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The origin of water anomalies hides in an experimentally inaccessible region of the phase diagram known as
no-man’s land, bounded at low temperature by the domain of stability of amorphous glasses, and at high
temperature by the homogeneous nucleation line, below which liquid water looses its metastability. The
existence of at least two different forms of glass on one side, i.e. the low-density amorphous (LDA) and
the high-density amorphous (HDA) ices, and of one anomalous liquid on the other side, points to a hidden
connection between these states, whose understanding has the potential to uncover what happens in no-man’s
land and shed light on the complex nature of water’s behaviour. Here we develop a Neural Network scheme
capable of discerning local structure beyond tetrahedrality. Applied over a wide region of the water’s phase
diagram, we show that the local structures that characterize both LDA and HDA amorphous phases are
indeed embedded in the supercooled liquid phase. Remarkably, the rapid increase in the LDA-like population
with supercooling occurs in the same temperature and pressure region where thermodynamic fluctuations
are maximized, linking these structures with water’s anomalies. At the same time, the population of HDA-
like environments rapidly increases with pressure, becoming the majority component at high density. Our
results show that both LDA and HDA are genuine glasses, and provide a microscopic connection between the
non-equilibrium and equilibrium phase diagrams of water.

I. INTRODUCTION

Water is unique in many ways. Its crystalline phase
diagram is by far the most complex of any pure sub-
stance, and still far from being fully explored [1–3]. But
even more surprising is the existence of multiple amor-
phous ice forms. The first one is the low-density amor-
phous ice (LDA), likely the most abundant form of ice
in the universe, that can be obtained, for example, by
rapid quench of liquid water from ambient conditions to
very low temperatures. By compressing isothermically
LDA or hexagonal ice Ih, a first-order-like phase tran-
sition is encountered which produces high-density amor-
phous ice (HDA) with a density increase in the order of
∼ 20 − 25% [4]. Remarkably, LDA can be recovered by
isothermal decompression and isobaric heating of HDA
at different pressures [5].

Broadly defined, the LDA and HDA acronym encom-
pass a larger set of sub-families characterized by different
thermal histories [6–11] such as the LDA-I and LDA-
II [7], a more ordered low-density phase obtained upon
heating ice VIII [12], the annealed and very high-density
amorphous ices, eHDA [6] and vHDA [13, 14]. Further-
more, intriguing connections worth further investigations
between HDA (produced upon isothermal compression of
Ih or of LDA) and ice IV have been recently reported [8,
10].

The very nature of amorphous ices is therefore still
highly debated, but even less is known about their con-
nection to the liquid state [15]. The liquid phase is
hypothesized (with support from numerical simulations)
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to exist in two different phases below its second critical
point, named low-density liquid (LDL) and high-density
liquid (HDL) respectively [16–23].

The possibility of a continuous thermodynamic link be-
tween LDA and HDA, and the supercooled liquids (LDL
and HDL) is highly debated. Most experimental works
have focused on exploring the glass-to-liquid transition
upon heating of the amorphous ices, either via calorime-
try or dielectric relaxation spectroscopy. Two distinct
glass transitions have been considered for LDA [24–
26] and HDA [27–32] respectively, but questions remain
whether the weak calorimetric signatures can instead
be interpreted as an orientational glass transition for
LDA [33–35], and whether HDA is a mechanically col-
lapsed state with no connection to the supercooled liq-
uid [1, 8, 36].

In this article we bypass the difficulties associated
with characterizing a glass (out-of-equilibrium) transi-
tion, and instead explore the structural similarity be-
tween the different disordered configurations in their re-
gions of metastability. Probing the connection between
amorphous states is a challenging task, mostly because of
the lack of theoretical and/or experimental tools able to
account for the high degeneracy of local configurations in
statistically isotropic materials [37]. In particular, previ-
ous studies made stringent assumptions of a specific local
structure, starting from the metastable liquid state, and
extrapolating towards the glass state. In this study we
instead make no assumptions on the local structure, en-
compassing all medium-ranged configurations, and start
from the glass state, probing its structural similarity with
the liquid state. To this end, we adopt two complemen-
tary strategies. The first one consists in mapping the
structural properties of the local environment surround-
ing a water molecule onto a high dimensional function
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(or order parameter) of the particle positions, that al-
lows us to effectively characterize and distinguish liquid,
amorphous, and glass phases. The second key step is
to classify each local environment using Neural Networks
(NN) that have been proven to be a flexible and power-
ful tool to deal with high-dimensional order parameters,
and are recently finding wide applications in water [38–
41], and to a lesser extent to out-of-equilibrium systems
such as glasses [42–44].

Using NN allows us to automatically classify molecules
in different categories (or outputs, that are LDA, HDA,
and the high-T liquid phase) based on their local envi-
ronments, as probed by a multidimensional set of bond-
orientational order parameters [45] (BOOs). After train-
ing the NN with configurations of water in the LDA,
HDA, and high-T liquid phases (at thermodynamic con-
ditions specified in Fig. 1), we apply it to equilibrated
supercooled liquid configurations at three different pres-
sures (10−4, 0.04, and 0.1 GPa) and a wide range of
temperatures (190 < T < 250 K) to quantify the pos-
sible presence of local environments which symmetries
are recognized by the NN as the ones present in LDA
and HDA amorphous glasses. We stress that our HDA
training set includes configurations of HDA down to am-
bient pressure, obtained by decompression of the high-
pressure HDA samples. This ensures that our training
set for each amorphous ice spans all the pressure range
of our metastable liquid configurations. The inclusion of
high-T liquid configurations in the training set is used to
give the NN the ability to identify disordered hydrogen-
bond network configurations, and allows us to check the
high-T consistency of our analysis.

In Fig. 1a we reproduce the phase diagram of the
TIP4P/2005 water model [46], here adopted to describe
water molecules. The orange squares and circles repre-
sent the loci of specific heat (cP ) and isothermal com-
pressibility (kT ) maxima respectively, and are plotted in
Fig. 1c, for pressures P = 10−4, 0.04, 0.1 GPa. These
maximum lines converge towards the liquid-liquid crit-
ical point (LLCP, star symbol in fig. 1a) recently re-
ported in Ref. [23]. In Fig. 1a, the LDA state points
are represented as red symbols, while HDA state points
are represented as green symbols. A first order-like phase
transition is signalled by the density hysteresis cycle ob-
tained from the isothermal compression/decompression
cycle and shown in Fig. 1b for T = 80, 100, 120, 140 K.
The transition point in correspondence with the sud-
den increase in the density is taken as the point in
which (∂2ρ/∂P 2)T = 0, and is plotted with a contin-
uous black line in Fig. 1a. This transition line tends
towards the LLCP with increasing T . This connection
between an out-of-equilibrium transition (the pressure-
induced LDA-to-HDA transition) and the metastable
equilibrium LLCP, suggests a close correspondence be-
tween the amorphous ices and the corresponding liquids.
We explore it below.

FIG. 1. (a) Phase diagram of the TIP4P/2005
model. (b) Density profile during the isothermal compres-
sion/decompression cycle of LDA to HDA at four temper-
atures indicated in the legend. The sudden increase in
the density moves at lower pressure increasing the temper-
ature. (c) Specific heat (cP , black circles) and isothermal
compressibility (kT , red squares) as a function of tempera-
ture for the three different pressures (from top to bottom)
P = 10−4, 0.04, 0.1 GPa. The dashed orange vertical lines
represent the loci of maxima in cP and kT .

II. METHODS

In this Section we describe the protocol we have
adopted in our simulations and the Neural Network
setup. We also give a brief description of the two-state
liquid theory that is employed for theoretical comparison
with our numerical results.
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A. Equilibrium and out-of-equilibrium simulations

Our study is based on classical molecular dynamics
simulations of systems composed of N = 512, N = 8192
and N = 21952 rigid water molecules described by the
TIP4P/2005 interaction potential [46] in the isobaric
(NPT ) ensemble. We have run classical molecular dy-
namics simulations with GROMACS 2018.4 [47] running
on IBM POWER8 machines with NVIDIA Kepler K80
GPUs.

Equilibrated trajectories with N = 512 water
molecules have been presented in Ref. [48]. We have
employed Nosé-Hoover thermostat [49, 50] with 0.2 ps
relaxation time to maintain constant temperature, and
Parrinello-Rahman barostat [51] with 2 ps relaxation
time to maintain constant pressure. We have truncated
short-range interactions at 9.5 Å, and we have computed
long range electrostatic terms using particle mesh Ewald
with a grid spacing of 1.2 Å. At each state point, we have
computed and carefully monitored the decay of the self-
part of the intermediate scattering function (ISF) with
time [52]. All reported trajectories are at least 500 times
longer that the structural relaxation time as computed
from the ISF. Depending on the thermodynamic condi-
tions, production runs vary between 50 ns and 12 µs. No
sign of crystallization have been observed. For each state
point we have run 5 independent trajectories.

Out-of-equilibrium simulations treat samples of N =
8192 and N = 21952 water molecules arranged in rect-
angular parallelepiped boxes. Coulombic and Lennard-
Jones interactions are calculated with a cut off distance
of 1.1 nm and long-range electrostatic interactions are
treated using the Particle-Mesh Ewald algorithm. Tem-
peratures and pressures are controlled using a Nosé-
Hoover thermostat [49, 50] and a Berendsen barostat [53].
For the thermostat, the period of the kinetic energy oscil-
lations between the system and the reservoir is set to 1 ps,
while the time constant for the barostat is set to 1 ps.
Following Ref. [10], we have produced LDA simulating
the quenching of equilibrated liquid water at T = 300 K
to T = 80 K at a cooling rate of 1 K/ns. We have
produced HDA simulating the isothermal compression of
LDA and of Ih samples at four temperatures, namely
T = 80 K, T = 100 K, T = 120 K and T = 140 K at a
compression rate of 0.01 GPa/ns reaching up to 3.0 GPa.
We have then simulated the isothermal decompression of
HDA from 2.0 GPa to 10−4 GPa at a decompression rate
of 0.01 GPa/ns. Each simulation here presented is the
average over 10 independent simulations.

B. The Neural Network (NN)

Here we employ supervised learning because, at the
thermodynamic conditions of interest in the present
work, we hypothetically know all possible phases, which
are the output of the NN, excluding for example the for-
mation of crystalline phases (see Refs.[10, 48]). We use a

FIG. 2. Schematic representation of the Neural Network de-
signed for the present study. Each of the 30 nodes of the input
layer consists of one of the structural bond orientational order
parameter defined in eqs. 1 and 3. The hidden layer has 10
nodes, while the output has 3 nodes for the LDA, the HDA
and the high-T liquid phases respectively.

single layer feed-forward NN composed of an input layer
(IL), an hidden layer (HL) and an output layer (OL).
The input signal associated to the position of each oxy-
gen atom is embedded in order parameters represented
by a 30-dimensional vector (the IL has 30 nodes, see be-
low). The NN transforms each input signal into an out-
put represented by LDA, HDA, and the high-T liquid
phase (the OL has 3 nodes). We set the number of nodes
of the HL to 10. In fig. 2 we report a schematic repre-
sentation of the Neural Network setup. We initialize the
weights following the Xavier method [54], consisting on
setting random weights from a normal distribution with
zero mean and variance equal to 2 divided by the sum of
the number of nodes in the IL and the OL. We consider
the sigmoid, or logistic function, as activation function
for both IL-HL and HL-OL. As error function we chose
the overall mean square error between the actual and tar-
get outputs. To optimize the weights of the network we
minimize the error function using the stochastic gradi-
ent descent and backpropagation methods. We set the
learning rate to α = 0.01 and the number of epochs to
90. The performance of the NN is above 98% for a wide
range of learning rates and epochs, indicating that the
network is robust. To rule out overfitting we verified to
get the same performance from both test and training
sets.

The input vector describing the local environment of
each oxygen atom is composed of 30 different local OPs,
first introduced by Steinhardt et. al. [45]. These OPs
are based on the complex vector qlm(i) and its average
q̄lm(i)

qlm(i) =
1

Nb(i)

∑Nb(i)
j=1 Ylm(rij),

q̄lm(i) =
1

Nb(i) + 1

∑
k∈{i,Nb(i)} qlm(k),

(1)

where Nb(i) is the number of neighbors of particle i
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(Nb = 16 in this work), l and m are integers with
m ∈ [−l, l], Ylm(rij) are the spherical harmonics, and rij
is the position vector from particle i to j. The sum in the
definition of q̄lm(i) runs over the Nb(i) neighbors plus the
particle i itself. The set of l spherical harmonics defines
an orthonormal basis spanning the (2l + 1)-dimensional
representation of the rotation group SO(3) relating the
irreducible representation of SO(3) and the symmetries
of crystalline structures. The average spherical harmon-
ics depend on the choice of the reference frame, but their
average over m are rotationally invariant and encode an
intrinsic property of the medium. The rotationally in-
variant ql(i) and their averages q̄l(i) are therefore defined
as

ql(i) =

√
4π

2l + 1

∑l
m=−l |qlm(i)|2,

q̄l(i) =

√
4π

2l + 1

∑l
m=−l |q̄lm(i)|2.

(2)

The cubic OPs wl(i) and their average w̄l(i) are defined
as

wl(i) =∑
m1+m2+m3=0

(
l l l
m1 m2 m3

)
qlm1

(i)qlm2
(i)qlm3

(i)

(∑l
m=−l |qlm(i)|2

)3/2 ,

w̄l(i) =∑
m1+m2+m3=0

(
l l l
m1 m2 m3

)
q̄lm1(i)q̄lm2(i)q̄lm3(i)

(∑l
m=−l |q̄lm(i)|2

)3/2 ,

(3)
where the term in parentheses is the Wigner 3j symbol.
The 30-dimensional vector used as input for the NN is
composed by the following combination of BOOs: ql(i)
and q̄l(i) with l ∈ [3, 12], and wl(i) and w̄l(i) with l even
and l ∈ [4, 12]. For higher values of l the average period
of the oscillations of the Legendre polynomials in the cos-
space becomes smaller than the scattering of some char-
acteristic angle, and the corresponding invariants rapidly
vanish. We therefore do not consider values of l larger
than 12.

We trained the NN with 2000 configurations of each of
the target phases. The configurations have been selected
from a wide range of values in the existence domain of
each phase reported in Fig. 1a.

C. Two-state model

Two-state models of water describe the anomalies of
water as the structural change that occurs locally to the
network of hydrogen-bonded molecules [55–61]. The lo-
cal environments surrounding each water molecule are di-
vided in two populations which behave differently when

the thermodynamic conditions change. An ordered pop-
ulation includes all environments that are energetically
favoured, which have a high degree of local order and a
high specific volume, and are thus the (free-energy) pre-
ferred state at low-temperatures and low-pressures. The
other population instead includes all environments that
are entropically favoured, with a high degeneracy and a
low specific volume, and which instead are the majority
component at high temperatures and high-pressures. Ev-
idence for this bimodality has been corroborated by anal-
ysis of numerical data [61–63]. The two states are easily
distinguished by their temperature/pressure dependence.
The fraction of ordered states, which we indicate with
the symbol s, increases with decreasing temperature and
pressure, while the fraction of disordered states (1 − s)
increases in the opposite direction.

Two-state models have been very successful in accu-
rately describing the equation of state of water, and also
include the possibility of a phase separation of the two
states in different thermodynamic phases: the LDL phase
would have ordered states as the majority component
(s > 0.5) and HDL phase would have a majority com-
ponent of disordered states (s < 0.5). The two-state
model thus considers water as a regular mixture, with
the difference that the composition of the mixture is not
fixed but changes depending on the thermodynamic con-
ditions. For a broader introduction to two-state models
and for the free-energy and anomalies expressions we re-
fer to Ref. [62].

In the following we will interpret the Neural Network
classification scheme results in terms of the two-state de-
scription. To facilitate a comparison we have thus de-
rived new two-state model parameters for TIP4P/2005.
We consider simulations of 512 water molecules span-
ning thermodynamic conditions in the liquid state rang-
ing from T = 200 K to T = 350 K, and pressures from
P = −1 kbar to P = 3 kbar. For each state point, the
fraction of locally favored structures is then extracted
with the ζ order parameter [62], which distinguishes or-
der structures from the distance distribution between the
first and second shell of nearest neighbors. From the
(T, P ) dependence of s we fit the two-state model equa-
tion of state [62] whose fitting parameters are the coef-
ficients of a second order expansion of the bulk free en-
ergy difference between the two states around the critical
point

∆G = a1T̂ + a2P̂ + a11T̂
2 + a12T̂ P̂ + a22P̂

2

where T̂ = (T − Tc)/Tc and P̂ = (P − Pc)/Pc, and the
critical temperature Tc = 172 K and critical pressure
Pc = 0.1861 GPa are taken from a detailed study of crit-
ical fluctuations in the TIP4P/2005 model [23]. The re-
sulting two-state model is determined by the coefficients
(expressed here in unit of temperature) a1/kB = 306 K,
a2/kB = 195 K, a11/kB = 399 K, a12/kB = 60.3 K,
a22/kB = 44.3 K, where kB is the Boltzmann constant.
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FIG. 3. Two-bodies pair correlation function g2(r) for liquids
and amorphous states at different thermodynamic conditions.
Panel (a): g2(r) for LDA at P = 0.0001 GPa and T = 140 K
(black), liquid water at P = 0.0001 GPa and T = 200 K
(red) and liquid water at P = 0.0001 GPa and T = 300 K
(green). Panel (b): g2(r) for HDA at P = 1.1 GPa and T =
140 K (black), liquid water at P = 0.1 GPa and T = 190 K
(red), liquid water at P = 3.0 GPa and T = 300 K (green),
and liquid water at P = 6.0 GPa ant T = 177 K (orange).
Individual densities are reported in the legend.

III. RESULTS

In this section we present and discuss the main findings
of this work.

A. Two-body pair correlation functions

We start our investigation by inspecting the two-body
pair correlation function, g2(r), that describes how the
density of particles varies as a function of the distance
from a tagged particle. In Fig. 3 we show the oxygen-
oxygen g2(r) for both amorphous ices and the liquid
phase. Panel (a) compares LDA at T = 140 K (black)
with the liquid at T = 200 K (red), and the liquid at
T = 300 K (green), at ambient pressure. Upon cooling
the liquid phase from T = 300 K to T = 200 K, we
observe a progressive depletion of the population in the
interstitial region between the first and the second peak,
with a corresponding structurization of the first and the
second peak, indicative of an enhancement of the tetra-
hedrality of the liquid structure upon cooling. Further
structurization occurs in LDA, as indicated by the in-
tensification of the first peak. We observe that the peak
positions of the liquids are remarkably consistent with
the peak positions of LDA, and that the distribution of
LDA and liquid at T = 200 K qualitatively overlap, sug-
gesting some intimate structural correlation between the
liquid phase and LDA. In panel (b) of Fig. 3 we can see
that HDA is characterized by unique features such as a
minimum at ∼ 0.3 nm followed by an asymmetric second

peak spreading from ∼ 0.33 to ∼ 0.53 nm, and a third
peak located at ∼ 0.6 nm. These features are found in
the metastable liquid phase only at considerably higher
pressures but at comparable densities. To show this we
compare the pair correlation function at three different
state points, outside the conditions of stability of the
HDA phase. The first point, T = 190 K and P = 0.1 GPa
(low T - low P ), shows a distribution drastically different
from HDA, with deep minima between the peaks. The
second point, P = 3.0 GPa and T = 300 K (high T - high
P ), is characterized by a distribution with a low, broad
first peak and a second peak located at ∼ 0.56 nm, not
far from the third peak in HDA. Finally, at P = 6.0 GPa
and T = 177 K (low T - high P ), where the HDA and liq-
uid phase have comparable densities (∼ 1300 kg/m3), we
observe a good correspondence between the pair corre-
lation functions. These results suggest that the thermo-
dynamic connection between HDA and the liquid phase
may not be straightforward. To further shed light on
structural similarities between HDA and liquid water we
extend our investigation by performing a multipoint (be-
yond the pair level) analysis of the structural properties
of all phases here considered.

B. Populations in the supercooled phase

To map the local environments of each molecule on
a high-dimensional order parameter we use the space of
bond-orientational order parameters (BOOs) ql and wl,
which are rotationally invariant quantities obtained from
combination of spherical harmonics of order l [45]. De-
pending on the value of l, BOOs capture different sym-
metries eventually present in the local environment that
we define as the set of the closest 16 neighbours in or-
der to investigate medium-range order (beyond nearest-
neighbours) where structural similarities between the liq-
uid and the amorphous ices are not granted. Our com-
bination of BOOs includes all values of l from 3 to 12,
and defines an order parameter that projects the local
structural properties around each water molecule onto a
30-dimensional space. We then partition this space by
training a NN, to differentiate the amorphous ices en-
vironments, HDA and LDA, and the high-T liquid. In
Fig. 1a we plot as red and green symbols the state points
which we have used to train the network against LDA and
HDA respectively, while further configurations of HDA
obtained upon isothermal decompression of HDA from
P = 2.0 GPa to ambient pressure used to train the net-
work are not shown in the figure. In the NN training set,
we also include a high-temperature (above melting) liquid
environment, which represents local environments with
positional correlations typical of simple liquids (black re-
gion in the figure). In summary, the NN takes the 30-
dimensional representation of a local environment and
maps it into one of the following phases: LDA, HDA, and
high-T liquid. After confirming that the NN has a mis-
classification ratio below 2% between these phases, we
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FIG. 4. Fraction of local environments as a function of the
temperature for equilibrated liquid water at three pressures,
(a) P = 10−4 GPa, (b) P = 0.04 GPa, and (c) P = 0.1 GPa.
Red circles, blue squares, and blue diamonds represent the
fraction of LDA-like, HDA-like, and high-T liquid-like envi-
ronments respectively. The dashed line represents the fraction
of locally favored structures according to the two-state model
for the ζ parameter. The gray band shows the location of the
kT anomaly.

apply the order parameter to supercooled water config-
urations, to see whether signatures of amorphous states
are present in equilibrium liquid configurations.

Our equilibrated liquid samples cross the lines of max-
ima of cp and kT (leftmost and rightmost vertical dashed
lines in Fig. 1, respectively [48]) at three pressures,
namely P = 10−4, P = 0.04 and P = 0.1 GPa, and

explore temperature ranges from ambient to deeply su-
percooled conditions. These configurations are plotted as
blue points in Fig. 1a. We then apply the order parame-
ter on the equilibrated liquid configurations and compute
the fraction of each target state using the NN previously
trained.

The composition of the different populations is re-
ported in Fig. 4 for the three pressures here considered.
Symbols represent the population of LDA-like (circles),
HDA-like (squares), and high-T (diamonds) local envi-
ronments. We first note that the curves are continuous,
with relatively small error bars (result which is not ex-
pected a priori from the NN classification method) and
they behave as expected in the limiting cases: with the
majority component being the LDA-like and high-T en-
vironments at low and high temperature respectively,
and with a fraction of HDL-like environments increas-
ing with pressure. The populations can be divided in
two-groups depending on whether their composition in-
creases (HDL-like and high-T ) or decreases (LDA-like)
with temperature. These groups can be associated with
the two states that are invoked in the explanation of
water anomalies. The ordered state comprises LDA-like
environments, while HDL-like and high-T environments
make up the disordered state. We further observe that
the point where the fraction of LDA-like populations is
equal to 1/2 (Schottky line) falls within the region of
maximum structural fluctuations for all pressure consid-
ered. In Fig. 4 this is represented as the region of com-
pressibility (kT ) maximum as the grey vertical bands.
This result is in agreement with two-state theories of su-
percooled liquid water [56–61], as the region of maximum
anomaly occurs where the derivative of s with respect
to temperature is an extremum. For comparison, the
temperature dependence of fraction of the ordered state
(s(T )) of a two-state model for a different order parame-
ter (ζ, see Methods) is presented as the red dashed lines
in Fig. 4. Also this model shows that the inflection point
of the s(T ) falls within the region of maximum anomaly.
Note that the two-state model (red dashed line) and the
LDA-like population (red circles), do not necessarily su-
perimpose as they are obtained from different order pa-
rameters (ζ for the two-state model, and BOO for the
LDA-like populations): what is physically relevant is the
location of the flex point in the two curves.

Without making any assumptions on the nature of the
ordered state, we have shown that it overlaps largely with
the population of LDA-like local environments. This al-
ready points to a direct connection between LDA and the
supercooled liquid state from a structural point of view
beyond the two-particle level that was noted in the radial
distribution functions (Fig. 3).

We now focus on the remaining populations, the HDA-
like and high-T local environments. In the language of
two-state models, these environments are often modeled
as a high-density disordered state [56, 64], which is a
state stabilized by entropy at high-temperature, and by
its high density (compared to the ordered state) at high-
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FIG. 5. Fraction of local environments as a function of the
pressure for equilibrated liquid water at T=177 K. Blue dots
represent the fraction of HDA and high-T liquid-like environ-
ments, red circles the fraction of LDA-like environments. The
labels on blue symbols represent the relative fraction of HDA-
like environments in the HDA+high-T state (e.g. the label
43 indicates a relative composition of 43% HDA-like environ-
ments and 57% high-T liquid-like environments). The dashed
line represents the fraction (s) of locally favoured structures
according to the two-state model for the ζ parameter, while
the continuous line is the fraction (1− s) of disordered states.

pressure. These two different stabilization factors are
reflected in the populations of HDA-like and high-T lo-
cal environments in Fig. 4. In fact, we observe that the
relative composition of the disordered state changes with
thermodynamic conditions. As expected, the fraction of
high-T structures increases with temperature, but the
relative amount of HDA-like structures over high-T struc-
tures increases with pressure (panels from top to bottom
in Fig. 4).

To fully uncover the role of HDA-like structures, we
perform additional simulations at low temperature (T =
177 K) and high pressures (ranging from P = 0.18
to 0.6 GPa). We limit the system size to N = 300
due to the difficulty of equilibrating liquid configura-
tions at those extreme conditions. We then perform the
NN analysis and report the following compositions (see
Fig. 5). We observe that the fraction of HDA-like envi-
ronments increases from 43% at P = 0.18 GPa, to 99% at
P = 0.6 GPa. This result shows that HDA-like structures
dominate the disordered state at high pressures, thus es-
tablishing a clear structural link between the HDA glassy
phase and the high-pressure metastable liquid.

The behaviour extracted from the NN is consistent be-
tween different thermodynamic conditions and points to
a direct link between water glasses and structures present
in the supercooled liquid state. To test the classification
consistency of our approach in the following section we
will investigate the behaviour of the system close to its
second critical point.

FIG. 6. Fraction of local environments and corresponding
critical density fluctuations for a sample of N = 300 wa-
ter molecules in the proximity of the second critical point
for the TIP4P/2005 water model at T = 177 K. Panel (a)
reports the fraction of LDA-like (red) and the sum of high-
T and HDA-like (blue) local environments at a pressure of
0.165 Gpa. Panel (b) reports the same fractions at a pressure
of 0.1775 GPa. The corresponding density fluctuations are
reported in the lower panels.

C. Populations approaching the second critical point

It has been recently ascertained that the TIP4P/2005
model of water (along with the TIP4P/Ice model) has
a liquid-liquid critical point at Tc = 172 ± 1 K and
Pc = 0.1861± 9× 10−4 GPa and consistent with the 3D
Ising universality class [23]. In order to further test the
robustness of our network and the accuracy of the order
parameter, we have analyzed trajectories from Ref. [23]
in the vicinity of the second critical point. In fig. 6 we
report the fractional composition of a sample of N = 300
water molecules at T = 177 K and P = 0.165 GPa –panel
(a)– and P = 0.1775 GPa –panel (b)– respectively. The
corresponding critical density fluctuations are reported
in the lower panels. It is possible to appreciate that the
network is able to rationalize the contribution of LDA-
like environments (red) that dominate at lower densities,
and of HDA-like with high-T -like (blue) environments
that dominate at higher densities. Therefore, our results
indicate that our setup (the order parameter and the net-
work) is well suited to discern among local environments
also in the vicinity of criticality.

IV. CONCLUSIONS

In conclusion, our results shed new light on the na-
ture of the non-equilibium glassy states of water, and
their connection to the metastable supercooled liquid



8

state. Bypassing the difficulties associated with explor-
ing state points near the glass transition, we establish
a new method for finding direct structural links between
different regions of the phase diagram. We find that both
the LDA and HDA amorphous phases are genuine glassy
states, which have an equilibrium counterpart at the
thermodynamic conditions accessible to computer simu-
lations. LDA-like structures are directly associated with
ordered locally favoured structures, and their increase
with supercooling is found to be in excellent agreement
with the liquid anomalies. The disordered state is com-
posed of both HDA-like and high-T structures, the for-
mer ones found at high P and low T , the latter at high-T
and low-P .

The generality of our approach makes it amenable for
applications to other disordered condensed matter sys-
tems.

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.
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