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Abstract In this paper, the performance appropriateness of population-based meta-
heuristics for immunotherapy protocols is investigated on a comparative basis while
the goal is to stimulate the immune system to defend against cancer. For this pur-
pose, genetic algorithm (GA) and particle swarm optimization (PSO) are employed
and compared with modern method of Pontryagin’s minimum principle (PMP). To
this end, a well-known mathematical model of cell-based cancer immunotherapy is
described and examined to formulate the optimal control problem in which the ob-
jective is the annihilation of tumour cells by using the minimum amount of cultured
immune cells. In this regard, the main aims are: (i) to introduce a single-objective
optimization problem and to design the considered metaheuristics in order to appro-
priately deal with it; (ii) to use the PMP in order to obtain the necessary conditions
for optimality, i.e. the governing boundary value problem; (iii) to measure the results
obtained by using the proposed metaheuristics against those results obtained by us-
ing an indirect approach called forward-backward sweep method (FBSM); and finally
(iv) to produce a set of optimal treatment strategies by formulating the problem in a
bi-objective form and demonstrating its advantages over single-objective optimiza-
tion problem. A set of obtained results conforms the performance capabilities of the
considered metaheuristics.
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1 Introduction

Cancer is still one of the major causes of death in the world and as yet there is not
a fully comprehensive knowledge of its appearance and elimination. The necessity
of addressing preventive measures, medical research, and more effective treatment
strategies has been persistently obvious. It is anticipated that cancer will be the most
important obstacle to improving life expectancy in the current century. There has been
an estimated 18.1 million cancer cases and 9.6 million cancer deaths in 2018. A de-
tailed status report has been given by Bray et al. (2018).

Patients usually undergo cancer treatments, which are most likely to have the high-
est degree of effectiveness and the fewest side effects depending on the cancer type
and how advanced it is. Surgery, radiation therapy, chemotherapy, targeted therapy,
hormone therapy, and immunotherapy are considered as the most important types
of treatment. Radiotherapy, chemotherapy, and targeted therapy have made limited
progress in recent years (Vrána et al. 2018). However, efforts to investigate more suc-
cessful treatment strategies have been made through immunotherapy (Kirschner and
Panetta 1998; Rosenberg 2014; Tran et al. 2017; Gopalakrishnan et al. 2018; Wil-
son et al. 2018; Arabameri et al. 2018) and the use of immune system to treat cancer
patients has achieved prominence as a successful treatment plan.

Cancer immunotherapy is aimed at engaging the immune system ability to recog-
nize and destroy cancerous cells (Evans et al. 2018). It exploits the fact that cancer
cells often have molecules on their surface—the tumour antigens—that may be de-
tected by the immune system. Tumours are antigenic tissues due to their many genetic
mutations. This antigenicity is not generally changed into effective immunogenicity.
Tumour immunology recognizes antigens and develops strategies to improve anti-
tumour immunity. Recent clinical successes, in the form of several approaches to can-
cer immunotherapy, support the concept that therapeutic utilization of immune system
can actually succeed in important effects on cancer patients (Khalil et al. 2015).

Adoptive cell therapy (ACT) is a type of cancer immunotherapy that refers to the
transfer of activated immune cells to a patient. T cells (a type of lymphocyte, one of the
sub-types of white blood cells) are taken from the patient and cultured in the labora-
tory with the goal of improving immune functionality, then returned to the patient. For
instance, cytotoxic T cells—an example of effector cells—become activated and capa-
ble of responding to cancer cells. Effector cells are any of different types of relatively
short-lived activated cells that defend the body in an immune response. ACT may be
accompanied by the administration of Interleukin-2 (IL-2). IL-2 is a type of cytokine
(cytokines are molecules, important for basic activities of cells such as development,
repair, and immunity) that controls the activities of lymphocytes. It specifically plays
essential roles in immune system by direct effects on T cells (Kirschner and Panetta
1998; Rosenberg 2014; Rosenberg and Restifo 2015; Spranger et al. 2017).

In parallel with scientific research on cancer immunotherapy, which leads to im-
portant medical advances, the theoretical study of tumour–immune dynamics has pro-
vided valuable insights into the cancer–immune interaction. The role of the key com-
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ponents of immunity in cancer dynamics, cancer characteristics, and various factors
as immune profiles are theoretically assessed and tumour dynamics (i.e., long term tu-
mour recurrence and short term oscillations) are comprehensively described inmathe-
matical modelling (Kirschner and Panetta 1998; Castiglione and Piccoli 2006; Baner-
jee and Sarkar 2008; Altrock et al. 2015; Cappuccio et al. 2006; d’Onofrio 2008;
Eftimie et al. 2011; Soto-Ortiz and Finley 2016; Kosinsky et al. 2018; Valentinuzzi et
al. 2018).

Improvements in efficiency of treatment strategies, however, can be obtained by
considering an appropriate optimality criterion to be achieved, where the immuneostim-
ulants and cancer-killing agents consumption is a major concern. The optimality con-
ditions may be derived by employing: (i) the calculus of variations and Pontryagin’s
minimum principle (PMP) that leads to a nonlinear two-point boundary-value prob-
lem (TPBVP) (see Pontryagin et al. 1962); (ii) the method of dynamic programming
and solving the Hamilton–Jacobi–Bellman equation (Bellman and Kalaba 1966).

Optimal control theory covers a wide range of methods of obtaining the optimum
value of a performancemeasure. Specifically, thesemethodsmay be categorized under
three macro-headings:

i. indirect methods in which the calculus of variations is used to determine the op-
timality conditions. The indirect multiple-shooting and the indirect collocation
methods fall into this category;

ii. direct methods in which the optimal control problem is translated into a nonlinear
optimization problem bymaking an appropriate approximation of the state and/or
control of the optimal control problem. Direct collocation methods are the most
notable approaches to optimal control problems; and,

iii. pseudospectral methods for optimal control (Ross and Karpenko 2012).

Ghaffari and Naserifar (2010) utilize a the well-known cancer-immunotherapy
model, introduced byKirschner and Panetta (1998). They adopt the forward-backward
sweep method (FBSM) for solving the optimal control problem. In this paper, the ge-
netic algorithm (GA) and the particle swarm optimization (PSO) are used to provide
optimal treatment strategies with the aim of comparing the results with those ob-
tained by Ghaffari and Naserifar (2010), and demonstrating the capability of these
metaheuristics.

In the literature, several different optimal control problems are observed which
can be categorized according to the objective function, the model used for describing
the immune-cancer dynamics, and the method of solving the problem. A detailed lit-
erature on optimization problems in cancer immunotherapy is given in Section 2. The
Kirschner–Panetta model, used in this paper, is briefly described in Section 3. Section
4 is devoted to the formulation of the single-objective optimal control problem. The
GA and the PSO are described in Section 5. Section 6 makes a comparison between
the methods used here and the method adopted by Ghaffari and Naserifar (2010). Sec-
tion 7 is devoted to formulating the problem in the form of a bi-objective optimization
problem. Finally, a brief summary of the results are given in Section 8 and the pros
and cons of the methods are highlighted.
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2 Related literature and contribution of the paper

The literature on optimal control problems in cancer immunotherapy is vast, however,
the main body of the works focuses on the indirect methods (Castiglione and Piccoli
2006; Burden et al. 2004; Piccoli and Castiglione 2006; Castiglione and Piccoli 2007;
Cappuccio et al. 2007; Pillis et al. 2008; Ghaffari and Naserifar 2010; Ledzewicz et
al. 2013; Elmouki and Saadi 2016; Ravindran et al. 2017). Very few works devote
their attention to metaheuristics and, in addition, usually introduce a single approach
without making comparisons between different methods.

The PMP is the topic of the works by Burden et al. (2004), and Ghaffari and Naser-
ifar (2010). Both papers utilize the Kirschner–Panetta model (see the original paper
by Kirschner and Panetta 1998) to produce optimal treatment protocols, where their
objective is to simultaneously cope with the volume of cancer cells during the ther-
apy and to minimize the total amount of the effector cells used during the treatment.
Specifically, Ghaffari and Naserifar (2010) add a payoff term to the objective func-
tional, originally proposed by Burden et al. (2004), in order to minimize the cancer
cells at end of the treatment. Their optimal solutions turn out to be virtually bang-bang
controls, i.e. the optimal controls (the amount of drug as a function of time) switch
from upper (lower) bound to the other and are strictly never in between.

The distinguishing feature of the contributions made by Castiglione and Piccoli
(2006), Piccoli and Castiglione (2006), Castiglione and Piccoli (2007), and Cappuccio
et al. (2007) is that the drug administration is considered as a set of instant injections
during a particular period of treatment. In fact, the impulsive control function is de-
fined as the sum of finite number of Dirac delta functions representing N injections
(of ui amount of drug at time ti). They employ the so-called needle variations (orig-
inally used by Pontryagin and his colleagues to prove the PMP) and establish their
propositions in order to compute the derivatives of the objective function with respect
to its variables ti and ui. Thus the optimal control problem is translated into a mini-
mization problem that can be solved by using any numerical scheme such as steepest
descent method. Castiglione and Piccoli (2006) minimize the final value of tumour
mass, and then, Piccoli and Castiglione (2006) add another term in order to minimize
the time period during which the cancer cells are above a fixed threshold, and finally,
Cappuccio et al. (2007) take this approach and (at the same time) minimize the fi-
nal tumour mass, the integral cost of tumour exceeding a fixed maximum, the total
amount of drug.

A direct collocation method is employed by Pillis and Radunskaya (2003). The au-
thors’ aim is to minimize the tumour mass during and at the end of treatment. Minelli
et al. (2011) formulate two (continuous and discrete) optimal problems, where the
goal is to minimize both the cancer cells at the final time and the total amount of the
medicine. The idea of the authors is the use of direct transcription and collocation
method for the solution of continuous problem, and the use of direct transcription and
multiple-shooting method for the discrete control problem.

Houy and Grand (2019) take the cancer-immune model introduced by Soto-Ortiz
and Finley (2016). Their objective is to design an optimal course of immune cell in-
jections in order to eradicate the tumour over a 4000-day period. The authors shift
the focus onto a heuristic approach, i.e. the Monte Carlo tree search algorithm—a
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method for finding optimal decisions in a given domain by taking random samples in
the decision space (see the article by Browne et al. 2012)

Finally, the GA is the approach, adopted by Lollini et al. (2006), Pennisi et al.
(2009), Kiran and Lakshminarayanan (2013), and Qomlaqi et al. (2017), in dealing
with cancer therapy. Lollini et al. (2006) use the immune-cancer model proposed by
Celada and Seiden (1992) while their goal is to attain the minimum number of drug
injections in a 400-day period of treatment to completely eliminate the tumour. Ki-
ran and Lakshminarayanan (2013) formulate a multi-objective optimization problem.
They integrate chemotherapy with immunotherapy to determine what schedule (time
and dosage of injections) andwhich type of therapy could bemore successful in taking
control of tumour evolution. The authors use a version of GA, called non-dominated
sorting genetic algorithm II (NSGA-II), a method devised by Deb et al. (2002) for
dealing withmulti-objective optimization problems. NSGA-II is also used by Batmani
and Khaloozadeh (2013) for presenting an optimal treatment strategy, and coping with
drug resistance and side effects.

In contrast to the works presented in the literature, which are mainly based on em-
ploying only a single method, the results obtained in this paper are based on exploiting
the characteristics of two metaheuristics in order to provide a comparison with the re-
sults obtained by using the FBSM and to challenge the validity of proposed solutions.

Regarding the obtained solutions, the main aspects of contributions, made in this
paper, are as follows:

i. in order to sufficiently employ the GA, the optimal control problem is translated
to a discrete binary-valued problem;

ii. single-point, two-point, and uniform crossover are simultaneously used to ensure
exploration-exploitation utility in parallel with each other;

iii. different to the simpleGA that suffers the so-called premature convergence, in this
paper, the GA is specially designed to preserve the population diversity (Pandey
et al. 2014);

iv. unlike the original PSO, introduced by Kennedy and Eberhart (1995), the con-
striction coefficients (Clerc and Kennedy 2002) are employed and properly de-
fined in order to induce the swarm to display exploration (versus exploitation)
tendency and converge on optimum solutions;

v. the optimal therapeutic protocols are enhanced by formulating the problem in a
bi-objective form.

3 The Kirschner–Panetta model

In this section, the fundamental elements of Kirschner–Panetta model, introduced
originally by Kirschner and Panetta (1998), are detailed:
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dx

dt
= cy − µ2x+

p1xz

g1 + z
+ s1, (1a)

dy

dt
= r2y (1− by)−

axy

g2 + y
, (1b)

dz

dt
=

p2xy

g3 + y
− µ3z + s2, (1c)

with initial conditions:
x (0) = x0, y (0) = y0, z (0) = z0. (1d)

Table 1: Parameters in (1) and their units/descriptions; IU: International Unit (stan-
dard measure of IL-2), L: Litre.

Parameter Value Unit Description

c 0 ≤ c ≤ 0.05 day−1
The antigenicity of tumour;
larger values of c represent well
recognized antigens

µ2 3.00× 10−2 day−1 Multiplicative inverse of the
natural lifespan for effector cells

p1 1.245× 10−1 day−1

Proliferation rate of effector
cells estimated by using exper-
imental data (see Kuznetsov et
al. 1994)

g1 2.00× 107 IU.L−1
Threshold for proliferation of
effector cells stimulated by IL-
2

s1 cell.day−1 External source of effector cells

r2 1.80× 10−1 day−1
The logistic growth rate of tu-
mour cells in the absence of an
immune response

b 1.00× 10−9 cell−1 Multiplicative inverse of the tu-
mour’s carrying capacity

a 1.00 day−1 Immune system’s strength to
eliminate cancer cells

g2 1.00× 105 cell Threshold for cancer removal
p2 5.00 IU.L−1.cell−1.day−1 production rate of IL-2

g3 1.00× 103 cell
Threshold for production of IL-
2 due to the interaction between
cancer cells and effector cells

µ3 1.00× 101 day−1 Multiplicative inverse of the
lifespan for IL-2

s2 IU.L−1.day−1 External source of IL-2

Table 1 provides a brief description of the parameters in (1). The proposed model
presents the immune-tumour dynamics by defining three populations: (i) x indicates
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Fig. 1: Solutions to nondimensionalized Kirschner–Panetta model for different val-
ues of c. The tumour carrying capacity is scaled to 105 (cell). (a) c = 1.00 ×
10−2

(
day−1

); (b) c = 2.97× 10−2
(
day−1

); (c) c = 4.00× 10−2
(
day−1

).
the effector cells (effectors); (ii) y shows the cancer cells; and (iii) z represents the IL-
2. The model incorporates the most important concepts of tumour-immune dynamics
including the feature of IL-2, and is able to show both tumour regression for a highly
antigenic tumour (i.e. larger values of c; see Table 1) and uncontrolled tumour growth
for a low antigenic tumour.

Furthermore, according to (1):
1. equation (1a) depicts the rate of change of effector cells over time. Specifically,

i. effectors grow in the presence of tumour cells (the first term on the right-hand
side of (1a)), where parameter c shows the antigenicity of the tumour. Larger
values of c denote well-recognized antigens;

ii. the third term on the right-hand side of (1a), which is of Michaelis-Menten
form, indicates effector cell proliferation, stimulated by IL-2;

iii. s1 denotes the administration of effector cells as an external source ofmedicine;



8 S. Sarv Ahrabi, A. Momenzadeh

0 200 400 600 800 1000
0

1

2

3

4
104

(a)
0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

1.2
103

(b)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1
109

(c)
0 100 200 300 400 500

0

1

2

3
104

(d)

Fig. 2: Graph of y (t) for ACT therapy (i.e. s1 6= 0, s2 = 0). (a) c =
2.5 × 10−2

(
day−1

), s1 = 4.0 × 102 (cell/day), x0 = 1.0 × 104 (cell), y0 =

1.0 × 104 (cell), z0 = 1.0 × 104
(
IU.L−1

); (b) c = 8.0 × 10−5
(
day−1

),
s1 = 5.5 × 102 (cell/day), x0 = 1.0 × 104 (cell), y0 = 1.0 × 102 (cell), z0 =
1.0 × 104

(
IU.L−1

); (c) c = 8.0 × 10−5
(
day−1

), s1 = 5.5 × 102 (cell/day),
x0 = 1.0 × 104 (cell), y0 = 1.0 × 105 (cell), z0 = 1.0 × 104

(
IU.L−1

); (d)
c = 2.5 × 10−2

(
day−1

), s1 = 5.5 × 102 (cell/day), x0 = 1.0 × 104 (cell), y0 =

1.0× 104 (cell), z0 = 1.0× 104
(
IU.L−1

).
iv. effectors naturally decay with an average lifespan of 1/µ2 (day);

2. the rate of change of tumour cells is governed by (1b):
i. the first term on the right-hand side of (1b) illustrates that in the absence of

any immune response, the growth of cancer cells follows the sigmoid function,
i.e. the solution to the logistic differential equation: ẏ = r2y (1− by), where
the tumour’s carrying capacity is equal to 1/b = 109 (cell); and,

ii. the second term indicates the interaction of cancer cells with the effectors
where the tumour growth is brought under control;

3. equation (1c) governs the IL-2:
i. the first term on the right-hand side of (1c) shows the natural production of

the IL-2 due to the interaction between effectors and tumour;
ii. the second term indicates the decay of IL-2 with an average rate equal to

1/µ3 (day); and finally,
iii. s2 denotes the dose of IL-2 per day as an external administration.
The Kirschner–Panetta model is capable of exploring three different treatment

possibilities: (i) ACT therapy, i.e. s1 > 0, and s2 = 0; (ii) IL-2 therapy (s1 = 0, and
s2 > 0); and (iii) combined treatment, i.e. s1 > 0, and s2 > 0.
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If untreated (s1 = s2 = 0), it is impossible for immune system to eliminate the
cancer cells. This case is illustrated in Fig. 1, where (depending on the different values
of parameter c) the long term tumour recurrence and short term oscillations can be
observed. Specifically: (i) for 8.6× 10−5 ≤ c ≤ 3.25× 10−2 the solutions to (1) are
stable limit cycles with different period and amplitude dependent on the value of c
(see Fig. 1a and Fig. 1b); and (ii) for c ≥ 3.25×10−2 the oscillations become smaller
and settle quickly on a stable steady state.

ACT therapy may leads to totally different conditions. Roughly speaking,

i. an injection of effector cells less than the critical value s1,cr = (r2g2µ2) /a =
540

(
cell.day−1

) fails to completely eradicate cancer cells. This case is shown
in Fig. 2a;

ii. for lower values of c, injections more than the critical value (i.e. s1 ≥ s1,cr) lead
to a region of bistability, i.e. (dependent on the initial conditions) the system tends
to either a stable tumour-free steady state or a tumour survival (see Fig. 2b and
Fig. 2c);

iii. for larger values of c and s1 ≥ s1,cr, the system will definitely tends to a stable
(free of tumour) steady state. Fig. 2d illustrates this last case.

Treatment by only using IL-2 does not significantly vary the dynamics of the
system. Thus, it would be impossible for IL-2 therapy to result in the removal of
cancer cells. Although too much use of IL-2—more than the critical value s2,cr =
(µ2µ3g1) / (p1 − µ2) ≈ 63.5× 106

(
IU.L−1.day−1

)—may theoretically lead to the
elimination of cancer cells, it will, in turn, cause an uncontrollable increase in effectors
and damaging side effects.

Finally, a treatment strategy, based on the administration of effectors and IL-2 in
combination, boosts immune system’s chances of eliminating the tumour. And again,
the dosage of IL-2 must be restricted to s2,cr in order to prevent harmful side effects.
In comparison with ACT therapy, cancer cells with a smaller value of c even, can be
eradicated by using lower amount of injected effectors. The adequate explanation is
that the administration of IL-2 (with any value less than s2,cr) makes a reduction in
the amount of injected effectors required to eliminate cancer cells, i.e. the tumour-free
steady state will be stable while s2 < s2,cr and s1 > (µ3g1+s2)− p1s2µ2

(µ3g1+s2)
× s1,cr. Fig. 3

demonstrates how an administration of IL-2 in combination with effectors provokes
a better response.

4 Description of the optimal control problem

First, a few basic concepts of the optimal control theory, restricted to systems de-
scribed by ordinary differential equations, are recalled. Then, the optimal control prob-
lem of cancer immunotherapy is formulated by referring back to Kirschner–Panetta
model.
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Fig. 3: A comparison of y (t) in: (i) ACT therapy (s1 = 500 (cell/day) and s2 = 0)
and (ii) combined therapy (s1 = 500 (cell/day) and s2 = 4.0×106

(
IU.L−1

)
/day);

in both cases: c = 1.8 × 10−2
(
day−1

), x0 = y0 = 1.0 × 104(cell), and z0 =

1.0× 104
(
IU.L−1

).
4.1 A review of the fundamental concepts
Given the system: {

ẋ = f (x (t) ,u (t) , t) ,

x (0) = x0,
(2)

a measure (in Bolza form) of quantitatively evaluating the system’s performance may
be defined as:

J (u) = h (x (tf )) +

∫ tf

0

g (x,u, t) dt, (3)

wherexT = (x1, x2, . . . , xn) ∈ X ⊂ Rn is the state vector,uT = (u1, u2, . . . , um) ∈
U ⊂ Rm is the control input vector (X and U denote the set of admissible state tra-
jectories and the set of admissible controls respectively), fT = (f1, f2, . . . , fn) is a
continuously differentiable vector-valued function (in all its arguments), h is a differ-
entiable scalar function, and finally g is a continuously differentiable function in its
arguments.

The first term on the right-hand side of (3) indicates a function value on the bound-
ary called the payoff term, while the second term, the integral functional, represents
the performance of the system over the entire time interval: [0, tf ]. The system follows
some state trajectory when a control input is applied, and performance measure J (u)
assigns a unique real number to the state trajectory. Thus an optimal control prob-
lem may be described as: find an admissible control u∗ ∈ U (and the corresponding
admissible trajectory x∗ ∈ X) that minimizes the performance measure J (u):

min
u
J (u) , (4a)
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subject to:
ẋ = f (x (t) ,u (t) , t) , (4b)
x (0) = x0, (4c)
u (t) ∈ U, for all t ∈ [0, tf ] . (4d)

The constraint in (4b) can be transferred to the objective functional, J (u), by in-
troducing Lagrange multiplier λT (t) = (λ1 (t) , λ2 (t) , . . . , λn (t)) (also called the
co-state vector) :

J (u) = h (x (tf )) +

∫ tf

0

(
g (x,u, t) + λT (t) (f (x,u, t)− ẋ)

)
dt.

After defining the Hamiltonian function
H (x,u,λ, t) = g (x,u, t) + λT (t) f (x,u, t) , (5)

a simple version of the PMP gives the necessary conditions for u (t) to be potentially
an optimal control, where the terminal time tf and the terminal state x (tf ) are con-
sidered to be fixed and free (not restricted) respectively: let u∗ : [0, tf ] → U ⊂ Rm
be an optimal control, and let x∗ : [0, tf ]→ X ⊂ Rn (and λ∗) be the corresponding
optimal state (and co-state) trajectory. Then the optimality set (i.e., u∗, x∗, and λ∗)
satisfies simultaneously the set of the following conditions:
i. the state equation:

dx∗

dt
=
∂H

∂λ
(x∗,u∗,λ∗, t) , ∀t ∈ [0, tf ] , (6)

with initial conditions on the state vector:
x∗ (0) = x0; (7)

ii. the co-state equation:
dλ∗

dt
= −∂H

∂x
(x∗,u∗,λ∗, t) , ∀t ∈ [0, tf ] , (8)

with terminal conditions on the co-state vector (transversality conditions):

λ∗ (tf ) =
dh

dx
(x∗ (tf )); (9)

iii. optimality condition (i.e. the optimal controlu∗ minimizes the Hamiltonian func-
tion):

H (x∗,u∗,λ∗, t) ≤ H (x∗,u,λ∗, t) , ∀t ∈ [0, tf ] , ∀u ∈ U. (10)
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Concerning the minimization of the Hamiltonian function, the inequality in (10)
is transformed straightforwardly to ∂H

∂u = 0, provided that the optimal control u∗ is
strictly within the set of admissible controls for all time in the interval [0, tf ] (i.e. not
on the boundary). In this case, the boundary does not affect the solution. However,
∂H
∂u may not be equal to zero when the optimal control lies on the boundary during a
subinterval [t1, t2] of the interval [0, tf ]. A specific point is raised when U , the set of
admissible controls, is composed of scalar piecewise continuous functions u (t) such
that a ≤ u (t) ≤ b (and a, b ∈ R). In this case, it can be shown that ∂H∂u is non-negative
(non-positive respectively) if the optimal control u∗ (t) lies on the lower boundary a
(upper boundary b respectively). A heuristic proof has been given by Lenhart and
Workman (2007, section 8). In summary:


u∗ (t) = a implies ∂H

∂u ≥ 0 at time t,
a < u∗ (t) < b implies ∂H

∂u = 0 at time t,
u∗ (t) = b implies ∂H

∂u ≤ 0 at time t.
(11)

4.2 Optimal control applied to Kirschner–Panetta model

In this section, the optimal control problem of cancer treatment is formulated by adopt-
ing the PMP approach. Ghaffari and Naserifar (2010) consider a problem for ACT
therapy, i.e. effectors are the only external source for treatment (s1 > 0 and s2 = 0).
The performance of Kirschner–Panetta model is controlled by the specified objective
functional:

J (u) = Ay (tf ) +

∫ tf

0

(
y (t)− x (t)− z (t) + 1

2
B(u (t))

2

)
dt. (12)

The control input,u (t), is the percentage of a fixed amount of s1 and therefore bounded
by 0 ≤ u (t) ≤ 1. The positive real parameters, A and B, are the weight factors. The
payoff term, Ay (tf ), refers to the minimization of cancer cells at the final time. The
integrand in the second term on the right-hand side of (12) consists of: (i) y (t) to
minimize the cancer cells during the treatment; (ii)−x (t)− z (t) to keep the effector
cells and IL-2 at a high level; and (iii) the quadratic form, 1

2B(u (t))
2, to minimize

the total amount of injected effector cells during the therapy, where the minimization
of total used effector cells is B times as important as cancer cells.

For a fixed final time and a free final state, the problem is considered as follows:

min
0≤u≤1

Ay (tf ) +

∫ tf

0

(
y (t)− x (t)− z (t) + 1

2
B(u (t))

2

)
dt, (13a)
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subject to:

dx

dt
= cy − µ2x+

p1xz

g1 + z
+ u (t) s1,

dy

dt
= r2y (1− by)−

axy

g2 + y
,

dz

dt
=

p2xy

g3 + y
− µ3z,

(13b)

x (0) = 1, y (0) = 1, z (0) = 1 (13c)
The Hamiltonian function is obtained by referring to (5), (13a), and (13b):

H (x, y, z, λ1, λ2, λ3, u) = y (t)− x (t)− z (t) + 1

2
B(u (t))

2

+ λ1

(
cy − µ2x+

p1xz

g1 + z
+ u (t) s1

)
+ λ2

(
r2y (1− by)−

axy

g2 + y

)
+ λ3

(
p2xy

g3 + y
− µ3z

)
. (14)

This leads to the final formulation of the problem by using (6)-(9), (11), and (14):
dx

dt
= cy − µ2x+

p1xz

g1 + z
+ u (t) s1, (15a)

dy

dt
= r2y (1− by)−

axy

g2 + y
, (15b)

dz

dt
=

p2xy

g3 + y
− µ3z, (15c)

dλ1
dt

= 1 +

(
µ2 −

p1z

g1 + z

)
λ1 +

ayλ2
g2 + y

− p2yλ3
g3 + y

, (15d)
dλ2
dt

= −1− cλ1 −

(
r2 − 2r2by −

ag2x

(g2 + y)
2

)
λ2 −

p2g3x

(g3 + y)
2λ3, (15e)

dλ3
dt

= 1− p1g1x

(g1 + z)
2λ1 + µ3λ3, (15f)

with boundary conditions:
x (0) = 1, y (0) = 1, z (0) = 1, λ1 (tf ) = 0, λ2 (tf ) = A, λ3 (tf ) = 0, (15g)

and the control is characterized by

u (t) =


0 if λ1 ≥ 0,

− s1B λ1 if − B
s1
< λ1 < 0,

1 if λ1 ≤ − B
s1
.

(15h)
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The two-point boundary value problem (TPBVP), obtained above, may be solved by
using any of indirect methods such as indirect shooting or collocation methods. How-
ever, Ghaffari and Naserifar (2010) adopt the FBSM. Although the method is fully
introduced in the book by Lenhart and Workman (2007), for the sake of convenience,
a brief description of FBSM will be provided in Section 6.

In the following sections, the GA and the PSO are briefly described and then
adopted to solve the problem. Solving this type of problems will generally result in
bang-bang solutions, i.e. the optimal control switches periodically from upper bound
u = 1 to lower bound u = 0 (Ghaffari and Naserifar 2010). Thus the inputs in
the proposed metaheuristics, can be limited to binary-valued controls (i.e. u (t) ∈
{0, 1} ,∀t ∈ [0, tf ]) and, in turn, represent the total number (and order) of the days
with treatment.

Although Ghaffari and Naserifar (2010) state that initial conditions, x (0), y (0),
and z (0), are normalized to 1.0, the model is not scaled at all and the primary values
(given in Table (1)) are used for the optimal problem. Therefore, those values are also
used here in order to make a real and meaningful comparison between the results. This
simply means that the problem is solved for non-scaled model with initial conditions
equal to 1.0. Nonetheless, the scaled system is used in formulation of the bi-objective
optimization problem (see Section 7.4).

5 Metaheuristic approaches

Metaheuristics offer viable alternatives to more traditional algorithms in order to find
optimal (or as optimal as possible) solutions for complicated optimization problems
when the classic and exact methods fail to carry out the task in a reasonable trial pe-
riod. A metaheuristic is an algorithmic framework composed of a set of strategies to
guide the search process where the goal is to efficiently explore the search space for
quasi-optimal (even optimal) solutions. The practical significance of metaheuristics
has been grasped in diverse branches of science and engineering such as computa-
tional biology, machine learning and data mining, electronics and telecommunica-
tions, system modelling, and control. the GA and the PSO are most well-known for
their capability of efficiently fitting with a vast range of applications even multimodal
and multi-objective optimization problems. In the following sections, the GA and the
PSO will be brought in, to observe how the method, used by Ghaffari and Naserifar
(2010), deals with the highly nonlinear problem described in (13).

5.1 Genetic algorithm
A GA employs a set of mechanisms inspired by biological evolution together with
the genetics-based operators (i.e. crossover and mutation) and is generally used to
generate high-quality solutions to optimization problems. The algorithm was initially
introduced by Holland (1975) and further developed by Goldberg (1989). Over the
past years, different versions of the algorithm have been presented, however, they
are all based on the main concepts of the original algorithm. A simple GA begins by
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creating a random initial population of n solutions (these solutions are often expressed
as binary-valued strings) and then creates the next generations (new populations) by
performing the following stages:
1. computes the cost function (i.e. the objective function, if the problem is minimiza-

tion) for each member (individual) of current population and assigns a cost value
to each one;

2. some of the best individuals of current generation (i.e. individuals with lower cost
values) are passed to the next generation (called elitist selection strategy). These
individuals are called elites and are nelite in number. The elitist strategy guarantees
that the quality of solutions will not decrease during the sequence of new genera-
tions;

3. selects individuals called parents to produce new individuals called offspring. Prob-
ably, the individuals with better cost values are more likely to be selected in each
selection process. The individuals are selected based on sampling with replace-
ment, so that an individual may be selected several times;

4. combines the entries of a pair of selected parents by using crossover rules to pro-
duce two new offspring, then these offspring are passed to the next generation.
Crossover fraction, fc, specifies the number of crossover offspring, nc, which are
moved to the next generation: nc = round (fc × (n− nelite));

5. makes changes to some entries of a single selected parent by using mutation rules
in order to create new offspring called mutants. The remaining part of the next
generation, nm, is composed of mutants, i.e. nm = n− (nelite + nc);

6. the algorithm stops when a stopping criterion is met.
In a simple GA, the search process converges when the genetic nature of the GA

operators leads to a uniform generation with (almost) identical individuals. Thus, the
operators are no longer capable of producing new offspring superior to their parents.
Unfortunately, the population uniformitymay occur before finding the true optimum—
a common problem with GAs called premature convergence. Roughly speaking, the
population reaches a sub-optimal position while more successful offspring cannot be
produced. It is widely recognized that the intuitive cause of premature convergence
is the loss of the diversity of the population, and therefore the use of methods for
maintaining population diversity could be a potential strategy to reduce the chance
of premature convergence. Crowding methods (replacing similar parents with new
offspring) and fitness sharing (penalizing the individuals in densely populated areas),
which are well-known approaches to multimodal optimization problems, give promis-
ing results in the maintenance of population diversity (see the survey article provided
by Pandey et al. (2014)).

In this paper, with regard to a good spread of individuals, a direct approach to
diversity preservation is adopted in order to base an estimate on the density of indi-
viduals in the population. To this end, the assessment of the distance between an indi-
vidual and its surrounding individuals is carried out based on the concept of crowding
distance (inspired by the NSGA-II; see the original work done by Deb et al. 2002).

The proposed GA The algorithm is first initialized by creating a random population of
n individuals, then nc crossover offspring and nm mutants are produced by choosing
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any of the crossover patterns and mutation rules respectively. LetN indicate the total
of all these parents, crossover offspring, and mutants, i.e. N = n+ nc + nm and let
Ji denote the cost value of the i-th individual where i = 1, 2, . . . , N . The members
of the population are first sorted according to their cost values, so that the first and
last individuals at the top and bottom of the list correspond to the best (lowest) cost,
Jmin, and the worst cost, Jmax, respectively. The first n/2 of the best individuals are
directly moved to the next generation while the remaining individuals are selected
based on crowding distance. The crowding distance of each individual is considered
an index of the interval covered by that individual in the objective space (range of
the cost function). Thus, the i-th individual’s crowding distance, di, is defined as the
normalized cost difference between its two nearest individuals on either side. The
crowding distances of a population with N individuals are calculated as follows:

di =


Ji+1 − Ji−1
Jmax − Jmin

if i ∈ {2, . . . , N − 1},

∞ if i ∈ {1, N}.
(16)

Individuals with higher amount of crowding distance are far superior to those with
lower crowding distance values, and contribute greatly to a more diverse population.
Thus the individuals are arranged in descending order of crowding distance and the
first n/2 of individuals are selected to form the remaining part of the next generation.
The crowding distances of the first and last individuals are considered equal to infinity
in order to be transferred to next generation. A pseudo-code of the proposed GA is
given in Algorithm 1 where an I-iteration run is considered the stopping criterion.

Algorithm 1— Pseudo-code of the proposed GA
1: Create a random population of n parents, where n is a positive even integer; . Initialization
2: for i = 1 : n do
3: Compute Ji;
4: end for
5: for i = 1 : I do . Iterative phase
6: Produce nc crossover offspring;
7: Produce nm mutants;
8: Merge parents, offspring, and mutants to have a population ofN = n+ nc + nm individuals;
9: for j = 1 : N do
10: Calculate Jj ;
11: end for
12: Sort the merged population according to cost value in ascending order;
13: Store the first individual (at the top of the list) as the best solution in current generation;
14: Transfer the first n/2 individuals to the next generation and remove them from the list;
15: for j = 1 : N − n

2
do

16: Calculate the crowding distance of j-th individual, dj , by using (16);
17: end for
18: Re-order the remainingN − n/2 individuals in descending order of crowding distance;
19: Transfer the first n/2 individuals to the next generation;
20: end for
21: Return the best individual and its corresponding cost value.

Concerning the proposed algorithm, some remarkable points are in order:
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1. the algorithm does not require any user-defined parameter for diversity preserva-
tion;

2. instead of defining a genotypic difference (bit-wise diversity) measure in the indi-
vidual space, the distance is evaluated in the objective space;

3. the worst solution, for which the value of crowding distance equates to infinity, is
transferred to the next generation to help the population diversity of subsequent
generations.

Implementation of the proposed GA for optimal medication regimen The proposed
GA, described in Algorithm 1, is implemented by using MATLAB computing envi-
ronment to assess the cost in (13a) and formulate the optimal ACT strategies. All the
parameters of the Kirschner–Panetta model are reported in Table 1. Specifically the
following two cases are considered in order to provide a valid (and fair) comparison
with the results obtained by Ghaffari and Naserifar (2010):
1. s1 = 550

(
cell.day−1

), c = 0.025
(
day−1

), A = 103, B = 1;
2. s1 = 550

(
cell.day−1

), c = 0.040
(
day−1

), A = 103, B = 104.
In both cases the treatment strategies are developed over a 350-day period of time,

i.e. tf = 350 (day). Each individual represents an input control (a position in the
search space), u = (u1, u2, . . . , u350), a 350-tuple row vector with binary-valued
entries, i.e. ui ∈ {0, 1} for i = 1, 2, . . . , 350, so that there exist 350 binary decision
variables. The cost function takes each individual as an input, then converts it into
a piecewise continuous function and calculates the corresponding cost value, J . The
crowding distance is calculated for the full population. At the initialization stage the
full treatment input (ui = 1 for i = 1, 2, . . . , 350) and null treatment input (ui = 0 for
i = 1, 2, . . . , 350) are included in the list of initial population in order to improve the
initial diversity and performance of the algorithm. The population size is n = 200, the
number of crossover offspring andmutants are equal tonc = 0.7×n andnm = 0.3×n
respectively, and the algorithm runs over 100 iterations.

5.2 Particle swarm optimization
The PSO is a nature-inspired metaheuristic that arises from interactions and informa-
tion flow between individuals (or particles) of a population. The population possesses
the ability to arrange its particles in a purposeful manner (self-organization). The PSO
begins with creating a random population of n particles where each particle finds its
position in the search space and carries out a corresponding evaluation of cost func-
tion. The search space is often (at least in this paper) the d-dimensional real space,Rd,
so that a particle’s position denotes a d-tuple vector ~x in (a subset of) Rd. During the
coming iterations, the i-th particle changes its previous position, ~xi (k) at k-th itera-
tion, to the new position, ~xi (k + 1), by moving in its new direction (called velocity),
~vi (k + 1), i.e.

~xi (k + 1) = ~xi (k) + ~vi (k + 1) . (17)
How the particle moves to the new position is dependent on three factors, i.e. in each
step (iteration), the particle tends to move:
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1. in its previous direction, ~vi (k);
2. towards its best previously experienced position, ~bi (k), up to the k-th iteration;
3. towards the best global position among all particles, ~g (k), up to the k-th iteration.
Thus, the j-th projection (component) of the i-th particle’s new velocity is defined as:

vij (k + 1) = vij (k) + c1 r1 (bij (k)− xij (k)) + c2 r2 (gj (k)− xij (k)) , (18)

where j = 1, 2, . . . , d, and bij ,xij , and gj denote the j-th component of the vectors ~bi,
~xi, and ~g respectively. Obviously, in the initialization stage the velocity of each par-
ticle is equal to zero, i.e. vij (0) := 0 for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , d}.
The parameters c1 and c2, called acceleration coefficients (both of them equal to 2.0
in original version), denote the rates at which the particle deviates from its neighbour-
hood and moves to the best global position ever found. The coefficients r1 and r2 are
both random scalars uniformly distributed in the interval [0, 1], in order to include
randomness in the movement of the particles.

After the appearance of its original version, the algorithm has undergone marked
changes and, in consequence, its overall performance has greatly improved. Bonyadi
and Michalewicz (2017), the authors conduct a thorough review of research on PSO
and compile a list of articles incorporating considerablemodifications into the original
algorithm with a primary focus on single objective optimization problems.

The so-called swarm explosion is a major problem with the basic PSO. The ex-
plosion refers to the particles’ velocities and positions speeding towards infinity with-
out control as a result of random weighting parameters in (18). An early solution
to moderately tackle the issue of explosion is to restrict vij to the closed interval
[−Vmax, Vmax] where the positive real number Vmax is bounded by 0.1 × xmax ≤
Vmax ≤ 1.0 × xmax, and xmax denotes the maximum absolute value of bounds
defined for elements of position vector. Another improvement is made by Shi and
Eberhart (1998) to assist in the balance between exploration and exploitation aspects
of search process. The first part on the right-hand side of (18) provides the explo-
ration of search space; conversely, the other parts cause the swarm to be attracted to
the initial best position (greater exploitation of local search data). As a consequence,
an inertia weight, w, is introduced to balance exploration against exploitation:

vij (k + 1) = w vij (k)+ c1 r1 (bij (k)− xij (k))+ c2 r2 (gj (k)− xij (k)) , (19)

with a typical inertia range of 0.9–1.2. However, further experiments, conducted on
inertia weight, show that a linear reduction inw from 0.9 to 0.4 during a run improves
the performance (Eberhart and Shi 2000).

Clerc and Kennedy (2002) provide a mathematical methodology (based on an
eigenvalue analysis of the search procedure) to assess stability and convergence of the
PSO. The research indicates that the inclusion of appropriately defined constriction
coefficient,χ, results in the prevention of explosion and an increase in the convergence
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rate:
vij (k + 1) = χ [vij (k) + c1 r1 (bij (k)− xij (k)) + c2 r2 (gj (k)− xij (k))] ,

χ =
2∣∣∣2− φ−√φ2 − 4φ

∣∣∣ , φ = c1 + c2. (20)

The parameter φ must be greater than 4.0 to prevent the explosion of particles, how-
ever, as φ increases the diversity of the swarm reduces. Typically, φ is set to 4.1 (with
c1 = c2 = φ/2) in order to guarantee the convergence and to avoid premature con-
vergence. This method is used here to set the PSO parameters and the random pertur-
bation of position is evaluated by using (20).
Implementation of PSO for optimalmedication regimen The algorithm is implemented
by using MATLAB computing environment for the two previously mentioned cases
in Section 5.1 where φ = 4.10, c1 = 2.05, c2 = 2.05, and the constriction factor
is therefore equal to 0.729. Each particle represents a piecewise continuous function
alternating between 0 and 1. The PSO initializes with creating a random population of
200 particles and ends with completing 100 iterations. Again, the full treatment input
(u (t) = 1 for all t ∈ [0, 350]) and null treatment input (u (t) = 0 for all t ∈ [0, 350])
are included in the list of initial population.

6 Comparison between the GA, the PSO, and the FBSM

Ghaffari and Naserifar (2010), in their approach to the minimization of objective func-
tional (12), focus on the PMP approach that, in turn, leads to generating the boundary
value problem (15)—the necessary conditions that the control, the state, and the co-
state variables need to satisfy. This boundary value problem can be solved by multiple
shooting, indirect shooting, and indirect collocation methods. Ghaffari and Naseri-
far (2010) solve the problem by using the FBSM (Lenhart and Workman 2007). This
method takes advantage of the fact that the values of co-state variables are not required
to solve the state equations. For convenience, the outline of the method is provided
with regard to problem (15):
1. make an initial guess for the control input, u, over the interval [0, tf ];
2. use the initial conditions (x (0) = 1, y (0) = 1, and z (0) = 1), and the control, u,

to solve the state equations (15a)–(15c), by using any of numerical methods such
as the fourth-order Runge–Kutta method. Store the values of state variables, x, y,
and z;

3. use the transversality conditions (λ1 (tf ) = 0, λ2 (tf ) = A, and λ3 (tf ) = 0), and
the values of state variables, x, y, and z, to solve the co-state equations (15d)–(15f)
backward in time, i.e. by integration from final time, t = tf , to initial time, t = 0.
store the values of co-state variables, λ1, λ2, and λ3;

4. use the co-state variable, λ1, to update the control, u, by referring to (15h). Store
the updated values of control, u;

5. return to (step) number 2, unless a stopping criterion is met. In this case, give the
current values of control, states, and co-states as solutions.
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Although the method can be easily programmed, it suffers a major problem that
is inherent in indirect methods. These methods are very sensitive to the initial guess
of unknown conditions or variables (Betts 1998). As stated by Lenhart and Workman
(2007, page 50), the FBSM may run into difficulties with convergence and therefore
the initial guess requires adjusting. While the FBSM requires too many runs in order
to find an appropriate initial guess, on the other hand, the GA and the PSO are capable
of finding acceptable solutions even by a single run.

Fig. 4 shows (for the first case with c = 0.025 (day−1)) the best controls and
corresponding tumour state trajectories obtained by using the GA, the PSO, and the
FBSM used by Ghaffari and Naserifar (2010).
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Fig. 4: The optimal control, u (t), and corresponding tumour state trajectory, y (t),
obtained by using the proposed GA, the PSO, and the FBSM for c = 0.025 (day−1)
and B = 1.0; (a) the optimal controls; (b) the tumour state trajectories.
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Fig. 5 shows the optimal solutions and corresponding tumour state trajectories for
the second case with c = 0.040 (day−1). For convenience, a brief summary of the
obtained results is given in Table 2.

Minimum value of objective functional (12): in case 1, the minimum value of objec-
tive function, obtained by using the GA and the PSO, equates to −6.546 × 106 and
−6.553 × 106 respectively. On the other hand, the minimum cost value obtained by
using the FBSM is equal to−6.203×106. Similarly, in case 2, the minimum value of
objective function, obtained by using theGA and the PSO is equal to−5.314×106 and
−5.313×106 respectively. This value equates to−4.982×106 for the FBSM. In both
cases, the minimum values of cost function (12), obtained by the GA and the PSO, are
less than those obtained by Ghaffari and Naserifar (2010). These results demonstrate
the effectiveness of the proposed metaheuristics (compared to the FBSM) in dealing
with the highly nonlinear single-objective problem (13).

In terms of minimum cost, these results show the proposed metaheuristics’ capa-
bilities of finding acceptable solutions, compared to the FBSM. This can be considered
as a good marker of the effectiveness of these metaheuristics.

Table 2: Minimum values of the cost function (12) and percentage of total days with
treatment for case 1: c = 0.025

(
day−1

), B = 1.0, and case 2: c = 0.040
(
day−1

),
B = 1.0× 104, obtained by using the GA, the PSO, and the FBSM used by Ghaffari
and Naserifar (2010). yend: cancer cells at the final time; ymax: the maximum value
of y (t); yint: the time integral of y (t).

Method Case 1 Case 2

FBSM
Minimum cost: −6.203× 106

Days with treatment: 318
yend = 146(cell)
ymax = 1.6× 104(cell)
yint = 8.8× 105(cell.day)

Minimum cost: −4.982× 106

Days with treatment: 258
yend = 113(cell)
ymax = 1.7× 104(cell)
yint = 1.3× 106(cell.day)

GA
Minimum cost: −6.546× 106

Days with treatment: 320
yend = 282(cell)
ymax = 5.0× 103(cell)
yint = 7.2× 105(cell.day)

Minimum cost: −5.314× 106

Days with treatment: 254
yend = 101(cell)
ymax = 3.1× 104(cell)
yint = 1.5× 106(cell.day)

PSO
Minimum cost: −6.553× 106

Days with treatment: 324
yend = 297(cell)
ymax = 4.7× 103(cell)
yint = 6.1× 105(cell.day)

Minimum cost: −5.313× 106

Days with treatment: 256
yend = 117(cell)
ymax = 2.6× 104(cell)
yint = 1.4× 106(cell.day)

Final value and the time integral of cancer cells: one major item, which has been
considered in the objective functional (12), is the minimization of the final state of
tumour cells that is denoted by yend in Table 2. In case 2, the obtained values of yend
are rather similar, however, the performance of the FBSM is quite better than meta-
heuristics. While, in case 1, the FBSM shows a better performance, the metaheuristics
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Fig. 5: The optimal control, u (t), and corresponding tumour state trajectory, y (t),
obtained by using the proposed GA, the PSO, and the FBSM for c = 0.040 (day−1)
and B = 1.0× 104; (a) the optimal controls; (b) the tumour state trajectories.

show higher effectiveness compared to the indirect method, however, in case 2, the
GA and PSO do not have any particular advantage over the FBSM.

In case 1, the percentage of the total days with treatment is 92% for the GA, 93%
for the PSO, and 91% for the FBSM. This means that the total drug usage in the
indirect method is less than those of metaheuristics. However, for this method, Fig.
4b shows that the total amount of tumour cells during the treatment is much more than
those obtained by usingmetaheuristics. For the second case in contrast, the percentage
of the total days with treatment is 71% for the GA, 72% for the PSO, and 75% for the
FBSM, which means that the total amount of the effector cells, obtained by using the
metaheuristics, are less than that of the FBSM.
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7 Bi-objective optimization problem

The goal of this section is to formulate the problem in a bi-objective form (Deb 2014).
In this case, instead of a single solution, a set of optimal solutions is obtained which
provides better insight into the problem. Before anything else, a short description of
multi-objective problems is provided, then the problem is described and solved by
using the NSGA-II, devised by Deb et al. (2002).

7.1 A brief overview of multi-objective optimization problems
Amulti-objective optimization problem (MOP) refers to that involving more than one
objective function. If x = (x1, x2, . . . , xd) ∈ X denotes the decision vector, where
X is the set of feasible decision vectors, then the goal is to simultaneously minimize
a set of functions f1 (x), f2 (x), . . . , fk (x), which can be considered components of
an objective vector f : X → Rk:

min
x∈X

f(x) = (f1 (x) , f2 (x) , . . . , fk (x)) . (21)
There are two euclidean spaces to be considered in MOPs:
1. the d-dimensional space of the decision vector x (called decision space);
2. the k-dimensional space of the objective functions (objective space) in which each

coordinate axis corresponds to a component of the objective vector f .

Fig. 6: A schematic diagram of objective space.

The most important thing about MOPs is that decreasing an objective almost (not
necessarily) leads to increasing some of other objectives. For example, minimizing
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the total amount of injected effector cells (as an objective) cannot be achieved with-
out causing a simultaneous increase in the final amount of cancer cells (as another
objective). In other words, minimization of total injected drug conflicts with mini-
mization of cancer cells. This example is illustrated by a schematic diagram in Fig. 6.
The horizontal axis shows the first objective function (the total drug) and the vertical
axis corresponds to the second objective—the tumour cells. Some typical decision
vectors (i.e. ~A, . . . , ~E) are mapped onto the objective space. Obviously, none of de-
cision vectors ~A, ~B, and ~C are superior to each other. For instance, vector ~A gives a
better cost value of the first objective than vector ~C, i.e. f1( ~A ) < f1(~C ), but vector
~C gives a lower amount of tumour in comparison to ~A, i.e. f2(~C ) < f2( ~A ). This is
the reason why there is not a unique optimal solution to an MOP and therefore the no-
tion of “optimum” changes. However, the decision vector ~D is not a good candidate,
because f1( ~A ) < f1( ~D ) and f2( ~A ) < f2( ~D ) (and the so-called term is: “ ~A domi-
nates ~D”). Similarly, the decision vector ~E cannot be a good choice since dominated
by ~B.

A decision vector x ∈ X is said to dominate another vector y ∈ X (denoted
by x � y, or x dom y) if and only if ∀i ∈ {1, . . . , k}: fi (x) ≤ fi (y) and ∃j ∈
{1, . . . , k}: fj (x) < fj (y), where k is the number of objective functions (see (21)).
If there is no y ∈ X that dominates x, then x is called a non-dominated solution.
Moreover, a non-dominated solution is an optimal solution—called Pareto optimal
solution—and (vise versa) if a decision vector is a Pareto Optimal solution, then it is
a non-dominated solution. In Fig. 6, vectors ~A, ~B, and ~C are obviously Pareto optimal
solutions. Pareto optimal set, denoted byXp, is defined as the set of all non-dominated
solutions. Its corresponding map onto the objective space, f (Xp), is called Pareto
front (f( ~A ), f( ~B ), f(~C ), and possibly the dashed curve in Fig. 6). Obviously, if a
decision vector is found that dominates (for example) the Pareto optimal solution ~A,
then the decision vector ~A is no longer a Pareto optimal solution and the Pareto front
(dashed curve shown in Fig. 6) changes.

7.2 Main approaches to MOPs
The (ideal) goal in MOPs is to (hopefully) identify the true Pareto optimal set (which
possibly consists of infinitely many Pareto optimal solutions) but, in practice, this may
be impossible. In general, a large and complex search space (and a highly nonlinear
system) gives rise to difficulties for traditional methods (for instance, a multiple ob-
jective linear program) to be capable of finding the true Pareto optimal set. For many
problems, in addition, there generally exists an enormous amount of Pareto solutions
(perhaps infinite). In this regard, production of a finite set of Pareto optimal solutions
as a representative of Pareto optimal set is in order.

A broad category of approaches to MOPs (called “a priori” methods) refers to
strategies in which the original MOP is converted into a single-objective problem.
Here, a decision maker (an expert in the problem field) is necessary to be asked for
preference information based on which the (single) best solution is found. Weighted
sum method, ε-constraint method, and goal programming fall into this category.
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By contrast, “a posteriori” methods tackle the problem as it is (not to convert it
into a single-objective problem) and produce a representative set of finite Pareto solu-
tions, among which an expert (in the field) chooses the appropriate solution. Normal
boundary intersection, and normal constraint belong to “a posteriori” category. A de-
tailed list of MOP methods can be found in the article by Marler and Arora (2004),
although other classification methodologies can be observed in the book by Coello et
al. (2007).

A redeeming feature of “a priori” methods is that common approaches to single-
objective problems can be taken. However, an objective assessment of weights, goals,
and constraints, is usually difficult. Even worse, difficulties may arise due to a rela-
tive lack of background knowledge. In general, the optimizer attempts to use various
sets of weights or constraints to produce a set of Pareto solutions, however, this strat-
egy cannot always lead to a diverse set of solutions. The weighted sum method is,
in addition, very sensitive to the configuration of objective domain (non-convex re-
gions may not be discovered in general). Although production of solutions associated
with non-convex regions is not beyond the capabilities of ε-constraint method, a prior
knowledge of problem is required to appropriately choose a suitable range of con-
straints. In “a posteriori” methods, an algorithm has to be repeatedly run in order to
find a Pareto optimal solution over each run.

On the other hand, evolutionary algorithms are always being improved. These
methods have attracted a lot of attention due to their efficiency and ease of imple-
mentation. Coello et al. (2007) provide a thorough and comprehensive review and
study of MOPs and multi-objective evolutionary algorithms (such as niched pareto
GA, non-dominated sorting GA, and strength pareto evolutionary algorithm). In this
work, the proposed problem is solved by using the NSGA-II (Deb et al. 2002). Thus
a brief description of the algorithm is provided here for convenience.

7.3 A short overview of NSGA-II
Similar to a simple GA, first of all, a population of n individuals is produced. At each
iteration nc and nm crossover offspring and mutants are produced whereN indicates
the total of all parents, crossover offspring, and mutants, i.e. N = n+ nc + nm. The
vector of cost functions, (J1, . . . , Jd) ∈ Rd, is evaluated for each individual.

All the individuals must be compared to one another in order to realize how many
times each individual is dominated by others. A so-called non-domination rank is
assigned to each individual. The rank of any individual that is not dominated at all
is equal to 1. All these individuals, for which the non-domination rank is equal to 1,
belong to the first set of Pareto solutions denoted by F1. If an individual is dominated
one time, its non-domination rank is equal to 2 and therefore it belongs to the second
set of Pareto solutions, F2, and so on. In order to easily illustrate how the individuals
transfer to the next generations, a population of n = 50 individuals is considered. At
each generation, the total number of crossover offspring, mutants, and parents is, for
instance, equal to N = 100.

Fig. 7 shows a representative sample of iterations in which 50 individuals must
be selected from 100 members for the next generation. The first two sets of Pareto
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Fig. 7: Selection procedure in NSGA-II.

solutions, namely F1 and F2 with a total number of 35 individuals, are definitely
selected for the next generation. The remaining 15 individuals must be selected from
25 individuals inF3. However, the members ofF3 have no particular superiority over
one another in terms of non-domination rank. Thus, the members in F3 are sorted in
descending order of crowding distance (see Section 5) and then the best 15 individuals
at the top of the list are selected for the next generation.

For each individual, the distance value corresponding to each objective must be
calculated by using (16). Then, the overall crowding distance of that individual is
equal to the sum of the distance values corresponding to each objective. In summary,
the first priority is selection based on non-domination, and the remaining individuals
are chosen based on crowding distance to preserve the diversity of Pareto solutions.
Over each iteration, the algorithm improves the quality of solutions and finally the
first set of Pareto solutions, F1, converges on the Pareto optimal solutions.

7.4 Problem statement and results

In Section 4, a single objective problem was considered in the form of the weighted
sum of: (i) the total use of effector cells; (ii) the state variables; and (iii) the final
value of cancer cells. As stated before, this method (formulation of the problem in
a single objective form) has a major disadvantage: it requires various sets of weight
values, to produce different optimal treatment plans. This restricts the decision maker
to a very limited set of strategies. To cope with this restriction, the performance of the
cancer-immune system can be optimized by formulation of a multi-objective problem.

In this regard, the aforementioned problem is now formulated in a bi-objective
form. In addition, since the administration of IL-2 plays a major role in improving the
immune system performance, the external source of IL-2 will be considered here as
the second control input.
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The first objective, J1, is defined as:

J1 =
1

2 tf

∫ tf

0

[u1 (t) + u2 (t)]dt, (22)

to minimize the total drugs used during the treatment, where the piecewise continuous
control inputs,u1 andu2, denote effectors and IL-2, respectively. The second objective
is defined as follows:

J2 = φ y (tf ) + (1− φ) 1

tf

∫ tf

0

y (t)dt, φ ∈ [0, 1] , (23)

to minimize the cancer cells during the treatment period and, in addition, to minimize
the final state of cancer cells. the coefficient φ, which is set to 0.3, indicates the im-
portance of minimizing the final state in comparison to minimizing the running cost
of state trajectory during the treatment period. This parameter is arbitrary set to 0.3
and is of no clinical significance. In conclusion, the bi-objective problem is described
as follows:

min (J1, J2) ,

subject to:
dx

dt
= cy − µ2x+

p1xz

g1 + z
+ u1 (t) s1,

dy

dt
= r2y (1− by)−

axy

g2 + y
,

dz

dt
=

p2xy

g3 + y
− µ3z + u2 (t) s2,

x (0) = 104(cell), y (0) = 104(cell), z (0) = 104
(
IU.L−1

)
,

∀t ∈ [0, tf ] : u1 (t) , u2 (t) ∈ {0, 1} . (24)
A 350-day period is taken into account for treatment, i.e. tf = 350 (day). The

daily dosage of IL-2 is set to s2 = 3.0× 106
(
IU.L−1.day−1

)—less than the critical
amount of IL-2. The daily dosage of effector cells is considered to be equal to the
minimum amount that is allowed: s1 = 506.9

(
cell.day−1

) (see Section 3 for critical
values of s1 and s2 in combined therapy).

The model will be normalized such that all the initial conditions, x (0), y (0), and
z (0) are equal to 1.0. Thus the consequent changes in the values of the parameters are
shown in Table 3. Kirschner and Panetta (1998) give a detailed information on how
to normalize the model.

The problem are coded in MATLAB computing environment. Each individual
contains two decision vectors corresponding to the control inputs, u1 (t) and u2 (t).
Each decision vector, produced by NSGA-II, is defined as a 350-tuple binary-valued
vector and then is decoded as a meaningful control input for evaluation of objective
functions. The NSGA-II is run over 100 iterations with a population of 200 individu-
als.
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Table 3: Values of the parameters in the normalized Kirschner–Panetta model, used
in problem (24).

Parameter Value
c 2.50× 10−2

µ2 3.00× 10−2

p1 1.245× 10−1

g1 2.00× 103

s1 5.07× 10−2

r2 1.80× 10−1

b 1.00× 10−5

a 1.00

g2 1.00× 101

p2 5.00

g3 1.00× 10−1

µ3 1.00× 101

s2 3.00× 102
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Fig. 8: Pareto front obtained by NSGA-II for the parameter values given in Table 3.

The Pareto front is illustrated in Fig. 8. The horizontal axis is related to the first
objective, J1, and shows the percentage of the total days with treatment. The vertical
axis shows the second objective in (23). Each point of Pareto front corresponds to a
non-dominated solution. The Pareto front enables the decision maker to observe all
possible situations and choose a specific treatment strategy.

As an example, Fig. 9 shows the tumour trajectories, corresponding to 50% and
100% drugs usage, and demonstrates how the combined therapy enhances the immune
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Fig. 9: Tumour state trajectories corresponding to the 50% and 100% drugs usage.

system in comparison with the ACT therapy. Obviously, in the case of 50% drugs
usage, the tumour is completely eliminated after 200 days, and the treatment period
is reduced to 100 days for 100% drugs usage.

8 Conclusion

The main goal of this work is to examine the performance of an indirect method of
solving optimal control problems, called forward-backward sweepmethod (FBSM), in
the context of biological systems. For this purpose, the work by Ghaffari and Naserifar
(2010) is brought back. They use exactly this method for developing cancer treatment
protocols, based on the Kirschner–Panetta model of cancer immunotherapy. The ge-
netic algorithm (GA) and the particle swarm optimization (PSO) are also used along
with the aforementioned method, in order to provide an objective assessment of their
performance.

The FBSM suffers the difficulties that are inherent in using indirect methods, i.e.
the need to make an initial guess at control (or co-state variables, or unknown condi-
tions) and, more importantly, the sensitivity of the method to the initial guess. In other
words, a serious problem will arise if the method does not converge to a solution, and
consequently, the initial guess requires adjusting over and over again. In actual fact,
this is an utterly time-consuming process. This situation becomes even more difficult
when the method is used in the context of biological problems. Biological systems
are normally difficult to be described in terms of parameters. For example, in the
Kirschner–Panetta model, the parameter c is considered as a measure of the tumour
antigenicity and therefore cannot have a fixed value for different types of tumours and
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patients (see Table 1). These different parameter values not only intensify the running
costs also could lead to different optimal results.

At the first step, the problem is formulated in a single-objective form. Compared to
the FBSM, the metaheuristics appear to be rather more successful in minimizing the
cost function (12) and therefore their performance remains competitive with classic
methods such as the FBSM. As an important point, it must bementioned that solutions
to the problem of this type are typically bang-bang controls. This means the individ-
uals, in the proposed metaheuristics, can be easily defined as binary-valued vectors,
and then, converted into piecewise continuous functions as control inputs. Otherwise,
It will be very hard (even impossible) to utilize these metaheuristics for dealing with
those problems that their inputs are not bang-bang controls. This can be considered
as a major disadvantage of the proposed metaheuristics.

At the second step, the optimal problem is formulated in a bi-objective form,
where, the IL-2 is also used to enhance the immune system. Formulating the problem
in a multi-objective form provides the decision maker with a wide variety of opti-
mal solutions. The bi-objective problem appears to be superior to the single-objective
problem, since the decision maker is given the opportunity of observing a set of non-
dominated optimal solutions in order to select the most appropriate treatment strategy.

CRediT statement on transparency in authors’ contributions

Conceptualization: [Sima Sarv Ahrabi]; methodology: [Sima Sarv Ahrabi]; formal
analysis: [Sima Sarv Ahrabi]; Writing–original draft: [Sima Sarv Ahrabi]; supervi-
sion: [Sima SarvAhrabi];Writing–review and editing: [Sima SarvAhrabi] and [Alireza
Momenzadeh]; Software [Sima Sarv Ahrabi] and [Alireza Momenzadeh]; validation:
[Sima Sarv Ahrabi]; resources: [Alireza Momenzadeh]; and visualization: [Alireza
Momenzadeh].

Compliance with ethical standards

• Funding: This study has not been funded;
• Conflicts of interest: The authors declare that they have no conflict of interest;
• Ethical Approval: This work does not contain any studies with human participants
or animals, performed by any of the authors, and any work involving chemicals,
procedures or equipment that have any unusual hazards inherent in their use.

Acknowledgement

The authors would like to express their deep gratitude towards the reviewers for their
constructive advice, invaluable comments, and support. Furthermore, the authors are
grateful to the editorial board for making helpful comments on the work.



Metaheuristics and Pontryagin’s minimum principle for cancer immunotherapy 31

References

Altrock PM, Liu LL, Michor F (2015) The mathematics of cancer: integrating quan-
titative models. Nat Rev Cancer 15(12):730, doi:10.1038/nrc4029

Arabameri A, Asemani D, Hadjati J (2018) A structural methodology for modeling
immune-tumor interactions including pro- and anti-tumor factors for clinical appli-
cations. Math Biosci 304:48–61, doi:10.1016/j.mbs.2018.07.006

Banerjee S, Sarkar RR (2008) Delay-induced model for tumor–immune in-
teraction and control of malignant tumor growth. Biosyst 91(1):268–288,
doi:10.1016/j.biosystems.2007.10.002

Batmani Y, Khaloozadeh H (2013) Optimal drug regimens in cancer chemother-
apy: A multi-objective approach. Comput Biol Med 43(12):2089–2095,
doi:10.1016/j.compbiomed.2013.09.026

Bellman RE, Kalaba R (1966) Dynamic programming and modern control theory.
Academic Press

Betts JT (1998) Survey of numerical methods for trajectory optimization. Journal of
guidance, control, and dynamics 21(2):193–207

Bonyadi MR, Michalewicz Z (2017) Particle swarm optimization for single
objective continuous space problems: a review. Evol Comput 25(1):1–54,
doi:10.1162/EVCO_r_00180

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global
cancer statistics 2018: Globocan estimates of incidence and mortality world-
wide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424,
doi:10.3322/caac.21492

Browne CB, Powley E, Whitehouse D, Lucas SM, Cowling PI, Rohlfshagen P,
Tavener S, Perez D, Samothrakis S, Colton S (2012) A survey of Monte
Carlo tree search methods. IEEE Trans Comput Intell AI in Games 4(1):1–43,
doi:10.1109/TCIAIG.2012.2186810

Burden T, Ernstberger J, Fister KR (2004) Optimal control applied to immunotherapy.
Discrete Control Dyn-B 4(1):135–146, doi:10.3934/dcdsb.2004.4.135

Cappuccio A, Elishmereni M, Agur Z (2006) Cancer immunotherapy by interleukin-
21: potential treatment strategies evaluated in a mathematical model. Cancer Res
66(14):7293–7300, doi:10.1158/0008-5472.CAN-06-0241

Cappuccio A, Castiglione F, Piccoli B (2007) Determination of the optimal
therapeutic protocols in cancer immunotherapy. Math Biosci 209(1):1–13,
doi:10.1016/j.mbs.2007.02.009

Castiglione F, Piccoli B (2006) Optimal control in a model of dendritic cell transfec-
tion cancer immunotherapy. Bull Math Biol 68(2):255–274, doi:10.1007/s11538-
005-9014-3

Castiglione F, Piccoli B (2007) Cancer immunotherapy, mathematical modeling and
optimal control. J Theor Biol 247(4):72–732, doi:10.1016/j.jtbi.2007.04.003

Celada F, Seiden PE (1992) A computer model of cellular interactions in the immune
system. Immunol Today 13(2):56–62, doi:10.1016/0167-5699(92)90135-T

Clerc M, Kennedy J (2002) The particle swarm - explosion, stability, and conver-
gence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73,
doi:10.1109/4235.985692

https://doi.org/10.1038/nrc4029
https://doi.org/10.1016/j.mbs.2018.07.006
https://doi.org/10.1016/j.biosystems.2007.10.002
https://doi.org/10.1016/j.compbiomed.2013.09.026
https://doi.org/10.1162/EVCO_r_00180
https://doi.org/10.3322/caac.21492
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.3934/dcdsb.2004.4.135
https://doi.org/10.1158/0008-5472.CAN-06-0241
https://doi.org/10.1016/j.mbs.2007.02.009
https://doi.org/10.1007/s11538-005-9014-3
https://doi.org/10.1007/s11538-005-9014-3
https://doi.org/10.1016/j.jtbi.2007.04.003
https://doi.org/10.1016/0167-5699(92)90135-T
https://doi.org/10.1109/4235.985692


32 S. Sarv Ahrabi, A. Momenzadeh

Coello CAC, Lamont GB, van Veldhuizen DA (2007) Evolutionary algorithms for
solving multi-objective problems, 2nd edn. Springer US, Springer Nature Switzer-
land, doi:10.1007/978-0-387-36797-2

Deb K (2014) Multi-objective optimization. In: Search methodologies: introduc-
tory tutorials in optimization and decision support techniques, 2nd edn, Springer,
Boston, MA, pp 403–449, doi:10.1007/978-1-4614-6940-7_15

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197,
doi:10.1109/4235.996017

d’Onofrio A (2008) Metamodeling tumor–immune system interaction, tu-
mor evasion and immunotherapy. Math Computer Modell 47(5-6):614–637,
doi:10.1016/j.mcm.2007.02.032

Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in par-
ticle swarm optimization. In: proceedings of the 2000 congress on evolutionary
computation, IEEE, vol 1, pp 84–88, doi:10.1109/CEC.2000.870279

Eftimie R, Bramson JL, Earn DJD (2011) Interactions between the immune system
and cancer: a brief review of non-spatial mathematical models. Bull Math Biol
73(1):2–32, doi:10.1007/s11538-010-9526-3

Elmouki I, Saadi S (2016) BCG immunotherapy optimization on an isoperimetric
optimal control problem for the treatment of superficial bladder cancer. Int J Dynam
Control 4(3):339–345, doi:10.1007/s40435-014-0106-5

Evans ER, Bugga P, Asthana V, Drezek R (2018) Metallic nanoparticles for cancer
immunotherapy. Mater Today 21(6):673–685, doi:10.1016/j.mattod.2017.11.022

Ghaffari A, Naserifar N (2010) Optimal therapeutic protocols in cancer immunother-
apy. Comput Biol Med 40(3):261–270, doi:10.1016/j.compbiomed.2009.12.001

Goldberg DE (1989) Genetic algorithms in search, optimization and machine learn-
ing, 1st edn. Addison-Wesley Publishing Company, Inc., Boston, MA, USA

Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA (2018) The in-
fluence of the gut microbiome on cancer, immunity, and cancer immunotherapy.
Cancer Cell 33(4):570–580, doi:10.1016/j.ccell.2018.03.015.

Holland JH (1975) Adaptation in natural and artificial systems: an introductory anal-
ysis with applications to biology, control, and artificial intelligence. University of
Michigan Press

Houy N, Grand GL (2019) Optimizing immune cell therapies with artificial intelli-
gence. J Theor Boil 461:34–40, doi:10.1016/j.jtbi.2018.09.007

Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: proceedings of
ICNN’95-International Conference on Neural Networks, IEEE, vol 4, pp 1942–
1948, doi:10.1109/ICNN.1995.488968

Khalil DN, Budhu S, Gasmi B, Zappasodi R, Hirschhorn-Cymerman D, Plitt T,
Henau OD, Zamarin D, Holmgaard RB, Murphy JT, Wolchok JD, Merghoub
T (2015) Chapter one - the new era of cancer immunotherapy: Manipulat-
ing t-cell activity to overcome malignancy. In: Immunotherapy of Cancer, Ad-
vances in Cancer Research, vol 128, Elsevier Inc. Academic Press, pp 1–68,
doi:10.1016/bs.acr.2015.04.010

Kiran KL, Lakshminarayanan S (2013) Optimization of chemother-
apy and immunotherapy: In silico analysis using pharmacokinetic-

https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.mcm.2007.02.032
https://doi.org/10.1109/CEC.2000.870279
https://doi.org/10.1007/s11538-010-9526-3
https://doi.org/10.1007/s40435-014-0106-5
https://doi.org/10.1016/j.mattod.2017.11.022
https://doi.org/10.1016/j.compbiomed.2009.12.001
https://doi.org/10.1016/j.ccell.2018.03.015.
https://doi.org/10.1016/j.jtbi.2018.09.007
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/bs.acr.2015.04.010


Metaheuristics and Pontryagin’s minimum principle for cancer immunotherapy 33

pharmacodynamic and tumor growth models. J Process Control 23(3):396–403,
doi:10.1016/j.jprocont.2012.12.006

Kirschner D, Panetta JC (1998) Modeling immunotherapy of the tumor–immune in-
teraction. J Math Biol 37(3):235–252, doi:10.1007/s002850050127

Kosinsky Y, Dovedi SJ, Peskov K, Voronova V, Chu L, Tomkinson H, Al-Huniti
N, Stanski DR, Helmlinger G (2018) Radiation and PD-(L)1 treatment combina-
tions: immune response and dose optimization via a predictive systems model. J
Immunother Cancer 16(1):17, doi:10.1186/s40425-018-0327-9

Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS (1994) Nonlinear dynamics of
immunogenic tumors: parameter estimation and global bifurcation analysis. Bull
Math Biol 56(2):295–321, doi:10.1007/BF02460644

Ledzewicz U, Mosalman MSF, Schättler H (2013) Optimal controls for a math-
ematical model of tumor-immune interactions under targeted chemother-
apy with immune boost. Discrete Control Dyn-B 18(4):1031–1051,
doi:10.3934/dcdsb.2013.18.1031

Lenhart S, Workman JT (2007) Optimal control applied to biological models. Chap-
man and Hall/CRC, doi:10.1201/9781420011418

Lollini PL, Motta S, Pappalardo F (2006) Discovery of cancer vaccination proto-
cols with a genetic algorithm driving an agent based simulator. BMC Bioinform
7(1):352, doi:10.1186/1471-2105-7-352

Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engi-
neering. Struct Multidisc Optim 26(6):369–395, doi:10.1007/s00158-003-0368-6

Minelli A, Topputo F, Bernelli-Zazzera F (2011) Controlled drug delivery in cancer
immunotherapy: Stability, optimization, and monte carlo analysis. SIAM J Appl
Math 71(6):2229–2245, doi:10.1137/100815190

Pandey HM, Chaudhary A, Mehrotra D (2014) A comparative review of approaches
to prevent premature convergence in GA. Appl Soft Comput 24:1047–1077,
doi:10.1016/j.asoc.2014.08.025

Pennisi MA, Pappalardo F, Zhang P, Motta S (2009) Searching of op-
timal vaccination schedules. IEEE Eng Med Biol Mag 28(4):67–72,
doi:10.1109/MEMB.2009.932919

Piccoli B, Castiglione F (2006) Optimal vaccine scheduling in cancer immunotherapy.
Physica A 370(2):672–680, doi:10.1016/j.physa.2006.03.011

Pillis LGD, Radunskaya AE (2003) The dynamics of an optimally controlled tumor
model: a case study. MathComput Model 37(11):1221–1244, doi:10.1016/S0895-
7177(03)00133-X

Pillis LGD, Fister KR, GuW, Head T, Maples K, Neal T, Murugan A, Kozai K (2008)
Optimal control of mixed immunotherapy and chemotherapy of tumors. J Biol Syst
16(1):51–80, doi:10.1142/S0218339008002435

Pontryagin LS, Boltyansky VG, Gamkrelidze RV, Mishchenko EF (1962) The math-
ematical theory of optimal processes. Interscience Publishers, New York

Qomlaqi M, Bahrami F, Ajami M, Hajati J (2017) An extended mathematical model
of tumor growth and its interaction with the immune system, to be used for de-
veloping an optimized immunotherapy treatment protocol. Math Biosci 292:1–9,
doi:10.1016/j.mbs.2017.07.006

https://doi.org/10.1016/j.jprocont.2012.12.006
https://doi.org/10.1007/s002850050127
https://doi.org/10.1186/s40425-018-0327-9
https://doi.org/10.1007/BF02460644
https://doi.org/10.3934/dcdsb.2013.18.1031
https://doi.org/10.1201/9781420011418
https://doi.org/10.1186/1471-2105-7-352
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1137/100815190
https://doi.org/10.1016/j.asoc.2014.08.025
https://doi.org/10.1109/MEMB.2009.932919
https://doi.org/10.1016/j.physa.2006.03.011
https://doi.org/10.1016/S0895-7177(03)00133-X
https://doi.org/10.1016/S0895-7177(03)00133-X
https://doi.org/10.1142/S0218339008002435
https://doi.org/10.1016/j.mbs.2017.07.006


34 S. Sarv Ahrabi, A. Momenzadeh

Ravindran NS, Sheriff MM, Krishnapriya P (2017) Analysis of tumour-immune eva-
sion with chemo-immuno therapeutic treatment with quadratic optimal control. J
Biol Dyn 11(1):480–503, doi:10.1080/17513758.2017.1381280

Rosenberg SA (2014) IL-2: the first effective immunotherapy for human cancer. J
Immunol 192(12):5451–5458, doi:10.4049/jimmunol.1490019

Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunother-
apy for human cancer. Science 348(6230):62–68, doi:10.1126/science.aaa4967

Ross IM,KarpenkoM (2012)A review of pseudospectral optimal control: from theory
to flight. Annu Rev Control 36(2):182–197, doi:10.1016/j.arcontrol.2012.09.002

Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: pro-
ceedings of 1998 IEEE international conference on evolutionary computa-
tion. IEEE world congress on computational intelligence, IEEE, pp 69–73,
doi:10.1109/ICEC.1998.699146

Soto-Ortiz L, Finley SD (2016) A cancer treatment based on synergy be-
tween anti-angiogenic and immune cell therapies. J Theor Biol 397:197–211,
doi:10.1016/j.jtbi.2016.01.026

Spranger S, Dai D, Horton B, Gajewski TF (2017) Tumor-residing batf3 dendritic
cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer
Cell 31(5):711–723, doi:10.1016/j.ccell.2017.04.003

Tran E, Robbins PF, Rosenberg SA (2017) ’final common pathway’ of human can-
cer immunotherapy: targeting random somatic mutations. Nat Immunol 18(3):255–
262, doi:10.1038/ni.3682

Valentinuzzi D, Simoncic U, Ursic K, Vrankar M, Turk M, Jeraj R (2018) Predicting
tumour response to anti-PD-1 immunotherapy with computational modelling. Phys
Med Biol doi:10.1088/1361-6560/aaf96c

Vrána D, Matzenauer M, Neoral Č, Aujeskỳ R, Vrba R, Melichar B, Rušarová
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