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Abstract
Solid 4He may acquire superfluid characteristics due to the frustration of the solid phase at grain
boundaries. Here, introducing a negative-U generalized Hubbard model and a coarse-grained
semiclassical pseudospin model, we show that an analogous effect occurs in systems with
competition among charge-density-waves (CDW) and superconductivity in the presence of
disorder, as cuprate or dichalcogenide superconductors. The CDW breaks apart in domains with
topologically protected filamentary superconductivity at the interfaces. Our transport
measurements, carried out in underdoped La2−xSrxCuO4, with the magnetic field acting as a
control parameter, are shown to be in excellent agreement with our theoretical prediction.
Assuming superconductivity and CDW phases have similar energies, at intermediate temperatures,
the magnetic field drives the system from a fluctuating superconductor to a CDW as expected in
the clean limit. Lowering the temperature, the expected clean quantum critical point is avoided
and a filamentary phase appears, analogous to ‘glassy’ supersolid phenomena in 4He. The
transition line ends at a second quantum critical point at high-fields. Within our scenario, the
filamentary superconducting phase is parasitic with CDW and bulk superconducting phases
playing the role of primary competing order parameters.

1. Introduction

Electrons in the presence of attractive interactions crossover smoothly from the Bardeen–Cooper–Schrieffer
limit to the Bose condensation limit as the strength of the interaction is increased [1]. However, as electrons
approach the limit of composite bosons, the tendency to localize in real space also increases. Thus, in
analogy with 4He, a real-space ordered state competes with a momentum-space condensed state. Since the
entropy of these states is equally small [2], phase stability is insensitive to temperature, resulting in a phase
boundary nearly parallel to the T axis and perpendicular to any non-thermal control parameter axis
(pressure, strain, magnetic field, doping, etc).

The scenario changes dramatically in the presence of real-space disorder. It has been known for some
time that a polycrystal of 4He atoms develops superfluidity at the interface and acquires supersolid
characteristics (i.e., superfluid-like changes of the moment of inertia coexisting with real-space order, see
reference [3] for a review). It is natural to expect that the analogous phenomenon should occur for
real-space fermion pairs [4]. In this work, we consider a simple phenomenological model which allows to
study the effect of quenched disorder near a transition from a real-space ordered state of fermion pairs to a
superconducting state. We show that disorder induces filamentary superconductivity in the spatially ordered
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charge-density-wave (CDW) state analogous to the supersolid behavior in 4He. A finite temperature phase
diagram is derived. This theoretical scenario is explored experimentally by transport experiments in
La2−xSrxCuO4 (LSCO) using magnetic field as a tuning parameter. Building on a previous work [5] we
perform a global two-dimensional fitting of all magnetoresistivity data in the (H, T) plane. Setting the
doping close to the insulator-superconductor transition enables to completely suppress superconductivity at
high field and, by subtraction, isolate the paraconductive contribution. This more accurate study performed
for two specific doping values, with a high number of temperature points confirms the general trends found
in a wider doping range in reference [5], and enables to demonstrate the excellent qualitative agreement
between the experimentally derived transition lines and the theoretical expectations. At moderate
temperatures there is a magnetic field driven transition between the superconductor and a charge-ordered
state, as seen with other probes [6]. Lowering the temperature in the CDW phase, a superconducting phase
appears, characterized by small superconducting stiffness and due to the coherent phase-locking of
superconducting filaments at the interfaces of CDW domains, analogously to the supersolid effects in 4He.
Filamentary superconductivity in cuprates has been proposed before [7].

2. Theory of disorder-induced filamentary superconductivity on
charge-density-waves

2.1. CDW domain wall in the generalized attractive Hubbard model
We consider an electronic system with an attractive interaction that favors real-space formation of fermion
pairs. At low temperatures these pairs can either condense in a superconducting state or form a CDW. An
instructive example to study this interplay (sometimes referred to as intertwining [8]) is the negative-U
generalized Hubbard model in a bipartite lattice,

H = −t
∑
〈ij〉σ

c†iσcjσ − U
∑

i

ni↑ni↓ + V
∑
〈ij〉σ

ninj (1)

where c†iσ creates a fermion with spin σ at site i, niσ = c†iσciσ , ni = ni↑ni↓, U > 0 is the on-site attraction, V
denotes a nearest neighbor repulsion, t denotes the hopping amplitude, and μ is the chemical potential.

The repulsive-attractive transformation [9] allows to map the negative-U Hubbard model into a
positive-U Hubbard model using a construction analogous to Anderson pseudospins [10]. The on-site
magnetization of the repulsive model mi maps into the charge sector of the attractive model as follows,

mx
i =

1

2

(
〈c†i↑c†i↓ + ci↓ci↑〉

)
eiQ·ri

my
i = −i

1

2

(
〈c†i↑c†i↓ − ci↓ci↑〉

)
eiQ·ri

mz
i =

1

2

(
〈c†i↑ci↑ + c†i↓ci↓〉 − 1

)
. (2)

Thus, at half-filling the CDW (superconducting) order of the attractive model is mapped into
antiferromagnetic order along the z axis (in the xy plane). It is convenient to define a staggered order
parameter Si = mi exp(−iQ · ri)/|m| with Q = (π,π) in two dimensions and in units of the inverse lattice
constant and |m| is taken as the largest on-site magnetization of the lattice.

For V = 0 the repulsive model has SO(3) symmetry in the magnetic sector which means that in the
attractive model CDW and superconductivity are degenerate. This symmetry is also obvious from the large
U limit of the repulsive model which maps in the Heisenberg model with magnetic interaction J ≈ 4t2/U.
This symmetry is not generic and gets explicitly broken by a nonzero nearest-neighbor interaction. V < 0
favors the superconducting state, i.e., an order parameter with xy symmetry. In the opposite case of
nearest-neighbor repulsion, an Ising symmetry is favored, corresponding to the CDW [9].

The model supports two variants of the CDW (labeled A and B) differing on which of the two
sublattices hosts more charge than the other, which corresponds to the two possible z-antiferromagnetic
ground states of the repulsive model. A positive (negative) Sz

i describes the A- (B-) CDW. Figure 1(a) shows
the order parameter space. We are interested in situations in which the CDW is more stable but disorder is
present favoring A-CDW in one region and B-CDW in a different region. For large U, the only way to
reverse the order parameter is by passing through the equator, the interface is forced to have ordering on the
xy plane, and is locally superconducting, as shown schematically in figure 1(b).

In order to analyze this effect for general U and V we have solved the model equation (1) in the
Hartree–Fock–Bogoliubov–de Gennes approximation in two dimensions. We have taken periodic
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Figure 1. (a) The sphere represents the states encoded by the order parameter with near SO(3) symmetry. North and south poles
represent the two possible CDW states, corresponding to the charge maximum in one of the two possible sublattices, while the
equator encodes the superconducting state. The azimuthal angle encodes the phase of the order parameter. (b) Schematic
pseudospin pattern at an interface between B/A-CDWs.

Figure 2. (a), Evolution of a domain wall between the two variants of the CDW as the nearest neighbor repulsion V is decreased
from row 1 to row 6. The order parameter Si (staggered pseudomagnetization) in the x − z plane is pictured as a function of
position perpendicular to the interface (the superconducting phase φ is set to zero). We use the same color convention as in
figure 1. Only one row is shown for each configuration since there is translational invariance along the interface. The attractive U
is fixed at U/t = 8 and V is decreased in equal steps from V = 0.08t for row 1, to V = 0+ for row 5. For repulsion comparable to
J ≈ 4t2/U (row 1) the interface is sharp and there is no superconducting component. Below a critical repulsion a
superconducting component appears (given by the horizontal projection of the arrows) which grows as V is decreased (rows
2–5). Row 6 shows the bulk superconducting phase obtained for negative V. (b), Phase diagram for the interface between the two
variants of the CDW as function of the parameters of the electronic model. The parameters for the configurations pictured in
figure 2(a) are indicated with dots. There is a second-order-phase-transition line between the superconducting interface (CDW
+ SC) and the sharp CDW interface. For negative V the bulk ground state is always superconducting (SC). In a finite system, the
boundary is at a small positive V due to the cost of the domain wall.

boundary conditions and worked in a system of size Lx × Ly = 15 × 100 sites. The odd number of sites in
the x direction forces a domain wall of the staggered order, which we wish to study.

In figure 2(a) we show the evolution of an interface between the two CDW variants that have been
imposed by boundary conditions and in figure 2(b) we show the resulting phase diagram. Below a critical
line the interface becomes superconducting. Thus, in the presence of a relatively strong pairing scale, pairs
may localize in real space forming a CDW, but the interface between the different variants will be
superconducting, provided the system is close enough to the suerconducting phase. Remarkably, this
behavior persist and is even enhanced for small values of U. Very small U was not analyzed as the coherence
length becomes of the order of our simulation cell and finite size effects become important. Notice that
when the order parameter is on the z axis (pure CDW) the superconducting order-parameter phase φ is ill
defined thus a CDW domain is nothing but a collection of phase incoherent pairs.

2.2. Coarse-grained model
We now turn to a semiclassical model, in order to analyze the effect of interfaces induced by disorder on
mesoscopic scales. It is natural to assume that in a region of parameter space in which charge order and
superconductivity are seen to coexist, the near SO(3) degeneracy is reestablished and a model with that
symmetry generically describes a situation in which the energy for real-space (i.e., CDW) or
momentum-space (i.e., superconducting) condensation of paired fermions is comparable. Indeed, a lattice
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model very similar to our proposal below has been considered by Liu and Fisher to study possible
supersolid phases in 4He [11] close to the boundary between the crystalline phase and the superfluid phase
underling the close analogy between 4He and the superconductivity-CDW problem.

Since we are interested in intertwining, and in the finite temperature phase diagram, we will neglect
quantum fluctuations. These become important when the temperature is below the characteristic energies
of the problem, which, especially in the filamentary superconducting region, are very low. Thus we will
study a semiclassical model of superconductivity-CDW, building on the above solution of the negative-U
model and in the spirit of reference [11] for the supersolid problem.

A generic semiclassical model can be justified by a coarse-graining process. The order parameter Si has
the same number of components as in the generalized Hubbard model above, so also here figure 1(a)
displays the order-parameter space and for simplicity we will use the same symbol. Assuming that there is at
least short range order in the system we can separate it in regions larger than the lattice spacing but smaller
than the correlation length and define the coarse-grained ordering field Si which determines the kind of
order in region i. We neglect the fluctuations in the strength of fermion pairing which is parameterized by
the magnitude of the ordering field so we take |Si| = 1. Thus we assume that the CDW consists of localized
bosons which in the context of insulator-superconducting transitions is associated with a Mott–Hubbard
bosonic insulating phase [12]. We also neglect all complications due to unconventional symmetry of the
order parameter. In addition, we assume that there are only two possible variants of CDW phases as for the
Hubbard model so Sz = 1 (Sz = −1) encodes the A(B)-CDW as for the generalized Hubbard model above.
In general, more variants will be possible depending on the periodicity of the CDW. In the discussion
section below, we enumerate possible microscopic origins of the different CDW variants. Our
considerations are, however, independent of these microscopic details. As before, a pure superconducting
state is described by the complex ordering field Sx

i + iSy
i with Sz = 0, while sideways configurations describe

the CDW analog of supersolid behavior as in reference [11]. We define the semiclassical model on a discrete
lattice of cells which is convenient for numerical simulations,

H = −J
∑
〈i,j〉

Si · Sj − G
∑

i

(Sz
i )

2 +
∑

i

hiS
z
i . (3)

Here, J > 0 describes a short-range stiffness which, for simplicity, we choose to be equivalent for
superconducting correlations and CDW correlations. In the absence of disorder (hi = 0), the balance
between the orders is decided by the parameter G which plays the same role as V in the generalized
Hubbard model. Thus, G > 0 describes a uniform CDW while G < 0 describes a uniform superconductor.
One could as well have used an anisotropic Heisenberg model with the same scope which, at the classical
level we are considering, would only change minor details. hi is a random variable that takes into account
that charged impurities will locally favour the A- or B-CDW, depending on whether the impurities in the
cell i have more charge near the A or the B sublattice. We will take the hi to be random variables with a flat
probability distribution between −W and W and, since we are interested in layered systems (cuprates,
dichalcogenides), we will consider a two-dimensional system.

For G > 0 the model falls into the universality class of the random-field Ising model. As such, for any
disorder, it breaks apart in domains of the A- and B-CDW variants. This is obvious for large disorder while
for small disorder it follows from Binder’s refinement [13] of Imry’s and Ma’s arguments [14]. In the latter
case, however, domains can be exponentially large [roughly ∝ exp(J2/W2)].

For G > 0 one can consider a flat interface between an A-CDW and a B-CDW. As for the generalized
Hubbard model in figure 2 the interface is forced to have the ordering field on the xy plane. In the present
model, by minimizing the energy, one finds that the superconducting region has width ξg = ξ0

√
J/G where

ξ0 is a short-range cutoff of the order of the coarse-grained lattice spacing corresponding to the correlation
length of the short-range superconducting (i.e., particle-particle) or CDW (i.e., particle-hole) pairs. Thus,
although for G > 0 the superconductor is globally less stable, it gets stabilized locally because of topological
constraints as for the CDW interface in figure 2. In the interface both CDW are frustrated so the less stable
superconducting phase prevails as in polycrystalline 4He.

It is convenient to write the model in spherical coordinates with Sz
i = sin θi and Sx

i + iSy
i = cos θi

exp(iφi). Clearly, cos θi and φi are the amplitude and phase of the superconducting order. Equation (3)
reads,

H = −J
∑
〈i,j〉

cos θi cos θj cos(φi − φj) − G
∑

i

sin2 θi +
∑

i

hi sin θi. (4)

To analyze the interplay between superconductivity, CDW and disorder, the energy of the model was
minimized using a steepest descent algorithm. Figure 3 shows configurations obtained by minimizing the
functional equation (4) at T = 0, with different disorder strengths. Blue and red corresponds to the A- and
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Figure 3. Zero temperature configurations obtained by minimizing the energy functional equation (3). The control parameter is
taken to be G > 0, so in the absence of disorder the system is in the CDW phase. The size of the system is 100 × 100. The false
color plots represent Sz; blue and red regions correspond to the two CDWs and light green regions are the superconducting
regions. For every row, the control parameter G increases from left to right G/J = 0.02, 0.06, 0.1. For every column, disorder
increases from top to bottom with the following strength: W/J = 0.5, 1.5, 4.0.

B-CDW respectively. For small G > 0 and small disorder (upper left corner), large domains are present. As
for the flat interface, the pseudospin at the boundary of the two CDW domains is in the xy plane. In other
words, it forms a filament of superconducting order (light green). If disorder is changed locally, for example
the random fields are flipped one-by-one, then the filament moves without being annihilated, a hallmark of
topological protection. Only a global disorder change that eliminates a whole CDW domain is able to
eliminate the associated superconducting filament. We associate the network of filaments with filamentary
superconductivity. Such network becomes denser when increasing disorder (from top to bottom in the
figure). We anticipate that this effect can lead to an increasing superconducting stiffness.

The superconducting phase is uniform along the filamentary superconducting regions so that at T = 0,
if the interfaces form a percolative path, the system is globally superconducting. From left to right, the local
CDW stability (controlled by G) increases. Filamentary superconducting regions become narrower as
ξg ∝ 1/

√
G, increasing the CDW tendency. This will of course tend to weaken the superconducting stiffness

as discussed below.
We define the global superfluid stiffness from the second derivative of the energy respect to a twist of the

boundary conditions ρs ≡ ∂2〈H〉/∂Δφ2 where Δφ is the difference in phase φi between opposite sides of
the system in one direction. To compute ρs we mapped the problem into a random resistor network where
nodes i, j are connected with a conductance of magnitude gij = J cos θi cos θj. Notice that gij acts as a local xy
superfluid stiffness in equation (4). The macroscopic ρs is mapped into the global conductance of the
network which we find in the linear response regime by solving numerically the equivalent network
problem [4, 15]. Result for each parameter were averaged over 200 different configurations.

For zero disorder (light green in figure 4) the stiffness jumps from the bare value to zero as the systems
changes abruptly from the superconducting to the CDW state at G∗ = 0. Inside the superconducting region
(G < G∗) disorder induces non-zero θi as charges get localized, so that gij gets weakened and the global
stiffness is reduced. However, entering into the CDW region (G > G∗) the stiffness develops a ‘foot’ for
positive G indicating that filamentary superconductivity is induced in the nominally CDW region (blue and
magenta in figure 4). For large detuning from G∗ = 0 phase stiffness is suppressed exponentially, roughly as
ρs ∝ exp[−C(G/J)3], with C a constant depending on the disorder strength (see inset in figure 4). This
indicates that an ever more fragile superconducting regime sets in as the tendency to CDW is increased and
the filaments forming the network become narrower. We anticipate that the decreasing but finite stiffness
will produce a characteristic ‘foot’ in the temperature dependent phase diagram, which we take as the
fingerprint of filamentary superconductivity.

Moderately stronger disorder makes the superfluid phase more robust because the network of filaments
becomes denser. At some point, however, for very strong disorder, charge localization is favored at every site
and the system becomes an insulating charge glass. The different regimes can be seen by plotting isolines of
the phase stiffness as shown in figure 4(b). We see that, with increasing disorder, filamentary
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Figure 4. (a) Zero temperature stiffness as a function of the tuning parameter G/J for different strengths of disorder and system
size 100 × 100 sites as in figure 3. The inset shows the same quantity in semi-log scale as a function of (G/J)3. (b) False color plot
of the stiffness as a function of tuning parameter and disorder.

Figure 5. Schematic phase diagram in the clean limit (a) and with small disorder (b). The sharp transition line to the CDW
phase in the clean case (black full line) becomes a crossover in the disordered case (gray band). To establish a qualitative
connection with transport experiments in LSCO we schematically indicate the role of magnetic field as the tuning parameter. In
panel (c) we then report the expected behavior of the resistivity in the different regions of the (dirty) phase diagram. Curves have
been shifted vertically for clarity. For H = H0, the resistivity is expected to be a decreasing function of temperature. For H = H1

and high temperatures the resistivity will exhibit a plateau due to the residual influence of the clean quantum-critical point.
Lowering the temperature, disorder becomes relevant and eventually the system becomes superconducting. For H = H2, the
resistivity will exhibit a minimum when the CDW correlations set in and a maximum before dropping due to the filamentary
superconducting phase. The arrows indicate the characteristic temperatures discussed in the text.

superconductivity is a reentrant phase in the CDW region. Interestingly, for a fixed control parameter
G > 0, there is an optimum value for disorder to induce superconductivity.

Although this phase diagram is for zero temperature, we can derive a finite temperature phase diagram
assuming that in the clean limit the system behaves as an anisotropic Heisenberg model [16] (figure 5(a))
and in the presence of disorder develops a finite temperature superconducting phase with a Tc proportional
to the xy phase stiffness [17]. Figure 5(b) shows schematically the modified phase diagram in the presence
of small disorder. Here, we have assumed that Tc is proportional to the stiffness of the W/J = 1.7 case in the
filamentary region. For negative tuning parameter, Tc interpolates smoothly to the Tc of the clean limit, so
as the stiffness does (figure 4(a)). We have chosen the microscopic parameters so that the energy scale
represents typical values of underdoped cuprates. In the filamentary superconducting phase the CDW
domains coexists with superconductivity (figure 3). The CDW transition gets broadened by the effect of
disorder, so that the sharp Ising-like transition of the clean case becomes a crossover (gray band) with glassy
characteristics in the presence of disorder [18]. In the case of unidirectional CDW a sharp transition may
persist in a nematic channel, as discussed in references [19, 20].

In order to associate the phase diagram to magnetotransport experiments, we will define below
characteristic temperatures from resistivity data and assume they can be used as proxies of the different
transition or crossover lines. A guide to the various temperature scales introduced in this work can be found
in table 1.
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Table 1. Guide to the meaning of the various temperature scales introduced in the text. The horizontal line separates temperature scales
that are introduced in the theory and/or the fitting formulas from temperature scales that are defined by the experimental temperature
dependence of the measured resistance R�(T).

Temp. scale Proxy Meaning

TB
c Tc Tc for bulk superconductivity (SC)

TF
c Tc Tc for filamentary SC (FSC)

TONS Tinf Onset of superconducting correlations
TONSF Tinf Onset of FSC
TCDW Tmin CDW crossover temperature
T0 Fit Cutoff T above which an exponential suppression of paraconductivity occurs
T1 Fit Temperature width of low-T suppression of resistance due to FSC

Tc T at which R�(T) = 0
Tmax T at which R�(T) has a local maximum
Tmin T at which R�(T) has a local minimum
Tinf T at which R�(T) has an inflection point

Since magnetic field H is known to tip the balance between superconductivity and CDW [6], we will use
H − H∗ as the tuning parameter where H∗ corresponds to the field of a clean quantum-critical point, i.e.,
zero tuning parameter (G∗ = 0). Thus, in figure 4(a) we associate the abscissa axis with the magnetic field
(increasing from left to right). In the figure, the temperature units of the tuning parameter were
approximately derived from equivalent energy units in the microscopic Heisenberg model. Conversion to
magnetic-field units would require a precise mapping of the models which is beyond our scope. Empirically,
we find that, as an order of magnitude, 5 K of the microscopic model corresponds to 10 T of the
experiment.

At zero or low field (H0, red line in figure 5(b)) the metallic phase directly becomes superconducting, so
transport experiments are expected to yield a monotonic decreasing function of temperature, as shown with
the red curve in panel (c). We will use the inflection point in this curve Tinf (indicated by the arrow in panel
(c)) as a function of field as a proxy for TONS, the characteristic temperature below which robust in-plane
superconducting correlations appear. Notice that three-dimensional zero-resistance superconductivity sets
in at a lower temperature, Tc. Tinf should not be confused with another inflection point appearing around
270 K at this doping and unrelated to superconductivity [21, 22]. At intermediate fields, H = H1, and at
high/intermediate temperatures, when disorder is not yet relevant, the system critically fluctuates between
the superconducting and CDW states, giving rise to a flat resistance that would seemingly extrapolate to a
zero-temperature clean quantum-critical point (located nearly zero tuning parameter). Eventually, however,
the clean quantum-critical point is avoided and superconductivity prevails at low T and the resistance
vanishes (blue lines). At higher fields (H = H2, orange lines) the metal first enters a region of disordered
(polycrystalline) CDW with an insulating behavior, thus the temperature corresponding to the resistivity
minimum serves as a proxy of the CDW crossover temperature TCDW, as shown in panel (c). Lowering even
more the temperature the resistivity shows an inflection point very close to a sharp maximum, followed by
a rapid drop when coherence establishes between the superconducting filaments. We will use the inflection
point (near the maximum) to signal the onset of filamentary superconductivity, TONSF, as shown with the
arrow in the upper left corner of panel (c). For weak disorder, the intermediate region showing clean
quantum-critical behavior (i.e., the resistivity plateau) is around the region in parameter space where Tmax,
Tmin, and Tinf merge.

3. Filamentary superconductivity in LSCO as revealed by magneto-transport

We expect the scenario presented in the previous section to be realized in underdoped cuprates, where
superconductivity and CDW are known to compete. In particular, when a strong magnetic field [6] or
strain [23] are present, a static charge order is well documented in the underdoped region of the phase
diagram, below a temperature TCDW [24, 25]. This charge-ordered phase breaks apart in domains due to
quenched disorder [26] and is believed to be responsible for the Fermi surface reconstruction at doping
values below p = 0.16 [27–30]. We thus chose to study the resistivity of LSCO thin films with Sr doping
slightly above the minimal doping for superconductivity in order to be able to drive gradually the system
towards the insulating state by increasing the magnetic field. Two samples with different Sr content were
studied in this work, namely x = 0.08 (sample 008) and x = 0.09 (sample 009).

The thin film for sample 008 was deposited onto SrTiO3 (STO) substrates at KU Leuven, using dc
magnetron sputtering as described in reference [33]. For this sample, the resistance as function of magnetic
field for different temperatures was measured in KU Leuven high pulsed magnetic field facilities, using four
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Figure 6. (a) Resistivity versus magnetic field for sample LSCO 0.08 for a given set of temperatures ranging from 2 K to 150 K.
(See text for the experimental details.) An accumulation point is clearly visible around 19 T corresponding to the signature of the
clean QCP at intermediate temperatures. (b) Resistivity versus magnetic field for sample LSCO 0.09 for a given set of
temperatures ranging from 1.5 K to 79.6 K. (See text for the experimental details.) Note that some of the pulses were only
performed up to 30 T. Two accumulation points are visible corresponding to the clean QCP (≈18 T) and the high-field QCP
(≈36 T). Curves are labeled by the temperature in Kelvin units.

probe measurements on an epitaxial film of thickness t = 100 nm, patterned in strips of 1 mm ×100μm.
High-field pulses up to 49 T were applied from 1.5 to 300 K perpendicularly to the ab-plane of the c-axis
oriented films. While applying a nominal ac current of intensity typically about 100 μA at 50 kHz, the
voltage across the sample was measured and stored in a transient recorder operating at 1 MHz. In order to
avoid any possible artifact due to the superconducting transition during the magnetic field pulse that may
affect the current through the sample, the latter was also measured during the pulse. The nominal current
density was more than two orders of magnitude below the critical current at low temperature, and it was
checked that lowering the current to 10 μA did not affect significantly the measured resistance. In order to
remove μ0 dH/dt corrections a standard procedure was applied. We performed two successive pulses at each
temperature for two opposite directions of the magnetic field and averaged out the measured voltages, that
were then amplified and mixed up with a contribution of a μ0 dH/dt generated at a pick-up coil of a few
turns situated near the sample. This procedure enabled to separate the sweep-rate induced signals in the
wiring from the meaningful physical signal. We therefore obtained a set of R�(H, T) data.

The 009 thin film was grown by pulsed laser deposition in IIT Kanpur on LaSrAlO4 (LSAO) substrate.
This film of typical dimensions 4 × 4 mm2 and of thickness t = 200 nm was measured in a Van der Pauw
geometry. R�(H, T) data as a function of field up to 54 T and temperature from 1.5 to 300 K was obtained
at LNCMI Toulouse high field facility using similar techniques and procedures, with a typical nominal
current intensity of about 10 μA. The experimental resistance versus magnetic field curves are pictured in
figure 6. The resistances measured during the increasing and decreasing part of the pulses are very close
(only the increasing branch is shown). Although this indicates that the heating effect of the pulse on the
measurements is shown to be extremely limited, only the increasing field values were used.

Our goal here is to derive a magnetotransport phase diagram to be compared with the theoretical
results. A microscopic computation of transport would be a formidable task as it would require to take into
account the quantum nature of quasiparticles, their scattering in the CDW regions, their role in mediating
phase coherence between the superconducting filaments, etc [12, 31–34]. Therefore, we avoid in our
approach a microscopic attempt to describe the resistivity experiments and we concentrate on the
characteristic temperatures which can be extracted from the transport data. Specifically, we assume the
crossover lines are well represented by the proxies introduced in the previous section, so we directly extract
the phase diagram from the behavior of characteristic temperatures as a function of magnetic field. To find
the first and second temperature derivative of the resistivity it is convenient to fit the data as done in
reference [5]. Thanks to the fact that we are at a doping very close to the insulator superconducting
transition it is possible to completely suppress superconductivity with the highest fields. This allows for a
much simpler fit as will be shown below. Indeed, rather than fitting each R(H, T) curve for each H with
independent parameters we manage to fit the entire surface in the (H, T) plane at once, with a considerable
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Figure 7. Temperature dependent resistivity for sample 008 (LSCO/STO, x = 0.08) for different fields. Panel (a) shows data at
selected fields together with the two-dimensional fits. Fields start from μ0H = 0 T (hereafter, μ0 is the magnetic permeability of
free space) in the lower curve, up to 48 T, in intervals of 4 T. Panel (b) shows detailed data at low temperatures. The black curve
is the fit of the data without superconducting component at 50 T (black dots). Dashed lines are the same fits but without the
tanh low temperature cutoff (see text). In (a) and (b), the open black circle at T = 0 indicates the quantum of resistance,
RQ = h/(2e)2. Panel (c) is the superconductivity-related resistance in semi-log scale showing the exponential behavior of the
resistivity above a cutoff temperature T0, as shown by the lines.

decrease in the number of fitting parameters. The accuracy of this procedure entails a much more robust
method to extract relevant characteristic temperatures, with respect to reference [5].

The fits were obtained considering two independent contributions to the conductivity,

[R�(H, T)]−1 =
[
R�,SC(H, T)

]−1
+

[
R�,CO(T)

]−1
. (5)

The second term on the rhs represents the field independent conductivity in the absence of any
superconducting fluctuation and is characterised by a crossover from the linear high-temperature behaviour
of resistivity of the metallic state to the logarithmic insulating-like behaviour taking place at low T under
strong magnetic fields, that we associate to the formation of the polycrystalline CDW state (charge-ordered
state). We therefore assume that this is the high-field behaviour of the system and estimate it by a fit to the
higher field data (typically μ0 H = 50 T) and maintained if fixed for all the fields measured in that sample.
For R�,CO(T) we used a linear term plus a polynomial in (log T) up to (log T)3 depending on sample. The
resulting R�,CO(T) is shown with a black line in figure 7(b) where the data of figure 6(a) is presented for
fixed selected H values as a function of temperature. Subtracting this contribution to the total conductivity
allows to identify the contribution of superconductivity (static as well as fluctuating) to transport, as
represented by the first term in the rhs of equation (5), which also encodes all the significant magnetic field
dependence of transport.

The superconductivity-related resistance, R�,SC, shows that at high-temperature superconducting
fluctuations disappear rapidly (exponentially with reduced temperature) above a characteristic temperature
T0, as shown in figure 7(c). This rapid suppression of fluctuations was previously observed in YBa2Cu3Oy

[35, 36] and LSCO thin films [33] and associated to the presence of an energy cutoff [37–39] whose value is
found to be doping-dependent [40]. The existence of this scale has been emphasized recently in various
cuprates [41].

At low temperatures and low/intermediate fields, the superconductivity-related resistance is expected to
display a linear behavior in temperature as follows from two-dimensional Aslamazov–Larkin fluctuations
[31–34] at temperatures close to Tc. We adopt a simple phenomenological form which interpolates between
the exponential behavior at high temperature and the Aslamazov–larkin behavior,

RAL
�,SC(H, T) =

eT/T0 − eTB
c /T0

σ�,0
θ(T − TB

c ). (6)

Indeed this expression behaves as ∝ T − TB
c at low temperature, where TB

c will be termed the ‘bulk’ critical
temperature. The parameters T0, TB

c and σ�,0 are taken to be functions of H alone, so all the temperature
dependence is shown explicitly in equation (6).

Once R�,CO(T) was fixed, fits were done for the full set of data in the (H, T) plane, simultaneously
minimizing the total square error respect to the parameters defining RAL

�,SC(H, T). We took the parameters
in the fit namely TB

c and T0 to be polynomials in H of degree 3.
For σ�,0(H) we used a Lorentzian in H centered at H = 0. Because scans were done in field at fixed

temperatures, the data used has very high resolution in field (nearly 1300 field values, with μ0 H between 0
and 50 T) and much lower resolution in temperature (16 temperatures with higher resolution at low
temperatures).

Constant field cuts of the resulting fit are shown with dashed lines in figure 7(b). It represents very well
the experimental data except for the low temperature region (� 8 K) at intermediate fields. The root of the
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Figure 8. Temperature dependent resistance per square for sample 009 (LSCO/LSAO, x = 0.09) for different fields. Fields start
from μ0 H = 0 T in the lower curve up to 48 T in intervals of 4 T. The black curve is the fit of the data without superconducting
component at 54 T (black dots). The open black circle at T = 0 indicates the quantum of resistance RQ = h/(2e)2.

problem becomes clear upon inspection of panel (a). Notice that fluctuating superconductivity produce a
visible magnetoresistance below the zero field from TONS ≈ 55 K all the way down to Tc. Thus, the
Aslamazov–Larkin regime is associated with a very broad regime of fluctuations characteristic of a
two-dimensional superconductor. In contrast, as it is clear from figure 7(b), a much more rapid variation
sets in below 8 K where points at intermediate fields are not fitted by the dashed lines (equation (6)). In
other words, it is not possible to fit with a single Aslamazov–Larkin form both the broad fluctuating regime
starting at TONS and the low-T regime at intermediate fields. This calls for a different mechanism setting in
at low T, which we attribute to filamentary superconductivity short circuiting an otherwise finite low-T
resistivity. In order to describe this effect we simply add an hyperbolic tangent cutoff to the
superconducting component,

R�,SC(H, T) = RAL
�,SC(H, T) tanh

(
T − TF

c

T1

)
θ(T − TF

c ). (7)

The theta function in equations (6) and (7) ensures that zero resistivity occurs at the maximum among the
‘bulk’ and the filamentary critical temperature parameters, TB

c and TF
c , respectively. For TF

c (H) and T1(H)
we used a linear and quadratic function of H. Using equation (7) we obtain the full line fits of figure 7,
which now work over the whole temperature range. We remark again that the fits are based on
phenomenological functions and are not pretended to be derived from the theory of previous section. On
the other hand they enable an accurate global representation of the data, which gives access to unbiased
characteristic temperatures as a function of external parameters, as it will be shown next. On passing, we
notice that signatures and extension of superconducting fluctuations in Nernst effect measurements were
discussed in references [42, 43].

In order to further check the experimental result we have repeated the analysis on a different LSCO thin
film with slightly different Sr content x = 0.09 but different growing conditions (figures 6(b) and 8). The
occurrence of filamentary superconductivity is quite apparent from the low temperature drop in resistance
in the curves showing semiconducting behavior. Notice again that this effect sets a characteristic
temperature much lower than the onset of ‘bulk’ magnetoresistance effects TONS ≈ 40 K. Thus, also this
sample shows two well separated temperature scales for precursor superconducting effects which we
associate with precursor ‘bulk’ superconductivity and precursor filamentary superconductivity.

Once the optimum surface is obtained in the (H, T) plane, it is possible to perform equal-resistivity plots
as shown in figure 9. Here, we also show the maximum between TB

c (H) and TF
c (H) (red dashed line) which

determines the upper boundary of the R�(H, T) = 0 region (colored blue). As expected TB
c (H) [TF

c (H)] is
dominant at low [high] field with a noticeable kink at the intersection. In order to extract the characteristic
crossover temperatures defined in figure 5(c), we now determine the temperatures of the resistivity
maximum Tmax(H) and minimum Tmin(H) by solving ∂R�(H, T)/∂T = 0. Furthermore, we find the
temperature Tinf (H) of the resistivity inflection point, ∂2R�(H, T)/∂T2 = 0.

We first discuss the inflection point at low fields (blue dashed line). At high temperature, the resistivity
has a positive curvature (figure 7(a)) which at small field is compensated by the onset of superconducting
correlations. Therefore the inflection point is taken as the characteristic onset temperature, Tinf ≈ TONS for
two-dimensional superconducting correlations (blue dashed line in figure 9). Notice that zero resistance
shown by the blue region in figure 9 occurs at a much lower temperature (red dashed line), corresponding
to three-dimensional phase coherence. This issue is discussed below.
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Figure 9. Phase diagram from experimental resistivity encoded on a color scale for: (a) and (b) sample 008 LSCO/STO,
x = 0.08; c) sample 009 LSCO/LSAO, x = 0.09. The red dashed line is the extrapolated Tc below which R� = 0 (blue region).
The black dashed line represents the zeroes of the first temperature derivative of the square resistance with the upper (lower)
branch representing a minimum (maximum). The blue dashed line represents the zeroes of the second derivative, i.e., the
inflection point which lays between the minimum and the maximum of each R�(T) curve when they exists. Full lines are equal
resistivity levels in intervals of 0.4 kΩ with the lower visible level close to Tc corresponding to 0.4 kΩ. The white dashed line is the
isoline corresponding to the quantum of resistance. False colors encode the square resistance. The grey rectangle at the bottom
indicates the extrapolated region (i.e. out of the range of available experimental data). Notice, however, that the leading behavior
defining the foot is already quite clear from the available data in figure 7. (b) is a zoom of the critical region of (a).

Coming back to TONS, we see that it gets rapidly suppressed as a function of field and points to a clean
quantum-critical point around μ0 HCQCP = 22 T for sample 008 (x = 0.08). See figures 9(a) and (b). The
existence of this clean quantum-critical point (and an associated plateau) was already proposed, together
with the existence of a two-stage transition in reference [44]. A two-stage transition was subsequently
reported and discussed in reference [45]. As also observed in reference [44], the resistivity per square at this
plateau corresponds quite closely to the quantum of resistance RQ indicated by an open circle at the origin
in figures 7(a) and (b). R� = RQ is also indicated with a white dashed line in figure 9. Theory predicts that
in the case of a perfectly self-dual insulator-superconductor transition, the critical resistance should be
equal to the quantum of resistance [12, 46, 47]. Real systems may show deviation from perfect duality and a
different critical resistance. Interestingly enough, the present way of plotting data reveals that RQ indeed
coincides with the separatrix line over a broad temperature and field range. A study in which the carrier
density in a single layer of the same material was tuned with an electric field [48] found R� = RQ at the
insulator-superconductor transition, in good agreement with the critical resistance in the present study. It is
worth mentioning that in the latter experiment the lowest temperature measured was 4.3 K, so the
filamentary superconductivity observed here was not accessible (cf figure 9(b)).

At high fields and below T ≈ 60 K, the polycrystalline CDW phase becomes relevant. The crossover is
characterized by a change from metallic behavior at high temperature to semiconducting behavior at low
temperature, justifying the choice Tmin ≈ TCDW as the characteristic CDW onset temperature (black dashed
line). We see that TCDW approximately mirrors the behavior of TONS and drops dramatically with decreasing
field in the critical region.

At low temperatures and intermediate fields a maximum of the resistivity appears preceded by a nearby
inflection point (see for example the blue curve at intermediate field in figures 7(a) and(b)) and figure 8.
We associate this behavior with the onset of filamentary superconducting transition TONSF. Indeed, TONSF as
function of H shows the expected characteristic ‘foot’ in the phase diagram of figure 9 (see figures 4(a) and
5(b)). Another fingerprint of filamentary superconductivity is that both Tinf (dashed blue line) and Tmax

(dashed black line) are very close in this region (cf figure 5(c)).
Figure 9(c) shows the phase diagram for sample 009 with x = 0.09. In this case the drop of TONS is more

gradual, which could be related to a more gradual decrease of the stiffness when disorder is increased
(compare TONS, TONSF with the light blue curve in figure 4). In any case, since samples 008 and 009 are
grown under different conditions and on different substrates, the fact that filamentary superconductivity is
observed in both cases pleads for the universality of the phase diagram in this region of doping.
Interestingly an analysis in a wider doping range with a different fitting methodology reaches similar
conclusions [5].

4. Discussion

In this work, we have taken a simplified model for CDW-superconductivity competition. For the CDW our
model has only two possible ‘colors’, A/B. Colors correspond to different realizations of a broken symmetry
phase that are equivalent by an operation of the high (unbroken) symmetry group.

11



New J. Phys. 22 (2020) 073025 B Leridon et al

We expect that increasing the number of CDW colors does not change substantially our theoretical
results. Also in our modeling we do not need to specify the microscopic origin of CDW colors. There are
presently several possibilities in the case of cuprates which we now discuss: (i) Scanning tunneling
microscopy [49] have shown that underdoped cuprates are characterized by CDW domains with 4-lattice
spacing periodicity separated by discommensurations. The translation operation naturally defines 4 colors
for the CDW for a given orientation of the unidirectional CDW (see figure 3F in reference [49]). (ii) A
related possibility is that stripes are formed at high temperatures but are metallic and half-filled [50] and
develop a secondary CDW Peierls stability along the stripe which, in strong coupling, can be seen as a lattice
of Cooper pairs [51]. It is natural to describe this state with an effective negative-U Hubbard model along
the chains, with an associate quasidegenerate superconducting state. (iii) Yet another possibility is suggested
by a microscopic analysis which finds an incommensurate CDW in oxygen with d-wave symmetry which
can be rotated to d-wave superconductivity [52, 53]. Here, an Ising order parameter controls excess charge
in x-oriented Cu–O–Cu bonds with respect to y-oriented Cu–O–Cu bonds, which can be associated to the
two possible colors of our description. (iv) Alternatively, one can see the incommensurate nature in (iii) as
consequence of the weak-coupling analysis and consider a locally commensurate (strong coupling) version
of the theory with superconductivity nucleating at the discommensurations, as in (i). More experimental
and theoretical work is needed to establish which scenario occurs in a particular material.

The disorder-induced coexistence of superconductivity and CDW can be seen as a form of intertwined
order in the sense of reference [8]. However, these authors treat pair-density-wave order (a self-organized
version of the Fulde–Ferell–Larkin–Ovchinikov state [54, 55]) as the primary order and CDW as a parasitic
order. In the present scenario, both CDW and bulk superconducting order are primary, while filamentary
superconductivity is parasitic.

We have used transport data to derive a phase diagram assuming the magnetic field as tuning parameter
(figure 9). We expect similar phase diagrams using lattice strain [23], field effect [48], or simply doping as
tuning parameters. Indeed, comparing figures 9(a) and (c), one concludes that doping plays a role similar to
that of magnetic field, since the phase diagram appears rigidly shifted [5]. The advantage of the magnetic
field is that, being associated with a small energy scale, a high resolution scan of the crossovers is possible.

The main difference between the theoretical and the experimental phase diagram discussed is that
superconductivity in the former is replaced by two-dimensional fluctuating superconductivity in the latter.
One should take into account that the theory does not include long-range interactions and quantum
fluctuations which are expected to suppress the zero resistance state [56]. Therefore, we associate TONS to
the transition temperature of the model without these effects. With this caveat, the two phase diagrams are
in excellent agreement, in particular, the experimental phase diagram clearly exhibits the foot-like behavior
indicating filamentary superconductivity.

After the theory part of this work was completed and posted in reference [4], reference [57] appeared,
where a very similar phase diagram was derived in a model of superconductivity competing with
incommensurate CDW (rather than commensurate as here) in the presence of disorder. The kind of
topological defects considered are different—the latter model does not predict filamentary
superconductivity. Nevertheless, the fact that the essential physical outcomes of the two approaches are
similar pleads in favour of a rather generic character of disorder-induced superconductvity inside an
otherwise stable CDW phase.

The effect of the competition between CDWs and superconductivity in the presence of disorder, with
the magnetic field acting as a driving parameter was also investigated in reference [58], within a nonlinear
sigma model, and the theory was used to discuss three-dimensional CDW order in YBa2Cu3Oy, under
magnetic field. The possibility of residual local superconducting order was discussed thereby, but the
occurrence of topologically protected re-entrant filamentary superconductivity was not investigated. From
the experimental point of view, the competition and/or coexistence between superconductivity and stripe
[59, 60] or CDW [60–63] order, possibly within an inhomogeneous scenario, have been repeatedly assessed
and discussed in cuprates.

It has been proposed that in some underdoped cuprates long-range superconducting order [64–66] is
frustrated by a peculiar symmetry of the superconducting state. It is not clear at the moment if this effect
contributes also to the difference between TONS and Tc in the present samples. One can reverse the
argument and argue that filamentary superconductivity is particularly unsuited for three-dimensional phase
locking, as the filaments in one plane will in general not coincide with the filaments in the next plane, thus
frustrating Josephson coupling. Whether this is the underlying reason for the lack of three-dimensional
phase locking in experiments deserves further scrutiny.

The deduced phase diagram is not peculiar of the sample analyzed in figure 9. Remarkably, an almost
identical phase diagram has been derived by completely different techniques in a different material, namely
specific heat measurements [67] in YBa2Cu3Oy, suggesting that this phase diagram is a quite generic feature
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of underdoped cuprates. It is suggestive that the experimental stiffness as a function of temperature also has
the tendency to develop a foot above standard theoretical predictions (see for example, figure 4 of reference
[68]).

The model presented here is very general and applies to other systems as well, where the balance
between CDW and superconductivity can produce a topologically protected intertwined order. A
particularly interesting model system is the Cu-intercalated dichalcogenide 1T–TiSe2. In this system,
scanning tunneling microscopy [69] shows a commensurate CDW in the undoped system with domain
walls appearing upon Cu intercalation. Simultaneously with the latter, superconductivity appears too. The
link between CDW discomensurations and superconductivity emerges also from magnetoresistance
experiments in gated two-dimensional materials [70, 71] and from x-ray experiments under pressure [72].
A McMillan–Ginzburg–Landau model specific for 1T–TiSe2 shows indeed that superconductivity nucleates
at discommensurations of the CDW in agreement with our approach [73]. Filamentary superconductivity
has also been inferred by phenomenological analyses of transport in LaAlO3/SrTiO3 heterostructures [74],
in ZrNCl and other dichalcogenides [75].

In summary, we propose that in systems in which attractive interactions drive CDW and
superconductivity with similar energies disorder may break the CDW into domains with filamentary
superconductivity emerging at the interfaces. Long-range superconductivity eventually takes place when the
temperature is low enough to allow the phase locking between the superconducting regions.

This adds to the case of 4He and suggest that the phenomenon at hand is very general. In solids,
remarkably, melting occurs first at the surface [76]. Thus, when a polycrystal is driven just below the
melting temperature, the less stable liquid phase nucleates at the interface, which represents a classical
analog of the above studied phenomena and underpins again its generality.
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