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ABSTRACT

This paper presents a modified Jaya algorithm (MJaya) for optimizing the material costs and electric-
thermal performance of an Underground Power Cable System (UPCS). Three power cables arranged in
flat formation are considered. Three XLPE high voltage cables are situated in the thermal backfill layer for
ensuring the optimal thermal performance of the cable system. The cable backfill dimensions, cable
backfill material, and cable conductor area are selected as design variables in the optimization problem.
In the study, the Finite Element Method model is validated experimentally.

The Particle Swarm Optimization (PSO), Jaya, and MJaya algorithms are used for multiobjective opti-
mization in order to design a cable system in such a way to minimize the cable backfill costs and
maximize the allowable electric current flowing through the cables. For the case study, calculations
performed using the Jaya algorithm indicated 1.7 mln Euro cable system costs while cable ampacity is
equal to I = 1460 A. The calculations are performed for the objective function values equal to w; = 0.5
and wy, = 0.5. Such an optimization parameters set allow obtaining low costs of UPCS alongside with

reasonable cable line ampacity.

What is more, the results of the optimization obtained by Jaya, MJaya, and PSO algorithms are
compared. Therefore, Coverage and Hypervolume metrics are incorporated. It is concluded that both the
Jaya and MJaya algorithms performed better when compared to the PSO algorithm.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The Underground Power Cable Systems (UPCS) are recom-
mended during the design and implementation in densely popu-
lated areas, electrical power outputs from power plants, and
interconnections in power stations. However, the installation of
underground power cables is still limited due to the high invest-
ment and maintenance costs as well as the expensive repairs in
case of an outage. Report [1] shown that the UPCS could take from
48 to 480 h to get repaired during the outage, which is 6—10 times
more than that of the overhead transmission lines. Furthermore,
the power cables used underground still have higher prices than
the overhead, because of the higher complexity in production [2].

The crucial factor that limits the power line ampacity is the
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cross-sectional area of the power cable conductor. The conductor
ampacity is defined as the maximum electrical current that may be
carried safely by the wire without exceeding its insulation tem-
perature limitations. Thus, the bigger the cable conductor cross-
sectional area is, the higher the current may be transferred safely
under the given conditions. The cable conductor ampacity mostly
depends on the cable core temperature. Therefore, the higher the
electrical current is transmitted through the cable conductor, the
higher the quantity of heat is generated in the form of Joule’s heat
within the cable core. The generated heat may cause an increase in
the cable core temperature under unfavorable heat dissipation
conditions. Thus, excessive conductor temperature, over 90 °C for
XLPE-insulated power cables, leads to cable overheating and the
improper operation of the power transmission line. An excessive
cable core temperature, persisting for a long time, may result in the
polyethylene insulation melting, which, in turn, causes the trans-
mission line malfunction. Since the outage period may last even
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Nomenclature
A cross-sectional area, m?
b the distance between the conductors’ axes and the

bottom of cable bedding layer, m

Chacksill Cable backfill costs, KEur/km

Chackfine ~ backfill material unit costs, KEur/km

Ceable cable costs, kKEur/km

Ceableu power cable unit costs, kEur/km

Crotal total material costs (cable plus thermal backfill
material costs) per km of cable line, kEuro/km

Cov(A, B) the coverage value of two non-dominated sets of
solutions (A and B) compared,

d diameter, m

F objective (cost) function,

Fscated objective function for the scaled approach,

Felas objective function for the classical approach

H computational domain height, m

h burial depth, m

hair heat transfer coefficient from the ground surface to
the ambient air, W/(m?K)

1 current loading, A

j iteration number,

k thermal conductivity, W/(m K)

l the spacing between two consecutive cables, m

MAT Material of thermal backfill

n population size,

p the distance between the conductors’ axes and the
top of cable bedding layer, m

PF penalty function,

Qv heat source density, W/m?

r, T2 random numbers generated during each iteration of

Jaya algorithm,
s spacing between the right edge of the bedding layer
and the side cable axis, m

T temperature, °C

Tair ambient air temperature, °C

Te,max maximum temperature of power cable operation, °C
w computational domain width, m

Wi, Wo weights of the functions F; and F,, respectively
X design variable vector,

X,y Cartesian coordinates,

Subscripts

backfill backfill

best best solution in the population

i iteration number

j design variable id

k k-th solution in population

m number of design variables

min minimum value of a parameter

max maximum value of a parameter

mean mean value of parameter

worst the worst solution in the population
Superscript

‘

updated position of design variable vector X

List of Abbreviations

FEM Finite Element Method

FTB Fluidized Thermal Backfill

HDPE High-density polyethylene

HV High Voltage

HVol hypervolume

PC LaFarge POWERCRETE™

PSO Particle Swarm Optimization

SC sand cement mix

UPCS underground power cable system

XLPE cross-linked polyethylene

480 h, and each hour entails huge financial losses related to the
interruption of electricity transmission, the High Voltage (HV) un-
derground transmission line failure rate must be reduced to a
minimum [3].

To overcome the problem of cable overheating, the cable back-
fills are used, with higher thermal conductivity than the mother
soil. Due to the low costs, approx. 40 euro per m>, the most
commonly used thermal backfill is a sand-cement mixture with a
proportion of 1-10 or 1 to 12. However, due to the relatively low
thermal conductivity, reaching 0.8 W/(mK)) in the dry state, this
solution is not recommended in cases when the high carrying
currents are needed. The other alternative could be Fluidized
Thermal Backfill (FTB) with higher thermal conductivity, up to
1.54 W/(mK) in a dry state, and higher costs, approx. 125 euro per
m>. Recently, the Heidelberg Cement Group proposed a new ther-
mal backfill material, Cable Cem, with very high thermal conduc-
tivity, up to 2.5 W/(mK) in a dry state. This kind of solution, even
though being expensive, may lead to reduce the cable core cross-
sectional area. It is very favorable and contributes to reducing the
overall costs of the UPCS, allowing to achieve both lower temper-
ature of power cables and lower total costs.

Many papers have been published so far on the optimization of
the UPCS. Among the research carried out in this field, several ar-
ticles related to the manuscript scope are mentioned. Andres [4]
described two cases of the cable backfill design problem. At first,
the minimization method of total backfill cost was described, when

cable ampacity should not drop below the lower bound value. The
costs considered producing the cable trench and laying the backfill
material. What is more, the author described a procedure for cable
line ampacity maximization while not exceeding the total cost
budget.

Another interesting work was performed by Moutassem and
Anders [5], who proposed a method for configuring the location of
any number of underground cables to reach the highest total
ampacity. Two-level optimization was adopted to find an optimal
configuration. At first, the combinatorial optimization based on the
Genetic Algorithm was used to find different possible configura-
tions, which were then evaluated using an inner level optimization
convex optimization algorithm. The convex optimization algorithm
adopted the barrier method.

Octon et al. [6,7] proposed an algorithm for minimizing the
cross-sectional area of thermal backfill for the UPCS. The 400 kV
power cable system laid in flat formation was considered. In
Ref. [6], a new thermal backfill material was proposed based on the
Gruntar™ solution produced by the LaFarge company. The
momentum-type Particle Swarm Optimization (PSO) was
employed to find the thermal backfill layer cross-sectional area,
which allows obtaining the cable core temperature lower than
65 °C. The Cambel - de Vries model, was used to determine the soil
thermal conductivity.

Quan et al. [8] studied the thermal performance of UPCS in
trefoil and flat formation using Fluidized Thermal Backfill as cable
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bedding material, while Klimenta et al. [9] considered the use of
Hydronic Asphalt Pavement (HAP) within the system. The use of
HAP is proposed for eliminating the negative thermal effect of an
actual hot spot on the ampacity of a 110 kV cable line, which is
installed in parallel with the group of four 35 kV cables and which
crosses an underground heating pipeline. In another manuscript,
Klimenta et al. [10] studied the thermal effect of solar radiation on
the ampacity of a low voltage underground cable.

Economical analysis of cable line design was performed in the
papers of Cichy et al. [11,12]. In the abovementioned research, Cichy
et al. [11] extended the models for economic conductor sizing
discussed in the literature by presenting a detailed cost analysis of
the cable itself. The authors found that the classical linear model is
valid, and the proposed approach permits the quite precise
computation of its parameters. What is more, in Ref. [12], Cichy
et al. presented a mathematical model for the selection of an
optimal power cable conductor cross-section and the dimensions of
a corrective backfill. The model considered the material and labor
costs in the production of a power cable as well as the cost of losses
during its operation. A genetic algorithm was used in the optimi-
zation procedure.

Zachri et al. [13] developed a method to find the optimal
configuration of the cables in a duct bank considering the current
harmonics and their effect on sheath losses. Two optimization al-
gorithms, PSO and Shuffled Frog Leaping algorithms, were used. In
the next paper, Zarchi and Vahidi [14] proposed an algorithm for
calculating the optimal configuration set of underground cables in
the concrete duct bank, simultaneously maximizing the ampacity
and minimizing the cost of system. A Particle Swarm Optimization
was employed.

Summing up state of the art, in Table 1, a brief synthesis of the
analyzed papers are presented. (see Table 2).

In the developed numerical models of heat transfer in the cable
line systems, the parameters of the soil and the cable backfill, in
which the power cables are located, are very important. Thus,
extensive research is carried out in order to determine the thermal
properties of soil and backfill in the vicinity of the cable line. The
research of Kroener et al. [15] and Hruska et al. [16] confirms that
the heat generated in power cables affects soil water content
considerably, which in turn has a significant impact on soil thermal
conductivity. Being aware of these interdependencies, the authors
have studied the effect of soil and thermal backfill conductivity on
the temperature distribution in the UPCS in the papers [17,18].

The scope of this paper is to present the procedure for

Table 1
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Table 2
Design variables and their change ranges considered in the computation.

Variable, unit Change range

I, m 03<1<0.6

p,m 02<p<04

b, m 02<b<04

s, m 02<s<04

A, 1076 m? 1000, 1200, 1400, 1600, 1800, 2000
LA 1200 < I < 1600

MAT SC, FTB, CC

multiobjective optimization of UPCS design on an example of a flat-
formation 400 kV underground transmission line. The present pa-
per is a continuation of the previous work reported in Ref. [3],
where the single-objective optimization of underground power
cable costs was proposed by using a modified Jaya algorithm.
However, from the cable line operation standpoint, it is needed to
optimize both the material costs and cable ampacity. Therefore, in
this paper, multiobjective optimization is performed to improve the
design of the UPCS. The proposed procedure allows us to reduce the
UPCS costs, as well as to maintain the electrical current carried by
the cables at an acceptable level. The objective function, including
both material costs of the UPCS and electrical current flowing
through the cable, is defined for the optimization problem to be
solved. The modified Jaya (MJaya) algorithm is proposed as the
optimization tool that is able to minimize the objective function.
The performance of the modified Jaya algorithm is compared with
the classical Jaya algorithm and PSO.

2. Analysis and modelling

As a test case, the HV underground transmission line of three
400 kV XLPE-insulated power cables, arranged in flat formation
(Fig. 1) is concerned. The power cables are buried underground in
the rectangular trench filled with the thermal backfill layer. The
backfill is situated in soil with constant thermal conductivity.

The primary goal of the optimization is to satisfy the following
requirements:

a) minimization of the unitary material costs (costs of cables and
thermal backfill applied per 1 km of the transmission line),
b) maximizing the current I transferred through the cable,

Summary of th literature references regarding UPCS optimization methods employed.

Study Optimization algorithm employed Results of the analysis
Andres [4] o minimization method of total backfill cost while cable ampacity should not drop
below the lower bound value;
o procedure for cable line ampacity maximization while not exceeding the total cost
budget;
Moutassem  two-level optimization algorithm: configuring the location of any number of underground cables to reach the highest
and Anders o at the outer level, the Vector Immune System algorithm explores total ampacity.

[5] the different possible configurationsm
o at the inner level, a convex optimization algorithm based on the
barrier method to evaluate total ampacity of the system

Octon et al. momentum-type Particle Swarm Optimization
[6.7]
Cichy et al. Genetic Algorithm
[12]
Zachri et al.  PSO and Shuffled Frog Leaping algorithm
[13]
Zarchi and PSO algorithm
Vahidi [14]

finding the thermal backfill layer cross-sectional area, which allows obtaining the
cable core temperature lower than 65 °C

selection of an optimal power cable conductor cross-section and the dimensions of a
cable backfill taking into account the material and labor costs in the production of a
power cable as well as the cost of losses during its operation.

optimal configuration of the cables in a duct bank considering the current harmonics
and their effect on sheath losses

calculating the optimal configuration set of underground cables in the concrete duct
bank, simultaneously maximizing the ampacity and minimizing the cost of the system
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Fig. 1. UPCS design considered for optimization problem: a) design variables I, p, b, s, and A., I, MAT; b) heat transfer domain used in the thermal calculation of maximum tem-
perature Ty in the system; c) 400 kV XLPE power cable layout with given thermal conductivities of each layer, as well as conductor (c), insulation (ins), and external layer (ext)

diameters.

c) the maximum temperature of the cable conductor shall not
exceed the maximum temperature of power cable operation,
i.e., Te,max = 90 °C.

In order to simulate the adverse heat transfer conditions that
occur in the soil during the summertime, the temperature of the
ground level is set and equal to 30 °C, while the convective heat
transfer coefficient is considered to be equal to 10 W/(m?K).

2.1. Design variables and constraints

The following design variables are used in the optimization
problem (concerning Fig. 1):

I — horizontal distance between the cable conductors axes,

s — spacing between the right edge of the bedding layer and the
side cable axis,

b — the distance between the conductor axes and the top of the
bedding layer,

p — the distance between the conductor axes and the bottom of
the bedding layer.

Ac — nominal cable conductor cross-sectional area (selected
from the XLPE HV cable design series, provided by the cable
producer).

I — electric current flowing through the cable.

MAT — Material of thermal backfill (sand cement mix - SC, Flu-
idized Thermal Backfill - FTB, Cable Cem - CC).

The dimensions of the computation domain are: domain width
W = 5 m, domain height H = 10 m, and burial depth h = 2 m. The
following ranges of design variables are considered:

Seven design variables are considered including the dimensions
of thermal backfill (I, p, b, s), power cable cross-sectional area A,
electric current transferred I, and thermal backfill material MAT
(Sand cement mixture, Fluidized Thermal Backfill or Cable Cem).

The unit costs of underground power cables considered are

given in Tables 3 and 4.
The total material costs for the HV cable line installation are
calculated as follows:

Ctotal = Ccable + Cbackﬁllv (1 )

where the cost of power cables Cegpye is:

Ccable = 3Ccable,w (2)

while the cost of thermal backfill is calculated as:

Chackfitt = 1000+ Apqcifiti Coackfill,u (3)

The cross-sectional area of the thermal backfill layer is calcu-
lated as:

dz
Apackfin=2(1+s)(p+b) — 377207 (4)

where d, is the outer diameter of power cable and may be calcu-
lated from the following equation, based on the data from Ref. [22]:

dy = - 1.2 10° A% + 1.5-107 A2 - 5.4.10% A2+ 96 A. +0.063 (5)

Table 3
Unit costs of the power cables corresponding to the cross-sectional area (A¢).

Cable cross-sectional area A, 10~% m? Cable unit costs Cegpie,u, KEuro/km

1000 268.8
1200 3204
1400 373.6
1600 446.0
1800 526.3
2000 626.0
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Table 4
Unit costs of power backfill materials assumed in the computation.
MAT Backfill material unit costs® Cpacifin,u Euro/m>
Sand Cement Mix 40
Fluidized Thermal Backfill (FTB) 125
Cable Cem 250

2 The backfill material costs may differ from the actual values.

The optimization includes both the scaled and classical
approach in minimizing the final objective function. Taking into
account that:

F1 =1073Cyp1a1, (6)
and
F,=1073], (7)

the minimization of the following objective function is considered
for the:

e scaled approach

Fobj =W ((Fl _Fl,min)/(Fl,max _Fl,min))"‘
+W2((F2,max _FZ)/(FZA,max - Fz,min)) + PF,

In Eq (8) wy and wy are the weights of the functions F; and F,
respectively. The values of F;max and Fmin as well as the values of
Fo,max and F, min are obtained by carrying out the single-objective
optimization of the respective individual objective functions and
are listed in Table 5.

Objective function F; should be minimized, while objective
function F, should be maximized. To define the global optimization
problem and minimize the objective function F,;; we need to
reformulate the optimization problem and minimize the weighted
sum of the F; and F, related functionals. In a scaled approach, the
higher the value of F,, the lower the value of

w» ((FZ,max - FZ) / (Fz,max - Fz,min)) (9a)

When F, approaches F; mqy, then the functional value tends to 0.
Also, the lower value of Fj, the lower value of weighted functional:

Wl((Fl *F],min)/(Fl,max*Fl,min)) (9b)

When F; approaches F; min, then the functional value tends to 0.
Therefore, with minimizing F; and maximizing F, the objective
function Fyp; is minimized.

PF in Eq. (8) is a penalty function given by the following
relationship:

(8)

PF =10(Tmax —90°C) (10)

The penalty function PF is equal to O if the Ty,qx temperature is
lower than 90 °C and higher than 0 otherwise.
For safe operation of the UPCS, it is needed to minimize the

Table 5
The values of Fimax and Fimin and Fomax and Fomin
considered in the computation.

Objective function Value
F1,min 1.2873
Fl ,max 2.2666
F2,min 1.20

F; 2,max 1.60
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thermal backfill costs while operating at the highest possible
ampacity (current carrying capacity). Therefore, the multiobjective
optimization aims to minimize the costs of the system while
maximizing the current. Since there are contrasting two objective
functions for minimizing the system costs and maximizing current,
it is needed to perform multiobjective optimization. Therefore, the
present paper is minimizing F; and maximizing F, under different
weights.

2.2. Electric-thermal model of the UPCS

The scheme of the heat transfer domain is shown in Fig. 1. The
following assumptions are made when modeling the temperature
field in the UPCS:

e heat transfer is considered as two-dimensional and steady-
state,

o heat losses in cable conductor and the cable insulation layer are
considered,

e the sides of the heat transfer domain are considered to be
perfectly insulated,

e the thermal conductivity of soil, thermal backfill material, and
cable-layers are assumed to be constant.

When determining the maximum temperature of the central
cable conductor Ty, a two-dimensional heat conduction equation
is solved using the Finite Element Method (FEM) code developed
for this purpose [3].

o for the cable conductor:

B Txy)] 0 [ oT(x.y)
x| - ox oy oy

o for the XLPE insulation:
0 [ 6T(x7y)} 0 {kmgaT(&y)

ke

} = —que(T(x,Y)),

] = —q,ins(T(x,¥)),

ax | " ax ay oy

o for cable external layer:

o[ ATy, 8, Ty _, (1
ax ] ext ax ay ext ay - Y

o for the soil

O [, 0T(x,y)] , 0 [ oT(xy)] _
ox »ks ox }—i_ay {ks oy =0,

o for the cable backfill

o[, aT(x,y) 0 oT(x,y)|
Py _kb—ax } + @ {kb ay =0,

where:

x, y — are the Cartesian coordinates of the specified point that
belongs to the heat transfer domain,q,(T(x,y)) — is a heat source
density, W/m>.

k — is thermal conductivity specified for the different compu-
tational domains, i.e.:

o for the cable conductor, k. = 400 W/(m K),

o for the cable XLPE insulation, kjs = 0.285 W/(m K),
o for the cable external layer, kex: = 0.534 W/(m K),

o for the soil, ks = 0.8 W/(m K),

o for different types of thermal backfill, i.e.

- for the Sand-Cement mix, k, = 0.8 W/(m K),

- for FTB, ky = 1.54 W/(m K),

- for Cable Cem ™, kj = 2.5 W/(m K).
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The system of equations given in Eq. (11) is subjected to the
following boundary conditions:

nal
ox x=W

oT

(L
Y ly—h_n
oT
k& = = hair(T(y) - Tair)

(12)

where hgir = 10 W/(m? K) is the heat transfer coefficient from the
ambient air to the ground, and T = 30 °C is the external air
temperature. The methodology of heat loss calculation in cable
conductor q, (T (x,y)), and cable insulation g, ;,s(T(x,y))is described
in detail in Refs. [3].

The cable layouts are adopted into FEM model by using data
from the Nexans High Voltage Underground Power Cables catalog.

Equation (13) provides the formula for heat losses in cable core
[4,21].

4Qc

Cc,ca
where
PpyoC
AQc—m [1 +aT€f<TC(X7.V) - Tref)} (1 +Ys +.Vp) (14)
and.

p20 = 1.7241 108 Q m — copper electrical resistance.

C = 1.02 m — sample length.

Tyef = 20 °C — reference temperature.

T. — the average cable conductor temperature °C,

arer = 0.00393 —copper conductor temperature coefficient.

AQ. —cable conductor heat loss, W/m,

d. — power cable core equivalent diameter for 400 kV power
cables, m,

ys and yp — skin and proximity effect factors.

XLPE HV power cable equivalent cross-sectional area Accq is
given by:

3
Ac,cal = ( Zpi,cA'c> (15)
i-0

with pg; to p3; coefficients equal to pg; = 0.0007955, p1; = 0.3697,
P2 = —76.04, p3; = 1.673-10°.

The skin and proximity factors, ys and y,, are obtained based on
IEC 60287, 2014, standard.

When defining x; the following formula is used:

_ 8af

Xs = <107 7K, (16)
where
12p50C
;_ 20 _
L1 (1) o))

skin effect factor y;s is calculated as follows:

Energy 215 (2021) 119089

Vs forO<xs < 2.8, (18)

— XS
T 192+ 0.8x%

ys= —0.136 — 0.0177x; + 0.0563x2, for2. 8 <xs < 3.8,  (19)

and

ys =0.354x; — 0.733, for x;> 3.8 (20)

For a given value of x,:

Xp :ng-m”l(p, (21)

the proximity effect factor y, is calculated as:

2 2 2
™ (ﬁ) 0.312@ I8 (22)

Yp= 2
192.0.8x2 \ | [ X
P to208% T 0-27

In Egs (16) - (22), I is a distance between cables, and f is an
alternating current frequency, equal to 50 Hz. The values of K and
K, are equal to 0.37 and 0.8, respectively, according to ICE 60287,
2014. The Round Milliken bare bi-directional wires are considered.

The value of qy,ins, referred to the insulation cross-section area
Ains,cal, 1S determined by:

A .
Qv ins :A‘Qms ) (23)
ins,cal
where
UZ
AQjns = ZﬂfCins? tan o, (24)

when the given parameters are:
Cins — capacitance calculated according to Nexans, 2011, F/m,
tand — insulation loss factor equal to tané = 0.005.
U — the maximum AC voltage, V.
The value of Ajnscql is determined as:

3
Ains,cal = (Zpi,insAlc> ’ (25)
i=0

with poins to p3ins coefficients equal to: poins = 0.002695,
D1ins = 4.725, pa,ins = —1590, p3,ins = 2.72-10°.

2.3. Optimization algorithms used

This paper compares the performance of the Jaya algorithm,
Modified Jaya (M]aya) algorithm, and PSO.

2.3.1. Jaya algorithm

The flowchart of the Jaya algorithm is presented in Fig. 2. In the
optimization problem we consider the design variables vector
x=|[Lp,b,s, Ac I, MAT] and for an i-th generation with n elements
we denote a design variables vector set as Xj ki = [Xj 1, Xj2,i» Xj 3, Xj4,i»
. van,i]T.

The equation which is used in the Jaya algorithm to update the
candidate position during the i-th iteration is:
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Initialize population size, number of design

variables and termination criterion
T

- Vv
Identify best and worst solutions in the
population

v

Modify the solutions based on best and worst solutions

\A

’ o
X'jiei = Xigei + 00X besti = Xieil) = 72,1 Kjworsei = Xl )
/F Vv
Yes Is the solution corresponding to X'; ;. ; No
better than that corresponding to Xj ;. ;?
Y
Accept and replace the Keep the previous
previous solution solution

|2

A

y No /

P e e Yes
\ Is the termination criterion satisfied? h

Report the optimum solution

Fig. 2. Flowchart of the modified Jaya algorithm [19].

) - r2,j‘i <Xj‘worst,i - ‘Xj,k,i

).

X i =Xiki+ 14 <Xj,best,i - ‘Xj,kj
(26)

where, X; pes: jis the value of the variable j for the best candidate and
Xj worst,iis the value of the variable j for the worst candidate. X]{kviis
the updated value of X; ;, while ry j;, and r, j;are the two random

numbers for the jth variable during the ith iteration in the range
[0,1].

2.3.2. Modified Jaya algorithm (Mjaya)

The modified version of the Jaya (M]Jaya) algorithm considers
the changes in Eq. (26) as follows:

(27)

!/
Xigei =Xjki+T1 JJ(Xj,best(rb),i - ’Xj,kj‘) —T2ji <Xj,worst‘i - ‘XjJa

where, rb is a random integer 1,2 or 3, and best (1), best (2) and best
(3) are solution candidates with the first best (1), the second-best
(2) and the third-best (3) values of the objective function within
the population during an iteration. The solution candidate position
is updated as per Eq. (27). One of the three best values will be
randomly selected during the iteration.

2.3.3. PSO algorithm
The PSO algorithm calculates the velocity of each particle as
follows:
Vigi=wWVjpi+ciri (XJ:pbesf,i - Xj,ki) +Calpji (Xj,gbest,i - XjAk,i) ;
(28)

where w is the inertia weight equal to:

i(WmaX — Wmin)

W =Wnmax — -
Imax

: (29)

while i denotes the iteration number, ipqx is the maximum number
of iterations, Wpyax = 0.9, and wp,;, = 0.4. The symbols c¢; and c¢; in
Eq. (15) are acceleration coefficients. Then c; value indicates the
importance of personal best value (pbest) and c; value indicates the
importance of the global best (ghest) value of the solution candi-
date. The candidate position is updated in the consecutive iteration
as follows:

Xiki=Xiki+ Vi (30)

The multiobjective optimization problem, given by Eq. (8) — a
scaled approach, is solved by using the Jaya, modified Jaya, and PSO
algorithms. The results of these three algorithms are compared and
discussed. Table 6 presents the advantages and disadvantages of
PSO, JAYA and MJAYA.

3. Model validation

Fig. 3 presents a scheme of the experimental setup used for FEM
model validation. The setup consists of three resistance heaters
arranged inline. The heaters are placed in HDPE pipes with an
external diameter of 60 mm, and a thickness of 2 mm, then filled
with glass granulate. The box is filled with sand, and the box di-
mensions are the height of 1000 mm, and the width of 1300 mm.
The sides of the box are insulated with extruded styrofoam to
reduce the heat losses to the surroundings. The top and bottom of
the domain are not insulated. Therefore the convective heat
transfer occurs. Three cylindrical resistance heaters with a diameter
of 11.3 mm and a length of 1 m are buried in a box at a depth of
500 mm.

Temperature distribution in the sand domain is measured in 25
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Table 6
Advantages and disadvantages of PSO, JAYA and MJAYA.

Particle Swarm Optimization (PSO)

Advantages

. The operation of the algorithm is not sensitive to the type of objective function (multidimensional, irregular, discontinuous or even non-parametric).

. The efficiency of the algorithm is independent of the initial values. The final solution does not depend on a set of initial points or initial population.

. It is a method that does not use derivative of objective function.

. High performance and searchability of the space solution as the solution is updated based on the best global solution and the best solution for a given particle.
. It is simple in programming since only one evolutionary equation is used

s W N =

Disadvantages

1. There is no guarantee that after each iteration only improved solutions are generated

2. Requires tuning of algorithm-specific parameters such as inertia weight and cognitive and social coefficients.

3. Entrapment into local optima.

4. Importance is given only to the best solution therefore the algorithm may show poor ability to recover from the local optima.
5. It is required to maintain a database of local best and global best solutions.

JAYA

Advantages

1. The working of the algorithm is not sensitive to the nature of the objective function

2. The performance of the algorithm is independent of initial solutions.

3. It is a derivative free technique.

4. A solution is updated based on population best and population worst. This gives a good exploration and exploitation capability to the algorithm.
5. Does not involve tuning of any algorithm-specific parameters like PSO.

6. Solutions are updated in a single equation.

Disadvantages

1. Only good solutions are allowed to go into the next phase, thereby elitism is not preserved.
2. As the solutions reach closer to the global optima the difference between best and the worst solution reduces. Therefore, the exploration reduces slightly due to lack of
gradient information.

MJAYA

Advantages

1. Can be applied to all kind of objective function types

2. Has all the advantages of JAYA algorithm i.e. the performance is independent on initial solution, derivative free technique, no need of algorithm specific parameters
tuning, only good solutions remains in the next generation.

3. A solution is updated based on population three best and population worst solutions. This gives an enhanced exploration and exploitation capability to the algorithm
compared to JAYA.

Disadvantages

1. Mostly good solutions are allowed to go into the next phase, thereby, the poor solutions are eliminated. Therefore, elitism is not preserved. However, compared to JAYA,
three best solutions are used to generate new generation, so the poor solutions are not fully eliminated.
2. Since only three best solutions are used to produce the next generation, in case of algorithm convergence the difference between the best and worst solution is slight.

points shown in detail in Fig. 3a. The K-type thermocouples are
used for temperature measurements. The thermocouples are
located at the steel rods placed in the box, to achieve accurate
positioning during the measurements. The measurement accuracy
is +0.2 °C. During the temperature sensors installation, the tips of
the thermocouples might be dislocated slightly. Therefore, the

@

air flow: A, = 10 W/(m’K)
T..=22°C

[Mlglass granulate

[ Jsand

ipnesrﬂle;t(lgé X thermocouples

] =
30 crn of 10 ® resistance heater | 8
extruded

styrofoam

1000

1300

thermocouples positioning uncertainty is estimated at + 1 mm.
During the experimental investigation, the electrical current of
I = 1.54 A, and voltage of U = 228 V was achieved, so the power
output for a single heater is of P = 34.1/3 = 11.36 W. Fig. 3b shows
the test stand assembled.

Sand thermal conductivity was measured using the KD2 Pro

(b)

Fig. 3. Experimental setup for measurements of temperature distribution within the UPCS: a) location of the temperature sensors; b) photograph of the test stand.
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Fig. 4. Calculated temperature distribution in the UPCS.
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Fig. 5. Numerical grid used in the computations.

device delivered by Decagon Devices and is equal to ks = 0.6 W/
(mK). The heater material (steel) thermal conductivity is assumed
as 60 W/(mK), while the glass granulate thermal conductivity is
equal to 0.09 W/(mK). Fig. 4 shows the temperature distribution
obtained from the calculation, while Fig. 5 shows the computa-
tional grid used in the computations.

In order to validate the numerical procedures, experimental
verification of the computations is performed. For this purpose, the
test case, being an experimental setup arrangement given in Fig. 3,

Temperature, °C
2 o oo o0 o
5 8 & 8 &

IS
S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Thermocouple id

Fig. 6. Comparison between measured and calculated temperatures in points 1-25, in
reference to Fig. 3a.
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is considered during the computations. Fig. 6 shows the compari-
son between calculated temperature distribution and the temper-
ature values measured.

The temperature distribution obtained from the developed FEM
model is compared with experimental measurement results. An
experimental stand (Fig. 3) is used for the ground temperature
measurements in 25 locations (Fig. 3a). The FEM model of the
experimental setup is developed, and temperatures within the
UPCS domain are calculated. The comparison of the obtained
temperature values at the location of the thermocouple is shown in
Fig. 6. The comparison indicates that calculated ground tempera-
tures do not differ more than 1 °C from the experimental results.
Therefore, the developed FEM model is used for the determination
of temperature distribution in the studied UPCS.

4. Results and discussion

In the present study, the MJaya algorithm [3] is compared with
the classical Jaya algorithm and PSO algorithms. Jaya algorithm was
developed by Rao [19], and PSO algorithm was developed by Ken-
nedy and Eberhart [23]. To compare those three algorithms oper-
ation, the quality of the Pareto front is studied by using two
concepts: Coverage Concept and hypervolume (HVol) described in
detail by Rao in Ref. [20]. This kind of comparison allows one to
study the algorithm performance for multiobjective optimization
problems.

The computations are performed by developing an in-house
code in MATLAB software. Three algorithms Jaya, MJaya, and PSO,
are implemented, as well as a mathematical model of heat transfer
in the UPCS. The sample mesh, with results obtained for equal
weights wq = 0.5 and wy = 0.5, is presented in Fig. 7.

The following optimization results are obtained for the scaled
approach for the values of weights w; and w, provided in Table 7.
The values of the design variables corresponding to different
weights assigned to the objective functions are also given in Table 7.
The optimization results are obtained for the classical approach by
using MJaya and PSO algorithms and given in Tables 8 and 9,
respectively.

The results shown in Tables 7—9 are obtained for various pop-
ulation sizes, i.e., 10, 20, 30, 40, and 50. The maximum number of
function evaluations is 1000. The number of independent runs
executed during the computation is 10. The optimal solution de-
pends on the values of w; and w, considered. If the UPCS designer
wants to minimize the system costs (related to F; function), the
weight w; should take a high value, i.e., 0.8 or 0.9. Therefore, the
effect of F; minimization on the objective function value Fyp; will be
significant. However, if the cable line designer wants to maximize
the cable ampacity regardless of cable system costs, the w, should
take a high value, i.e., 0.8 or 0.9. The compromise solution uses
equal weights w; = 0.5 and w, = 0.5 to obtain low costs of UPCS
alongside reasonable cable line ampacity. For example for Jaya al-
gorithm the best value of objective function for w; = 0.5 and
wy = 0.5 were obtained: Fopj = 0.39, F; = 1.7, and F, = 1.46 what
translates to cable system costs of 1.7 miln. Euro while cable
ampacity is equal to I = 1460 A.

Fig. 8 shows the Pareto front obtained for Jaya, MJaya, and PSO
algorithms.

The quality of the Pareto fronts obtained by Jaya, MJaya, and PSO
algorithms is compared using the Coverage concept [20]. The
Coverage concept is a performance measure that compares two sets
of non-dominated solutions (A, B), and gives the percentage of in-
dividuals of one set dominated by the individuals of the other set. It
is defined as follows:
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Fig. 7. The FEM model results: a) Mesh grid used in the calculation; b) temperature distribution obtained for equal weights w; = 0.5 and w, = 0.5 using MJaya algorithm.

Table 7

Optimization results obtained by using Jaya algorithm.

Jaya algorithm

wy W, F Fy F> I, m p, m b, m s,m Ac, m? 1031, A MAT Trnax. °C
0.0 1.0 0.00 2.26 1.60 0.58 0.40 0.40 0.40 0.0020 1.600 cc 89.95
0.1 0.9 0.10 223 1.60 0.60 032 0.40 0.40 0.0020 1.600 cC 90.00
0.2 0.8 0.19 223 1.60 0.60 0.32 0.40 0.40 0.0020 1.600 cc 90.00
0.3 0.7 0.29 2.19 1.59 0.60 0.25 0.40 0.40 0.0020 1.594 cc 90.00
0.4 0.6 0.36 1.82 1.50 0.60 0.20 0.40 024 0.0018 1.504 cC 89.90
0.5 05 0.39 1.70 1.46 0.60 023 0.40 0.21 0.0018 1.460 FTB 89.95
0.6 0.4 0.39 1.68 1.45 0.60 0.20 0.30 0.28 0.0018 1.449 FTB 89.87
0.7 03 0.30 1.29 1.20 0.60 0.20 024 0.20 0.0016 1.200 cC 89.96
0.8 02 0.20 1.29 1.20 0.60 0.20 024 0.20 0.0014 1.200 cc 89.99
0.9 0.1 0.10 1.29 1.20 0.60 0.20 024 0.20 0.0014 1.200 cc 90.00
1.0 0.0 0.00 1.29 1.20 0.60 0.20 024 0.20 0.0014 1.200 cc 89.98
Table 8
Optimization results obtained by using the modified Jaya algorithm.
M]Jaya algorithm
wy w; F Fy F> I, m p, m b, m s, m Ae, m? 10%.1, A MAT Tpnax- °C
0.0 1.0 0.00 224 1.60 0.60 034 0.40 0.40 0.002 1.600 cC 89.91
0.1 0.9 0.10 223 1.60 0.60 032 0.40 0.40 0.002 1.600 cC 90.00
0.2 0.8 0.19 223 1.60 0.60 0.32 0.40 0.40 0.002 1.600 cc 90.00
03 0.7 0.29 218 1.59 0.60 023 0.40 0.40 0.002 1.594 cc 90.00
0.4 0.6 0.36 1.86 1.52 0.60 0.20 0.40 0.38 0.0018 1.504 cC 89.88
0.5 05 0.39 1.71 1.46 0.60 024 0.40 0.24 0.0018 1.460 FTB 89.97
0.6 0.4 0.39 1.69 145 0.60 0.20 038 0.20 0.0018 1.449 FIB 90.00
0.7 03 0.30 1.29 1.20 0.60 0.20 024 0.20 0.0016 1.200 cc 90.00
0.8 02 0.20 1.29 1.20 0.60 0.20 024 0.20 0.0014 1.200 cc 90.00
0.9 0.1 0.10 1.29 1.20 0.60 0.20 024 0.20 0.0014 1.200 cc 90.00
1.0 0.0 0.00 1.29 1.20 0.60 0.20 024 0.20 0.0014 1.200 cc 90.00
The value Cov(A, B) = 1 means that all points in B are dominated
{beB|3 a€A : a< = b} by or equal to all points in A aqd Coy(A, B) = 0 represents the sit
Cov(A,B) = 31) uation when none of the solutions in B are covered by the set A.

|B]

where, A and B are the two non-dominated sets of solutions under
comparison; a< = bmeans a dominates b or is equal to b.

10

Here, it is imperative to consider both Cov(A, B) and Cov(B, A) since
Cov(A, B) is not necessarily equal to 1-Cov(B, A). When Cov(A, B) = 1
and Cov(B, A) = 0 then, it is said that the solutions in A completely
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Table 9
Optimization results obtained by using PSO algorithm.

Energy 215 (2021) 119089

PSO algorithm

wy ws Fopj Fy F> I, m p, m b, m s, m A, m? 10°-1, A MAT Tymax. °C
0.0 1.0 0.00 225 1.60 0.60 0.40 0.40 0.37 0.002 1.600 cc 89.87
0.1 0.9 0.10 223 1.60 0.60 0.32 0.40 0.40 0.002 1.600 cc 90.00
0.2 0.8 0.19 2.23 1.60 0.60 0.32 0.40 0.40 0.002 1.600 cc 90.00
0.3 0.7 0.29 223 1.60 0.60 0.32 0.40 0.40 0.002 1.594 cc 90.00
0.4 0.6 0.37 1.82 1.50 0.60 0.23 0.34 0.28 0.0018 1.504 cc 90.00
0.5 0.5 0.39 1.71 1.46 0.60 0.20 0.40 0.29 0.0018 1.460 FIB 89.93
0.6 0.4 0.39 1.70 1.46 0.60 0.21 0.40 0.23 0.0018 1.449 FTB 89.84
0.7 0.3 0.30 1.29 1.20 0.60 0.20 0.22 0.26 0.0016 1.200 cc 89.89
0.8 0.2 0.20 1.29 1.20 0.60 0.20 0.20 0.30 0.0014 1.200 cC 89.98
0.9 0.1 0.10 1.29 1.20 0.60 0.20 0.23 0.23 0.0014 1.200 cc 89.98
1.0 0.0 0.00 1.29 1.20 0.60 0.30 0.40 0.40 0.0014 1.200 cc 89.97
1.6 ’ ; e To differentiate the Pareto fronts obtained by Jaya, MJaya, and
T JAYA | * PSO algorithms, another performance measure, known as hyper-
155l MIAYA | volume, is considered. The hypervolume (HVol) is used to compare
* PSO the quality of Pareto-fronts obtained by optimization algorithms in
the case of multiobjective optimization problems. HVol gives the
1.5 o search space volume, which is dominated by a Pareto-front ob-
tained by a particular algorithm concerning a given reference point.
1451 Py ) Therefore for a particular algorithm, a higher value of HVol is
desirable, which indicates the quality of the Pareto-front obtained
- by the algorithm [20].
W l4r | Mathematically, for a Pareto-front containing Q solutions, for
each solution I belong to Q, a hypervolume v; is constructed with
135} 1 reference point W and the solution i as the diagonal corners of the
hypercube. After that, the union of these hypercubes is found, and
13 its hypervolume is calculated as follows.
HVol =volume (UE‘] vi) (32)
1.25
The hypervolume values are calculated for the Pareto fronts
12 . | ‘ : ‘ obtained by Jaya, MJaya, and PSO algorithms, taking a suitable
1.2 14 1.6 1.8 2 22 24

Fig. 8. Pareto fronts obtained for Jaya, MJaya, and PSO algorithms.

dominate the solutions in B (i.e., this is the best possible perfor-
mance of A). Cov(A, B) represents the percentage of solutions in set
B, which are either inferior or equal to the solutions in set A; Cov(B,
A) represents the percentage of solutions in set A, which are either
inferior or equal to the solutions in set B.

When applying the Coverage concept, the Pareto fronts obtained
by using Jaya, MJaya, and PSO algorithms are compared, and the
Coverage values are given in Table 10.

A high value of Cov shows that the algorithm performs better
than the other algorithms tested. The results indicated in Table 10
show that Jaya and M]Jaya algorithms solutions dominate 8 out of
11 PSO solutions. In the case of Jaya and M]Jaya algorithms, both
algorithms have shown equal coverage values indicating that the
Pareto fronts produced by these two algorithms are equally good.

Table 10
Comparison of Algorithms using the Coverage Concept.

reference point. The values are given below.

MJaya algorithm: hypervolume = 13.729.

Jaya algorithm: hypervolume = 13.727.

PSO algorithm: hypervolume = 13.717.

From the above relative values of hypervolume, it can be
observed that the hypervolume obtained by MJaya algorithm is
slightly higher than that of Jaya and PSO algorithms. The hyper-
volume obtained by the Jaya algorithm is also slightly higher than
that of the PSO algorithm. The difference between M]Jaya and Jaya
algorithms performance for the studied design optimization
problem of the UPCS is negligible. However, there is some
improvement of MJaya and Jaya operation compared to the PSO
algorithm.

5. Conclusions

This paper presents a multiobjective optimization of the UPCS.
The goal of the paper is to minimize the UPCS materials costs
(power cable costs and thermal backfill material costs) while

Algorithm comparison — Coverage values

Cov (Jaya, MJaya) = 7/11 = 0.6363
Cov (Jaya, PSO) = 8/11 = 0.7272
Cov (MJaya, PSO) = 8/11 = 0.7272

Cov (MJaya, Jaya) = 7/11 = 0.6363
Cov (PSO Jaya) = 1/11 = 0.0909
Cov (PSO,MJaya) = 1/11 = 0.0909

1
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maximizing the current flowing through the cable conductor. The
two-dimensional heat transfer model is applied to calculate a
temperature distribution in the UPCS. The modified Jaya algorithm
is proposed as the optimization algorithm, and the algorithm’s
results are compared with those of the classical Jaya algorithm and
PSO algorithm.

The proposed multiobjective optimization algorithm allows one
to design an UPCS depending on minimizing of material cots while
maximizing the current flow through the cable. Depending on the
weight selection either the cost minimization or electric current
flowing is prioritized. The Cable Cem backfill produced by Hei-
delbergCement Group seems to be a best solution for most of the
analyzed cases with respect to material cost minimization and
current flow maximization.

The significant difference between the modified Jaya and clas-
sical Jaya algorithm is the selection of best candidates that are used
to generate the next candidate generation. The classical Jaya algo-
rithm uses only one best solution during the iteration, while the
Modified Jaya algorithm uses randomly one of the three best so-
lutions to generate solution candidates in the following iteration.
The Coverage and Hypervolume metrics are used to compare the
results of the optimization obtained by Jaya, MJaya and PSO algo-
rithms. The Coverage analysis results show that Jaya and MJjaya
algorithms solutions dominate 8 out of 11 PSO solutions for the
considered case study. Moreover, the Hypervolume value shows
better results for Jaya and M]Jaya in relation to PSO. Thus, it may be
concluded that both the Jaya and MJaya algorithms performed
better compared to the PSO algorithm. The difference in the per-
formance of MJaya and Jaya for a studied multiobjective optimi-
zation problem of the UPCS design is slight and both of those
algorithms allowed to obtain similar solutions.
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