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ABSTRACT 

Sounds of work activities and equipment operations at a construction site provide critical 

information regarding construction progress, task performance, and safety issues. The construction 

industry, however, has not investigated sound data and their applications, which would offer an 

advanced approach to the unmanned management and remote monitoring of construction processes 

and activities. For analyzing sounds emanating from construction work activities and equipment 

operations, which generally have complex characteristics that entail overlapping construction and 

environmental noise, a highly accurate sound classifier is imperative for data analysis. To establish the 

robust foundation for sound recognition, analysis, and monitoring frameworks, this research study 

examines diverse classifiers and selects those that accurately identify construction sounds. Employing 

nine types of sounds from about 100 sound data originating from construction work activities, we assess 

the accuracy of seventeen classifiers and find that one is able to classify sounds with 93.16% accuracy. 

A comparison with some recent Deep Learning approaches have been also provided, obtaining results 

similar to the best ones of the traditional machine learning methods. Participants can use the classifier 

on construction projects to enhance the processes of construction monitoring, performance evaluation, 

decision making, and safety surveillance. 

Keywords: Sound classifier, feature extraction, construction monitoring, machine learning. 
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INTRODUCTION 

The complex structure and the increasing number of requirements of construction projects have 

pressured project managers to seek advanced ways to automate management activities and monitor 

construction work activities and equipment operations remotely. The steady and real-time monitoring 

of construction processes and tasks in the field reduces one of the most salient risks in a construction 

project’s uncertainty. Several dynamic factors on a construction site involving project participants, 

weather conditions, supply chains, and safety hazards can complicate the control of associated 

uncertainties. In an effort to reduce such uncertainty, several studies have found evidence that the 

systematic monitoring of a construction project benefits project managers by providing construction 

field information in a timely manner and enabling them to identify urgent issues and promptly respond 

to unexpected problems (Bosché 2010; Golparvar-Fard et al. 2015). In addition, Navon in (Navon 2005) 

found that project managers can minimize schedule and cost overruns by taking prompt action to 

overcome obstacles resulting from discrepancies between designed and actual progress, processes, and 

tasks. Another study (McAfee et al. 2012) suggested that timely and accurately collected construction 

field data allow domain experts and project participants to monitor and understand construction field 

activities and issues, minimizing the “not invented here” syndrome, and they form the basis of decision 

making with respect to project and safety management. The construction industry can derive these 

benefits by establishing robust and accurate construction field monitoring. 

The establishment of a sound and accurate monitoring system requires a considerable amount of 

information about the behavior of construction workers and equipment operations on a construction 

site. Such information should reflect construction field conditions, project processes, worker and 

equipment performance, and any emergency situations pertaining to construction safety and hazards. 

To improve construction process management of field activities, several previous studies have 

investigated diverse construction field data (e.g., visual information). Few, however, have investigated 

the sounds emanating from construction work activities to determine their underlying benefits. Each 

task and process of construction field activities emits a unique sound that indicates worker behaviors, 

materials, devices/equipment types, environmental situations, construction processes, and other 
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relevant factors. Thus, an in-depth understanding and analysis of construction field sounds should 

provide project managers and other project participants with insightful field information to which they 

can refer to intuitively determine site conditions and remotely govern onsite processes, labor, and 

equipment. 

Such a purpose can be fulfilled by audio-based construction site monitoring, a promising method 

and a supportive resource for unmanned field monitoring and safety surveillance that leverages 

construction project management and decision making. Since sounds generally consist of various 

features extracted from recorded signals, classifiers that can accurately recognize and understand 

feature characteristics are pivotal parts of sound identification. To accurately recognize and categorize 

sounds of construction work activities and equipment operations, with their unique characteristics and 

complex task information, we can use a highly accurate sound classifier that explicitly informs site 

conditions and task processes. To the best of our knowledge, however, no study has attempted to 

ascertain the most suitable classifier for analyzing sounds emanating from construction sites. To fulfill 

this objective, we intend to use audio-based field monitoring to conduct an in-depth investigation and 

analysis of the performance of multiple sound classifiers. To identify the accuracy of sound classifiers, 

we investigate seventeen classifiers and analyze their performance according to nine types of sounds 

from 97 files data originating from construction work activities and equipment operations. The sound 

identification classifiers with the highest accuracy will form a sound classification core for the 

establishment of a robust, audio-based field monitoring framework, that significantly improves the 

processes of construction monitoring, performance evaluation, decision making, and safety 

surveillance. 

LITERATURE REVIEW 

Traditional approaches to the manual collection of on-site work data and remote construction project 

monitoring are time-consuming, inaccurate, costly, and labor intensive (Davidson and Skibniewski 1995; 

Navon and Sacks 2007). With the evolution of information technology, the construction industry is 

seeking state-of-art field data collection and analysis methods that enhance construction project 
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monitoring and robust field management (Cho et al. 2017). The growing demand for improving real-

time field data collection and site monitoring has led to a paradigm shift in new intelligent construction 

management. Various field data collection methods have been studied and implemented in 

construction project management. In addition, field data acquisition techniques using GPS, ultra-wide 

band (UWB), and sensors have been introduced in the construction industry (Cheng and Teizer 2013; 

Teizer et al. 2007). 

Several recent studies (Dimitrov and Golparvar-Fard 2014; Golparvar-Fard et al. 2015; Seo et al. 

2015) have used construction field images such as daily construction photography to explore automatic 

image-based progress monitoring. With flexible vision systems, unmanned aerial vehicles have also 

been examined as effective tools for construction monitoring, tracking materials, and improving safety 

(Hubbard et al. 2015; Liu et al. 2014; Siebert and Teizer 2014). Researchers have used imaging 

processing techniques to interpret images and videos collected from construction sites. However, 

vision-based field monitoring, compared to audio-based monitoring, generally requires considerable 

data processing. In addition, the acquisition of image or video data requires a certain level of 

illumination for daytime vision-based monitoring (Cho et al. 2017). Therefore, as audio-based field 

monitoring is not as limited with regard to data-processing capabilities and data-collection 

requirements as vision-based monitoring, it reduces both the time and cost of on-site monitoring. 

Sound identification studies involving signal processing and audio classification have focused 

primarily on four main areas: signal analysis, feature extraction, model training, and model testing 

(Gaikwad et al. 2010). The most common classifiers – K-nearest neighbor, the Gaussian mixture model, 

the hidden Markov model, artificial neural networks, deep neural networks (that are neural network 

architectures with many layers), and support vector machines – have been fully developed and 

implemented with satisfactory performance and reliability (Gencoglu et al. 2014; Sharan and Moir 

2016). Studies of necessary hardware and software requirements have proven the feasibility of 

monitoring systems using commercially available devices and software (Cheng et al. 2017). Other 

studies (Cheng et al. 2016; Cheng et al. 2017; Cho et al. 2017) have applied various algorithms such as 
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the support vector machine (SVM) and the Hidden Markov model (HMM) to test and evaluate the 

audio-based classification of the activity types related to construction operational equipment. 

The automatic monitoring of an environment by means of collected audio signals falls under the 

broader field of Computational Auditory Scene Analysis (CASA) (Wang and Brown 2006), the aim of 

which is to successfully analyze a stream of continuous audio to identify and isolate sources of interest 

that it contains. One can acquire audio by using either (i) microphone arrays (Silverman and Flanagan 

1998), or (ii) distributed sensors (Sallai et al. 2011). Subsequent sound is typically analyzed by applying 

state-of-the-art machine learning techniques (Alpaydin 2014; Witten et al. 2017) that recognize the 

presence of specific sources. The task of automatically labeling a given audio signal in a set of predefined 

classes is referred to as Automatic Audio Classification (AAC) (Fu et al. 2011). Specifically, the ACC 

system works by windowing the audio signal in small and overlapped frames, extracting some 

meaningful statistical features, and classifying them by a standard machine learning tool (Cheng et al. 

2017). 

AAC has been studied primarily in the context of single-level applications, where the classes are 

restricted to a very specific domain. A complex, realistic classification system must be highly modular, 

flexible, and hierarchical, topics that was only been marginally discussed in the literature until the last 

decade (Senator 2005). Unfortunately, only a small number of studies have taken this direction of 

research. For example, one study (Atrey et al. 2006) presented a four-level system for event detection, 

based only on a single sensor to gather information for a binary classification tasks. The authors of (Abu-

El-Quran 2006) and (Zhao et al. 2010) detailed two systems that, starting from a microphone array, 

perform simultaneous speech and non-speech recognition. Although their work bears some 

resemblance to the system used in this paper, they were primarily meant for use indoors and performed 

non-speech classification of domestic sounds for living environment surveillance. One study (Zhou et 

al. 2009) described an early application of multi-stage classification to an audio stream of data and 

another (Scardapane et al. 2015) applied it in a real-world scenario. 

In this paper, we analyze the behavior of seventeen different multi-level classifiers and compare 

their accuracy, false positive counts, and confusion matrices. The classifiers are well known machine-
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learning techniques. They include Bayesian and naïve Bayesian networks (John and Langley 1995), the 

Hoeffding tree (Hulten et al. 2001), the decision table (Kohavi 1995), the decision tree (Quinlan 1993), 

the random tree (Rokach and Maimon 2014) and the random forest (Breiman 2001), the multilayer 

perceptron (MLP) (Haykin 2009), sequential minimum optimization (SMO) (Plat 1998), k-nearest 

neighborhood (Altman 1992; Aha et al. 1991) and PART decision (Frank et al. 2003), locally weighted 

learning (LWL) (Frank et al. 2003), linear logistic regression (Sumner et al. 2005), random sub space (Ho 

1998) and K∗ learner (Cleary and Trigg 1995), the 1R classifier (Holte 1993) and the Cohen version of the 

IRAP classifier (Cohen 1995). Additional details on the types of classifiers can be found in Section 3 and 

Table 2. To provide a fast and easy representation of each approach, we conducted the comparisons in 

the WEKA software environment (Frank et al. 2016; Witten et al. 2017). 

In the literature, it is possible to find several instances of successful applications in the field of 

environmental sound classification that make use of Deep Learning (DL) techniques (Goodfellow et al. 

2016; Aggarwal 2018). For example, in the work of (Piczak 2015), the author exploits a 2-layered CNN 

working on the spectrogram of the data to perform ESC, reaching an average accuracy of 70% over 

different datasets. Other approaches, instead of using handcrafted features such as the spectrogram, 

perform end-to-end environmental sound classification obtaining higher results with respect to the 

previous ones (Tokozume and Harada 2017). The MelNet architecture described by (Li et al. 2018) has 

been proven to be remarkably effective in environmental sound classification. This architecture uses a 

combination of two Deep Convolutional Neural Networks (DCNNs) to classify environmental sound data 

(like rain, dogs, cats, engines, trains, airplanes, etc.). A similar approach is exploited in the paper of 

(Maccagno et al. 2019) whose aim is to develop an application able to recognize vehicles and tools used 

in construction sites, and classify them in terms of type and brand. This task has been tackled with a 

neural network approach, involving the use of a DCNN, which will be fed with the mel spectrogram of 

the audio source as input. However, the classification problem presented in this paper is limited to only 

five classes extracted from audio files collected in several construction sites, containing in situ 

recordings of multiple vehicles and tools. Finally, (Scarpiniti et al. 2020) propose a Deep Recurrent 

Neural Network (DRNN) approach, based on LSTM units (Aggarwal 2018) for the classification of real-
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world data recorded in construction sites. Both the last methods provide very high accuracy in the 

classification of audio data. 

Motivated by these results of DL approaches, in this paper we also evaluate three different end-to-

end methods. Specifically, we will implement: i) a DCNN working on the spectrogram of audio files; ii) a 

DRNN working on the raw audio data; and, iii) a Deep Belief Netork (DBN) (Goodfellow et al. 2016; 

Aggarwal 2028) that uses the raw data. 

The targeting of all the proposed classifiers has been made by using a collection of web data in order 

to work with clean and clear sounds. However, the validation of the proposed approach has been 

demonstrated also on the real-world data recorded in three different scenarios related to a bridge 

construction project. 

DATA FOR CONSTRUCTION SOUNDS 

To accurately classify construction work sounds and consistently establish a reliable audio-based 

system, one must collect a broad array of sound data. Such a task, however, it challenging and time-

consuming, for it requires manually recording the types of construction work sounds and assembling a 

huge sound dataset for the construction industry. To address this problem, we have collected 97 sound 

files of construction work activities and equipment operations from Web resources such as video and 

audio files that do not involve copyright issues. To obtain sounds of real construction work, we also 

collected sound data from two construction sites, hospital and industrial construction project sites, in 

Louisiana and categorized them into nine types that represent “target classes” to which the classifiers 

assign each item. We analyzed all of the sound data by the seventeen classifiers and plan to share this 

information with the public through a data archive that the authors have established. After removing 

the silence and noisy segments from the analyzed files and extracted the 62 features described in 

Section 4, a total of 64,696 instances have been found. An instance is the set of the 63 features provided 

as an example to the classifier. Table 1 lists the number of files and details about each sound item. All 

these files have been split in a train and a test set in such a way that about the 75% of instances are 

used for training and the remaining 25% for testing the considered classifiers. Table 2 shows the details 

in terms of duration and number of instances in each class for the train and test sets. 
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Classifiers types 

Among diverse sound classifiers, this paper involves the performance comparison of broadly used 

seventeen classifiers listed in Table 3. The name of each classifier reported in Table 3 is that adopted in 

the WEKA software. The table also lists the seminal reference for each classifier. 

This section includes a brief description of the employed classifiers. 

A Bayesian Classifier (BayesNet) is a network that minimizes the probability of misclassification 

(John and Langley 1995) and maximizes the class probability conditioned on input instances. The 

problem with Bayesian classifiers is the evaluation of probability densities. Therefore, one study (John 

and Langley 1995) introduced a family of simple probabilistic classifiers based on the application of 

Bayes’ theorem with strong (naive) independence assumptions between the features. This kind of a 

classifier is called Naïve Bayesian Classifier (NaiveBayes). A simple but good classifier is based on the 

application of linear logistic regression models (SimpleLogistic) (Sumner et al. 2005). Another 

classification technique is the use of a back-propagation algorithm in a multilayer perceptron with a 

single hidden layer (Haykin 2009). This classifier generally provides high-performance sound 

classification and recognition. Another classifier introduced in (Plat 1998), is the sequential minimal 

optimization (SMO), which trains a support vector classifier, normalizes all attributes, and discards all 

missing values. 

The authors of this work also provided comparisons with classification methods based on trees. In 

particular, random tree (RandomTree) is a simple algorithm based on the construction of a tree. The 

algorithm considers K randomly chosen attributes at each node (Rokach and Maimon 2014) but involves 

no node pruning. A Hoeffding tree (HoeffdingTree) is an incremental and anytime decision tree that 

exploits the fact that a small sample is often sufficient for choosing an optimal splitting attribute (Hulten 

et al. 2001). It implicitly assumes that the distribution of examples does not change over time. Another 

method, random sub-spaces (RandomSubSpace), constructs multiple trees by choosing random 

subspaces (Ho 1998). A random forest (RandomForest), which is simply an ensemble of random tree 

classifiers, constructs a multitude of decision trees (Breiman 2001). A particular algorithm used to 

construct a decision tree is the C4.5 algorithm proposed by Quinlan in (Quinlan 1993) and referred to 
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in WEKA as J48. One of the simplest but significantly efficient technique, based on the K-nearest 

neighbours (kNN) algorithm and referred to in WEKA as IBk (Altman 1992; Aha et al. 1991), classifies an 

instance by a majority vote of its neighbors and assigned an object to the class most common among 

its k nearest neighbors. The K∗ classifier (KStar), is an instance-based classifier that uses an entropy-

based distance function (Cleary and Trigg 1995). KStar evaluates the class of a test instance based on 

the class of training instances that perform in a similar way. Another instance-based classifier is Locally 

weighted learning (LWL), which uses an ensemble of instance-based classifiers (Frank et al. 2003). 

A very simple but relatively inaccurate classifier is the 1R algorithm (OneR), which selects only one 

rule that produces the smallest number of errors (Holte 1993). It typically obtains a rule by constructing 

a frequency table. Another approach is to use a decision list (PART), constructed from a partial decision 

tree obtained by the C4.5 algorithm (Frank and Witten 1998). An alternative classification method is 

using a proportional rule learner similar to that in the Repeated Incremental Pruning to Produce Error 

Reduction (RIPPER) algorithm referred to in WEKA as JRip, an optimized version of the IREP algorithm 

proposed by Cohen in (Cohen 1995). Finally, classification can be performed by building and using a 

simple decision table majority classifier (DecisionTable) (Kohavi 1995). 

Deep Learning classifiers 

Regarding the Deep Learning approaches, in this paper we consider three different architectures 

widely used in literature. 

The first approach is based on a Deep Convolution Neural Network (DCNN). CNNs are a particular 

type of neural networks, which use the convolution operation in one or more layers for the learning 

process. These networks are inspired by the primal visual system, and are therefore extensively used 

with image and video inputs (Goodfellow et al. 2016). A DCNN is composed by the sequential cascade 

of three main layers: i) a convolution layer; ii) a detector layer; and, iii) a pooling layer. A final fully 

connected layer and a soft-max one terminate the architecture. 

The second approach adopts a Deep Recurrent Neural Network (DRNN) (Goodfellow et al. 2016) 

that exploits the intrinsic temporal structure of audio data. This allows to exhibit a temporal dynamic 
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behavior that can be helpful for audio data. Since the training of DRNNs suffers from the problem of 

vanishing gradient, the long short-term memory (LSTM) units have been introduced (Aggarwal 2018). 

LSTMs allow to obtain very high accuracy in classification of audio data. 

Finally, the third approach is based on the Deep Belief Network (DBN) (Goodfellow et al. 2016; 

Aggarwal 2018), that is a generative model with several layers of latent variable. The latent variables 

are binary while the visible ones, in the case of audio, are real-valued. Every unit in each layer is 

connected to every unit in adjacent layers, but there are no interlayer connections. Although not 

commonly used for audio classification, DBNs can provide good results. 

 

SOUND CLASSIFICATION AND CLASSIFIERS TYPES 

A multiclass sound classifier executes the process by which it automatically assigns an individual 

sound item to one of a number of trailed categories or classes according to its analyzed characteristics. 

The classification is performed on the base of some features extracted from the recorded audio signals 

after the removing of silent segments. The scheme of the overall algorithm is shown in Fig. 1. 

Feature extraction and pre-processing 

Each signal is segmented in a certain number of superframes of 200 ms with an overlap of 50%. In 

order to detect the presence of silence, each superframe is on turn segmented in smaller frames of 50 

ms with no overlap. If the Root Mean Square (RMS) (Fu et al. 2011) of a frame is under the threshold of 

−30 dB, the frame is discarded as silence. The superframe is then reconstructed from the remaining 

constituent frames. Subsequently, suitable features are extracted. 

Many audio features have been proposed in the literature for audio signal classification. A total of 

62 features, grouped into 15 distinct sets of features and exploiting both time and frequency 

characteristics, have been extracted from the audio signals (Patsis and Verhelst 2008; Lu et al. 2002). 

Each feature is obtained by segmenting again the superframe in smaller frames as shown in Fig. 2 and 

evaluating the needed values. Each feature uses a frame of different length and overlap. 
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The symbols, number and names of these sets, along with each window duration and its overlap, 

are shown in Table 4. 

The descriptors have been chosen so as to efficiently represent different domains of the audio 

signal: characteristics such as the ZCC or the RMS are extracted in the time domain, whilst VSFLUX or 

SBC pertain to the frequency domain. The reason is that the utility of each descriptor changes 

depending on the nature of the task. A brief description of the employed features is as follows. 

The Zero Crossing Count (ZCC) is defined as the number of times the signal reverses its sign. The 

values of the ZCC over the subframes are subdivided into 10 bins, and the normalized frequencies of 

these bins are used as features for the superframe, together with the variance of the ZCC values 

(denoted as VZCR). Another feature extracted here is the High Order ZCC Ratio (HZCRR), defined as the 

ratio of the number of frames whose ZCC is above 1.5 times the average ZCC of the superframe. 

The RMS of each superframe is also computed. As before, the RMS values are subdivided into 10 

bins, the bins are normalized, and their relative frequencies are used as features. Additionally, we 

compute the ratio of Low Energy Frames (LEF), i.e. the ratio of frames whose RMS is lower than 50 % 

the average RMS for the superframe. The mean value of a similar feature, the Short Time Energy (STE) 

(Fu et al. 2011), is also computed. Then, we extract the Low Short Time Energy Ratio (LSTER), defined 

as the ratio of the number of frames whose STE is less than half the average STE of the superframe. 

For the following features the superframe is convolved with a low-pass filter to retain only the 

frequencies between 1.5 kHz and 1.6 kHz. Both the low-band superframe and the original superframe 

are then segmented. The Low-Band Energy Ratio (VLER) is defined as the variance of the ratio of the 

low-band STE to the whole band STE. Next, the variance of the Spectral Flux (VSFLUX) is computed, 

where the spectral flux is defined as the 2-norm between the frequency spectra of the current frame 

and of the previous frame. An additional feature computed here is the Low Frequency RMS (LFRMS), 

where the LFRMS is defined as the median of the RMS of the low-band version of the frame. The Low 

Frequency ZCC (LFZCC) is computed as the 9-th moment of the ZCC values of the frames. 

Additionally, we compute the Sub-Band Correlation (SBC) (McAuley et al. 2005) for 4 different filters 

of increasing frequencies, and the High-Order Crossing (HOC) (Petrantonakis and Hadjileontiadis 2010) 
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up to the 4-th order. Moreover, 7 Linear Predictive Coefficients (LPC) have also been evaluated 

(Makhoul 1976): these coefficients can be thought as the parameter of an AR system that generates 

the signal when it is fed with a white Gaussian noise. 

Finally, we extract also 13 Mel-Frequency Cepstrum Coefficients (MFCC) (Zheng et al. 2001), that are 

a representation of the short-term power spectrum of the signal, based on the linear cosine transform 

of the log power spectrum on a nonlinear mel scale of frequency. 

Deep Learning methods, instead, use an end-to-end (E2E) approach (Aggarwal 2018) in the sense 

that the final classification is obtained by using directly raw audio data (samples) as input to the 

architecture. Only the approach based on the DCNN use the time-frequency representation 

(spectrogram) as input. 

 

METHODOLOGY OF THE ACCURACY ANALYSIS 

To provide a useful and accurate interpretation of the seventeen classifiers, we have used several 

measurement techniques. One is counting the number of items correctly and locating incorrectly 

classified items (Witten et al. 2017). While the word “positive” (P) is generally used to describe an event 

that has been identified, the term “negative” (N) describes an event that has been rejected. With this 

terminology, let us define the following: i) “true positive”, when an instance is correctly classified in its 

own class; ii) “true negative”, when an instance that does not belong in a class is correctly classified as 

not belonging in that class; iii) “false positive”, when an instance that does not belong in a class is 

incorrectly classified as belonging from that class; and, iv) “false negative”, when an instance that 

belongs from a class is incorrectly classified as not belonging from that class. 

By using these simple indicators, it is possible to construct a number of useful indexes in order to 

establish the effectiveness of a classifier. In this paper, we use accuracy, precision, recall, F-measure, 

MCC (Matthews correlation coefficient) and AUC (area under the curve). These evaluation criteria are 

well known in literature and a formal definition can be found in (Witten et al. 2017). The AUC is the area 
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under the Receiver Operating Characteristic (ROC) (Witten et al. 2017), which is a measure of the 

accuracy of a classifier. An AUC close to one indicates a good accuracy in classification. 

All these criteria are evaluated as a binary classification in the sense that for each j-th class (among 

the N available), we have considered the j-th class as the “true positive” and the remaining (N − 1) 

classes as the “false positive”. Hence, for each j-class the specific criteria has been computed and finally 

a weighted mean of the obtained criteria values with respect the number of instances in each class has 

been evaluated. 

In addition, another efficient instrument for evaluating the accuracy of a multiclass classifier is the 

confusion matrix, which shows how single instances have been classified. 

Deep Learning approaches have been evaluated only in terms of single class accuracy and overall 

accuracy. 

 

RESULTS OF ACCURACY PERFORMANCE ANALYSES 

To test the accuracy of the compared multiclass classifiers, the feature extraction procedure has 

been implemented in a MATLAB environment, while WEKA software has been used to perform the 

classification stage. To train the classifiers, we used the previous collection of sounds. In particular, all 

the sounds were resampled at 16 kHz, and a total of about 5 hours of sound have been considered for 

training, while about 2 hours for testing. Hence, features were extracted according to the algorithm 

previously described, obtaining the 49,361 instances of Table 2. After the training of the considered 

classifiers, these have been evaluated on the 15,335 instances of the test set.  

All the hyper-parameters used in the tested classifiers have been fine tuned by using a grid search 

algorithm in suitable intervals, in order to improve the obtained accuracy. The main hyper-parameters 

of all the classifiers are summarized in the following Table 5. The name of the used hyper-parameters 

is that used in the WEKA software and their meaning can be found in (Witten et al. 2017). All the other 

parameters have been set to their default values. 
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Results in terms of accuracy, precision, recall, F-measure, MCC and AUC (evaluated as the weighted 

average over all the classes), are shown in Table 6. 

Results summarized in Table 6 show that the analyzed classifiers behave in different way on the 

used data set. Some classifiers, like the LWL and the OneR, provide very poor results with an accuracy 

lower than 40%. Just the opposite, other classifiers behave very well. Specifically, the best six classifiers, 

listed in order of best accuracy, are: RandomForest (93.16%), MLP (91.06%), IBk (85.28%), PART 

(83.66%), RandomSubspace (81.81%) and KStar (80.37%). The rest of the classifiers behave in an 

intermediate way, providing results in the range 56 – 80%. The same considerations done for the 

accuracy metric can be done for the other implemented indexes. In fact, precision, recall, F-Measure, 

MCC and the AUC confirm the same ranking of the analyzed classifiers. Fig. 3 explicitly illustrates the 

comparison of the analyzed accuracy performances of all classifiers. 

From the above discussion, we can argue that some of the six best-performing classifiers can be 

used to solve the task of sound identification in construction site process monitoring. However, 

additional studies and experimental results, maybe using real-world data recorded in huge and noisy 

construction sites, are need to identify one or two target classifiers to be used in the proposed task. 

In order to better highlight the classification capabilities of the proposed classifiers, we show the 

confusion matrix of some the best ones. Specifically, Table 7 shows the confusing matrix of the Random 

Forest, while Table 8 shows the confusing matrix of the MLP classifier. The confusion matrices of kNN 

(IBk) and PART are shown in Tables 9 and 10, respectively. 

A careful observation of these tables shows that all classes are usually well balanced, with a similar 

number of examples for each class. The only slightly unbalanced classes are the bulldozer (class 03), 

truck (class 05) and the concrete mix (class 07). However, this data unbalancement is not a problem, 

since the reached accuracy is high also for the unbalanced classes. 

Table 7 also underlines the high accuracy obtained by the Random Forest (93.16%), since the 

confusion matrix shows high numbers into the diagonal entries while the rest of values are very small, 

often close to zero. On the contrary, Tables 8 – 10 show some slightly greater values on the off-diagonal 
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entries. Interestingly enough, these Tables also show that the class 01 (concrete breaking) is always the 

class that presents the best accuracy.  

Moreover, an examination of Tables 7 – 10 highlights that the most misclassified items are certainly 

those related to the unbalanced classes 05 and 07 (truck and concrete mix). However, there exist other 

classes with a certain degree of misclassification, but the particular class showing this problem depends 

on the used classifier. For example, the Random Forest produces a 12% of misclassified items in class 

04 (piling) and 08 (concrete grinding), while PART obtains a 20% of misclassification in class 09 (drilling) 

and a 30% in class 08 (concrete grinding). Similarly, IBk produces a 18% of misclassified items in the 

class 07 (concrete mix) and in the same 08 (concrete grinding). Obviously, the misclassification errors 

increase when the accuracy of a classifier decreases, and the number of classes with high 

misclassifiaction rates increases. As an example, Table 11 shows the confusion matrix of the J48 which 

performs with an accuracy of 70.24%. Although the misclassification error is about 30%, some classes 

provide high classification errors, such as a 52% for class 08 (concrete grinding), a 32% for class 09 

(drilling) and a 50% of class 04 (piling). In addition, an observation of Table 11 highlights that the off-

diagonal terms assume higher values in the bottom left region of the matrix with respect to the other 

regions. 

A final observation is the following: many of the classifiers with an intermediate accuracy tend to 

classify item from class 02 (grounding excavator) as items belonging from classes 06 (grading), and vice 

versa; items from class 09 (drilling) as items belonging again from class 06 (grading) and items from 

class 03 (bulldozer) as items belonging from class 08 (concrete grinding). 

Deep Learning Approaches 

In order to test the accuracy of the considered Deep Leaning classifiers, we have implemented the 

three architectures in Python by using the facilities of Keras open-source API library. The dataset is the 

same used for evaluating the traditional machine learning approaches. 

The main hyper-parameters have been set by a grid search and are summarized as follows. A 

complete set of hyper-parameters can be found in (Maccagno et al. 2019; Scarpiniti et al. 2020). For 

the DCNN we have used 5 convolutional layers, followed by a dense layer and a soft-max layer as 
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output. All layers use the ReLU activation function. A batch size of 64 has been used, while in the dense 

layer a dropout with rate 0.3 is used. The loss function is the cross-entropy and the Adam optimizer 

with a learning rate of 0.0005 has been chosen. A total of 100 training epoch has been run. For the 

DRNN we have used 3 layers, the first two with LSTMs. the first LSTM layer have an output size of 128 

and return only the output of the last hidden state, the second LSTM layer have an output size of 32 

and return the full sequence of hidden states output. A frame length of 50 ms has been used. The loss 

function is the cross-entropy and the Adam optimizer with a learning rate of 0.0005 has been chosen. 

A total of 100 training epoch has been run. For the DBN we have used 4 hidden layers plus an output 

soft-max layer. The hidden layer used a Gaussian activation function with a batch size of 32. The training 

is based on the contrastive divergence algorithm (Goodfellow et al. 2016) and the Adam optimizer has 

been used once again. A total of 240 training epochs has been run. 

The per-class accuracy and the overall accuracy, obtained as the weighted mean across the different 

classes, of the three considered DL approaches are shown in Table 12. This table show that all the 

considered deep learning methods are able to obtain quite high accuracies. Specifically, DCNNs and 

DRNNs behave very similar, while DBNs show the lowest accuracy. Form a comparison of the single 

accuracies on each class, we can see that the approach based on the DCNN provide the best results. 

However, we have to underline that the class 5 (Truck) always presents an accuracy considerably lower 

than the other classes and tends to degrade the overall accuracy. This behavior can be explained by 

considering that, as shown in Table 2, this class show a limited number of audio data. As it is known, 

deep learning techniques overcomes the traditional ML ones only if the training is made over a huge 

set of data. In this regards, numerical results in (Maccagno et al. 2019; Scarpiniti et al. 2020) performed 

on a larger dataset confirm the superior performance of DL approaches over all classes. 

 

CASE STUDIES 

To evaluate the performance of the proposed sound classifiers, this study involves the case study, 

which employed sound data of a real construction project. This research team visited the off-system 

bridge construction project, Tucker Road Bridge over Drainage Bayou located in Louisiana and recorded 
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the sounds of excavating the ground, erecting and driving the piles for the bridge for several hours. The 

Fig. 4 shows the sound recording of erecting and driving the bridge pile in the construction site. The 

type of this construction project is the removal of existing timber and concrete bridges, installation of 

concrete slab span bridges, grading, base course, and asphalt concrete surfacing. Transportation 

construction such as roadway and bridge construction is one most challenging job among all type of 

construction activities around the globe. This kind of construction is basically involved with ample 

number of actions where mostly different equipment and machines used to make it accurate, the 

activity faster and less time consuming. Although these are quite significant to materialize the 

construction conspicuously, but they also can create massive sound at construction site which is 

detrimental for human body who are working over there. 

In order to provide a fair comparison of sound classifiers on real world recorded data, the set of 62 

features have been evaluated on the whole data and a total of 5,000 instances have been randomly 

selected to be used as the new test set. Table 13 shows the accuracy obtained for the considered case 

studies by four of the best performing classifiers, namely: Random Forest, Random Subspace, Multilayer 

Perceptron and IBk. 

From Table 13, we can argue that the selected four classifiers (Random Forest, Random Subspace, 

Multilayer Perceptron and IBk) are able to provide an acceptable accuracy even in the case of sounds 

recorded in real world scenarios. Specifically, results are close or greater to 70% (excepting for the IBk 

that performs poorly in the Backhoe scenario), with a peak close to 86%. Only in the case of ‘Driving the 

pile’ the obtained accuracy is slightly smaller, around 68% for the Random Forest and Random Subspace 

and 62-63% for the MLP and IBk. Note that, differently from results provided in Section 6 for an 

hypothetical noise-free scenario, results shown in Table 13 refer to sounds recorded along the 

unavoidable background noise, due to the microphones themselves, the recording system and the 

other related activities in the construction site. From this consideration and the obtained results, we 

are confident that the proposed approach can represent a good technique to detect events in 

construction sites. 



 

 18 Yongcheol et al., April 02, 2019 

Moreover, the sound identification approach can capture each work activities as well as a task cycle 

such as pile lifting, erecting, driving, and releasing. Thus, a project manager or an owner who is in or 

out of site can not only directly recognize the type of current work activity or idle time, but also 

accurately expect a next step. As shown in Fig. 5, once this system identifies one cycle of Bent 5 Piles 

including pile lifting, erecting, driving, and releasing, project participants or project managers can 

expect and prepare the start of the Bent 6 Piles’ task. Since we can easily calculate a duration of each 

task, an analysis of work performance and a prediction of a project schedule can be executed according 

to a sound-based analysis of previous work activities. A construction project such as this bridge site 

located in the suburban area of Louisiana needs an automated monitoring system to remotely oversee 

the work activities and equipment operations. Three supervisors had to stay in the bridge construction 

site to supervise the site and report its progress. The authors expect that this sound-based monitoring 

method can reduce significant time and effort to remotely govern a construction project. In particular, 

each State has to manage a large number of construction projects. Thus, this approach is expected to 

allow state or federal officers to remotely monitor construction projects and make an accurate log of 

work activities of each project. 

 

DISCUSS AND PLANS FOR THE APPLICATION OF AN ACCURATE SOUND CLASSIFIER 

An accurate sound recognition system capable of classifying the unique characteristics of sounds 

generated by workers and equipment on a construction site will improve the processes of monitoring 

work progress, evaluating task performance, and surveilling safety. With such a system, project 

managers will be able to monitor the status of workers remotely, investigate the effective distribution 

of hours, and detect issues of safety in a timely manner. With a better understanding of on-site 

situations, domain experts should be able to make better data-driven decisions, optimize labor 

arrangements, and provide a higher standard of safety management. To achieve these goals, we tested, 

compared, and evaluated the implementation of sound classifiers on both web-based and real-world 

data. To adapt the results of our evaluation, which identifies the most appropriate classifier for 
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analyzing construction work sounds, we will perform an audio-based performance evaluation of 

construction activities and equipment operations. 

Working hours of construction laborers can be divided into idle hours and effective hours. The 

number of effective working hours can be captured to evaluate work/equipment operational 

performance and plan an optimized construction procedure. However, as calculating and logging the 

hours of each worker and equipment are manual processes and thus labor intensive and infeasible, the 

next study will determine features of sound detection that will help project managers identify actual 

work hours and monitor work activities on a construction site. We will collect data from a real 

construction project on site and wirelessly transmit the data to a server in real-time for an analysis of 

construction site conditions and the identification of the process status. We will carry out classification 

tasks via trained models with desired accuracy. The results of classification, combined with location 

information integrated by Building Information Modeling (BIM), will be available to project managers. 

At this time, the main limitations of the proposed approach are two-fold. On one hand, the 

performance of a sound classifier rapidly degrades when the signal to noise ratio (SNR) becomes failing 

(i.e., lower than −10 dB). On the other hand, these traditional sound classifiers struggle to take a 

decision when more than one sound event is overlapped in the same time interval. Both these 

limitations can be overcame by using microphone arrays with high directivity, which is a set of 

microphones that focus their “attention” towards a specific spatial direction. Possible stages of 

wideband noise reduction and acoustic blind source separation pre-processing techniques can also be 

applied in order to limit the accuracy degradation due to these drawbacks. Another power solution 

consists in applying other novel techniques provided by the Deep Learning approach (Salamon and Bello 

2017), towards which our future research will be addressed. 

 

CONCLUSIONS 

Audio-based field monitoring has significant potential to overcome current challenges, such as 

monitoring angle, time, and data processing efficiency, inherent in manual and vision-based monitoring 
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frameworks. The success of a monitoring technique depends on the selection of a suitable analytics 

algorithm. Thus, to facilitate the task of construction site activity monitoring, we analyzed about 64,700 

instances of construction site sound signals and found that the Random Forest classifier achieved 

93.16% accuracy, sufficient for constructing a sound-based construction site monitoring system and 

performance checking framework that project participants can use to enhance their monitoring of work 

progress, labor efficiency, and safety. Even when tested on real-world data recorded in a construction 

site this classifier has shown an accuracy up to 85%. Moreover, a comparison with three Deep Learning 

approaches has provided results with accuracies in the range of 90%-94%. By providing project 

managers with a more comprehensive understanding of on-site situations, the sound-based monitoring 

system should improve the data-driven decisions of domain experts that will enhance work activity 

forecasts and productivity and enable them to respond quickly to problems that arise on construction 

sites. However, sounds emanating from a construction site, collected by a sensor, typically overlap, 

which creates a challenging task that must be investigated by future studies. 
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N. Name Description N. of files Duration N. of instances 

1 concrete_breaking Breaker 15 49:21 6059 

2 ground_excavating Excavator 8 1:43:06 15598 

3 bulldozer Bulldozer 9 38:24 2450 

4 piling Pile, drifter drill 9 34:51 5310 

5 truck Dumper 10 13:49 2737 

6 grading Grader 9 54:39 15984 

7 concrete_mix Concrete mixer 15 21:55 2334 

8 concrete_grinding Grinder 15 29:38 4277 

9 drilling Hand held power drill 7 1:20:20 9947 

  Total 97 7:06:03 64696 

 

TABLE 1. Details of different sound classes used in the paper.  
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  Train Set Test Set 

N. Name Duration N. of instances Duration N. of instances 

1 concrete_breaking 35:33 4661 13:48 1398 

2 ground_excavating 1:11:38 11997 31:28 3601 

3 bulldozer 26:35 1887 11:49 563 

4 piling 25:35 4111 09:16 1199 

5 truck 11:49 2138 02:00 599 

6 grading 40:02 11828 14:37 4156 

7 concrete_mix 15:45 1795 06:10 539 

8 concrete_grinding 20:57 3292 08:41 985 

9 drilling 1:00:00 7652 20:20 2295 

 Total 5:07:54 49361 1:58:09 15335 

 

TABLE 2. Details of train and test sets. (NEW!!) 
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Classifier Description References 

BayesNet Bayesian Classifier (John and Langley 1995) 

DecisionTable Decision table majority classifier (Kohavi 1995) 

HoeffdingTree Hoeffding Tree (Hulten et al. 2001) 

IBk k Nearest Neighborhood classifier (kNN) (Altman 1992; Aha et al. 1991) 

J48 C4.5 decision tree (Quinlan 1993) 

JRip Cohen version of IREP (Cohen 1995) 

KStar K∗ instant based learner (Cleary and Trigg 1995) 

LWL Locally weighted learning (Frank et al. 2003) 

MLP MultiLayer Perceptron (Haykin 2009) 

NaiveBayes Naïve Bayesian Classifier (John and Langley 1995) 

OneR 1R classifier (Holte 1993) 

PART Decision list (Frank and Witten 1998) 

RandomForest Forest of random trees (Breiman 2001) 

RandomSubSpace Multiple Trees (Ho 1998) 

RandomTree Random tree (no pruning) (Rokach and Maimon 2014) 

SimpleLogistic Linear logistic regression (Sumner et al. 2005) 

SMO Sequential Minimum Optimization (Plat 1998) 

 

TABLE 3. The seventeen different classifiers compared in this paper.  
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Symbol Description # of features Window [ms] Overlap [ms] 

ZCC Zero Crossing Count 10 5 2.5 

CZCR Variance of Zero Crossing Rate 1 5 2.5 

HZCRR High Order Zero Crossing Rate Ratio 1 5 2.5 

HOC High Order Crossing 8 5 2.5 

RMS Root Mean Square 10 5 2.5 

LEF Low Energy Frame 1 5 2.5 

STE Short Time Energy 1 5 2.5 

LSTER Low Short Time energy Ratio 1 20 10 

VLER Variance of Low-Band Energy Ratio 1 20 10 

VSFLUX Variance of Spectrum Flux 1 20 10 

LFRMS Low-Frequency Root Mean Square 1 20 10 

LFZCC9 9th-order Moment of LFZCC 1 10 5 

SBC Sub-Band Correlation 5 15 0 

LPC Linear Predictive Coefficients 7 200 0 

MFCC Mel-Frequency Cepstral Coefficients 13 200 0 

 

TABLE 4. Set of the 62 used features.  
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Classifier Parameter Value 

BayesNet Batch size 100 

 Estimator Simple Estimator 

 Search Algorithm K2 (Hill climbing) 

DecisionTable Batch size 100 

 Search Algorithm Best First 

HoeffdingTree Batch size 100 

 Grace Period 200 

 Hoeffding Tie Threshold 0.05 

 Minimum fraction of weight info gain 0.01 

 Split confidence 10−7 

IBk (kNN) Batch size 100 

 Number of neighbors 1 

 Window size 0 

J48 Batch size 100 

 Confidence factor 0.25 

 Number of Folds 3 

JRip Batch size 100 

 Number of folds 3 

 Minimum total weight 2 

 Optimization runs 2 

 Seed 1 

KStar Batch size 100 

 Global blend 20 

LWL Batch size 100 

 Number of neighbors 14 

 Weighting kernel 0 

MLP Batch size 100 

 Number of hidden units 40 

 Activation function Hyperbolic tangent 

 Learning rate 0.01 

 Momentum term 0.05 

 Number of epochs 500 

NaiveBayes Batch size 100 

OneR Batch size 100 

 Bucket size 6 

PART Batch size 100 

 Confidence factor 0.25 

 Number of folds 3 

 Seed 1 

RandomForest Batch size 100 

 Execution slots 1 

 Number of iterations 500 

RandomSubSpace Batch size 100 

 Execution slots 1 

 Number of iterations 500 

 Seed 5 

 Sub-space size 0.5 

RandomTree Batch size 100 

 K value 0 

 Max depth Unlimited 

 Minimum total weight 1 

 Min variance 0.001 

 Seed 1 

SimpleLogistic Batch size 100 

 Number of iterations 500 

 Heuristic stop 50 

 Weight trim beta 0.0 

SMO Batch size 100 

 c 1.0 

 ε 10−12 

 Kernel Polynomial 

 Tolerance parameter 0.001 

TABLE 5. The main hyper-parameters used in the tested classifiers.  
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Classifier Accuracy [%] Precision Recall F-Measure MCC AUC 

BayesNet 79.74 0.808 0.797 0.801 0.769 0.964 

DecisionTable 56.61 0.608 0.552 0.547 0.576 0.894 

HoeffdingTree 41.22 0.589 0.544 0.531 0.497 0.891 

IBk (kNN) 85.28 0.860 0.853 0.855 0.831 0.925 

J48 70.24 0.716 0.702 0.707 0.661 0.829 

JRip 78.84 0.799 0.788 0.792 0.759 0.914 

KStar 80.37 0.814 0.804 0.807 0.799 0.901 

LWL 33.62 0.358 0.331 0.344 0.208 0.843 

MLP 91.06 0.913 0.932 0.932 0.919 0.957 

NaiveBayes 79.81 0.808 0.798 0.802 0.770 0.884 

OneR 39.48 0.401 0.398 0.399 0.247 0.612 

PART 83.66 0.846 0.837 0.840 0.814 0.916 

RandomForest 93.16 0.934 0.932 0.932 0.919 0.998 

RandomSubSpace 81.81 0.829 0.818 0.822 0.793 0.897 

RandomTree 77.36 0.784 0.774 0.777 0.741 0.869 

SimpleLogistic 75.51 0.766 0.755 0.759 0.720 0.936 

SMO 77.17 0.782 0.772 0.775 0.739 0.951 

 

TABLE 6. Accuracy and other performance metrics of the evaluated classifiers. The values 

represent weighted averages among the classes. 



 

 33 Yongcheol et al., April 02, 2019 

 01 02 03 04 05 06 07 08 09 

01 1398 0 0 0 0 0 0 0 0 

02 0 3428 6 7 15 138 5 2 0 

03 0 2 520 5 6 16 11 3 0 

04 11 5 14 1072 25 29 12 13 18 

05 0 41 8 2 529 13 0 5 1 

09 14 77 54 49 27 3916 7 9 3 

07 0 13 3 0 0 4 517 0 2 

08 0 10 26 9 12 27 4 882 15 

09 0 35 12 22 48 79 17 58 2024 

TABLE 7. Confusing matrix of the Random Forest.  
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 01 02 03 04 05 06 07 08 09 

01 1397 0 0 0 0 1 0 0 0 

02 2 3365 14 21 26 152 11 7 3 

03 0 5 489 8 14 17 9 20 1 

04 17 14 26 1017 33 24 19 23 26 

05 1 38 12 6 508 17 5 8 4 

09 15 84 57 61 44 3851 21 12 11 

07 0 19 12 0 0 7 497 0 4 

08 2 21 35 16 12 35 8 837 19 

09 0 42 18 27 45 83 16 61 2003 

TABLE 8. Confusing matrix of the MLP.  
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 01 02 03 04 05 06 07 08 09 

01 1396 0 0 1 0 1 0 0 0 

02 4 3248 23 42 74 162 13 33 2 

03 0 5 412 7 15 13 10 94 7 

04 21 32 52 893 37 48 61 19 36 

05 0 31 48 29 426 35 9 15 6 

09 24 99 73 61 57 3708 69 47 18 

07 1 22 34 3 8 29 379 53 10 

08 2 43 67 55 13 37 25 707 36 

09 5 61 34 24 72 103 19 69 1908 

TABLE 9. Confusing matrix of the kNN (IBk). 
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 01 02 03 04 05 06 07 08 09 

01 1394 0 0 1 0 3 0 0 0 

02 5 3221 26 50 27 158 64 41 9 

03 0 7 385 12 24 33 12 84 6 

04 19 35 63 859 41 55 72 21 34 

05 1 26 54 37 401 39 12 21 8 

09 28 104 69 75 64 3681 68 42 25 

07 3 31 42 9 21 29 341 47 16 

08 2 43 65 57 18 46 28 691 35 

09 8 57 48 41 95 99 31 59 1857 

 

 

TABLE 10. Confusing matrix of the PART.  
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 01 02 03 04 05 06 07 08 09 

01 1363 5 3 5 3 9 3 4 3 

02 18 2939 68 84 71 234 97 56 34 

03 26 41 195 62 42 41 32 83 41 

04 44 55 94 610 69 86 106 57 78 

05 23 67 78 65 183 93 41 26 23 

09 51 156 97 128 96 3317 112 108 91 

07 32 63 74 68 59 71 123 25 24 

08 46 59 97 73 58 70 44 472 66 

09 57 83 89 122 109 141 57 68 1569 

 

TABLE 11. Confusing matrix of the J48.  
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N. Class DCNN DRNN DBN 

1 concrete_breaking 92.13 90.72 87.75 

2 ground_excavating 91.02 89.60 86.77 

3 bulldozer 87.69 87.02 83.39 

4 piling 97.68 98.89 94.79 

5 truck 83.25 82.53 78.42 

6 grading 98.79 97.16 95.02 

7 concrete_mix 99.34 98.85 95.77 

8 concrete_grinding 98.79 97.76 95.97 

9 drilling 98.21 97.48 92.31 

 Overall 94.10 93.33 90.02 

 

TABLE 12. Per-class and overall accuracy of Deep Learning approaches considered for 

comparison. 
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Classifier Backhoe Cycles lifting Driving the pile 

RandomForest 71.89 85.88 68.88 

RandomSubSpace 70.69 84.95 68.03 

MLP 69.66 82.13 62.23 

IBk 58.84 67.48 63.74 

 

TABLE 13. Accuracy [%] obtained by four of the best performing classifiers in the three 

considered scenarios. 
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FIG. 1. Architecture of the classifier.  
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FIG. 2. Segmentation of superframes in subframes.  



 

 43 Yongcheol et al., April 02, 2019 

 

FIG. 3. Comparison of accuracy performances of the classifiers. 
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FIG. 4. Sound recording of the erecting and driving the bridge pile 
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FIG. 5. Schedule of the bridge construction 


