Automated Generation of Executable
RPA Scripts from User Interface Logs

Simone Agostinelli, Marco Lupia, Andrea Marrella, and Massimo Mecella

Sapienza Universitd di Roma, Rome, Italy
lupia.1694700@studenti.uniromal.it
{agostinelli,marrella,mecella}@diag.uniromal.it

Abstract. Robotic Process Automation (RPA) operates on the user
interface (UI) of software applications and automates - by means of a
software (SW) robot - mouse and keyboard interactions to remove in-
tensive routine tasks (or simply routines). With the recent advances in
Artificial Intelligence, the automation of routines is expected to undergo
a radical transformation. Nonetheless, to date, the RPA tools available
in the market are not able to automatically learn to automate such rou-
tines, thus requiring the support of skilled human experts that observe
and interpret how routines are executed on the Uls of the applications.
Being the current practice time-consuming and error-prone, in this pa-
per we present SmartRPA, a cross-platform tool that tackles such issues
by exploiting UI logs to automatically generate executable RPA scripts
that automate the routines enactment by SW robots.

Keywords: Robotic Process Automation (RPA) - Automated RPA script
generation - User Interface (UI) Logs - Process Mining

1 Introduction

Robotic Process Automation (RPA) is a fast-emerging automation technology in
the field of Business Process Management (BPM) that uses software (SW) robots
to mimic and replicate the execution of highly repetitive routine tasks (we refer to
them as routines) performed by human users in their applications’ user interfaces
(UIs). The RPA technology is still in its infancy [I], even if similar solutions have
been around for a long time. For instance, closely related to SW robots, chatbots
have been using for years to accept voice-based or keyboard inputs and guide
customers to find relevant information in web-based applications [14]. Differently
from chatbots, RPA can be seen as an evolution of screen scraping solutions [9],
which sought to visualize screen display data from legacy applications (having
no means for automated interfacing) to display such data using modern Uls. The
strength of RPA is that it does not replace existing applications or manipulate
their code, but rather works with them in a way similar to a human user.

In recent years there was an increased interest around RPA, resulting in many
industry-specific deployments for financial and business services [T9I5/T2]. In this
direction, according to [6], the market of RPA solutions has developed rapidly

2 S. Agostinelli et al.

and today includes more than 50 vendors developing tools that provide SW
robots with advanced functionalities for automating office tasks in operations like
accounting, billing and customer service. Nonetheless, when considering state-of-
the-art RPA technology, it becomes apparent that the current generation of RPA
tools is driven by predefined rules and manual configurations made by expert
users rather than automated techniques [3]. To be more specific, the traditional
workflow to conduct a RPA project can be summarized as follows [I§]:

1. Determine which routines are good candidates to be automated.

2. Record the mouse/key events that happen on the UT of the SW applications
involved in a routine execution, i.e., the UI logs.

3. Model the selected routines in the form of flowchart diagrams, which in-
volve the specification of the actions, routing constructs (e.g., parallel and
alternative branches), data flow, etc. that define the behavior of a SW robot.

4. Develop each modeled routine by generating the SW code required to con-
cretely enact the associated SW robot on a target computer system.

5. Deploy the SW robots in their environment to perform their actions.

Monitor the performance of SW robots to detect bottlenecks and exceptions.

7. Maintain the routines, which takes into account the SW robots performance
and error cases to eventually enhance their behaviour.

&

The majority of the previous steps, particularly the ones involved in the early
stages of the RPA life-cycle (i.e., steps 1 and 3), require the support of skilled
human experts, which need to: (i) understand the anatomy of the candidate
routines to automate by means of interviews, walk-troughs, and detailed ob-
servation of workers conducting their daily work; and (i) define manually the
flowchart diagrams representing the structure of such routines, which will drive
the development of the SW code, often in form of executable scripts (also called
RPA scripts), allowing the concrete enactment of SW robots at run-time (cf.
step 4). While this approach is effective to execute simple rules-based logic in
situations where there is no room for interpretation, it becomes time-consuming
and error-prone in presence of routines that are less predictable or require some
level of human judgment [25/4]. Indeed, the designer should have a global vision
of all possible variants of the routines to define the appropriate behaviours of the
SW robot, which becomes complicated when the number of variants increases.
The issue is that in case where the flowchart diagram does not contain a suit-
able response for a specific situation, e.g., because of a shallow modeling activity,
then the associated RPA scripts would not properly reflect the behaviour of the
potential routine variant, forcing SW robots to escalate to a human supervisor
at run-time, in contrast with the RPA philosophy.

To tackle and mitigate this issue, in this paper we develop a cross-platform soft-
ware tool, called SmartRPA, to automatically generate executable RPA scripts
directly from the Ul logs that record the user interactions with the SW applica-
tions involved in a routine execution (cf. step 2), thus skipping completely the
(manual) modeling activity of the flowchart diagrams (cf. step 3). SmartRPA
involves five consecutive stages that enable to: (i) record the UI logs that keep

Automated Generation of Executable RPA Scripts from UT Logs 3

travel authorizationxisx ~ L B s o X S AP I ENZA

File Home Inseris Layou Formu Dati Revisic Visual Guida & O3 3 A
y WS UNIVERSITA DI ROMA
H37 - S v
A B < Travel Authorization Request Procedure
1 |Fullname Leonardo De Luca
2 |Position Professor
3 | Email ds_mail @uniromal.it Full name
4 Taxcode LNGVCN19C15A370K
. Department of Computer, Control
In service at . .
5 and Management Engineering
6 Starting date 01/02/2020 Position
7 Starting time 17:00
8 |Ending date 01/08/2020
9 |Ending time 23:59
10 Destination New York (USA)
11 |Means of transportation taxi+public transport+car Email
12 | Purpose Study period
Anticipation of expenses already N

13 |incurred (75%)
14 Amount of expenses 1000 EUR
1c -

Travel Authorization ® 1 v Tax code
pronto H m - 1 + 100% Vour answe

(a) Excel spreadsheet (b) Google form

Fig. 1: Uls involved in the running example

track of the different routine executions on the Uls of the involved SW applica-
tions; (i) processing such UI logs in form of a single event log with additional
execution properties; (4ii) filtering out those events not relevant for the routine
of interest and grouping together similar events; (iv) detecting the most frequent
routine variant from the log, leveraging process discovery and abstraction tech-
niques; and (v) generating the executable RPA scripts necessary to enact the
SW robot that implements the selected routine variant. SmartRPA is available
for download at https://github.com/bpm-diag/smartRPA /.

The rest of the paper is organized as follows. Section [2| presents a motivating
running example. In Section [3] we analyze the architecture and the technical
aspects of SmartRPA, together with the approach underlying the working of the
tool. Section [examines the instantiation of SmartRPA on the running example.
Finally, in Section [f| we present the related works, while Section [§] concludes the
paper by discussing the weaknesses of the tool and the potential future works.

2 Running Example

Below, we describe an RPA use case inspired by a real-life scenario at Depart-
ment of Computer, Control and Management Engineering (DIAG) of Sapienza
Universitd di Roma. The scenario concerns the filling of the travel authorization
request form made by professors, researchers and PhD students of DIAG for
travel requiring prior approval.

The request applicant must fill a well-structured Excel spreadsheet (cf. Figure
[fa)) providing some personal information, such as her/his bio-data and the

https://github.com/bpm-diag/smartRPA/

4 S. Agostinelli et al.

email address, together with further information related to the travel, includ-
ing the destination, the starting/ending date/time, the means of transport to
be used, the travel purpose, and the envisioned amount of travel expenses, as-
sociated with the possibility to request an anticipation of the expenses already
incurred (e.g., to request in advance a visa). When ready, the spreadsheet is sent
via email to an employee of the Administration Office of DIAG, which is in charge
of approving it and (only in this case) elaborating the request. Concretely, for
each row in the spreadsheet, the employee manually copies every cell in that row
and pastes that into the corresponding text field in a dedicated Google form (cf.
Figure b))7 accessible just by the Administration staff. Once the data transfer
for a given travel request has been completed, the employee presses the “Submit”
button to submit the data into an internal database. Once the form is submitted,
a confirmation email is sent automatically to the applicant.

The above routine procedure is usually performed manually, it is tedious (as it
must be repeated for any new travel request) and prone to errors. We will use
it to show how the proposed SmartRPA tool is able to automatically develop
the executable RPA scripts for automating the data transfer task of the routine,
requiring in input just the UI logs that record the previous executions of such
routine performed by several human users during dedicated training sessions.

3 SmartRPA Approach and Architecture

The architecture of SmartRPA integrates five main SW components developed
in Python that enable to automatically generate executable RPA scripts that
will drive the working of SW robots in emulating the users’ observed behavior
(previously recorded in dedicated UT logs) during the enactment of a routine of
interest. An overview of the SmartRPA architecture is shown in Figure [2|

The first SW component of the architecture is an Action Logger that can be
used to record a wide range of Ul actions from multiple SW applications during
the enactment of a routine. This means that SmartRPA belongs to the category
of those RPA tools that learn to automate routines “by examples” (see also our
discussion in Section . To be more specific, a training session in which several
users perform the routine to be automated is required to record the UI actions
involved in its execution. To this aim, the Action Logger provides a Graphical
User Interface (GUI) that allows a user to select which SW applications s/he
wants to record Ul actions on. All the applications that are not available in the
host operating system of the user’s PC/MAC are disabled by default. Then, the
user can start the training session by clicking on the “Start logger” button (see
Figure [3)). The Action Logger provides three categories of logging modules:

— System Logger: It detects those Ul actions not related to specific SW appli-
cations, i.e.: copy and paste of files/folders; creation, renaming, movement
and deletion of files/folders; usage of double-click and hotkeys; opening and
closing of applications; printing activities; insertion/remotion of USB drives.

— Office Logger: It detects the Ul actions performed within Microsoft Office
applications, i.e.: Excel, Word and PowerPoint.

Automated Generation of Executable RPA Scripts from UT Logs 5

U

Users
|

Training

- (P
I =N
S g M Itipl Dataframe : g
| o 1. erge multiple ataframe ExportinXes | LE
\ a ! I CSVeventlogs withntraces P S : % :
e e 2 | N .
___ =
e L
[N} 1 .
it Y L@ .
! c .
- — IR
\om g || Filterirrelevant Group similar Descriptive ! 9 I}
1 i «Q
LS evems e s 1 8%
h e | s 2
T poes
(.1 g :: :4 _____ N
188 1! Most frequent boeees
[N ost frequen) i :
= .
! as routine Diagrams | ~'»
S ' 2%
——————— F R | =q
5 H L ¢ 38
] .- | .
| 1 1 '
: é :: y= E— 1M :<
| ' Check Generate !
H o and edit RPA script '

Fig.2: SmartRPA architecture

— Browser Logger: It detects the Ul actions performed on web browsers, i.e.:
Google Chrome, Mozilla Firefox, Microsoft Edge and Opera.

Of course, multiple users can run the Action Logger on their PC/MAC many
times performing the same routine in different training sessions. When a training
session is completed, i.e., when the routine of interest has been executed from
the start to the end, the user can push the “Stop logger” button to stop the
recording of Ul actions. The logging modules interact with a Logging Server
implemented with the Flask frameworkﬂ which is in charge to store the Ul
actions captured by the logging modules and organize them as events into several
CSV event logs. Each CSV event log contains exactly one (long) trace of UI
actions performed in a single training session by a single user. From a technical
point of view, (i) system events are recorded using different Python modules,
including PythonCOM (to access the Windows APIs and COM objects like
the Microsoft Office suite), and MacFSEvents for MacOS; (i) events generated
by Microsoft Office applications are recorded using the Office JavaScript APIs;
and (44) browser events are recorded using dedicated JavaScript web extensions
developed for each supported web browser.

The second SW component of the architecture is a Log Processing tool that
comes into play when any training session is considered as completed. Specifi-
cally, after n training sessions, the Logging Server will deliver the n created CSV

! https://palletsprojects.com /p/flask

https://palletsprojects.com/p/flask

6 S. Agostinelli et al.

ComputerLogger - X [] ComputerLogger
File Hel,
P Select modules to activate Disable all
Select modules to activate Enable all
System logger Office logger
System logger Office logger Excel
O [Excel Files/Folders
Files/Folders
L Word Programs
[Programs [PowerPoint
. Browser logger
' Browser logger szl
[clipboard
[Google Chrome Google Chrome
[Hotkeys Morilla Firefox Mozilla Firefox
[7 UsB Drives [Microsoft Edge
Opera
Start logger Start logger
Ready to log, press start button... Ready to log, press Start button...
[GUI] Process discovery enabled [GUI] Process discovery enabled
(a) Windows (b) MacOS

Fig. 3: GUI of SmartRPA both on Windows and MacOS

event logs to the Log Processing tool, which uses Algorithm [1| to import them
into a single Pandas dataframeﬂ A dataframe is a two-dimensional size-mutable
and heterogeneous tabular data structure with labeled axes (rows and columns),
which is used as the main artifact to represent event logs in SmartRPA. Of
course, SmartRPA also produces an XESﬂ (eXtensible Event Stream) version of
the datastream, which will contain exactly n traces, one for each recorded CSV

Algorithm 1 Processing event logs

procedure HANDLELOG(file_list)
create_directories() > where files will be saved
for any CSV log in file_list do
df < import a CSV log into Pandas dataframe
df < rename columns to match XES standard
df < sort rows by timestamp
df < create case:concept:name column based on the first timestamp
df < generate a dataframe including the Ul actions of the CSV log

end for
combined_df < combine all dataframes into a single dataframe
export(combined_df) > exported as XES file

end procedure

2 https:/ /pandas.pydata.org/
3 XES is the standard for the storage, interchange, and analysis of event logs [I5]

https://pandas.pydata.org/

Automated Generation of Executable RPA Scripts from UT Logs 7

case:concept:name time:timestamp org:resource category application concept:name

429102859961 2020-04-29T'10:29:33.887 marco Office Excel editCell
429102859961 2020-04-29T10:29:34.583 marco Browser Chrome mouseClick
429102859961 2020-04-29T10:29:35.401 marco Browser Chrome changeField
429102859961 2020-04-29T10:29:36.119 marco Clipboard Chrome paste

Table 1: A partial view of a dataframe

event log, and can be inspected using the most popular process mining tools,
such as ProMEI DiscoEI or Apromoreﬂ

The dataframe created by Algorithm [I] consists of low-level events with fine
granularity associated one-by-one to a recorded UT action (e.g., mouse clicks, file
selections, etc.). Each row of the dataframe includes 45 columns with relevant
data about the recorded event, such as: the timestamp, the application that
generated the event, the resources involved, etc. A partial view of a dataframe,
describing only the first 6 columns recorded for each event, is shown in Table [T}
At this point, an Event Abstraction component is used to convert the low-
level dataframe recording the event log (that will be used later for generating the
excutable RPA scripts) into a high-level one to be exploited for diagnostic and
analysis purposes by expert RPA analysts. In particular, the high-level event log
can be used to derive the flowchart representing the abstract workflow underlying
the routine execution. Specifically, the Event Abstraction component performs
the following steps to produce a high-level event log:

1. Filtering irrelevant events. The Action Logger records many low-level events
in the dataframe-based event log, such as the interaction with the browser
windows (e.g., Ul actions “resize”, “open”, “close”), tabs (e.g., Ul actions
“move”, “open”, “close”) and content (page zoom, installing extensions).
From a workflow perspective, these events are not relevant for any RPA
analyst that aims to understand the general behaviour of the routine. For this
reason, they are filtered out by the high-level event log under construction.

2. Grouping similar events. Within a dataframe-based event log, different low-
level events can refer to the same high-level concept. For example, in a
web page, the Action Logger can capture 7 different types of clicks, based
on the element that’s being clicked (“clickButton”, “clickTextField”, “dou-
bleClick”, “clickTextField”, “mouseClick”, “clickCheckboxButton”, “click-
RadioButton”). All these events just indicate that the user, during the train-
ing session, has clicked on an interactive element on the UI, thus the high-
level workflow of the routine may just show the action “Click on button”,
because from the RPA analyst perspective it is not relevant what kind of
click was performed.

4 |http: / /www.promtools.org/
® lhttps://Auxicon.com/disco/
S https://apromore.org/

http://www.promtools.org/
https://fluxicon.com/disco/
https://apromore.org/

8 S. Agostinelli et al.

3. Creating descriptive labels. Any recorded event provides a low-level descrip-
tion of the nature of the Ul action performed. For example, if the user edits
a cell in Excel, the Action Logger records one of these events: “editCell-
Sheet”, “editCell”, or “editRange”. From the RPA analyst perspective, all
such events refer to the same concept of “Editing a cell”. To this aim, to
make the Ul action underlying an event more descriptive for the RPA ana-
lyst, further information (stored in the low-level dataframe-based event log)
can be added to its label, such as the cell and the sheet edited, the value
inserted, etc. This allows us to create a (more) descriptive label for any event
in the high-level event log, e.g., “Edit cell B12 on Sheet 2 with value ’test’ .

Concretely, the Event Abstraction component is realized enacting the above
steps through Algorithm [2| and the outcome will be an high-level event log to
be used by the next component of the architecture.

Algorithm 2 Event Abstraction

procedure GETHIGHLEVELEVENTS(dataframe)
df < filter irrelevant rows from the dataframe
df < group similar events in the the dataframe
for row in df do
descriptive_row <— create descriptive string for each event
end for
return a high-level dataframe-based event log
end procedure

At this point, the Process Discovery component of the architecture has a
twofold objective:

— It takes in input the high-level event log generated by the Event Abstrac-
tion component and applies the heuristic miner algorithm implemented in
PM4PY [§] to derive the high-level workflow describing the overall users’
observed behavior as a Directly-Follows Graph (DFG). This flowchart can
be analyzed by an RPA analyst to investigate the high-level structure of
the routine under analysis. The decision to employ the heuristic miner has
been driven by its ability to discover highly understandable flowcharts from
a BPM analyst perspective [2].

— It selects the most frequent routine variant among all the different execu-
tion traces stored in the low-level dataframe-based event log, as shown in
Algorithm [3] On the one hand, if only traces having exactly the same flow
are recorded, the one with the shortest duration is selected. If, on the other
hand, every recorded trace is different by the others, they are compared us-
ing the Levenshtein distance algorithm [23], which defines the distance of the
textual version of two traces (built by concatenating the actions’ name asso-
ciated to the events in the trace) as the minimal number of edit operations
necessary to transform a (textual) trace into the other. The most similar

Automated Generation of Executable RPA Scripts from UT Logs 9

traces (a threshold percentage of similarity can be customized depending on
the routine’s context) are grouped into a single set, and the shortest trace
(from the duration perspective) in that set is selected as the representative
routine variant to be later enacted by a SW robot. If there are not similar
traces in the log, the one with the shortest duration is selected among all
the available ones.

The working of the Process Discovery component is shown in Algorithm

Algorithm 3 Finding the most frequent routine variant

procedure SELECTMOSTFREQUENTVARIANT(dataframe, threshold)
df + flatten dataframe
df1 < group rows with same caselD into single row
df1 < calculate duration for each trace
df2 < compute variants
if 3 predominant variant with equal traces then
min_duration_trace < select trace in that variant with shortest duration
else if 3 similar traces (by a certain threshold) then
df8 < group similar traces into a single variant
min_duration_trace < select trace in that variant with shortest duration

else > All traces are different
min_duration_trace < select trace with shortest duration among all variants
end if

return min_duration_trace
end procedure

Once the routine to automatize is selected, before its enactment with a SW
robot, it is possible for a RPA analyst to personalize the values stored in its
events through a custom dialog window (cf. Figure [4). The tool automatically
detects the events that can be edited, such as typing something in a web page,
renaming a file, pasting a text or editing an Excel cell, and dynamically builds
the GUI to let the RPA analyst editing them. After confirmation, the dataframe-
based event log is updated.

Finally, the Python executable scripts based on the most frequent RPA routine
(updated with the RPA analyst’s edits) is generated by scanning the recorded
low-level events in the dataframe-based log and converting them into executable
pieces of SW code in Python. To properly work, the script generation algorithm
(here omitted for the sake of space) relies on AutOmagicam an Open Source
framework for process automation, and Seleniumﬂ a popular suite of tools for
automating web browsers. Note also that the script generation algorithm takes
into account only the platform where the SW robot is going to be run, regardless
of the operating system used to capture the log. For example, if the (selected)

" https://github.com/automagica/automagica
8 https://www.selenium.dev/

https://github.com/automagica/automagica
https://www.selenium.dev/

10

S. Agostinelli et al.

Choices

Change input variables before generating RPA script

[Chrome] Write in input text entry.1150736360 on docs.google.com:
[Chrome] Write in input entry.13568543 text on docs.google.com:
[Chrome] Write in email input entry.818092111 on docs.google.com:
[Chrome] Write in input text entry.91624208 on docs.google.com:
[Chrome] Write in input entry.1073080825 text on docs.google.com:
[Chrome] Write in input text entry.1475164950 on docs.google.com:
[Chrome] Write in input text entry.427063751 on docs.google.com:
[Chrome] Write in input text entry.1141966877 on docs.google.com:
[Chrome] Write in entry.61988104 input text on docs.google.com:
[Chrome] Write in input entry.2124575598 text on docs.google.com:
[Chrome] Write in input entry. 1839549476 text on docs.google.com:

[Chrome] Write in input entry.150064910 text on docs.google.com:

Alessandro Coppola
Professore ordinario
ds_mail@uniroma.it
LMBDNL19S14A129A
egneria Informatica Automatica e Gestional¢
22/01/2020

11:00

01/06/2020

23:59

Houston (USA)
aereo+bus+taxi

Studio di ricerca

Fig. 4: Custom dialog window to personalize editable fields of a routine variant

most frequent routine variant was recorded on a Windows operating system, but
the tool is being executed on macOS, the RPA scripts will be generated taking
into account this aspect, e.g., by converting the information about the system
paths. This guarantees cross-platform compatibility across event logs recorded
on different platforms.

4 SmartRPA in action

SmartRPA was tested with the running example presented in Section 2] We
provided the tool to 25 different end users that were instructed to fill the Google
Form using the data from the Excel spreadsheet containing the information to
apply for a travel request. We selected this routine because, for recording the
UT actions to emulate, it is required to exploit all the logging modules provided
by the Action Logger. Specifically, (i) actions to copy and paste data from the
spreadsheet to the web form (System Logger), (it) web navigation actions to
access to Google Form (Browser Logger), and (i) actions for moving between
the cells of the spreadsheet to access the single values of the travel request
(Office Logger). The exact steps to correctly perform the routine and record the
UI actions involved are the following ones:

1. Open the Action Logger, tick the checkboxes related to Clipboard, Excel and
the browser installed on the applicant’s PC/MAC, and click “Start logger”.

2. Open the Excel spreadsheet that contains the data of a travel request.

3. Open Google Form.

Automated Generation of Executable RPA Scripts from UI Logs 11

W & oo S | o O o o™ Disco

Q
L) — e o[y 429102859961000
Complete log Case wih 51 events
Al) i 20004101310520
Iy Yeriant t > Events 51
caso (4%) Ji 2020041013824727
By Verent2 R Toven Start 29.04.2020 12:28:59
W caso e |l 202004101409565° o
P Variants 94 events. Duration 36 secs, 158 millis
W oo) > |l 202004101412335 1
Bs Variant 4 .
I
W e) > |l 202004101414386 (Corpn TR
89 ovents
R Variant 5 > Activity Resource Date | Time. (case) creator application | browser_url
1 case (4%) |l 202004101416349 o | 1 clickTextField marco 29042020 122859 SmarRPAbymarco2012 Chrome htipszidocs google comform &
. 93 ovents 2 paste marco 29042020 122900 SmarRPAbymarco2012 Chrome hiipsidocs google.comform
I'Iiill Va"f”if > 3 | changeField marco 29042020 12:2000 SmartRPAby marco2012 Chrome htipszidocs.google.comform|
1 case (4% |l 429100933450000 4 | clickTextField marco 29042020 12:2002 SmartRPAby marco2012 Chrome htipsidocs.google.comfform|
B Variant 7 4 events 5 paste marco 29042020 122902 SmartRPAbymarco2012 Chrome htipsy/docs.google.com/form
I 1 came (4%) > 4291012864200 6 | changeField marco 29042020 122908 SmarRPAbymarco2012 Chrome hiipsidocs google.comform
1 67 ovents > 7 mouseClick marco 29.042020 122905 SmartRPA by marco2012 Chrome https:/idocs.google.com/form
By Verents N 8 | mouseClick marco 20042020 122905 SmariRPAbymarco2012 Chrome hipsiidocs google.comform
L Rpeen) 429101323495000 s paste marco 20042020 122905 SmarRPAbymarco2012 Chrome htipsi/docs google. comfiorm
[T > [10 changeField marco 29042020 122906 SmarlRPA by marco2012 Chrome hitpssidocs.google.com/iorm
g, Variant © > 11 clickTextField marco 29042020 122907 SmarRPAbymarco2012 Chrome hiipssidocs google.comform
1 case (4%) iy “2or0r4a7ioso00 o M 42 paste marco 20042020 122907 SmariRPAbymarco2012 Chrome hipsi/docs gaogle.comform
§ 49 ovonts 13 changeField marco 29042020 122908 SmarRPAbymarco2012 Chrome htipsudocs google comform
B Variant 10 > 14| clickTextField marco 29042020 122909 SmarlRPA by marco2012 Chrome hitpssidocs.google.com/iorm
1 ease (4% 1) 429‘925‘7355000 > 15 | paste marco 29.042020 12:29:09 SmartRPAbymarco2012 Chrome https:idocs.google.comform
|Ba Variant 11 ot 16 | changeField marco 20042020 1229:10 SmariRPAbymarco2012 Chrome hpsi/docs gaogle.comform
W > 4291027549100 17 | clickTextField marco 29042020 122912 SmarRPAbymarco2012 Chrome htipsudocs google comform
46 ovents > 18 paste marco 29.042020 1229112 SmartRPA by marco2012 Chrome https:/idocs.google.comorm:
g, Varint 12 N 19 changeField marco 20042020 1229:12 SmarRPAbymarco2012 Chrome hiipssidocs google.comform
L RSy 429102859961000 20 | clickTextField marco 20042020 1229:13 SmariRPAbymarco2012 Chrome hiipsi/docs gaogle.comform
5 >t naie maren 20042020 122014 SmarRPA hymaren2012._Chinme v
<

Fiter TimeWarp

Version 2.5

Fig.5: An overview of the low-level event log opened in Fluxicon Disco

4. Copy and paste each value from the Excel spreadsheet to its respective field
on the web form.
5. Submit the form. Once done, a confirmation email is sent to the applicant.

All the UI actions were recorded on 25 different computer systems having differ-
ent features and operating systems, and stored in 25 event logs in CSV format.
Then, we merged the CSV event logs into a single dataframe-based event log
(and a corresponding XES file) using the Log Processing tool. An overview of
the final event log has been analyzed through Disco, as shown in Figure [5| In
our test, we found 25 slightly different execution traces, resulting in 25 potential
variants to properly complete the routine.

At this point, according to the working of SmartRPA, the Process Discovery
component executed Algorithm 3] grouping together 7 traces out of the 25 avail-
able because they were similar by at least 90%. It is worth to notice that this
particular threshold was set by us a-priori, and it is customizable depending on
the specific routine’s application context. Finally, among the 7 variants selected,
the one having the shortest duration was chosen by the tool (specifically, the one
with case ID 429102859961000 in Figure [5)). Figure @ shows the custom dialog
window to personalize the editable values of the most frequent routine variant of
the running example. Taking into account the last edits made, SmartRPA can fi-
nally generate the required executable scripts to run the SW robot that emulates
the routine execution on the Ul. A screencast with installation instructions and
showing the working of SmartRPA against the running example is available in
the github repository of the tool at: https://github.com/bpm-diag/smartRPA /.

https://github.com/bpm-diag/smartRPA/

12 S. Agostinelli et al.

5 Related work

The state-of-the-art in RPA is plenty of recent works that are focused on op-
timizing specific BPM aspects of a RPA project. In the literature, there exist
three main groups of approaches that are targeted to automatically derive the
behaviour of SW robots.

The first group of approaches aims at learning how to automate routines by
observing human users that perform routine tasks in their computer systems.
SmartRPA falls in this category. Specifically:

— The works [2IJ10] present a method to record UT actions performed within
Excel and Google Chrome into an event log, and enable the use of process
mining techniques to detect which fragments of a routine can be automated.
Conversely, SmartRPA records only those Ul actions that is known at the
outset that can be automated, and consequently the associated routines. In
addition, SmartRPA enables to record a much larger spectrum of Ul actions,
not just limited to Excel and Google Chrome (cf. Section .

— The work [I8] proposes a method to improve the early stages of the RPA life-
cycle by reducing the effort to analyze the actual system using process mining
techniques based on a-priori models. SmartRPA focuses on automating the
best (in terms of frequency and time duration) recorded routine variant
without requiring any a-priori model.

— In [24], the authors present the Desktop Activity Mining tool, which records
the desktop-based Ul actions of users performing an office-based routine
task, and employs process mining techniques to discover an integrated pro-
cess model describing the behaviour of such routine. However, Desktop Ac-
tivity Mining does not use events to keep track of Ul actions, but it is
based on recording the mouse click coordinates on the screen, and thus it
can not replicate the same user’s observed behavior performed in different
computer systems. On the contrary, SmartRPA records the events happened
during a U interaction, so it can work across different computer systems.
In addition, the identification of similar routine variants is not done using
the screenshots of the user’s desktop (like happens in [24]) that may dif-
fer between different computer systems, but it is performed in a way that
guarantees cross-platform compatibility of the recorded event logs.

— In [II], the authors propose a self-learning approach to automatically de-
tect high-level RPA-rules from captured historical low-level behaviour logs.
An if-then-else deduction logic is used to infer rules from behaviour logs
by learning relations between the different routines performed in the past.
Then, such rules are employed to facilitate the SW robots instantiation.
A similar approach is adopted in [20], where the FlashEztract framework is
presented. FlashExtract allows to extract relevant data from semi-structured
documents using input-output examples, from which one can derive the re-
lations underlying the working of a routine. SmartRPA adopts a different
approach: multiple variants of a routine execution are considered and the
most frequent one is chosen for being executed by a SW robot, with the
possibility of customizing some of its input values.

Automated Generation of Executable RPA Scripts from UI Logs 13

— The work [26] identifies repetitive edits to text documents by keeping track
of a graph of edits and suggests automation rules for SW robots. While this
work focuses on supporting expert users in the manual development of SW
code, SmartRPA is targeted to automatically generate executable scripts for
SW robots.

It is worth to quickly discuss the other two groups of approaches towards SW
robots automation, even if they focus on different challenges than SmartRPA.
The second group of approaches focus on learning the anatomy of routine tasks
from natural language descriptions of the procedures underlying such routines.
In this direction, the work [16] defines a new grammar for complex workflows
with chaining machine-executable meaning representations for semantic parsing.
In [22], the authors provide an approach to learn activities from text documents
employing supervised machine learning techniques such as feature extraction
and support vector machine training. Similarly, in [I3] the authors adopt a deep
learning approach based on Long Short-Term Memory (LSTM) recurrent neural
networks to learn the relationship between activities of a routine task.

Finally, a third group of approaches exist that aim to eliminate human-dependent
training [7I17]. They rely on probabilistic and machine learning algorithms to
automatically train SW robots, so that any manual effort is avoided. These ap-
proaches are currently the least mature if compared with the others discussed
above, but potentially with the best promises for realizing fully automated in-
telligent RPA approaches.

6 Discussion and Concluding Remarks

While RPA is currently used for automating routines and high-volume tasks
requiring a manual intervention of expert users, the aim of SmartRPA is to
automatically develop SW robots directly from the user’s observed behavior.
SmartRPA offers an innovative contribution to RPA technology with the goal
of mitigating some of its core downsides. Notably, using SmartRPA, all the rou-
tine executions recorded by the tool can be automated, an high-level flowchart
diagram is presented to expert users for potential diagnosis operations, and the
executable RPA scripts to drive the working of a SW robot are generated based
on the most frequent routine variant. In addition, the tool is cross-platform and
allows to personalize some input fields of the selected routine variant before exe-
cuting the related RPA scripts, thus supporting those steps that require manual
user inputs. As a consequence, this makes the working of SW robots more flexible
and adaptable to several real-world situations.

Thanks to its Action Logger, SmartRPA aims also at improving the auditability
of RPA tools, since all routine tasks executed by human users on a Ul are previ-
ously recorded in dedicated event logs, making them auditable to external users.
It is worth to notice that the logs produced by the state-of-the-art RPA tools
have usually a poor quality (actions may be missing or not recorded properly),
since they are mainly used for debugging purposes [4]. Conversely, SmartRPA

14 S. Agostinelli et al.

aims at logs at the highest possible quality level thanks to its detailed recording
phase performed during the training sessions.

Of course, the tool presents some weaknesses that we are tackling as future
works. First of all, the executable RPA scripts for implementing SW robots are
developed based on the most frequent routine variant recorded in a dataframe-
based event log. However, a more accurate approach to derive the SW robot’s
behaviour would consist of interpreting at run-time the flowchart discovered from
many routine executions stored in the event log, and selecting step-by-step the
most suitable flowchart fragment (i.e., the sub-routine) to be executed by the SW
robots. A second weakness, which strongly depends by the first one, relies on the
fact that SmartRPA is currently able to emulate routines where the procedure
to be automated is the same for all applicants, i.e., the only difference is in the
values entered by the users performing the training session into fixed pre-defined
fields. This limitation can be observed also in the running example, where the
fields to be filled in the Excel sheet are static (they are always the same ones),
and only their content can vary from applicant to applicant.

Despite the weaknesses, we consider this work as an important first step towards
a more complete approach and tool towards the fully automated generation of
executable RPA scripts.

Acknowledgments. This work has been supported by the “Dipartimento di
Eccellenza” grant, the H2020 projects DESTINI and FIRST, the Italian project
RoMA - Resilience of Metropolitan Areas, and the Sapienza grant BPbots.

References

1. van der Aalst, W.M.P., Bichler, M., Heinzl, A.: Robotic Process Automation. Bus.
Inf. Syst. Eng. 60(4), 269-272 (2018)

2. Agostinelli, S., Maggi, F.M., Marrella, A., Milani, F.: A User Evaluation of Process
Discovery Algorithms in a Software Engineering Company. In: 2019 IEEE 23rd
International Enterprise Distributed Object Computing Conference (EDOC). pp.
142-150 (2019). https://doi.org/10.1109/EDOC.2019.00026

3. Agostinelli, S., Marrella, A., Mecella, M.: Research Challenges for Intelligent
Robotic Process Automation. In: Business Process Management (BPM 2019) Int.
Workshops. pp. 12-18 (2019). https://doi.org/10.1007/978-3-030-37453-2_2

4. Agostinelli, S., Marrella, A., Mecella, M.: Towards Intelligent Robotic Process Au-
tomation for BPMers (2020), http://arxiv.org/abs/2001.00804

5. Aguirre, S., Rodriguez, A.: Automation of a Business Process Using Robotic Pro-
cess Automation (RPA): A Case Study. In: Applied Computer Sciences in Engi-
neering. pp. 65-71. Springer (2017)

6. AI-Multiple: All 52 RPA Software Tools & Vendors of 2020: Sortable List (2019),
https://blog.aimultiple.com /rpa-tools/

7. Ayub, A., Wagner, A.R.: Teach Me What You Want to Play: Learning Variants
of Connect Four through Human-Robot Interaction (2020), https://arxiv.org/abs/
2001.01004

8. Berti, A., van Zelst, S.J., van der Aalst, W.: Process Mining for Python (PM4Py):
Bridging the Gap Between Process- and Data Science (2019), http://arxiv.org/
abs/1905.06169

https://doi.org/10.1109/EDOC.2019.00026
https://doi.org/10.1007/978-3-030-37453-2_2
http://arxiv.org/abs/2001.00804
https://blog.aimultiple.com/rpa-tools/
https://arxiv.org/abs/2001.01004
https://arxiv.org/abs/2001.01004
http://arxiv.org/abs/1905.06169
http://arxiv.org/abs/1905.06169

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Automated Generation of Executable RPA Scripts from UI Logs 15

Bisbal, J., Lawless, D., Wu, B., Grimson, J.: Legacy Information Systems: Issues
and Directions. IEEE Software 16(5), 103-111 (1999)

Bosco, A., Augusto, A., Dumas, M., Rosa, M.L., Fortino, G.: Discovering Au-
tomatable Routines from User Interaction Logs. In: Business Process Management
Forum - BPM Forum 2019. pp. 144-162 (2019)

Gao, J., van Zelst, S.J., Lu, X., van der Aalst, W.M.P.: Automated Robotic Process
Automation: A Self-Learning Approach. In: On the Move to Meaningful Internet
Systems: OTM 2019 Conferences. pp. 95-112. Springer (2019)

Geyer-Klingeberg, J., Nakladal, J., Baldauf, F., Veit, F.: Process Mining and
Robotic Process Automation: A Perfect Match. In: 16th Int. Conf. on Business
Process Management (BPM’18), Dissertation/Demos/Industry track (2018)

Han, X., Hu, L., Dang, Y., Agarwal, S., Mei, L., Li, S., Zhou, X.: Automatic Busi-
ness Process Structure Discovery using Ordered Neurons LSTM: A Preliminary
Study (2020), https://arxiv.org/abs/2001.01243

Hill, J., Ford, W.R., Farreras, I.G.: Real conversations with artificial intelligence: A
comparison between human-human online conversations and human-chatbot con-
versations. Comput. Hum. Behav. 49, 245-250 (2015)

IEEE Digital Library: Standard for eXtensible Event Stream (XES) for Achieving
Interoperability in Event Logs and Event Streams. IEEE Std 1849-2016 (2016).
https://doi.org/10.1109/TEEESTD.2016.7740858

Ito, N., Suzuki, Y., Aizawa, A.: From natural language instructions to complex
processes: Issues in chaining trigger action rules (2020), https://arxiv.org/abs/
2001.02462

Jenkins, P., Wei, H., Jenkins, J.S., Li, Z.: A Probabilistic Simulator of Spatial
Demand for Product Allocation (2020), https://arxiv.org/abs/2001.03210
Jimenez-Ramirez, A., Reijers, H.A., Barba, 1., Del Valle, C.: A Method to Improve
the Early Stages of the Robotic Process Automation Lifecycle. In: 31st Int. Conf.
on Advanced Information Systems Engineering (CAiSE’19). pp. 446-461 (2019)
Kirchmer, M.: Robotic Process Automation-Pragmatic Solution or Dangerous Il-
lusion. BTOES Insights, June’17 (2017)

Le, V., Gulwani, S.: FlashExtract: a framework for data extraction by examples.
In: ACM SIGPLAN PLDI '14. pp. 542-553 (2014)

Leno, V., Polyvyanyy, A., Rosa, M.L., Dumas, M., Maggi, F.M.: Action logger:
Enabling process mining for robotic process automation. In: Proceedings of the
Dissertation Award, Doctoral Consortium, and Demonstration Track at 17th Int.
Conf. on Business Process Management, (BPM’19). pp. 124-128 (2019)

Leopold, H., van der Aa, H., Reijers, H.A.: Identifying Candidate Tasks for Robotic
Process Automation in Textual Process Descriptions. In: Enterprise, business-
process and information systems modeling, pp. 67-81. Springer (2018)
Levenshtein, V.: Efficient implementation of the levenshtein-algorithm, fault-
tolerant search technology, error-tolerant search technologies (2007), http://www.
levenshtein.net/

Linn, C., Zimmermann, P., Werth, D.: Desktop activity mining - A new level
of detail in mining business processes. In: Workshops der INFORMATIK 2018 -
Architekturen, Prozesse, Sicherheit und Nachhaltigkeit, 26.-27. pp. 245-258 (2018)
Marrella, A., Mecella, M., Sardifia, S.: Supporting adaptiveness of cyber-physical
processes through action-based formalisms. AI Commun. 31(1), 47-74 (2018).
https://doi.org/10.3233/AIC-170748

Miltner, A., Gulwani, S., Le, V., Leung, A., Radhakrishna, A., Soares, G., Tiwari,
A., Udupa, A.: On the fly synthesis of edit suggestions. In: ACM Program. Lang.
3(OOPSLA), 143:1-143:29 (2019)

https://arxiv.org/abs/2001.01243
https://doi.org/10.1109/IEEESTD.2016.7740858
https://arxiv.org/abs/2001.02462
https://arxiv.org/abs/2001.02462
https://arxiv.org/abs/2001.03210
http://www.levenshtein.net/
http://www.levenshtein.net/
https://doi.org/10.3233/AIC-170748

	Automated Generation of Executable RPA Scripts from User Interface Logs

