolamide might be an attractive target in
functional dyspepsia.

BACKGROUND & AIMS: Acid hypersensitivity is claimed to be
a symptomatic trigger in functional dyspepsia (FD); however,
the neuroimmune pathway(s) and the mediators involved in
this process have not been investigated systematically. Palmi-
toylethanolamide (PEA) is an endogenous compound, able to
modulate nociception and inflammation, but its role in FD has
never been assessed.

METHODS: Duodenal biopsy specimens from FD and control
subjects, and peroxisome proliferator-activated receptor-a
(PPARa) null mice were cultured at a pH of 3.0 and 7.4. Mast
cell (MC) number, the release of their mediators, and the
FLA 5.6.0 DTD � JCMGH684 proof � 5
expression of transient receptor potential vanilloid receptor
(TRPV)1 and TRPV4, were evaluated. All measurements also
were performed in the presence of a selective blocker of
neuronal action potential (tetradotoxin). FD and control biopsy
specimens in acidified medium also were incubated in the
presence of different PEA concentrations, alone or combined
with a selective PPARa or PPAR-g antagonist.

RESULTS: An acid-induced increase in MC density and the
release of their mediators were observed in both dyspeptic
patients and controls; however, this response was amplified
significantly in FD. This effect was mediated by submucosal
nerve fibers and up-regulation of TRPV1 and TRPV4 receptors
because pretreatment with tetradotoxin significantly reduced
MC infiltration. The acid-induced endogenous release of PEA
was impaired in FD and its exogenous administration coun-
teracts MC activation and TRPV up-regulation.

CONCLUSIONS: Duodenal acid exposure initiates a cascade of
neuronal-mediated events culminating in MC activation and
TRPV overexpression. These phenomena are consequences of
an impaired release of endogenous PEA. PEA might be regarded
as an attractive therapeutic strategy for the treatment of FD.
November 2020 � 5:44 am � ce DVC
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unctional dyspepsia (FD) is a heterogeneous and
Abbreviations used in this paper: ALIAmides, autacoid local inflam-
mation antagonism amides; ELISA, enzyme-linked immunosorbent
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irritable bowel syndrome; KO, knockout; MC, mast cell; NeuN, ____;
NGF, nerve growth factor; PEA, palmitoylethanolamide; PDS, post-
prandial distress syndrome; PGD2, —; PPARa, peroxisome
proliferator-activated receptor-a; TRPV, transient receptor potential
vanilloid; TTX, tetradotoxin.
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Fhighly prevalent gastrointestinal disorder charac-
terized by a plethora of recurrent symptoms located in the
epigastrium, in the absence of any underlying organic
cause.1,2 In the attempt to stratify dyspepsia patients into
pathophysiological and therapeutically meaningful sub-
types, the Rome criteria have recognized 2 main FD sub-
groups: the postprandial distress syndrome (PDS)
characterized by meal-related symptoms, such as early
satiety and postprandial fullness, and the epigastric pain
syndrome (EPS), in which symptoms are mainly unrelated
to meals, such as epigastric burning or pain. Traditionally,
the stomach was indicated as the major culprit in dyspepsia
pathophysiology.1–4 More recently, a paradigm shift has
occurred, with mounting evidence showing that subtle
duodenal abnormalities, including low-grade intestinal
inflammation, increased mucosal permeability, and
increased chemical sensitivity of duodenal mucosa, play a
crucial role in the generation of dyspeptic symptoms.5–7

Among the earlier-described mechanisms, the role of
acid hypersensitivity is sustained by the empiric evidence
that acid suppression, by either proton pump inhibitors or
antihistamines (anti-H2), is effective in improving symp-
toms in a subsets of FD patients, especially those with
EPS,3,8–10 and that both duodenal acid infusion and delayed
acid clearance induces dyspeptic symptoms in healthy
subjects.10–15 Collectively, these results led to the hypothe-
sis that duodenal sensitivity to acid participates in FD
pathophysiology; however, the potential pathways under-
lying this phenomenon in dyspepsia have not been verified
conclusively.

Duodenal acid stimuli indeed may activate submucosal
nerve endings directly, through the involvement of acid-
sensitive receptors, such as the transient receptor poten-
tial vanilloid (TRPV) subtypes.5–7 On the other hand,
resembling what has been shown in models of esophagitis,
luminal acid also could activate a reflex pathway involving
mucosal mast cell (MC) degranulation and the subsequent
sensitization and activation of capsaicin-sensitive afferent
neurons.16,17 Indeed, preliminary data have shown that
acid-suppressive therapy is able to improve low-grade
inflammation and impaired mucosal integrity in the duo-
denum in FD.18 The complexity of the neuroimmune cross-
talk responsible for the subtle, but consistently reported,
duodenal abnormalities observed in FD patients has led to
the hypothesis of a role for inflammatory cells, including
MCs and eosinophils and their mediators in FD pathophys-
iology. It is believed that in functional gastrointestinal dis-
orders, there is a disproportion between the protective and
harmful response of mucosal inflammatory cells to sublim-
inal stimuli (such as acid or lipids), ultimately leading to
neural excitation (ie, visceral hyperalgesia) owing to the
FLA 5.6.0 DTD � JCMGH684 proof � 5
imbalanced release of inflammatory mediators. Nonetheless,
many questions remain unresolved and the role of inflam-
matory cells in acid hypersensitivity and the possible neu-
roimmune pathways involved have not been investigated.

In this complex scenario, palmitoylethanolamide (PEA),
an endogenous N-acylethanolamine, thought to be involved
in several protective mechanisms, activated “on-demand Q” in
response to proinflammatory stimuli.19–21 PEA belongs to a
group of autacoid local inflammation antagonism amides
(ALIAmides) involved in many pathophysiological pro-
cesses, including pain processing and inflammation.20,22–24

The first described anti-inflammatory effects of PEA,
known as the ALIA mechanism, were related mainly to its
ability to modulate mast cell activation and degranula-
tion.25,26 In addition, PEA is also a direct agonist of the
vanilloid receptor TRPV127 and it has been shown exten-
sively that this compound displays a wide range of
anti-inflammatory effects mediated by peroxisome
proliferator-activated receptor-a (PPARa) activation,28 a
member of the nuclear hormone-receptor superfamily of
ligand-activated transcription factors. In irritable bowel
syndrome (IBS), lower PEA plasma levels were found to be
associated significantly with more severe abdominal pain.29

To date, whether PEA is involved in FD pathophysiology
remains uninvestigated.

Our aim was to evaluate the neuroimmune pathways
involved in duodenal acid–induced responses ex vivo, and
specifically to verify the following: (1) if an acid challenge of
duodenal biopsy specimens from FD and control patients is
able to recruit and activate mucosal MCs; (2) if acid-induced
responses up-regulate the TRPV1- and TRPV4-expressing
fibers, known to be involved in nociception; (3) if the
release of the endogenous analgesic molecule PEA is
impaired in dyspeptic patients; and (4) if the exogenous
administration of PEA inhibits the acid-induced responses in
duodenal biopsy specimens from FD patients through
PPARa involvement.
Results
Acid Exposure Increases Duodenal Mucosa MC
Density and Activity in a Nerve-Dependent
Fashion

A duodenal acid challenge caused an increase in the
density of MCs and tryptase-positive cells in the mucosa of
all subjects, although a significantly higher increase in the
dyspeptic patients than in the control group was observed
November 2020 � 5:44 am � ce DVC
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(P < .001 vs control) (Figure 1A–D). Similarly, the release of
MC mediators such as histamine, nerve growth factor (NGF),
PGD2, and tryptase were increased significantly in FD
(Figure 1E–H). Immunofluorescence analysis showed that
tryptase-positive cells were located in close proximity with
NeuN-positive fibers, likely suggesting that a MC–nerve
interaction may occur after acid stimulation of the
duodenal mucosa (Figure 1C).

Interestingly, pretreatment with tetradotoxin (TTX)
(10-7 mol/L) significantly inhibited acid-induced recruit-
ment and activation of MCs, and the release of histamine,
NGF, PGD2, and tryptase in biopsy specimens of both FD
and control subjects (P < .05 and P < .01 vs untreated for
controls and FD patients, respectively) (Figure 1). The
observation that the number of MCs and the release of their
mediators was similar in both dyspeptic patients and con-
trols, at a neutral pH, while they were increased significantly
after acid exposure, likely suggests that this represents a
physiological response to acid that is amplified significantly
in FD patients. Furthermore, the ability of TTX to inhibit
such acid-induced effects indicates that this mechanism, at
least in part, is mediated by the activity of local nerve
circuitry.
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Duodenal Acid Exposure Up-regulates TRPV1
and TRPV4 Expression on Submucosal Nerve
Endings

Compared with a neutral pH, the acid challenge resulted
in an overall increased expression of TRPV1 and TRPV4 in
both dyspeptic patients and controls, however, immunoflu-
orescence quantization showed that the relative increase in
immunoreactivity was significantly higher in the mucosa of
dyspeptic patients than control subjects (P < .001)
(Figure 2A, B, D, and E, respectively).

Although MCs also have been shown to express TRPVs,30

immunofluorescence analysis showed that the acid-induced
overexpression of TRPV1 and TRPV4 was located mostly on
nerve fibers because it is co-localized with NeuN-positive
fibers (Figure 2A and D, respectively). Western blot anal-
ysis confirmed that the acid-induced expression of both
TRPV1 and TRPV4 was higher in dyspeptic patients than
controls (Figure 2C and F). Further supporting the
involvement of enteric neurons in duodenal responses, the
increased expression of both TRPV1 and TRPV4 was
inhibited by TTX pretreatment, and this effect was more
evident in dyspeptic than in control subjects (P < .05 and
P < .001 vs pretreatment for controls and dyspeptic pa-
tients, respectively) (Figure 2).
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Acid-Induced Release of Endogenous
Palmitoylethanolamide Is Impaired in Dyspepsia
Patients

Palmitoylethanolamide is an on-demand, endogenously
released molecule that exerts anti-inflammatory and anal-
gesic properties19–21 and it has been shown to directly
inhibit MC activation.24,25 In our experimental setting, at a
neutral pH, the release of PEA was virtually absent in both
FLA 5.6.0 DTD � JCMGH684 proof � 5
controls and patients. After the acid challenge, the release of
PEA was increased significantly in controls, but not in the
dyspeptic group (P < .001) (Figure 3A and B). Pretreatment
with TTX caused a significant inhibition of acid-induced PEA
release (P < .05 vs pretreatment with TTX for both control
and dyspeptic subjects) (Figure 3A and B), likely suggesting
that the release of PEA is neuronal-dependent. Although the
pharmacologic activity of PEA is still not understood
completely, it has been clarified that PEA effects partially
depend on its ability to activate PPARa receptors.28 We
observed that paralleling the release of PEA, the expression
of PPARa was increased significantly in controls upon acid
stimulation, but not in FD subjects (P < .001 vs control at a
pH of 3.0).
Exogenous PEA Dose-Dependently Counteracts
the Acid-Induced Responses in Cultured
Duodenal Biopsy Specimens of Dyspeptic
Patients Through a PPARa-Mediated Pathway

We previously showed that exogenous PEA administra-
tion was able to reduce intestinal inflammatory responses in
colonic biopsy specimens of ulcerative colitis patients31 and
we, hence, ran a second set of experiments to test the ability
of PEA to counteract the acid-induced responses in the
duodenum of dyspeptic patients. We found that PEA
significantly reduced the overall number of MCs and
tryptase-positive cells and yielded to a consistent reduction
of TRPV1 and TRPV4 immunopositivity in the mucosa
exposed to acid (P < .001) (Figure 4A–H). Similarly, PEA
induced a significant and concentration-dependent down-
regulation of TRPV1 and TRPV4 protein expression and of
histamine, tryptase, PGD2, and NGF release, respectively Q

(P < .05, P < .01, and P < .001 for PEA at 0.001, 0.01, and
0.1 mmol/L, respectively) (Figure 4I–M).

To provide mechanistic insights into PEA pharmacologic
activity, we evaluated whether PEA anti-inflammatory ef-
fects were dependent on PPAR-receptor activation. We
found that in the presence of MK866, a PPARa antagonist,
PEA effects were inhibited significantly, whereas they were
unchanged after incubation with the PPARg antagonist
GW9662 (P < .001 for PEA 0.1 mmol/L þ MK866 3 mmol/L
vs PEA 0.1 mmol/L and P < .001 for PEA 0.1 mmol/L þ
GW9662 9 nmol/L vs acid challenge, respectively)
(Figure 4A–M).

Similar results were obtained in acid-treated control
biopsy specimens, in which PEA induced a significant
overall reduction of MC density and tryptase-positive cells,
as well as the number of TRPV1- and TRPV4-expressing
cells by a PPARa-mediated pathway (P < .001 vs acid
challenge) (Figure 5A–H). In addition, PEA treatments
caused a significant and concentration-dependent decrease
of TRPV1 and TRPV4 expression and histamine, tryptase,
PGD2, and NGF release induced by acid challenge (P < .1 for
PEA 0.001 mmol/L, P < .01 for PEA 0.01 mmol/L, and P <
.001 for PEA 0.1 mmol/L vs acid challenge) (Figure 5I–M).
According to the previous results, we confirmed that PPARa
antagonists, but not PPARg antagonists, abolished PEA ef-
fects (P < .001 for PEA 0.1 mmol/L þ MK866 3 mmol/L vs
November 2020 � 5:44 am � ce DVC
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Figure 1. Effects of acid challenge on mucosal MC numbers and activation. (A) Histochemical images showing toluidine-
positive cells (arrows) and (B) relative quantification of MCs in duodenal mucosa of dyspeptic and control biopsy specimens
cultured at pH 3.0 and 7.4, respectively, and in the presence or absence of TTX. Original magnification: 20�. Data show the
number of MCs counted per square millimeter of tissue. (C) Representative immunofluorescence images showing the close
proximity of tryptase-immunoreactive cells (red) to NeuN-positive fibers (green). Original magnification: 20�. (D) Relative
quantification of tryptase-immunopositive cells. Data show the number of tryptase-positive cells per square millimeter of
tissue. (E–H) ELISA assays, respectively, quantifying the release of tryptase, histamine, NGF, and PGD2 in FD and healthy
duodenal mucosal biopsy specimens. ***P < .001 vs control; ���P < .001 FD untreated vs pretreatment with TTX; #P < .05
control untreated vs pretreatment with TTX. All results are expressed as means ± SD of 20; n ¼ 20 and 10 (B and D) and 10 and
6 (F–H) dyspeptic and control subjects, respectively.

4 Sarnelli et al Cellular and Molecular Gastroenterology and Hepatology Vol. -, No. -

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469
PEA 0.1 mmol/L and P < .001 for PEA 0.1 mmol/L þ
GW9662 9 nmol/L vs acid challenge, respectively)
(Figure 5A–M). As summarized in Figure 6, the selective
involvement of PPARa was shown further by the observa-
tion that PEA had no effect on acid-induced responses in
PPARa knockout (KO) mice (P < .001 for untreated vs
treated with PEA 10 mmol/L at pH 3.0).
FLA 5.6.0 DTD � JCMGH684 proof � 5
Discussion

Visceral hypersensitivity, defined as the heightened
perception of subliminal visceral sensations, is a hallmark
feature of FD patients. It is well recognized that the
duodenal mucosa of dyspepsia patients could over-react to
physiological stimuli, and several chemicals had been
470
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advocated to induce visceral sensitization through the
recruitment of sensory neurons and the reduction of pain
threshold.32

Among the chemicals able to prime dyspeptic symptoms,
compelling evidence is arising on the role of acid. For
instance, duodenal acid infusion promotes the onset of
nausea in both healthy subjects and dyspeptic patients; and
a higher 24-hour acid exposure was detected in the duo-
denum of FD patients.13,14 Preliminary data showed that
acid-suppressive therapy improves duodenal mucosal
integrity and low-grade inflammatory activity in dyspeptic
patients.18 However, how the change in pH could interfere
with duodenal physiology and the underlying pathways
involved have not been investigated systematically.

In our study, we observed that mucosal MCs are
recruited and activated by an acid challenge. The observa-
tion that this phenomenon occurred both in FD and controls
suggests that mucosal MCs potentially participate in the
physiological responses to the lowering of pH. Nevertheless,
in FD patients, this response was exaggerated, with a 2-fold
increase in MC number and a 3-fold increase in the release
of their mediators. MCs play a key role in the communica-
tion between the environment and enteric neurons and this
bidirectional interaction seems to be pivotal in the proper
functioning of the gastrointestinal tract.35–39

Based on this rationale, we evaluated whether nerve fi-
bers participate in MC activation in FD, by blocking the
enteric neurotransmission with TTX, before the acid chal-
lenge. Although there is evidence that acid stimuli may
affect MC function per se,16,17 we could not prove this direct
interaction. On the contrary, our results showed that TTX
significantly inhibited MC recruitment and the release of
their mediators, confirming the hypothesis that the acid-
mediated increase in MCs is modulated by enteric
neurons.40

Notably, acid exposure also promotes the release of NGF,
a neurotrophin produced by both MCs and neurons. This
mediator, crucial for neuronal survival, has been involved in
neuroplasticity by activating numerous molecular pathways
able to permanently induce structural and functional
changing in enteric neurons.36,41 This evidence supports the
idea that submucosal nerve endings mediate the duodenal
response to acid, and that the activation of this pathway
persistently may alter the neuronal network, reorganizing
their structure, function, and/or connections.42

Interestingly, acid also represents one of the main ago-
nists of the TRP channels, which are intrinsic membrane
receptors involved in visceral nociception. These receptors
are expressed widely on sensory nerves and viscera43 and
both TRPV1 and TRPV4 receptors have been associated
strongly with gastrointestinal inflammation and abdominal
pain.34,35,43–46 Hence, we evaluated the expression of TRPV1
and TRPV4 in the duodenum of FD patients and controls at
neutral and acid pH, respectively.

After acid exposure, we observed that the expression of
both TRPV1 and TRPV4 increased significantly in both
dyspeptic patients and controls, but this effect was again
amplified significantly in FD patients. The activation of TRPV
FLA 5.6.0 DTD � JCMGH684 proof � 5
channels is a key step in visceral nociception and its func-
tion is finely regulated.47

Among the endogenous compounds able to modulate the
activation of these receptors, PEA is a N-acylethanolamine,
released “on demand Q” in response to several proin-
flammatory stimuli.19–24

Indeed, recent studies have shown that this amide is able
to modulate both pain perception and the neuro-
inflammatory response and might induce TRPV desensiti-
zation directly.17,48

In our study, we observed that acid exposure induces the
release of PEA in healthy subjects, supporting that this
amide takes part in the regulation of the neuroinflammatory
response in vivo. On the contrary, after the acid challenge,
we observed impaired release of PEA in the duodenum of
dyspeptic patients as compared with controls. Because
previous studies have shown that PEA also interacts with
MCs,49,50 we hypothesized that both the increased number
of MCs and the activation of TRPV 1 and TRPV 4 depends, at
least in part, on the reduced levels of PEA.

We therefore evaluated whether the exogenous admin-
istration of PEA was able to inhibit the acid-induced MC
activation and TRPV up-regulation in dyspeptic patients.
After the co-incubation with acid and PEA, in duodenal bi-
opsy specimens of FD patients, we observed that the num-
ber of MCs, as well as the expression of TRPV1 and TRPV4,
were reduced significantly compared with the acid chal-
lenge alone.

The reason why dyspeptic patients produce less PEA
remains to be established, but this is in line with other signs
of decreased activity of endocannabinoid synthesis path-
ways in these patients, as observed in imaging studies of
endocannabinoid receptors in the brain.51

PEA anti-inflammatory properties could be related to
several underlying mechanisms, such as the following: (1)
as stated earlier, one of the first described anti-
inflammatory effects of PEA was related to its ability of
directly modulating MC activation, (2) PEA is able to induce
TRPV desensitization directly, and (3) PEA can activate
PPARa,31 a member of the nuclear hormone-receptor su-
perfamily of ligand-activated transcription factors.

To gain more mechanistic insights into the anti-
inflammatory properties of PEA in FD, we decided to
investigate the effects of a selective inhibitor of PPARa re-
ceptors, MK866, on MC recruitment and TRPV activity in
acid-incubated biopsy specimens in the presence of PEA.
Pretreatment with MK866 prevented the protective effects
of PEA on duodenal tissue, while PEA effects were unaf-
fected by the co-administration of the selective PPARg
antagonist GW9662. Supporting the role of PPARa receptors
further, PEA was unable to inhibit the recruitment and
activation of mast cells and the up-regulation of TRPV1 and
TRPV4 receptors in PPARa KO mice. Altogether, these data
support that the effects of PEA are mediated by its agonism
on PPARa receptors. Our results are in line with the recent
observation that there is a strong interaction between
PPARa receptors and TRPV channels, and that this cross-
talk plays an important role in pain modulation.52
588
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Figure 2. Acid challenge up-regulates TRPV1 and TRPV4 expression in submucosal nerve endings. (A) Immunofluo-
rescence staining of NeuN (green) and TRPV1-positive cells (red), and (B) relative graph bars quantifying TRPV1-positive cells
in duodenal mucosa of dyspeptic and controls biopsy specimens cultured at pH 3.0 and 7.4, respectively, and in the presence
or absence of TTX. Original magnification: 20�. Data show the number of TRPV1-positive cells per square millimeter of tissue.
(C) Immunoblot analysis and relative densitometric analysis (arbitrary units normalized on the expression of the housekeeping
protein b-actin) quantifying TRPV1 protein expression. (D) Immunofluorescence staining and (E) relative graph bars quantifying
TRPV4-positive cells (red). Original magnification: 20�. Data show the number of TRPV4-positive cells per square millimeter of
tissue. (F) Immunoblot analysis and relative densitometric analysis (arbitrary units normalized on the expression of the
housekeeping protein b-actin) quantifying TRPV4 protein expression. ***P < .001 vs control; ���P < .001 FD untreated vs
pretreatment with TTX and #P< .05 control untreated vs pretreatment with TTX. All results are expressed as means ± SD of 20;
n ¼ 20 and 10 (B and E) and 10 and 6 (C and F) dyspeptic and control subjects, respectively. OD, optical density.
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Figure 3. Acid-induced release of PEA and PPARa expression in duodenal mucosa. (A) Representative chromatography
coupled to tandem mass spectrometry analysis and (B) relative quantification of PEA levels (expressed as nanomolar con-
centration in duodenal homogenates) from mucosa of 20 dyspeptic and 10 control biopsy specimens cultured at pH 3.0 and
7.4, respectively, and in the presence or absence of TTX. (C) Immunoblot analysis and relative densitometric analysis (arbitrary
units normalized on the expression of the housekeeping protein b-actin) showing PPARa protein expression in tissue ho-
mogenates from 10 and 6 dyspeptic and control subjects, respectively. ***P < .001 vs control; �P < .05 FD untreated vs
pretreatment with TTX; ###P < .05 control untreated vs pretreatment with TTX. All results are expressed as means ± SD.
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In conclusion, our observations support that duodenal
acid exposure induces a cascade of TTX-dependent events
that ultimately lead to MC activation and TRPV over-
expression, and that these phenomena are at least partly
secondary to an impaired release of endogenous PEA.
Because the exogenous administration of PEA was able to
counteract the neuroinflammatory response in ex vivo
duodenal biopsy specimens of FD patients, PEA might be
regarded as a potential, innovative, manageable, and low-
cost treatment for FD.

Our study was not without setbacks. First, we did not
evaluate mucosal barrier function. In a recent article eval-
uating the ultrastructural duodenal abnormalities of FD
patients, Vanheel et al53 showed an increase in MC and
FLA 5.6.0 DTD � JCMGH684 proof � 5
eosinophil density and degranulation in FD patients.
Although these investigators failed to observe an association
between activation of these cells and impaired mucosal
integrity, previous evidence has suggested that increased
acid load could disrupt the intestinal barrier and lead to the
impairment of duodenal membrane integrity, which in turn
correlates with low-grade inflammation.5–7 On the other
hand, acid hypersensitivity itself may be an epiphenomenon
related to impaired duodenal integrity and permeability54

by enabling the passage of Hþ ions through the epithe-
lium. Second, in this study we only tested the TRP channels,
while other acid-sensitive channels, such as ASICs Q, were not
assessed. Previous evidence5,55 has described that ASIC
channels also are expressed on duodenal visceral afferent
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Figure 4. Effects of exogenous PEA administration on acid-induced MC recruitment, TRPV1 and TRPV4 expression,
and inflammatory mediator release in duodenal mucosa from dyspeptic patients. (A) Immunohistochemical images
showing toluidine-positive cells (arrows) and (B) relative quantification of MCs in duodenal mucosa deriving from dyspeptic
patient cultured biopsy specimens at (1) pH ¼ 3.0, in the presence of (2) exogenous PEA (0.1 mmol/L), co-incubated with either
(3) PPARa antagonist MK866 (3 mmol/L), or (4) PPARg antagonist (GW9662 9 nmol/L). Original magnification: 20�. Data show
the number of MCs counted per square millimeter of tissue. Immunofluorescence staining of NeuN (green) and (C) tryptase-,
(E) TRPV1-, (G) TRPV4-positive cells (all red) and relative graph bars quantifying (D) tryptase-positive, (F) TRPV1-positive, (H)
and TRPV4-positive cells. Data show the number of immune-reactive cells counted per square millimeter of tissue. Original
magnification: 20�. (I) Immunoblot analysis and relative densitometric analysis (arbitrary units normalized on the expression of
the housekeeping protein b-actin) quantifying (J) TRPV1 and (K) TRPV4 protein expression at (1) pH ¼ 3.0, in the presence of
increasing concentrations of exogenous PEA (2) 0.001 mmol/L, (3) 0.01 mmol/L, (4) 0.1 mmol/L alone, or co-incubated with
either (5) PPARa antagonist MK866 (3 mmol/L) or (6) PPARg antagonist (GW9662 9 nmol/L). (L–O) ELISA essays quantifying,
respectively, the release of tryptase, NGF (pg/mL), histamine, and PGD2 in dyspeptic biopsy specimens, cultured in the same
experimental conditions. *P < .05 for PEA 0.001 mmol/L, **P < .01 for PEA 0.01 mmol/L, and *** Q33P < .001 for PEA 0.1 mmol/L vs
acid challenge; ***P < .001 for co-incubation with PPARg antagonist GW9662 vs acid challenge; ���P < .001 for co-incubation
with PPARa antagonist MK866 vs acid challenge. All results are means ± SD of n ¼ 20 dyspeptic subjects.
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Figure 5. Effects of increasing concentrations of exogenous PEA in in vitro duodenal biopsy specimens from controls.
(A) Immunohistochemical images showing toluidine-positive cells (arrows) and (B) relative quantification of MCs in duodenal
mucosa deriving from control cultured biopsy specimens at (1) pH ¼ 3.0, in the presence of (2) exogenous PEA (0.1 mmol/L),
co-incubated with either (3) PPARa antagonist MK866 (3 mmol/L) or (4) PPARg antagonist (GW9662 9 nmol/L). Original
magnification: 20�. Data show the number of MCs counted per square millimeter of tissue. Immunofluorescence staining of
NeuN (green) and (C) tryptase-positive, (E) TRPV1-positive, and (G) TRPV4-positive cells (all red) and relative graph bars
quantifying (D) tryptase-positive, (F) TRPV1-positive, (H) and TRPV4-positive cells deriving from controls biopsy specimens,
cultured in the same experimental conditions. Original magnification: 20�. Data show the number of immune-reactive cells
counted per square millimeter of tissue. (I) Immunoblot analysis and relative densitometric analysis (arbitrary units normalized
on the expression of the housekeeping protein b-actin) quantifying (J) TRPV1 and (K) TRPV4 protein expression in tissue
homogenates deriving from control cultured biopsy specimens at (1) pH ¼ 3.0, in the presence of increasing concentrations of
exogenous PEA (2) 0.001 mmol/L, (3) 0.01 mmol/L, (4) 0.1 mmol/L alone or co-incubated with either (5) PPARa antagonist
MK866 (3 mmol/L) or (6) PPARg antagonist (GW9662 9 nmol/L). (L–O) ELISA essays quantifying, respectively, the release of
tryptase, NGF, histamine, and PGD2 in dyspeptic biopsy specimens, cultured in the same experimental conditions. *P < .05
for PEA 0.001 mmol/L, **P < .01 for PEA 0.01 mmol/L, and Q34***P < .001 for PEA 0.1 mmol/L vs acid challenge; ***P < .001 for co-
incubation with PPARg antagonist GW9662 vs acid challenge; ���P < .001 for co-incubation with PPARa antagonist MK866 vs
acid challenge. All results are means ± SD of n ¼ 10 control subjects.
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Figure 6. Effects of acid challenge and exogenous PEA administration in PPARa KO mice. (A) Histochemical images
showing toluidine-positive cells (arrows) and (B) relative quantification of MCs in the duodenum of PPARa KO mice at pH 3.0
and 7.4, in the presence or absence of exogenous PEA 10 mmol/L. Original magnification: 20�. Data show the number of MCs
counted per square millimeter of tissue. Immunofluorescence staining of NeuN (green) and (C) tryptase-positive, (E) TRPV1-
positive, and (G) TRPV4-positive cells (all red) and relative graph bars quantifying (D) tryptase-positive, (F) TRPV1-positive,
(H) and TRPV4-positive cells deriving from PPARa KO mice in the same experimental conditions. Original magnification: 20�.
Data show the number of immune-reactive cells counted per square millimeter of tissue. (I) Immunoblot analysis and relative
densitometric analysis (arbitrary units normalized on the expression of the housekeeping protein b-actin) quantifying (J) TRPV1
and (K) TRPV4 protein expression. (L–O) ELISA essays quantifying, respectively, the release of tryptase, NGF, histamine, and
PGD2 in PPARa KO mice, in the same experimental conditions. All results are the means ± SD of n ¼ 10 mice for each
experimental group, respectively. ***P < .001 vs acid challenge.
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nerve endings and they could be involved in acid sensiti-
zation; nonetheless, we have not studied their involvement.
Third, PEA belongs to the wider family of endocannabinoid-
like compounds, which comprise several lipid-derived me-
diators (including N-oleoylethanolamine) that have been
shown to act synergistically with prototypic endocannabi-
noids by either competing for enzymatic degradation or
increasing their receptor-binding affinity.23,24 Our data
suggest an impairment of the endocannabinoid system in
FD, supporting the renowned, yet unverified, hypothesis of
“clinical endocannabinoid deficiency” in chronic functional
FLA 5.6.0 DTD � JCMGH684 proof � 5
pain syndromes.56 It is therefore conceivable that, analo-
gously to PEA, other components of the endocannabinoid
system, namely N-oleoylethanolamine or the cannabinoid
receptors, also could be involved in FD pathophysiology.
Finally, our results could have been strengthened by
discriminating patients according to dyspepsia subtyping
based on the prevalent symptom pattern (EPS vs PDS) and/
or based on the acute postinfectious onset of the symptoms,
which has been shown previously to correlate with low-
grade inflammatory changes.57 Unfortunately, there was a
high degree of overlap between EPS and PDS subgroups,
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with more than 50% of our population complaining of both
meal-related and unrelated symptoms, which, regrettably,
often reflects the clinical scenario in everyday clinical
practice.58 This together with the small sample size pre-
vented us from performing a post hoc analysis examining
the impact of the different FD subgroups on our results.
Moving forward, assessing whether these responses are
preferentially altered in certain subgroups of dyspeptic
patients could provide a better understanding of the path-
ophysiological mechanisms underlying the genesis of
dyspepsia symptoms and allow patient selection that could
benefit the most from PEA treatment.

Despite these limitations, we provide evidence here that
PEA release is impaired in the duodenal mucosa of FD pa-
tients and that its exogenous administration is able to
restore MC infiltration and TRPV up-regulation, thus
providing the rationale for its use in the pharmacotherapy of
FD. Because PEA currently is administered orally as a di-
etary supplement,19,59 it would be of remarkable clinical
interest to test its efficacy in FD patients, given their still-
disappointing response to pharmacotherapy.

The treatment with PEA/polydatin was tested in a recent
randomized controlled trial in IBS patients,59 further
proving that the ALIAmides, the endocannabinoids, or, more
likely, both systems are involved in functional disorders
featured by chronic pain.

Although in this clinical study we were unable to discern
whether PEA effects were related to the modulation of the
nervous system, secondary to MC stabilization or to the
modulation of the endocannabinoid system, PEA in combi-
nation with polydatin was effective in reducing the severity
of abdominal pain/discomfort in IBS. The originality of our
study stands in the evaluation of the mechanistic pathways
involved in PEA release in healthy and dyspeptic patients
and in proving that this ALIAmide participates in acid-
induced responses in vivo. Hopefully, by providing evi-
dence of an impaired PEA release, this study will prompt
future studies that aim to analyze the role of the endo-
cannabinoid and ALIAmides systems in FD systematically,
as well as in other functional gastrointestinal disorders.
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Material and Methods
Patients and Experimental Design

The experimental group comprised 20 patients diag-
nosed with FD according to Rome III criteria, referred to our
tertiary center for diagnostic esophagogastroduodenoscopy
(dyspeptic group; 14 girls; mean age, 42 ± 9.1 y) and 10
control subjects (control group; 7 girls; mean age, 45 ± 9.9
y), undergoing esophagogastroduodenoscopy for gastric
cancer screening. All studied subjects gave written informed
consent. All procedures were approved by the ethical
committee of the University of Naples Federico II. Patients
were considered eligible after exclusion of organic causes
for dyspeptic symptoms, as assessed by careful history
taking, clinical examination, and routine biochemistry.
During the consultation, patients’ main symptoms also were
noted by using the standardized PAGI-SYM questionnaire60

and patients were classified as having EPS (3 patients, 2
FLA 5.6.0 DTD � JCMGH684 proof � 5
girls) or PDS (6 patients, 4 girls) dyspepsia subtype ac-
cording to Rome criteria. When complaining of both meal-
related and unrelated symptoms, patients were classified
as overlapping EPS-PDS subtype (11 patients, 8 girls).
During the endoscopy, routine biopsy specimens were taken
from the antrum and from the second part of the duodenum.
Exclusion criteria were considered as follows: presence of
esophagitis, gastric atrophy, Helicobacter pylori infection,
erosive gastroduodenal lesions at endoscopy, the use of
nonsteroidal anti-inflammatory drugs, drugs affecting
gastric acid secretion during the preceding 2 weeks, corti-
costeroids or other immunosuppressive drugs in the pre-
ceding 6 months, diabetes or celiac disease, first-degree
family members with type 1 diabetes, history of allergy, or
inflammatory bowel disease.

In all eligible patients, 6 biopsy specimens were collected
from the second part of the duodenum. All biopsy specimens
were oriented with the basolateral membrane cultured in
fetal bovine serum–supplemented Dulbecco’s modified Ea-
gle medium (Sigma Aldrich, Milano, Italy) at 37�C in 5%
CO2/95% air, while the apical membrane was challenged
with normal or acidified Dulbecco’s modified Eagle medium
at a pH of 7.4 and 3.0. All biopsy specimens were cultured
with or without a selective blocker of neuronal action po-
tential (10-7 mol/L TTX; Tocris Bioscience, Bristol, UK) to
assess the enteric neuronal involvement in acid-induced
responses. In a subset of experiments, acid-challenged
dyspeptic and control biopsy specimens also were incu-
bated with increasing concentrations of PEA (0.001, 0.01, or
0.1 mmol/L) (Tocris Bioscience) alone, or combined with a
selective PPARa antagonist (3 mmol/L MK866; Tocris
Bioscience) or PPARg antagonist (9 nmol/L GW9662; Tocris
Bioscience). Concentrations of both antagonists were
selected based on our previous experiments and studies
reported in the literature.61,62 Biopsy specimens then were
homogenized and analyzed by Western blot and enzyme-
linked immunosorbent assay (ELISA) analysis as described
later. In the same experimental conditions, some samples
were fixed in paraformaldehyde and used for immunohis-
tochemical or immunofluorescence analysis.

Animals
Six-week-old PPARa KO mice (Taconic, Germantown,

New York) were used for the experiments. All procedures
were approved by La Sapienza University’s Ethics Commit-
tee. Animal care was in compliance with the IASP Qand Eu-
ropean Community (EC L358/1 18/12/86) guidelines on
the use and protection of animals in experimental research.
All mice were maintained on a 12-hour light/dark cycle in a
temperature-controlled environment with access to food
and water ad libitum. PPARa KO mice (n ¼ 16) were killed
and the duodenum was carefully isolated and treated ac-
cording to the earlier-described experimental design.

Protein Extraction and Western Blot Analysis
Human biopsy specimens and mouse tissues were ho-

mogenized in ice-cold hypotonic lysis buffer to obtain
cytosolic extracts according to a method previously
November 2020 � 5:44 am � ce DVC
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published by our group.63 Extracts underwent electropho-
resis through a polyacrylamide minigel. Proteins were
transferred onto a nitrocellulose membrane that was satu-
rated with nonfat dry milk and then incubated with either
rabbit anti-TRPV1 (Santa Cruz Biotech, CA), rabbit anti-
TRPV4 (Novus Biological, Ltd, Cambridge, UK), rabbit anti-
PPARa (Abcam, Cambridge, UK), or mouse anti–b-actin
(Santa Cruz Biotechnology). Membranes then were incu-
bated with the specific secondary antibodies conjugated to
horseradish peroxidase (Dako, Milan, Italy). Immune com-
plexes were shown by enhanced chemiluminescence
detection reagents (Amersham Biosciences, Milan, Italy).
Blots were analyzed by scanning densitometry (GS-700
imaging densitometer; Bio-Rad). Results were expressed as
optical density (arbitrary units; mm2) and normalized on
the expression of the housekeeping protein b-actin.

ELISA for NGF, PGDE2, Tryptase, and Histamine
Release

ELISA for NGF (Novus Biological), PGDE2 (Cusabio,
Wuhan, China), tryptase (Antikorper Online, Aachen, Ger-
many), and histamine (Antikorper Online) was performed
on tissue homogenates. For each specific sample, depending
on its human or murine origin, according to the provided
manufacturer’s protocol a quantification of tissue-released
mediators was performed. Absorbance was measured on a
microtiter plate reader (Biochrom EZ Read 400 ELISA
Microplate Reader; Rodano, Milan, Italy). NGF, PGDE2,
tryptase, and histamine levels were determined using a
standard curve method.

Histochemical and Immunohistochemistry
Analyses

After the treatment, tissues were fixed in 4% para-
formaldehyde, embedded in paraffin, sectioned in
10-mm–thick serial sections, and processed for histologic
analysis. To evaluate the MC duodenal infiltration, the
samples were stained with 0.5% toluidine blue according to
the manufacturer’s protocol (Thermo Scientific Raymond
Lamb, Fisher Scientific, UK). Images of at least 6 represen-
tative nonoverlapping fields were recorded by an Optika
microscope equipped with a Pro HDMI PC-TV Camera
(Optika, Ponteranica, BG, Italy) and toluidine-positive cells
were counted in a blinded fashion (by L.S. and G.E.). The
data represent the median results of the 2 blinded asses-
sors; in all cases, results of the assessments differed by no
more than 5%. Results were quantified by ImageJ software
(National Institutes of Health, Bethesda, MD) and are
expressed as the number of cells per square millimeter.

Samples for immunohistochemical assessment were
fixed in 4% paraformaldehyde, then postfixed overnight
with 30% sucrose, and frozen using 2-methylbutane. Tis-
sues then were sectioned in 10-m slices by cryostate cutting
and processed for immunofluorescence. To avoid unspecific
staining, slices were pretreated with 10% bovine serum
albumin 0.1% Triton–phosphate-buffered saline solution for
90minutes at room temperature and subsequently stained
for 1 hour with mouse anti-TRPV1 antibody (Alomone Labs,
FLA 5.6.0 DTD � JCMGH684 proof � 5
Jerusalem, Israel) and mouse anti-TRPV4 antibody (US
Biological, Life Science Q), mouse antitryptase antibody
(Abcam), and rabbit anti-NeuN antibody (Merck Millipore,
Billerica, MA). Sections then were incubated for 1 hour at
room temperature in the dark with the proper secondary
antibody: fluorescein isothiocyanate–conjugated anti-rabbit
(1:100; Abcam) or Texas Red–conjugated anti-mouse
(1:100 and 1:64, respectively; both from Cambridge Q, UK).
Slides were analyzed with a microscope (Nikon Eclipse 80i
by Nikon Instruments Europe), and images were captured at
10� and 20� magnification by a high-resolution digital
camera (Nikon Digital Sight DS-U1). Images were analyzed
using ImageJ software (National Institutes of Health), and
positive cells in randomly selected areas were counted
independently (L.S. and G.E.). Immunofluorescence-positive
cells in each square millimeter then were recorded to ach-
ieve the average values.
Measurement of PEA Levels in Human and
Mouse Tissues

Human and mouse samples were immediately weighed,
dipped into liquid nitrogen, and then stored at �70� until
analysis. Samples were dried by Speed Vacuum Q, redissolved
in methanol, vortexed, and centrifuged. The supernatant
was analyzed by liquid chromatography coupled to tandem
mass spectrometry using a 325-MS Qliquid chromatography/
mass spectrometry Triple Quadrupole Mass Spectrometer
(Agilent Technologies Italia, Cernusco s/N, Italy). According
to the literature,64 retention time of PEA fractions was
detected at approximately 15–18 minutes. To determine
PEA concentrations, the mass spectrometer was operated in
the positive ion, multiple-reaction monitoring mode. The
linearity of the measuring range was assessed with standard
curves ranging from 0.01 to 20 nmol/L. Standard curves
were generated using linear regression. PEA levels were
quantified in both mouse and human samples and expressed
as a nanomolar concentration.
Data and Statistical Analysis
Results were expressed as means ± SD of n experiments.

Data distribution was checked with the D’Agostino and
Pearson normality test. Statistical analysis was performed
using parametric 1-way analysis of variance and multiple
comparisons were performed by the Bonferroni post hoc
test. P values less than .05 were considered significant.
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