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Abstract. Despite its complexity, the accurate structural modelling of masonry still represents
an active field of research, due to several practical applications in civil engineering, with special
reference to the preservation and restoration of cultural heritage.
In this work a comparison of different models and techniques for the assessment of the mechani-
cal behaviour of two-dimensional block masonry walls subjected to the static action of in-plane
loads is presented.
Panels are characterized by different height-to-width ratio as well as various masonry textures.
Brick-block masonry, perceived as a jointed assembly of prismatic particles in dry contact,
is modelled as a discrete system of rigid blocks interacting through contact surfaces unable
to carry tension and resistant to sliding by friction, modelled as zero thickness elasto-plastic
Mohr-Coulomb interfaces.
Different approaches and numerical models are considered: Limit Analysis (LA), Discrete Ele-
ment Model (DEM) and Finite Elements/Discrete Element Model (FEM/DEM). Limit Analysis
is able to provide fast and reliable results in term of collapse multiplier and relative kinema-
tism. Here a standard Limit Analysis is adopted via an own made procedure based on Linear
Mathematical Programming, taking into account friction at interfaces.
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1 INTRODUCTION

Masonry is a composite and heterogeneous material obtained by assembling natural or artificial
blocks by means of mortar layers or dry joints and it is one of the more common structural
materials adopted for centuries for ordinary or monumental constructions. The investigation of
its mechanical behaviour plays a fundamental role in view of the protection and conservation
of architectures of historical and archaeological interest. However, to deal with the structural
response of historical masonry structure is a complex task. In the last decades a large variety of
numerical models and approaches have been proposed in literature, but no one can be applied
in a general manner regardless the constructive typology. The selection of the most appropriate
modelling strategy is indeed strictly related with the nature of the object to analyse.
Depending on the adopted model for analysis it is possible introduce three distinct categories:
micro-mechanical, macro-mechanical models and multiscale models. The choice of a micro-
modeling strategy involves a distinct representation of masonry constituents(units, mortar and
unit/mortar interface) which properties are obtained from experimental test on small masonry
specimen. A micromechanical model is suitable for a very detailed response [22, 23, 27, 3, 34],
but this approach has a limit represented by the great computational effort due to the high num-
ber of degree of freedom connected to each unit and joint in case of real masonry structures,
characterized by considerable number of units. Macroscopic models use phenomenological
constitutive laws for constituents, including also some inner variables for damage and friction,
and masonry is considered as a homogenized continuum. Its parameters are derived by means of
experimental tests on small masonry specimen or directly on the single constituents. Macrome-
chanical models are characterized by high computational efficiency since they not provide an
accurate description of the internal structure of masonry material [13, 10, 21].
Multiscale, i.e. micro-macro, continuum models represent a very promising approach for the
analysis of masonry structures since they can accurately retain memory of the the mechani-
cal and geometrical properties of the material (microstructure) together with the capability to
contain the computational effort compared to a fully micromechanical model[25, 36, 20, 33].
These models are often derived by considering two material scales: a microscale where, after
deducing the mechanical properties of the components through experimental tests, a material
representative volume element (RVE) is defined and a macroscale structural level, where a ho-
mogeneous continuum is obtained by performing a homogenization procedure based on the
solution of boundary conditions problems for the RVE [2, 1, 16, 17, 33, 30, 29]. Other multi-
scale strategies have been proposed that exploit different homogenization techniques exploiting
the so-called Cauchy rule, and its, generalizations [9] that allowed the derivation of general-
ized continua able to properly represent scale effects, that in masonry materials are prominent
[25, 35, 28, 15, 19].
In this work the attention is mainly focused on the category of micro-models particularly fo-
cusing on Limit Analysis, which represents a very effective tool to estimate the collapse load
and collapse mechanism for masonry structures [5, 31, 11]. A validation of the proposed
model is provided, via suitable comparisons with the results provided in [7, 8], here regarded
as a benchmark, where two micro-mechanical models that finely describe the microstructure,
based on the discrete element method (DEM) and on a combined finite/discrete element method
(FEM/DEM), have been adopted to the evaluation of the failure in-plane behaviour of masonry
panels with several hight-to-width ratio and different arrangements of blocks. The compari-
son of the numerical results has shown the efficacy of the limit analysis for the in-plane failure
analysis of masonry walls.
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2 ADOPTED MICROMODELS

2.1 Rigid block model for limit analysis

The first selected model adopted is framed within the Limit Analysis (LA) theory in the presence
on non-associative laws, due to the necessity to take into account friction [32, 4]. This model
considers a system of n rigid blocks and m joints. The blocks can translate and rotate about the
edges of the contact surfaces (hinging) as well as sliding along the joints.
Let introduce e = {e1, e2, e3}T the orthonormal basis in the three-dimensional space. We
consider the two blocks in Figure 1. Loads are applied to the centroid of each rigid block i−th:
static ’dead’ loads are collected in vector f i

0 = {f i
01, f

i
02,m

i
03}

T , live loads are collected in the
vector f i

L = {f i
L1, f

i
L2,m

i
L3}

T . For the whole structure it results f0 = {f i
0} and fL = {f i

L},
with i = 1, . . . , n. The vector of the load over the whole system is f = f0 + αfL, where live
loads are proportional to the dead loads through a non-negative coefficient, α, called collapse
multiplier. Let ui = {ui1, ui2, θi3} denote the vector of generalized displacement of the centroid
of each i−th block. The vector u = {ui}, with i = 1, . . . , n, collects the displacement for the
whole structure which correspond in a virtual work sense to loads f .
The static variables are the internal forces acting at each j−th contact surface between blocks,
that is the normal force N j , the shear force T j and the moment M j . For each joint they are
collected in vector σj = {N j, T j,M j}T . The vector σ = {σj}, with j = 1, . . . ,m, refers to
the whole structure.
The kinematic variables, or generalized strain, are the relative displacement rates at joints, that is
normal displacement ξj , tangential displacement γj and rotation χj . For each joint j = 1, . . . ,m
they are collected in the vector εj = {ξj, γj, χj}T . The vector ε = {εj} refers to the whole
structure and corresponds in a virtual work sense to the vector of static variables σ. Removing

Figure 1:

the hypothesis of joint deformability, which implies some uncertainties about the determination
of the stiffness material parameters, masonry is described as a system of rigid blocks directly
interacting through contact surfaces unable to carry tension and resistant to sliding by friction.
The set of equations for the model are represented by:

ε = B u , (1)
BTσ + f = 0 , (2)
y =NTσ ≤ 0 , (3)
ε =M λ , (4)
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λTy = 0 , (5)
fT
Lu = 1 . (6)

Where Equation 1 represents the kinematic compatibility for the whole system of interfaces and
blocks, Equation 2 defines the equilibrium for the whole structure, equation 3 is the generalized
yield domain of the system, equation 4 represents the flow rule which express the vector ε as a
linear combination with non-negative coefficientsλ, called inelastic multiplier, Equation 5 is the
complementarity condition which defines the plastic behaviour of contact surface. Moreover,
the collapse mechanism must be characterized by a non-negative work of the live loads, defined
by Equation 6.
Within the framework of the holonomic perfect plasticity, the same relations govern the problem
of a non-standard rigid-plastic discrete materials. Resorting this formal analogy, the collapse
load for a masonry structure, under the hypothesis of proportional load with the factor α > 0,
can be determined. In [5], after some algebra the authors obtained the following non-linear and
non-convex programming problem (NLNCP)

αc = min{α} subjected to
(AM1 −M2)λ = 0

(A0N1)
T (f0 + αfL) +

[
NT

2 − (AN1)
T
]
σ2 ≤ 0

λT (A0M1)
T fL − 1 = 0

λT
{
(f0 + αfL) +

[
NT

2 − (AN1)
T
]
σ2

}
= 0 ,

(7)

with the unknowns α, σ2, λ and the bounds λ ≥ 0 and α ≥ 0. The authors developed a
home-made code, ALMA (Analisi Limite Murature Attritive) to deal with the NLNCP. However,
the problem of Limit Analysis of structures with frictional interfaces (non-standard LA) could
become numerically very difficult to be solved, as it corresponds to a NLNCP for which the
solution does not exist and when it exists it could be a local minimum instead of the global one
[14].
On the other end, due to the presence of non-associative flow rules, the Drucker stability postu-
late no longer holds and the solution in terms of contact actions and collapse load factor loses
its uniqueness. Moreover, bi-dimensional or three-dimensional real structures, characterized by
many degrees of freedom, increase the computational complexity of the problem.

In [5] the authors proposed a two-step procedure to solve the problem: in the first step a
linear programming problem (LP), obtained by replacing friction with dilatancy, is solved; in
the second step, the NLNCP solution is approached using, as initial guess for the unknowns
of the problem, the solution of the first step. In this way the analysis easily converges to the
optimal point.
Nevertheless, approaching the non-standard problem could be a hard and difficult issue. Many
authors proposed several techniques to deal with it, mainly based on the linearisation of the
problem. From LA theory it is well known that if normality rule holds, i.e. the vector of
inelastic strain results normal to the yield surface, the static and kinematic theorems of limit
analysis could be formulated in a linear programming context, resulting in two dual problems,
which lead to a unique solution.
To overcome some computational limits of the original code ALMA, mainly related to the num-
ber of blocks and interfaces involved into analysis, a new version of the code, ALMA 2.0, was
implemented using MATLAB R© for linear optimization and a PythonTM interface for pre and
post processing operations.



M. Pepe, M. Pingaro, E. Reccia and P. Trovalusci

Following the approach in [5], results of this work refers to the kinematic approach which
provides the collapse multiplier and the corresponding mechanism. Friction is considered in
term of dilatancy. The kinematic problem is defined as

αc = min{−λT (A0N1)
T f0} subjected to

(AN1 −N2)λ = 0

λT (A0N1)
T fL − 1 = 0 ,

(8)

with the bounds on the unknowns λ ≥ 0.

2.2 DEM and FEM/DEM

In order to validate the proposed model, LA results in terms of collapse load and mechanism
are compared to the results of a second model obtained with the models adopted in [7, 8], here
considered as a benchmark. In the referred works, two micro-mechanical models have been pro-
posed for the the in-plane failure analysis of masonry walls: a discrete element method (DEM)
and a combined finite/discrete element method (FEM/DEM). Both these models fall within the
field of discrete or distinct element methods, which have been proved to be particularly suitable
for the study of masonry structures [18, 33].
DEM model is based on the original numerical method formulated by [12], and recently devel-
oped by [6]. The model is based on the assumption of rigid block and mortar joints modelled
as zero thickness elastic-plastic interfaces, adopting a Mohr-Coulomb yield criterion. Masonry
is seen as a system of rigid blocks, whose interactions are represented by forces and moments
depending on their relative displacements and rotations.
FEM/DEM method is a combination of discrete elements, originally formulated by [26], and
developed by [24], it consists in a discrete element method in which the individual elements are
meshed into finite elements, adopting a triangular discretization of the domain with embedded
crack elements that activate whenever the peak strength is reached.
The method, initially developed in the field of geo-mechanics, has been adopted to study the
behaviour of historical masonry Differently from the DEM described above, blocks can be
assumed to behave as rigid or elastic bodies. Mortar joints might be idealized as elastic or
elastic–plastic zero-thickness Mohr–Coulomb interfaces. Blocks are modelled by means of
finite elements while interfaces are modelled as discrete elements.

3 NUMERICAL RESULTS

Limit analysis is compared with non-linear incremental analysis of the panels performed by
means of DEM and FEM/DEM models. Attention is focused on the mechanisms of collapse
and on ultimate load multipliers, α, obtained using the different micromechanical approaches.
Results refer to three different based supported panels with different dimensions and ratioH/L.
The panel base length L is assumed equal to 1140 mm, whereas height H is assumed equal
to L/2 (Case 1), L (Case 2) and 2L (Case 3). Brick sizes are characterized by length b and
height a. The panel thickness is setting to t = 120 mm. Negligible cohesion c is considered
for representing dry joints, whereas a friction ratio tanφ = 0.6 is assumed, corresponding to a
friction angle of about 30◦. Two different blocks arrangement are modelled: ”running bond”
pattern (RB) with b = 240 mm and a = 60 mm (b/a = 4) and ”head bond” pattern (HB) with
b = 120 mm and a = 60 mm (b/a = 2). A fictitious mortar elastic modulus EM = 1 GPa is
assumed for representing dry joints elastic deformability. Each panel is subject to its self-weight
and to a horizontal increasing force statically equivalent to a lateral acceleration.
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Case H/L b/a αFEM/DEM αDEM αLA

1 0.5 4/1 0.500 0.570 0.600
1 0.5 2/1 0.410 0.390 0.500
2 1.0 4/1 0.380 0.390 0.600
2 1.0 2/1 0.320 0.310 0.435
3 2.0 4/1 0.240 0.330 0.427
3 2.0 2/1 0.220 0.310 0.360

Table 1: Collapse multiplier α for different cases and approach

In Table 1 the collapse multiplier α obtained using FEM/DEM, DEM and LA, for each case
considered, is reported.
Figure 2, Figure 3 and Figure 4 show the collapse mechanisms obtained by LA (c) compared
with DEM (a) and FEM/DEM (b) for the three cases of study, considering running bond (upper
line) and head bond (lower line) textures. Two possible mechanisms of collapse may occur:
sliding or overturning, mainly depending on height-to-length ratio H/L of the panel but related
also to the arrangement of blocks.

(a) DEM (b) FEM/DEM (c) LA

Figure 2: Case 1: Collapse mechanism obtained using FEM/DEM, DEM and LA in case of RB (upper line) and
HB (bottom line)

The results provided by LA are in a good agreement with the ones provided by DEM and
FEM/DEM. In slender panels (ratio H/L > 1) collapse occur with prevalent global overturning
mechanisms, while panels with a ratio H/L < 1 exhibit a prevalent sliding mechanism; cracks
pattern provided by AL are very similar to the one of DEM and FEM/DEM. However it must
be noticed that, while in the first case overturning mechanism occurs both for RB and HB
textures, in the latter case a pure sliding mechanism is activated in case of RB while in case
of HB the upper part of the panel exhibits rotations. This phenomenon is more evident in the
case of square panel (ratio H/L = 1), for which the mechanism can be either sliding that
overturning in relation to the texture considered. This results show that the global collapse
mechanisms strongly depend depend on local mechanisms, that are related to the geometry of
the microstructure.
Figure 5, Figure 6 and Figure 7 provide the values of the collapse multiplier obtained by the
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(a) DEM (b) FEM/DEM (c) LA

Figure 3: Case 2: Collapse mechanism obtained using FEM/DEM, DEM and LA in case of RB (upper line) and
HB (bottom line)

three models: it is possible to notice that multipliers obtained by AL are comparable with
respect to the other 2 models, even if they are little higher. It could be influenced by the dilatant
behaviour hypothesis of the model. In Table 1 all the results are summarized.

4 FINAL REMARKS

The comparison of results show a good agreement between the different modelling techniques.
In terms of collapse multiplier α, the difference is more accentuate for the square panel, Case 2
(H/L = 1), as reported in Figure 6. Indeed, it is well known from literature how it represents a
limit case between sliding or hinging mechanism. In particular with a LA approach, especially
for HB pattern, the result seems to be influenced by the dilatant behaviour while results obtained
using FEM/DEM and DEM are little smaller than the friction angle. On the contrary, the value
of α for Case 1 and Case 3 are characterized by little difference between FEM/DEM, DEM and
LA analysis, as reported in Figure 5 and Figure 7.
Referring to collapse mechanisms, results obtained using LA approach are in good agreement
with those obtained with FEM/DEM and DEM analysis. In particular considering Case 1 and
Case 2, for HB pattern the mechanism is mainly of sliding. Other cases and patterns exhibit an
hinging mechanism of collapse.
A consideration about the use of the different techniques to model the structural response of
masonry panels points out some advantages of LA approach. It may be a useful and reliable
tool for the analysis of in-plane failure of masonry walls and to assess the collapse multiplier.
Moreover, it is possible to take into account the real texture of masonry walls, describing ac-
curately the real cracks pattern that may develop and the potential mechanisms of collapse,
as shown by the comparison with the results obtained by means of discrete models. It also
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(a) DEM (b) FEM/DEM (c) LA

Figure 4: Case 3: Collapse mechanism obtained using FEM/DEM, DEM and LA in case of RB (upper line) and
HB (bottom line)

requires less computational effort respect to FEM/DEM and DEM approach, which could rep-
resent a critical issue especially for structure with large degree of freedom. Another advantage
of LA concerns the limited number of mechanical parameter to introduce into analysis. Indeed,
unlike FEM/DEM and DEM which require more mechanical information, using LA the only
parameter to set is the angle of friction.
Next step of the research will be focused on the analysis of more complex geometries, also
including a linearised procedure to take into account pure shear and crushing of the blocks. The
study about how settlements influenced the structural response is also an ongoing research.
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Figure 5: Case 1: Collapse multiplier for the analysed three approaches in the case b/a = 4/1 (RB) and b/a = 2/1
(HB)

Figure 6: Case 2: Collapse multiplier for the analysed three approaches in the case b/a = 4/1 (RB) and b/a = 2/1
(HB)
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proaches to linear elasticity and suggestions for multiscale modelling. Archive of Applied
Mechanics, 81(11):1573–1584, 2011.

[10] C. Casalegno, A. Cecchi, E. Reccia, and S. Russo. Heterogeneous and continuous models:
Comparative analysis of masonry wall subjected to differential settlements. Composites:
Mechanics, Computations, Applications, 4(3):187–207, 2013.

[11] L. Cascini, R. Gagliardo, and F. Portioli. Liablock 3d: A software tool for collapse mech-
anism analysis of historic masonry structures. International Journal of Architectural Her-
itage, 0(0):1–20, 2018.



M. Pepe, M. Pingaro, E. Reccia and P. Trovalusci

[12] A. Cecchi and K. Sab. A comparison between a 3D discrete model and two homogenised
plate models for periodic elastic brickwork. International Journal of Solids and Structures,
41(9-10):2259–2276, 2004.

[13] G. Del Piero. Constitutive equation and compatibility of the external loads for linear elastic
masonry-like materials. Meccanica, 24(3):150–162, 1989.

[14] D. C. Drucker. Coulomb friction, plasticity, and limit loads. Technical report, Brown Univ
Providence RI DIV of Applied Mathematics, 1953.

[15] N. Fantuzzi, P. Trovalusci, and S. Dharasura. Mechanical behavior of anisotropic compos-
ite materials as micropolar continua. Frontiers in Materials, 6, 2019.

[16] F. Greco, L. Leonetti, R. Luciano, and P. Nevone Blasi. An adaptive multiscale strategy for
the damage analysis of masonry modeled as a composite material. Composite Structures,
153:972–988, 2016.

[17] F. Greco, L. Leonetti, R. Luciano, and P. Trovalusci. Multiscale failure analysis of periodic
masonry structures with traditional and fiber-reinforced mortar joints. Composites Part B:
Engineering, 118:75–95, 2017.

[18] J. Lemos. Discrete element modeling of masonry structures. International Journal of
Architectural Heritage, 1(2):190–213, 2007.

[19] L. Leonetti, N. Fantuzzi, P. Trovalusci, and F. Tornabene. Scale effects in orthotropic
composite assemblies as micropolar continua: A comparison between weakand strong-
form finite element solutions. Materials, 12(5), 2019.

[20] L. Leonetti, F. Greco, P. Trovalusci, R. Luciano, and R. Masiani. A multiscale damage
analysis of periodic composites using a couple-stress/Cauchy multidomain model: Appli-
cation to masonry structures. Composites Part B: Engineering, 141:50–59, 2018.

[21] D. Liberatore, D. Addessi, and M. Sangirardi. A nonlinear macroelement formulation for
the seismic analysis of masonry buildings. In Eccomas Proceedia ID: 5575, Conference
Proceeding ID: 17126, volume 1, pages 2395–2403, 2017.

[22] H. Lotfi and P. s. Shing. Interface Model Applied to Fracture of Masonry Structures.
Journal of Structural Engineering-ASCE, 120, 01 1994.

[23] P. Lourenço and J. Rots. Multisurface interface model for analysis of masonry structures.
Journal of Engineering Mechanics, 123(7):660–668, 1997.

[24] O. Mahabadi, A. Lisjak, A. Munjiza, and G. Grasselli. Y-Geo: New combined finite-
discrete element numerical code for geomechanical applications. International Journal of
Geomechanics, 12(6):676–688, 2012.

[25] R. Masiani and P. Trovalusci. Cosserat and Cauchy materials as continuum models of
brick masonry. Meccanica, 31(4):421–432, 1996.

[26] A. Munjiza. The combined finite-discrete element method. 2004.



M. Pepe, M. Pingaro, E. Reccia and P. Trovalusci

[27] D. Oliveira and P. Lourenço. Implementation and validation of a constitutive model for the
cyclic behaviour of interface elements. Computers and Structures, 82(17-19):1451–1461,
2004.

[28] A. Pau and P. Trovalusci. Block masonry as equivalent micropolar continua: The role of
relative rotations. Acta Mechanica, 223(7):1455–1471, 2012.

[29] M. Pingaro, E. Reccia, and P. Trovalusci. Homogenization of Random Porous Materi-
als With Low-Order Virtual Elements. ASCE-ASME Journal of Risk and Uncertainty in
Engineering Systems, Part B: Mechanical Engineering, 5(3), 2019.

[30] M. Pingaro, E. Reccia, P. Trovalusci, and R. Masiani. Fast statistical homogenization
procedure (FSHP) for particle random composites using virtual element method. Compu-
tational Mechanics, 64(1):197–210, 2019.

[31] F. Portioli, C. Casapulla, M. Gilbert, and L. Cascini. Limit analysis of 3d masonry block
structures with non-associative frictional joints using cone programming. Computers &
Structures, 143:108 – 121, 2014.
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