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Bessel-Gauss beams have been mainly proposed in optics as a solution for reducing the on-axis
intensity oscillations typical of Bessel beams. Previous investigations on Bessel-Gauss beams are
based on a scalar theory in the paraxial approximation, and thus cannot be extended to the mi-
crowave range where a fully vectorial approach is needed. Here, the generation of Bessel-Gauss
beams through leaky waves is investigated. First, the nondiffractive and focusing properties of
Bessel-Gauss generated through leaky waves are extensively examined in the frame of a vectorial
approach. Useful design criteria are derived to optimize both the radiation and the focusing effi-
ciency of such beams. On this basis, leaky-wave radiators synthesized to support the generation of
a Bessel-Gauss beam over a given frequency band in the microwave range are presented. Full-wave
results corroborate the concept.

I. INTRODUCTION

Bessel beams (BBs) are ideal solutions of Helmholtz
equation in a cylindrical reference frame [1]. However,
they became widespread in optics only in the early ‘90s
when their practical generation from finite apertures was
demonstrated (see, e.g., [2–4]).
Bessel beams are, in principle, diffraction-free beams

[3], and this property makes them particularly appeal-
ing in a plethora of modern applications spanning the
frequency range from microwaves to optics, and even be-
yond. In addition to the nondiffractive properties, BBs
also retain a remarkable focusing and self-healing char-
acter (i.e., the capability to reconstruct themselves if an
obstacle is put across the propagation axis) [5].
As opposed to diffractive beams, such as Gaussian

beams (GBs), the amount of energy carried within the
main lobe of a BB is just a small fraction of the total en-
ergy. Nevertheless, this limitation does not considerably
hinder the efficiency of BBs in focusing applications, as
demonstrated in [4]. Indeed, the more efficient initial en-
ergy distribution of GBs (that, conversely, carry most of
their energy within the main lobe), is partially washed
out after the Rayleigh distance, because of diffractive
spreading. In fact, comparison between the propagation
properties of GBs and BBs with equal initial beam waist
set to a fraction 1/N of the radiating aperture reveals
that BBs would cover N times the distance covered by a
GB at the expense of a 1/N power efficiency [4].
However, it would be interesting to ascertain the bene-

fits of combining the properties of GBs with those of BBs,
and determine to what extent this combination would
affect their propagation properties. In this regard, it is
worth noting that Bessel-Gauss beams (BGBs) have al-
ready been proposed in optics to reduce the on-axis oscil-
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lations of the intensity of BBs, notably due to diffraction
contributions from edges [6–11].
On the other hand, the current literature still lacks

a thorough investigation of the nondiffractive properties
of BGBs, as well as a detailed analysis on the effects
related to the choice of the Gaussian-beam waist param-
eter. Indeed, most of the works discussing the propaga-
tion characteristics of BGBs and BBs (see, e.g., [12–22])
are mainly focused on the effects of the apodization on
the on-axis distribution, rather than the focusing char-
acter over the transverse plane, and are limited to a few
case studies. Moreover, results in [19–21, 23] are derived
under the frame of a scalar theory and the paraxial ap-

proximation. The first hypothesis limits the analysis to
few polarization states, whereas it has been proven that
both Bessel [24, 25] and Bessel-Gauss [8] beams with ar-
bitrary polarizations can be derived as solutions of the
vector Helmholtz equation. The second hypothesis lim-
its the analysis to beam with waists that are large with
respect to the operating wavelength, and thus of limited
interest in the microwave range [26, 27]. Efforts to in-
clude higher-order nonparaxial corrections to the parax-
ial BGB solution in analytical closed-form have been dis-
cussed in [22]. However, results were derived in the in-
finite aperture-case, thus limiting the analysis to beam
waists that are considerably smaller than the aperture
diameter.
In this work, we aim at analyzing the nondiffractive

and focusing properties of nonparaxial BGBs of any

beam-waist size under the frame of a vectorial approach,
in order to apply these results to the generation of BGBs
at microwave frequencies. In this regard, we should stress
that BGBs have few experimental validations in the mi-
crowave range. On the other hand, BBs can be generated
through various techniques (see, e.g., [26–34]). Here, we
focus only on those systems based on leaky waves [35, 36].
In this regard, we should mention that leaky-wave Bessel
beams (LW-BBs) possess slightly different nondiffractive
properties with respect to classical BBs due to the in-
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trinsic exponentially-decaying character of the aperture
distribution [36]. Nevertheless, leaky-wave theory offers
a rigorous, straightforward, and flexible method to mod-
ulate the aperture distribution in order to synthesize a
target amplitude profile [37–40]. In this specific case, we
address the synthesis procedure of a BGB through leaky
waves.
The manuscript is outlined as follows. In Sec. II,

moving from the ray-optics explanation of classical BBs
[41, 42], we extend the analysis to LW-BBs and BGBs.
Comparison of these results offers a first qualitative
overview of the propagation properties of such beams. In
Sec. III, we provide an extensive, fully vectorial numeri-
cal analysis of the nondiffractive and focusing properties
of BGBs for several different choices of the relevant de-
sign parameters, namely the axicon angle and the Gaus-
sian beam waist. The flux of the radial and longitudinal
components of the Poynting vector is also evaluated to
determine the power-transport properties of BGBs. In
Sec. IV, the synthesis procedure needed for the genera-
tion of BGBs through leaky waves is outlined. Numerical
full-wave results are shown for two leaky-wave structures
designed according to the criteria described in the pre-
vious two sections. A conclusive discussion is drawn in
Sec. V.

II. BESSEL BEAMS, LEAKY-WAVE BESSEL

BEAMS, BESSEL-GAUSS BEAMS

We here review, under the frame of a scalar theory
and the ray-optics approximation, some basic properties
of classical BBs, i.e., beams whose aperture-field distri-
bution is described by a cylindrical function of a real ar-
gument, and LW-BBs, i.e., BBs generated through leaky

waves, thus described by a cylindrical function of a com-

plex argument [36]. This allows for easily deriving the
propagation properties of BGBs and compare them with
those of BBs and LW-BBs. In the scalar approximation,
the propagation features of Bessel beams can qualita-
tively be predicted under a ray-optics interpretation.
Let us consider a radiating aperture of radius ρap sup-

porting an inward cylindrical aperture distribution A(ρ)
of the type

A(ρ) ∝ H
(1)
0 (kρρ) ∼

ejkρρ

√
ρ

(1)

where H
(1)
n represents the nth-order Hankel function of

the first kind (an ejωt time dependence is assumed and
suppressed throughout this paper), and kρ = k0 sin θ0,
kρ ∈ R

+ is the real positive radial wavenumber, k0 be-
ing the free-space wavenumber, and θ0 the axicon angle,
measured from the vertical z-axis. (The asymptotic re-
lation (1) holds for large arguments.) It is well known
[41, 42] that the aperture distribution in (1) is capable of
producing a Bessel beam in the near-field region. Indeed,
a plane-wave spectral representation of such an aperture
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FIG. 1. Ray-optics interpretation of (a) classical Bessel
beams and (b) either leaky-wave Bessel beams (LW-BBs) or
Bessel-Gauss beams (BGBs). In (a) classical BBs are gener-
ated assuming a constant-amplitude inward aperture distribu-
tion; each ray equally contributes to the field over a diamond-
shaped region where inward and outward rays constructively
interfer to produce a BB pattern. In (b) LW-BBs or BGBs are
generated assuming a radially-varying inward aperture distri-
bution; each ray contributes with a different weight to the
field, and the color gradient in the diamond-shaped region
represents the progressive decay of the field amplitude. The
inward aperture distribution is recovered from the backward
wave (solid green wavy arrows) supported by the radially-
periodic grating. Note that LW-BBs (BGBs) asymptotically
differ from classical BBs for an exponentially-decaying (Gaus-
sian) amplitude factor.

field shows that it can be interpreted as a superposition
of plane waves whose wavevectors lie in the close vicinity
of the surface of a cone with axis parallel to the z-axis and
aperture 2θ0; under the ray-optics approximation, such
plane waves can be associated with rays emitted from
the aperture at an angle θ0 = arcsin (kρ/k0) ∈ [0, π/2]
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[43], as shown in Fig. 1(a). As extensively discussed in
[41, 42], for such an aperture distribution a Bessel beam is
created over a diamond-shaped region, whose vertex de-
fines the so-called nondiffractive range zndr = ρap cot θ0.
For z < zndr the on-axis (i.e., ρ = 0) field amplitude
E(0, z) is constant (neglecting the typical oscillations
due to diffraction contributions from edge), while for
z > zndr it rapidly decays. (We note that, under the ray-
optics approximation, the on-axis field amplitude halves
at z = zndr.) The interested reader can find more accu-
rate analytical descriptions in [44].

When dealing with leaky-wave aperture fields, one
should account for the complex nature of the radial
wavenumber kρ = βρ − jαρ, βρ and αρ being the phase
and attenuation (or leakage) constants, respectively. For
such complex waves, we now have θ0 = arcsin(|βρ|/k0),
where the real positive part of kρ is taken to ensure
θ0 ∈ [0, π/2] in the case of complex rays characterized
by complex wavenumbers [43].

It is worth to recall here that a simple source, such as
a vertical electric dipole (VED), in a partially-open 2-D
uniform planar waveguide made of ordinary materials can
excite a forward, fast (i.e., 0 < βρ < k0) cylindrical leaky
wave [45, 46], thus giving rise to an outward cylindri-
cal aperture distribution (which cannot focus radiation
around the axis of symmetry), instead of the required
inward one. However, if a radially periodic grating is
placed on top of the structure, the period can be selected
in order to have the n = −1 Floquet harmonic (note that
the radially periodic nature of the grating allows for de-
scribing the electromagnetic field in terms of a complete
infinite set of Floquet harmonics) radiating with a spe-
cific angle at a given frequency. As a result, a backward,
fast (i.e., −k0 < βρ < 0) cylindrical leaky wave would
be excited, giving rise to the required inward cylindrical
aperture distribution (exploiting the well-known relation
between Hankel functions of first and second kind [47,
eq. (9.1.39)]). Due to the complex nature of the leaky
wavenumber, when leaky radial waveguides as those in
[26, 33, 35, 36] are used for generating Bessel beams,
the aperture field distribution should account for an ad-
ditional exponentially-decaying amplitude factor of the
kind e−αρρ (see Fig. 1(b)). Therefore, a LW-BB is de-
scribed by the following aperture distribution

A(ρ) ∝ H
(2)
0 (kρρ) ∼

e−jβρ

√
ρ

e−αρρ , (2)

with βρ < 0, αρ > 0, and where H
(2)
n represent the nth-

order Hankel function of the second kind. The asymp-
totic relation explicitly reveals the effect of the complex
leaky nature of the radial wavenumber on the aperture
distribution with respect to (1).

The amplitude variation of the aperture distribution
unavoidably affects the on-axis field amplitude distribu-
tion, that, for z < zndr, is no longer constant, but takes

the following expression [36]

|E(0, z)|
|E(0, 0)| = e−αρz tan θ0 z < zndr , (3)

where |E(0, z)| has been conveniently normalized to its
initial value |E(0, 0)|. If one defines the nondiffractive
range for LW-BBs zLWndr as |̄E(zLWndr , 0)| = |E(0, 0)|/2, the
following expression is easily found:

zLWndr =

{

zndr
ln

√
2

πα̂ρρ̄ap

ln
√
2

πρ̄ap
< α̂ρ ≪ 1 ,

zndr α̂ρ ≤ ln
√
2

πρ̄ap
≪ 1 ,

(4)

where the ‘hat’ (̂·) and the ‘bar’ (̄·) refer to normaliza-
tion with respect to k0 = 2π/λ0 and λ0, respectively. It
is worth commenting on the range of validity of this ex-
pression. The upper-bound α̂ρ ≪ 1 is dictated by the
condition for having a physically significant leaky wave
[48, 49], whereas the lower-bound α̂ρ > ln

√
2/(πρ̄ap) is

required to avoid cases for which zLWndr > zndr that would
arise from (4) because (3) neglects the aperture trunca-
tion.
It is interesting to relate α̂ρ to the leaky-wave radiation

efficiency η through the relation η = 1− exp(−4πα̂ρρ̄ap)
[37]. Indeed, after simple algebraic steps it is possible to
show that (4) is equivalent to:

zLWndr = zndr
ln 4

ln[1/(1− η)]
0.75 < η < 1 . (5)

Since leaky-wave radiators are commonly sized to have
η ≃ 0.9, the lower-bound is not a restrictive condition.
The same approach can be exploited to derive an

approximate analytic expression for the nondiffractive
range of a BGB, which can be described by the following
aperture distribution (cf. Fig. 1(b))

A(ρ) ∝ H
(2)
0 (βρρ)e

− 1
2

(

ρ
w0

)2

∼ e−jβρ

√
ρ

e
− 1

2

(

ρ
w0

)2

, (6)

where βρ < 0, and w0 is the Gaussian-beam waist pa-
rameter. Indeed, by replacing the exponentially-decaying
variation of LW-BBs (see (2)) with the Gaussian mod-
ulation of BGBs (see (6)), the on-axis field amplitude
distribution reads:

|E(0, z)|
|E(0, 0)| = e

− 1
2

(

z
w0

tan θ0
)2

z < zndr . (7)

As for LW-BBs, a nondiffractive range for BGBs zBG
ndr

such that |E(zBG
ndr, 0)| = |E(0, 0)|/2 is easily found from

(7):

zBG
ndr =

{

zndrw̃0

√
ln 4 w̃0 < 1/

√
ln 4 ,

zndr w̃0 ≥ 1/
√
ln 4 ,

(8)

where the ‘tilde’ (̃·) refers to normalization with re-
spect to ρap, and the upper-bound for w̃0 ≡ w0/ρap
is again needed to avoid cases for which zBG

ndr > zndr.



4

We should stress that, under the ray-optics approxima-
tion, (8) extends the classical nondiffractive range for-
mula that only holds for BBs [2] to the more general
case of BGBs. In the asymptotic limit w̃0 → 0 and
w̃0 → ∞, a BGB converges to a GB and a BB, re-
spectively; this aspect is correctly recovered by (8) for
which we have limw̃0→0 z

BG
ndr = 0 (in agreement with

the diffractive nature of GBs) and limw̃0→∞ zBG
ndr = zndr.

More precisely, (8) predicts zBG
ndr = zndr for w̃0 > w̃0,lim,

where w̃0,lim = 1/
√
ln 4 ≃ 0.85. It is worth comment-

ing here that GBs are more commonly obtained from
BGBs under the asymptotic condition θ0 → 0◦. This
is however the paraxial-limit hypothesis for which re-
sults have already been reported in [19–21, 23] and are
thus not discussed here. Nevertheless, we should com-
ment that, in the nonparaxial limit, a BGB approaches
a GB anytime w̃0 is smaller than the normalized BB
waist. If one measures the BB waist as the null-to-null
distance of the zeroth-order Bessel function of the first
kind (we define j0,1 ≃ 2.405 the first null of J0), then
w̃0 < j0,1 csc θ0/(2πρ̄ap) [50, eq. (5)] sets a condition
for having a BGB approaching a GB in the nonparaxial
limit.
In addition, comparison between (5) and (8) yields the

condition for having a BGB with a nondiffractive range
greater than a LW-BB in terms of η and w̃0:

ln 4

ln [1/(1− η)]
<

w̃0

w̃0,lim
< 1 0.75 < η < 1 . (9)

We note that the condition 0.75 < η < 1 ensures the con-
sistency of (9): within this range of η the lower-bound
of (9) is always lower than its upper-bound. From (9),
and neglecting cases for which η < 0.9, we found that
significant values of w̃0 should range from 0.5 to 0.85.
This interval may be interpreted as follows: a BGB with
w̃0 > 0.85 covers the nondiffractive distance of a pure

BB, whereas a BGB with w̃0 < 0.5 covers the same non-
diffractive distance of a LW-BB with η = 0.9. This result
constitutes a preliminary guideline for the synthesis of
Bessel-Gauss beam launchers based on leaky waves.
The results obtained in this Sec. II under the frame

of a scalar theory will be compared with fully-vectorial
numerical results in Sec. III, where the effects of the nor-
malized beam waist parameter w̃0 and the axicon angle
θ0 (beyond the paraxial limit) will be thoroughly inves-
tigated.

III. DIFFRACTIVE, FOCUSING AND POWER

TRANSPORT PROPERTIES OF BESSEL-GAUSS

BEAMS

In this Sec. III, we comment the results we obtained
through accurate numerical simulations for several cases
of interest. The methods used for performing the nu-
merical simulations are described in Sec. III A, whereas
in the following two sections the diffractive, focusing
(Sec. III B), and power transport (Sec. III C) properties

of BGBs are evaluated and compared with the theoretical
predictions of the previous Sec. II.

A. Methods

Our investigation will address beams having TMz

polarization and no azimuthal variation (zeroth-order
beams), such as those that would be excited on a pla-
nar structure by, e.g., a VED source placed along the
z-axis. For such beams, the only non-zero components
are Eρ, Ez, and Hφ. In particular, the electric field on
the aperture plane z = 0 can be analytically expressed
as

Eap,z (ρ) = E0C0 (kρρ)

Eap,ρ (ρ) = j
kz
kρ

E0C1 (kρρ)
(10)

Here kz =
√

k20 − k2ρ (with ℑ{kz} < 0) is the vertical

wavenumber in the air region z > 0, and C0,1 (·) indi-
cates a cylindrical function that is a Bessel function of
the first kind J0,1 (·) for stationary aperture distributions
(see, e.g., [26, 27]), whereas it is the Hankel function of

the first kind H
(1)
0,1 (·) or second kind H

(2)
0,1 (·) for inward

or outward aperture distributions, respectively, as those
considered here (see (1),(2),(6)).
Near-field distributions in the half space z > 0 will be

illustrated, considering in particular the vertical compo-
nent of the electric field Ez , whose radial dependence is
expressed by a cylindrical function of order 0 [cf. the
first of (10)]. Such distributions are obtained from the
tangential components of the aperture electric field Eap

by using standard radiation integrals. In particular, for
the electric field we have

E (r) = −2

∫

ΣA

R× [Eap (r
′)× uz ]

1 + jk0 |R|
4π |R|3

e−jk0|R|dr′

H (r) =
j

k0η0
∇×E (r) , (11)

with R = r − r
′ where r and r

′ are the position vec-
tors of the observation and source points, respectively,
η0 ≃ 377 Ω is the free-space impedance, uz is the unit
vector of the z-axis, and the integration domain is the
aperture plane ΣA. Such radiation integrals have been
evaluated numerically, by properly managing the singu-
larities of the integrand that typically arise from their
kernel (i.e., the free-space Green’s function) for observa-
tion points at or close to the plane z = 0. Furthermore,
for LW-BBs, an integrable singularity also occurs on the
axis ρ′ = 0 for any observation point, due to the singu-
larity at the origin of the Hankel functions of the first

and second kind H
(1)
1 (kρρ

′), H(2)
1 (kρρ

′) which expresses
the radial dependence of the relevant tangential fields [cf.
the second of (10)].
The power-transport properties of the considered

beams will also be illustrated, considering the average
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FIG. 2. The nondiffractive range normalized to the aperture
radius z̃BG

ndr, as a function of θ0 and w̃0, is evaluated numeri-
cally (on the left) and through (8) (on the right). A vertical
dashed white line highlights the limiting value w̃0 = w̃0,lim.

flux of power across the surface of a finite cylinder whose
axis is the z-axis and whose length spans a range from
zero to the nondiffractive range and beyond. The radius
of the cylinder is chosen to coincide with the first null
of the Bessel function J0 (kρρ), in order to ascertain the
capability of the beam to focus the radiated power in the
vicinity of the z-axis.

B. Diffractive and Focusing Properties

We first validate the accuracy of (8). For this purpose,
we have numerically evaluated zBG

ndr on a large dataset,
namely for several values of θ0 ranging from 10◦ to 80◦

and w̃0 ranging from 0.2 and 1.6, following the procedure
described in the Appendix. Figure 2 shows results from
the numerical dataset (on the left) and compares them
with analytical results (on the right) obtained with (8).
The nondiffractive range has been evaluated as a func-
tion of θ0 and w̃0 for a fixed aperture radius ρap = 30λ0;
however, very similar results are obtained for a differ-
ent aperture radius provided that ρap ≫ λ0. Therefore,
Fig. 2 shows the nondiffractive range normalized to the
aperture radius and defined as z̃BG

ndr = zBG
ndr/ρap. A very

good agreement is observed between the numerical re-
sults and the theoretical predictions. We also note that
the numerical evaluation for w̃0 ≃ w̃0,lim is slightly lower
than the asymptotic value predicted by (8), viz., zndr;
however, the numerical estimation converges to zndr at
w̃0 ≃ w̃0,lim as ρap/λ0 → ∞, in agreement with the
ray-optics approximation. In this asymptotic condition
the BGB solution converges to the BB solution. It is
also worth noting that for θ0 → 0◦ (i.e., approaching
the paraxial limit) and w̃0 > w̃0,lim, zndr → ∞, i.e., the
BGB solution converges to the plane-wave solution [23],
whereas for θ0 → 0◦ and w̃0 < w̃0,lim the nondiffractive
feature is mainly determined by w̃0, and the BGB solu-
tion converges to the GB solution.
We now discuss the effect of the beam waist parame-

ter w̃0 on the focusing properties of BGBs considering an
aperture radius ρap = 20λ0 and an axicon angle θ0 = 30◦

(the effect of a different θ0, although well-known, is shown
later on for a few cases). In Fig. 3(a), color maps of the
vertical component of the electric field Ez are shown for
different values of w̃0 [see Fig. 3(a) from left to right]
ranging from a very high value (w̃0 → ∞) to a very low
value (w̃0 = 0.2). For these two limiting values of w̃0

the BGB can be considered to have asymptotically con-
verged to a BB and a GB, respectively. In all cases, the
electric field amplitudes are normalized to their respec-
tive maxima attained around ρ = 0, z → 0. As shown,
by decreasing w̃0 the nondiffractive range decreases, ac-
cording to (8). Numerical evaluations of zBG

ndr and (8) are
highlighted with black bars and circles, respectively (a
more complete validation is shown next).
In Fig. 3(b), the radial cuts of the BGB at z0 = zBG

ndr/2
(solid blue lines) and z0 = zBG

ndr (solid light blue lines)
are compared with the theoretical distributions expected
for an ideal BB (i.e., given by J0(kρρ)) and an ideal

BGB (i.e., given by J0(kρρ)e
−ρ2/(2w2

0)) generated with
the same parameters (i.e., same θ0 and w̃0 → ∞, and
same θ0 and w̃0, respectively). It is seen that, as w̃0

decreases, the intensity of the sidelobes decreases, thus
improving the focusing properties at the expense of a re-
duced nondiffractive range.
In Fig. 3(c), the effects of both w̃0 and θ0 on the on-axis

profiles are shown. As already commented in [7], a lower
value of w̃0 reduces the on-axis oscillations, but also re-
duces the nondiffractive range. Conversely, a lower value
of θ0 increases the nondiffractive range, but unavoidably
lowers the average field-intensity due to energy conser-
vation. It can be inferred from Fig. 3 that the product
between the average field intensity and the correspond-
ing nondiffractive range is independent of both θ0 and w̃0

(e.g., from Fig. 3(c) the ratio between the average field
intensity of the Ez profiles for θ0 = 45◦ and θ0 = 15◦ is
about 4, and the ratio between the corresponding non-
diffractive ranges is about 1/4, for any choice of w̃0).

C. Power-Transport Properties

From the previous Sec. III B, it has emerged that BGBs
furnish an additional degree of freedom with respect to ei-
ther BBs (w̃0 in addition to θ0) or GBs (θ0 in addition to
w̃0) to profitably adjust the focusing and nondiffractive
properties of the beam according to the requirements of a
considered application. Nonetheless, it is also important
to investigate how the power-transport properties are af-
fected by changing the beam waist parameter w̃0 for a
given θ0.
A similar analysis was proposed in [4] to compare the

power transport properties of BBs and GBs under the
paraxial approximation, thus ignoring the vectorial na-
ture of electromagnetic fields. That work revealed that
BBs and GBs generated by radiating apertures of the
same size exhibit comparable power-transport efficiency,
defined as the ratio between the power flux over a given
area at certain distance and the total initial power (i.e.,
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FIG. 3. (a) Color maps of the absolute value of the Ez component of the electric field over the xz-plane in the range
|ρ| < ρap = 20λ0 and 0 < z < 40λ0. From left to right, w̃0 decreases from a very large value (close to the asymptotic condition
for having a BB, i.e., w̃0 → ∞) up to w̃0 = 0.2 (close to the asymptotic condition for having a GB, i.e., w̃0 → 0). The
black bars and circles represent the numerical calculations and analytical estimations through (8) of zBB

ndr, respectively. (b)
Radial 1-D electric field profiles at z0 = zBB

ndr/2 (blue solid lines) and z0 = zBB
ndr (light blue solid lines) for different values of w̃0

from left to right (the same as in (a)). The electric field profiles are normalized to their respective maxima for each different
value of w̃0, and compared with the theoretical profiles of an ideal BB (black dashed line) and an ideal BGB (black solid
line). (c) On-axis 1-D electric field profiles for different w̃0 from left to right (the same as in (a)), and different axicon angles
θ0 = 15◦, θ0 = 30◦, θ0 = 45◦, in light blue, blue, and black solid lines, respectively.

the power flux over the entire radiating aperture). Here,
we thoroughly evaluate the power transport efficiency of
BGBs at different distances z0 from the radiating aper-
ture and for different w̃0, accounting for the vectorial
nature of the electromagnetic field.

As discussed in Sec. III A, a TMz-polarized zeroth-
order BB possesses non-zero Eρ, Ez , and Hφ compo-

nents, thus the Poynting vector S = (1/2)E × H
∗ will

have both Sρ and Sz non-zero components. With refer-
ence to the geometry schematized in Fig. 4, the average
power carried out by a BGB at a distance z0 from the
radiating aperture is evaluated as the flux of the real part
of the Poynting vector through the surface of a cylinder
of height z0 and radius ρNN/λ0 = j0,1 csc θ0/2π (the sur-
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FIG. 4. A schematic representation of the power flux carried
out by the main beam of a BGB generated by a radiating
aperture.

face integral is limited to the region containing the central
maximum of J0 (kρρ), because we are not interested in
the power carried out by the tails). This calculation is
repeated for different distances z0 from the aperture and
different beam waist parameters w̃0 considering a radiat-
ing aperture with ρap = 25λ0 and θ0 ≃ 25◦ and reported
in Fig. 5, where the power flux has been normalized to the
initial power flowing through the entire radiating aper-
ture (and not to the input power inside the cylinder).
Consequently, the normalized power flux through the to-
tal cylinder surface is always less than 1, and gives a mea-
sure of the above-mentioned power-transport efficiency.
The contribution given by the vertical Sz and radial Sρ

components of the Poynting vector are shown separately
and then summed up to give a complete picture.

As expected from theory, for w̃0 → 0, BGBs show
power transport features similar to GBs: the power flux
transported along the axis of propagation is efficiently
confined, but only for few wavelengths. On the other
hand, for w̃0 > w̃0,lim, the power flux transported along
the axis of propagation is more uniformly distributed
along z0, never reaching the efficiency of a GB, but re-
maining stable for several wavelengths, up to the non-
diffractive range. In this regard, it is worth to stress
here that the results of Fig. 5 further corroborate the
importance of zBG

ndr [as given by (8)], which is marked
with a white solid line and accurately predicts the max-
imum distance at which a BGB is expected to efficiently
transport power along the propagation axis; beyond that
point, the power mainly flows along the radial direction,
i.e., transverse to the axis of propagation. For the sake of
completeness, the limit set by the asymptotic nondiffrac-
tive range zndr is marked with a white dashed line and
is reached by zBG

ndr for w̃0 > w̃0,lim. As a final remark,
we notice that Fig. 5 suggests using a beam waist pa-
rameter in the range 0.4 < w̃0 < 0.6; in this range, the

power transport efficiency attains satisfactory values and
is evenly distributed along z̄0. We should stress that this
specific range partially depends on the initial choice of
ρap = 25λ0 and θ0 = 25◦. However, a different choice
of these parameters would not change the results from a
qualitative viewpoint, the only differences being an axis
scale on z0 and a scale factor of the power flux, both due
to the change of the nondiffractive range.

IV. LEAKY-WAVE SYNTHESIS PROCEDURE

FOR BESSEL-GAUSS BEAMS

In this Sec. IV the synthesis of a BGB will be illus-
trated considering a leaky-wave structure operating in
the microwave range, i.e., a radially periodic array of mi-
crostrip rings printed on a grounded dielectric slab and
centered on the vertical z-axis (see Fig. 6 and the related
Table I). Such a reference ‘bull-eye’ (BE) configuration
is excited by a VED source placed along the z-axis on the
ground plane; by symmetry, this radiates an azimuthally
invariant TMz field.

A. Synthesis Procedure

The BE design is based on a modal analysis of its lin-
earized version (see, e.g., [35] and references therein),
namely a linear array of straight microstrip lines, which
has a discrete translational symmetry and hence supports
Bloch modes customarily representable in terms of space
harmonics via Floquet theorem. By operating within a
frequency range where the dominant TM leaky Bloch
mode radiates through a single radiative space harmonic
in a backward regime, the desired inward BE aperture
distribution can be synthesized, as shown in [35] where
the same structure was used to generate LW-BBs.
In this case, however, the strict radial periodicity of the

bull-eye must be relaxed, in order to obtain a Gaussian
radial decay in amplitude of the aperture field. This can
be achieved by means of a radial tapering procedure, i.e.,
by gradually varying the geometry of the annular array
in the radial direction, in order to modulate the value of
the leaky-mode attenuation constant and thus to synthe-
size the desired amplitude distribution of the aperture
field Ez (see, e.g., [37]). In particular, the geometrical
parameter varied to achieve such a modulation in the
reference BE structure considered here is the width s of
the annular metal strips (the other, unchanged, physical
parameters being the radial period p = 0.6λ0 = 10 mm,
the substrate thickness h = 0.188λ0 = 3.14 mm, and the
substrate relative permittivity εr = 2.2, assuming the
operating frequency f = 18 GHz).
In Fig. 7(a), the normalized phase and attenuation con-

stants of the radiative space harmonic of the TM leaky
mode supported by the linearized BE are reported as a
function of the ratio s/p at the fixed frequency f = 18
GHz. Let us focus first on α̂ρ: this starts from 0 at
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FIG. 5. From left to right, the power flux over the top surface
∫
ΣT

dσSz, the power flux over the side surface
∫
ΣS

dσSρ, and the

power flux over the whole surface (
∫
ΣT

dσSz +
∫
ΣS

dσSρ) (each normalized to the power through the entire radiating aperture
∫
ΣA

dσSz) are shown as a function of z̄0 = z0/λ0 and w̃0. The white solid and dashed lines represent the limits set by z̄BG
ndr and

z̄ndr, respectively.

Metal

FIG. 6. The planar leaky-wave structure designed here to
radiate a BGB: a radially periodic (‘bull-eye’) arrangement
of microstrip rings printed on a grounded dielectric substrate
and excited by a VED source. On top and middle rows we
show the simulated structures associated to w̃0 = 0.6 and
w̃0 = 0.4, respectively, while in the lower insets we show a
schematic representation of the structure: a perspective view
on the left and a radial section on the right. The values of
the relevant geometrical parameters are listed in Table I.

s/p = 0 (corresponding to a bare grounded slab with no
microstrip, which supports a bound TM surface wave),
then raises to a single maximum α̂max

ρ ≃ 0.04, attained
approximately at s/p = 0.55, and then monotonically de-
creases again to 0 at s/p = 1 (corresponding to a closed
parallel-plate waveguide, which supports a bound TEM
mode).

Turning now to β̂ρ, it can be observed that a very
mild variation occurs when s/p varies between 0 and 0.55,

with an average value β̂ρ ≃ −0.4 corresponding to the
axicon angle θ0 ≃ 26◦, and a maximum angular variation

TABLE I. Design parameters

Parameter
w̃0 = 0.6 w̃0 = 0.4

Value [mm] Value [mm]
h 3.14 3.14
ρap 234 234

s1, . . . , s4 2.86, 2.84, 2.87, 2.92 3.25, 3.25, 3.33, 3.40
s5, . . . , s8 2.96, 3.00, 3.04, 3.07 3.47, 3.52, 3.55, 3.55
s9, . . . , s12 3.10, 3.12, 3.13, 3.14 3.53, 3.46, 3.35, 3.21
s13, . . . , s16 3.14, 3.14, 3.11, 3.06 3.04, 2.86, 2.67, 2.46
s17, . . . , s20 3.01, 2.94, 2.86, 2.76 2.26, 2.06, 1.85, 1.63
s21, . . . , s24 2.67, 2.56, 2.44, 2.40 1.41, 1.22, 1.10, 1.07

∆θ0 < ±2◦ from the average value θ0. This is a very
desirable condition, since it ensures that the effect of the
radial BE tapering on the axicon angle is negligible, i.e.,
the rays emitted at different radii are nearly parallel and
hence a transverse Bessel structure of the near field can
be synthesized, as discussed in Sec. II.
The radial profile of α̂ρ required to synthesize a desired

aperture distribution Eap
ρ (ρ) can be obtained from the

following formula, originally derived in [39]:

α̂ρ(ρ) =
λ0

4π

ρ
∣

∣Eap
ρ (ρ)

∣

∣

2

1
η

∫ ρap

ρ0
ρ′ |Eap

ρ (ρ′)|2 dρ′ −
∫ ρ

ρ0
ρ′ |Eap

ρ (ρ′)|2 dρ′
,

(12)
where ρ0 is the minimum radius of the radiating aperture
and η is the radiation efficiency (the ratio between the
radiated power and the input power).
We should stress here that the synthesis procedure can

be applied to either the vertical or the radial component
of the electric field, leading to the same results. For the
vertical component, the aperture distribution of a BGB
is given in (6). For the radial component (according to
(6) and (10)), the aperture field distribution reads

Eap
ρ (ρ) = H

(2)
1 (βρρ) e

− 1
2

(

ρ
w0

)2

. (13)

Here we used the synthesis procedure on the radial com-
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FIG. 7. (a) Normalized phase and attenuation constants of the radiative space harmonic of the fundamental TM leaky mode
supported at f = 18 GHz by a linearized BE structure as in Fig. 6 with radial period p = 10 mm, substrate thickness h = 3.14
mm, and substrate relative permittivity εr = 2.2, as a function of the ratio between the strip width s and p. (b) Radial profiles
of the normalized attenuation function required for synthesizing a BGB aperture field as in (13), for different values of the
normalized beam waist w̃0. (c) Radial profiles of the ratio s/p corresponding to the cases shown in (b).

ponent because it allows for a more straightforward cal-
culation of the near-field distribution through (11).

In Fig. 7(b) radial profiles of α̂ρ are reported, obtained
from (12) and (13) with ρ0 = λ0/100 ≃ 0.166 mm,
ρap = 14λ0 ≃ 234 mm, and η = 0.9, for different values
of the normalized BGB waist parameter w̃0 = 0.2, 0.4, 0.6
and +∞ (the latter corresponding to a pure BB). It can
be noted that all these profiles are synthesizable, i.e.,
they lie below the upper limit α̂max

ρ ≃ 0.04, except for
small portions (highlighted with vertical dashed colored
lines) of those for w̃0 = 0.2 and +∞.

The corresponding radial profiles of s/p are reported
in Fig. 7(c) (where the ranges corresponding to values of
α̂ρ > α̂max

ρ have been trimmed to slim/p ≃ 0.55). The
selected values for the radial period p = 10 mm and the
aperture radius ρap = 234 mm correspond to having a
number N = 24 of microstrip rings. Once the radial
profile of s/p has been obtained, it can be discretized to
define the width of each microstrip ring and thus com-
plete the BE design.

B. Results

In order to validate the effectiveness of this design pro-
cedure, full-wave electromagnetic simulations have been
performed using the software package CST Microwave
Studio. In Figs. 8(a)–(f) colormaps for the absolute value
of Ez are reported along an arbitrary azimuthal plane,
obtained by considering different aperture fields relevant
to the designs for w̃0 = 0.6 and 0.4.

In particular, Figs. 8(a) and (d) show the field radiated
by the ideal aperture distribution (13), whereas Figs. 8(b)
and (e) show the field radiated by the aperture distribu-
tion re-constructed from the radial profiles of the attenu-
ation constant obtained from (12). Specifically, Figs. 8(b)
and (e) are obtained by assuming an aperture field given

by:

Eap
ρ =

√

2παρ(ρ)

ρ
e
−2

∫

ρap
ρ0

αρ(ρ′)dρ′

ej∠H
(2)
1 (βρρ), (14)

with αρ(ρ
′) given by (12). According to the leaky-wave

tapering techniques reported in [37, 39], (14) with (12)
accurately reconstruct the aperture field in (13). In-
deed, the two sets of subfigures (i.e., Figs. 8(a), (b) and
Figs. 8(d), (e)) are virtually identical, thus validating the
effectiveness of the aperture-field synthesis.
Figures 8(c) and (f) report instead the field obtained

through full-wave simulations performed with CST. A
comparison with the other subfigures shows that the near
field produced by the designed structures perfectly repro-
duces those of the corresponding ideal BGBs. This com-
parison fully validates the proposed synthesis procedure.
In Figs. 9(a)–(b), radial profiles of Ez are reported,

evaluated at z = zBG
ndr and z = zBG

ndr/2, again for the two
designs with w̃0 = 0.6 (see Fig. 9(a)) and w̃0 = 0.4 (see
Fig. 9(b)). In particular, the full-wave results (solid lines)
are compared with the ideal profiles given by J0(kρρ) and

J0(kρρ)e
−ρ2/(2w2

0). A good agreement can be observed
over the beam maximum and over the first two side lobes.
More generally, one can observe in the simulations the
expected decrease of the side-lobe level of the near-field
distribution, which is a direct consequence of the gaussian
tapering of the aperture field.

V. DISCUSSION AND CONCLUSION

In this work, we investigated the diffractive and focus-
ing properties of Bessel-Gauss beams accounting for the
vectorial nature of the electromagnetic fields and with-
out resorting to the paraxial approximation. As opposed
to well-established scalar techniques considered in op-
tics, the proposed vectorial, nonparaxial approach allows
for discussing the generation of Bessel-Gauss beams at
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FIG. 8. Colormaps showing the absolute value of Ez in an arbitrary azimuthal ρz plane, for BGBs having two different values
of the normalized waist: w̃0 = 0.4 and 0.6. (a) and (d): fields radiated by the ideal aperture distribution (13); (b) and (e):
fields radiated by the aperture distribution synthesized through the radial tapering of the attenuation constant via (12); (c)
and (f): full-wave results obtained with CST for the actual BE structure designed as described in Sec. IV-A. The blue dashed
lines represent the shadow boundaries expected for a BB (i.e., w̃0 → ∞), whereas the white dashed lines represent the shadow
boundaries expected for a BGB as predicted by (8). White circles mark the numerical evaluations of zBG

ndr (note the close
agreement with the intersection point of the shadow boundaries).
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FIG. 9. Transverse radial profiles of |Ez| evaluated at z = zBG
ndr and z = zBG

ndr/2 for (a) w̃0 = 0.6 and (b) w̃0 = 0.4: comparison
between full-wave results obtained by simulating in CST an actual BE structure and ideal Bessel and Bessel-Gauss profiles.

microwave frequencies. Here, the microwave generation
of Bessel-Gauss beams has been obtained through leaky
waves, and corroborated with accurate full-wave simu-
lations of two different leaky-wave structures exhibiting
remarkable diffractive and focusing properties in agree-

ment with the initial theoretical predictions.

Indeed, we started our analysis recalling and com-
paring the diffractive and focusing properties of classi-
cal Bessel beams, leaky-wave Bessel beams (i.e., Bessel
beams generated through leaky waves), and Bessel-Gauss
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beams. A ray interpretation of the radiation mechanism
provided simple closed-form expressions for predicting
the Bessel-Gauss beam nondiffractive properties. These
formulas have been validated relying on both numeri-
cal procedures and full-wave simulations showing a re-
markable accuracy. Moreover, the numerical results pro-
vided the rationale for using Bessel-Gauss beams in place
of their asymptotic counterparts, i.e., Bessel beams and
Gaussian beams. In fact, Bessel-Gauss beams offer two
degrees of freedom, the initial beam waist parameter and
the axicon angle, to counterbalance their focusing and
nondiffractive character: a tradeoff that either Bessel or
Gaussian beams can handle with only one degree of free-
dom (the axicon angle for the former, the initial beam
waist for the latter).
In particular, a numerical analysis of the power flux

transported over a given area at different distances from
the aperture revealed that a proper selection of the initial
beam waist for a given axicon angle allows for obtain-
ing a Bessel-Gauss beam whose radiative properties may
be extremely attractive in modern focusing applications.
These results provided the design criteria for the choice
of the initial beam waist parameter.
On this basis, leaky-wave theory has been proposed to

synthesize the needed aperture field and the correspond-
ing leaky-wave structure. Specifically, a radially-periodic
leaky-wave antenna consisting of a grounded dielectric
slab covered with periodic annular metallic strips has
been considered. Resorting to leaky-wave tapering pro-
cedures, it was found that by properly modulating the
width of the metallic strips, it was possible to generate
Bessel-Gauss beams with initial beam-waist parameter
within the range identified in the previous analysis. Two
different structures have been designed accordingly and
validated through accurate full-wave simulations.
These results are expected to be of great significance

in modern microwave applications such as wireless near-
field links, where the focusing character, the cover dis-
tance, and the power-transport efficiency always repre-
sent a concern.

Appendix: Evaluation of the nondiffractive range for

Bessel-Gauss beams

The definition of zBG
ndr (see Sec. II) requires the correct

evaluation of the vertical distance at which the ampli-

tude of the field is halved its initial value. However, the
singular behavior of the aperture field at ρ = 0, z = 0
(see comments in Sec. III A) hinders the correct estima-
tion of the nondiffractive range according to its defini-
tion. Figure 10 outlines the procedure carried out to
correctly estimate zBG

ndr. First, the points p1 (blue trian-
gle) and p2 (blue reverse triangle) representing the first
local minimum after the initial sharp peak and the last lo-
cal maximum before the final vanishing tail, respectively,
are found. Second, a linear regression between p1 and
p2 is used to project the point y0 (blue square) onto the
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2

FIG. 10. Schematic representation of a typical field-amplitude
decay |E(0, z)| along the z-axis for a BGB. The numerical
procedure employed for the calculation of zBG

ndr is schematically
reported in the figure and explained in detail in the text.

z = 0 axis, which represent the virtual initial amplitude
of the field. This value is halved y0/2 (green square) and
projected back onto the curve at p0 (see green diamond)
through the linear map to finally get an estimation of
zBG
ndr (green circle).
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[41] S. Chávez-Cerda, “A new approach to Bessel beams,” J.
Mod. Opt. 46, 923 (1999).

[42] M. Albani, S. C. Pavone, M. Casaletti, and M. Ettorre,
“Generation of non-diffractive Bessel beams by inward
cylindrical traveling wave aperture distributions,” Opt.
Express 22, 18354 (2014).

[43] L. Felsen, “Real spectra, complex spectra, compact spec-
tra,” J. Opt. Soc. Am. A 3, 486 (1986).

[44] S. C. Pavone, M. Ettorre, and M. Albani, “Analysis and
design of Bessel beam launchers: Longitudinal polariza-
tion,” IEEE Trans. Antennas Propag. 64, 2311 (2016).

[45] A. Ip and D. R. Jackson, “Radiation from cylindrical
leaky waves,” IEEE Trans. Antennas Propag. 38, 482



13

(1990).
[46] P. Burghignoli, W. Fuscaldo, D. Comite, P. Baccarelli,

and A. Galli, “Higher-order cylindrical leaky waves–
Part I: Canonical sources and radiation formulas,” IEEE
Trans. Antennas Propag. 67, 6735 (2019).

[47] M. Abramowitz and I. A. Stegun, Handbook of Mathe-

matical Functions (Dover, New York, NY, USA, 1962).

[48] T. Tamir and A. A. Oliner, “Guided complex waves. Part
1: fields at an interface,” Proc. IEE 110, 310 (1963).

[49] T. Tamir and A. A. Oliner, “Guided complex waves. Part
2: relation to radiation patterns,” Proc. IEE 110, 325
(1963).

[50] W. Fuscaldo and S. C. Pavone, “Metrics for localized
beams and pulses,” IEEE Trans. Antennas Propag. 68,
1176 (2020).


