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Abstract: Solving optimal control problems via Dynamic Programming is a difficult task that
suffers for the ”curse of dimensionality” and this limitation has reduced its practical impact
in real world applications since the construction of numerical methods for nonlinear PDEs in
very high dimension is practically unfeasible. Recently we proposed a new numerical method
to compute the value function eliminating the construction of a space grid and the need for
interpolation techniques. The method is based on a tree structure that mimics the continuous
dynamics and allows to solve optimal control problems in high-dimension. This is particularly
useful to attack control problems with PDE constraints. We present a high-order approximation
scheme based on a tree structure and show some numerical results.
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1. INTRODUCTION

The Dynamic Programming (DP) approach has been ap-
plied to several deterministic and stochastic optimal con-
trol problems. This approach has been revitalized by the
development of a theory of weak solutions for Hamilton-
Jacobi equations, the so-called viscosity solutions, intro-
duced by Crandall and Lions in the middle of the 80s
(see the monograph Bardi et al. (1997) and the list of
references therein). The theory related to this approach
is now rather complete and established giving a complete
characterization of the value function as the unique vis-
cosity solution of a nonlinear partial differential equation
(the Hamilton-Jacobi-Bellman (HJB) equation). Tipically
this equation has to be solved on a space grid and this is
the bottleneck for numerical methods in high-dimension.
Several efforts have been made to mitigate the limitations
due to the curse of dimensionality, an obstacle that is
particularly relevant in the framework of optimal control
problems with PDE constraints. Let us just mention that
an interesting approach is based on model order reduction
techniques (e.g. Proper Orthogonal Decomposition) which
allow to obtain a low dimensional version of the dynamics
by orthogonal projection. Once a low dimensional approx-
imation of the dynamics (e.g. d ~ 5) has been obtained
the problem can be solved via the standard DP approach.
We refer to the pioneering work Kunisch et al. (2004) for
the coupling between model reduction and HJB equations
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and to Alla et al. (2017) for some a-priori error estimates
related to the POD-HJB method. Note that the above
papers refer to a discretization in space and time of the
HJB equation. More recently we proposed a new method
based on a time discretization of the dynamics which al-
lows to mimic the continuous dynamics in high-dimension
via a tree structure Alla et al. (2018). We refer to Capuzzo
Dolcetta et al. (2001) for previous a-priori error estimates
based on a time discretization of an infinite horizon control
problem; these results were coupled to the space discretiza-
tion in Falcone (1987). Later high—order error estimates
have been obtained in Falcone et al. (1994) always for the
infinite horizon problem. Here we deal with a finite horizon
control problem and in the discretization the tree structure
replaces the space grid allowing to increase the dimension
of the state space. Furthermore, a pruning technique has
been implemented to reduce the number of branches in
the tree obtaining rather accurate results and a-priori error
estimates Alla et al. (2018b). Here we improve the method
showing how it can be extended to high-order approxima-
tion schemes always using only a time discretization. In
the last section we present two tests. The first test shows
that by applying the new tree structure algorithm (TSA)
based on the Heun method for the approximation of the
dynamics we obtain a second order approximation of the
value function as expected (in this test we know the exact
value function). The second test shows how the method
can be applied to the control of a system governed by the
advection equation.



2. DYNAMIC PROGRAMMING ON A TREE
STRUCTURE

In this section we will recall the finite horizon control prob-
lem and its approximation by the tree structure algorithm
(TSA) (see Alla et al. (2018) for a complete description of
the method). Let the system be driven by
i(s) = fu) u(s).s), s€ 0T
y(t) =z € R%
We will denote by y : [t,7] — R? the solution, by u the
control u : [t,T] — R™, by f: R% x R™ x [t,T] — R? the
dynamics and by
U ={u:[t,T] = U, measurable}
the set of admissible controls where U C R™ is a compact

set. We assume that there exists a unique solution for (1)
for each u € U.

The cost functional for the finite horizon optimal control
problem will be given by

T
Toalysu) = / Lly(s, u), uls), s)e > dst
t

+g(y(T))e AT,
(2)
where L : R? x R™ x [t,T] — R is the running cost and
A > 0 is the discount factor. The optimal control problem
reads:

Lnel[r} Jx,t(yuu)7 (3)

Where y(t) satisfies (1) for the control u. To guarantee
existence and uniqueness of the control problem (3) we
assume that the functions f, L, g are bounded the functions
f, L are Lipschitz-continuous with respect to the first
variable and the cost g is also Lipschitz-continuous.

We are interested in a control in feedback form, therefore
we define the value function

:= inf 4
v(z,t) := inf Jo(u) (4)
which satisfies the DPP, i.e. for every 7 € [t,T):
v(z,t) = inf {/ L(y(s), u(s), s)e M0 ds
uel +
+oly(r),T)e MO

Due to (5) we can derive the HJB for every x € RY,
s€t,T):

()

v
—%(x s) + Mv(z, s)+

Vo(z,s) - f(z,u,s)} =0,

r&leal}({ L(z,u,s) —

(e, T) = g(x).
(6)

Finally, the computation of the feedback control is
straightforward, assuming the value function is known:

u*(t) = ar%enlljax{—lj(a:,u,t) —Vo(z,t) - f(z,u,t)}. (7)

Analytical solution of Equation (6) is hard to find due to
its nonlinearity and numerical methods should be able to
handle discontinuities in the gradient (see Falcone et al.
(2013) and the references therein). Here, we describe the
time discretization of (6) with a time step At := [(T —

t)/N] where N is the total number of steps. Thus, for

n=N—1,...,0 and every z € R? we have

Vi(z) = Lneilr]l[At L(x,u, ty)+e MV (et At f (2, u,t,))],
(8)

where t, = t +nAt, tiy = T, and V" (z) := V(z,t,).

The above iterative scheme is coupled with the terminal

condition _
V¥ (z) = g(). (9)

Note that usually the term V"*l(x + Atf(z,u,t,)) is
computed by interpolation on a grid since x+ At f(z, u, t,,)
is usually not a grid point. To avoid this interpolation we
build a non-structured grid on a tree structure where we
compute all the possible combinations of the term z +
Atf(x,u,t,) as follows.

To begin with we consider a discretize version of the
control domain, say U = {uq,...,ups} with M controls.
Then, we will denote the tree by T := UL,T7, where
each 77 contains the nodes of the tree at time ¢;. The first
level 70 = {z} is simply given by the initial condition .
Then, starting from x, we consider all the nodes obtained
following the dynamics (1) discretized using e.g. an explicit
Euler scheme with different discrete controls u; € U
(;:m—i—Atf(x,uj,to), j=1,..., M.

Therefore, we have 7! = {({,...,(},;}. Note that our goal
is to obtain a high order method and this is the purpose
of the next section.

All the nodes can be characterized by their n—th time
level, as follows

Tr = {0 AL gt )P =1

All the nodes of the tree can be shortly defined as
_{Cj}] 1 n:Ow"Nv

where the nodes (' are the results of the dynamics at time

t,, with the controls {u;, }}Z;:

ML

_Cn L —i—Atf(C 1>ujn 1 bn— 1)
:x+Ath<<£1,ujk,tk>,
k=0

with ¢ =z, i1, = \‘lk]\}lJ and ji = ix+1mod M. We note
that ¢F e R4 i =1,... MF.

Although the tree structure allows to solve high dimen-
sional problems, its construction might be expensive since:

MN+1
M?,
== MO0

where M is the number of controls and N the number of
time steps. The cost of the problem increases exponentially
and it is clear that the algorithm might be unfeasible due
to the huge amount of memory allocations, if M or N are
too large. To mitigate this problem we introduce a pruning
rule based on the fact that the numerical value function is
Lipschitz continuous (Alla et al. (2018)), therefore (;* ~ (7'
implies V*((*) =~ V"(¢}) for i # j and n = 1,...N.
Defining a threshold e > 0 based on the distance between
¢;" and (j" we can cut off several branches of the tree and
merge the nodes



¢ = ¢}l <er, fori# jandn=0,...,N. (10)

The pruning rule (10) helps to save a huge amount of
memory Alla et al. (2018b). Later, we will show how
to choose this threshold to guarantee the same order
of convergence of the numerical method used to get an
approximation of (1).

The knowledge of the tree 7 allows to drop every kind
of interpolation in (8). Another advantage of the method
is that we avoid to define an arbitrary numerical domain
which is usually hard to choose and needs artificial bound-
ary conditions. Furthermore, we gain the possibility to
work with d > 10 and to deal also with the control of
PDEs which is usually hard to attack.

The numerical value function V(z,t) will be computed on
the tree nodes in space as
V(z,ty,) =V"(x),

Ve e T", (11)

where t, = t + nAt. Then, the computation of the value

function follows directly from the DPP. The TSA defines

agrid 7" = {¢P})L] forn =0,..., N, we can write a time

discretization for (6) as follows:
V) = min{e VUG 4 ALF (G ustn))+
At L(C, u, ty)},

"eT",n=N-1,...,0,

NeTh.

(12)

V() = g(¢),

We recall the set of controls U is discrete and we compute
the minimization by comparison. A detailed comparison
and discussion about the classical method and tree struc-
ture algorithm can be found in Alla et al. (2018).

Finally, we describe how we obtain the feedback control on
a tree structure. We note that we use the same discretized
set U used to approximate the value function. Therefore,
during the computation of the value function, we store
the control indices corresponding to the argmin in (12).
Clearly, with the tree structure all the possible trajectories
are already computed and we only need to store the indices
of the tree that provide the optimal path starting from
¢% = z in the following way

u) = argmin {eiAAtV”Jrl(Cf + AL ustn))+
uelU
AtL(<f7u7tn)}7

1 1 * ntl
ntl ¢ 77+ such that ¢ —» (01

(13)

forn=0,...,N — 1, where the symbol —* stands for the
connection of two nodes by the control w.

3. HIGH-ORDER SCHEMES BASED ON THE TREE
STRUCTURE

In the previous section we recalled the TSA using a for-
ward Euler scheme which leads to a first order convergence
as shown by the numerical tests inAlla et al. (2018). How-
ever, our approach can be easily extended to high order
schemes. This is the goal of the section and the novelty of
the current work.

Let us consider a high-order approximation scheme for
the cost functional (2) and high-order scheme to solve

numerically the dynamics (1) under the assumptions on
L,g and f provided in Section 2. As already suggested in
Falcone et al. (1994) for the infinite horizon problem, we
introduce a one-step approximation for the dynamics (1)
as follows

(14)

Yyt =y + Atd(y", U, t,, At),
y' =,

where the admissible control matrices at time ¢, is U =
UxU...xU € RMx(a+) matrix with U ¢ RM the
discretized control set defined in Section 2 and g+ 1 is the
number of stages of the numerical method for the ODE (it
is also possible to consider a time dependence of U as in
Falcone et al. (1994) but we will avoid this complication
here) . We denote by ] the i—th control of U for the n—th
column of U. We further assume that the function ® in
(14) is consistent

Aliriloq)(x’u’t’At) = f(z,q,t), (15)

where @ = (@,...,4) € U for 4 € U and Lipschitz

continuous:
|®(x, U, t, At) — (y, U, t, At)| < Lol — yl, (16)

for any admissible set U and 0 < At < At < co. Under

these assumptions the scheme (14) is convergent. Then, we

consider the approximation of the cost functional

N—-1 gq

A i —Atm

Joi(U) = At Z ZwiL(meﬁ Ut )e M (17)
m=n i=0

+g(y™)e M,

where 7; and w; are the nodes and weights of the quadra-

ture formula satisfying:

q
0<n <1, w; > 0, Zwizl-
=0

Finally, we define the numerical value function as

V(t,z) = inf JoH(U). (18)

Following Falcone et al. (1994), it is possible to prove the
extended DPP which reads:

q
=inf ¢ ALY wiL(y" T ul g, Je M)
V(t,x) 1%{ t;owz (y JUL g )€ +

V(tnyr,y" e Minnmh 4
(19)
Under our assumptions on L and f (see Section 2), it is
easy to check that V' is Lipschitz-continuous and bounded
and this will guarantee the convergence of the numerical
scheme.

Note that for ¢ = 0 in (19) we obtain the standard
formulation with Euler method:

V(t,z) = mi[r} {AtL(z,u,t) + V(t + At,x + At f(z,u,t))}.
ue

In the case of Heun’s scheme, e.g. ¢ = 1, equation (19)
becomes

V(t,z) =  min {N(L(x,ﬂo,t)—k

(@o,u1)€UXU | 2
L(z + At®(z, t, {ug, U1}, At), 41, t + At))+
+V(t+ At,z + At®(z, t, {89, u1}))},

(20)



where .
(p(’l},t, {ﬂo,ﬁl}, At) = 5 (f(l‘,t,’ao)

(21)
+f(x+ Atf(x,t,a0),t + At,41)) .

We further note that it is possible to deal with implicit nu-
merical schemes in equation (19) using e.g. the trapezoidal
rule which reads:

{N(L(x,ﬁo,t)

V(t,z) = min
( ) (ﬁo,ﬂl)EUXU 2 (22)
+L(y" " (@g, @1, At), 1y, t + At))
+V(t+ Aty " (a0, wm))},
where y"*1(ig, ii1) is obtained solving
At
n+1l/— — _ =v _
Yy (uovul) =T+ 2 (f(xvtaUO) (23)

+f (" (o, W), ¢+ Aty )

Note that the cardinality of the tree 7 will significantly
increase when dealing with high order schemes. Therefore,
a pruning rule (10) is needed. It is possible to prove that
if ® is Lipschitz-continuous with constant Lg, then

|yn<u) _ Lqp(tn—t)7

where 7™ (u) is the pruned trajectory (for more details on
the definition of the pruned trajectory we refer to Alla
et al. (2018b)). Furthermore, to guarantee a convergence
of order p, the tolerance e must satisfy

e < CgTAthrl.

n"(u)] < nere

4. NUMERICAL TESTS

In this section we are going to test the method and show
some numerical results for two test cases. In the first,
we deal with an ordinary differential equation and we
show the order of convergence of the method for Euler
and Heun’s schemes. The second test deals with a linear
Partial Differential Equation and we show the effectiveness
of working with high-order methods. The numerical simu-
lations reported in this paper were performed on a laptop
with 1CPU Intel Core i5-3, 1 GHz and 8GB RAM. The
codes are written in C++.

4.1 Test 1: Comparison with exact solution of the value
function

In this test we compute the order and the errors of the TSA
in an example where the exact value function is known
analytically. We consider the following dynamics in (1)

Fz,u) = (;%) JueU=[-1,1],

where x = (71,22) € R? and T = 1. The cost functional
in (2) is defined by the following choices:

L(I, ’U,,t) = Oa g(l’) = — T2, A= 07 (25)
where we only consider the terminal cost g. The solution
of the HJB equation is

(24)

1
v(x,t) = —x9 —23(T —t) — g(T—t)3 — |z (T —1)%. (26)
In this example, we use the TSA for both forward Euler
and Heun’s scheme with and without the pruning criteria
(10). We compare two different approximations according

to ¢—relative error with the exact solution on the tree
nodes

2 |v(@itn) = V(i)

T, €T
> vl ta)l?
;€T

E(ty) =

TSA easily provides higher order converging methods only
modifying the numerical method that solves the ODEs and
the quadrature formula for the cost functional. However,
the case without pruning criteria becomes unfeasable for
more than 10 time steps since it requires to store O(M??)
nodes applying Heun’s scheme, whereas the application of
pruning criteria (10) provides a real improvement. We are
going to compute o — error in time and in space

At EN: Vezact(zi, tn) — Va?)prow(xi)”?Q(Tn).

n=0
Figure 4.1 shows the order of convergence for forward
Euler and Heun’s method using different e7. We note that
we obtain first order of convergence when dealing with
Euler scheme and e = At? and second order for Heun’s
approximation with e = At3. We also show how crucial
is the selection of the tolerance e7.

Erreo =
»? H‘/exact”?z('rn)

—s—tol = At
—A—tol = At .
—o—tol = Att
—a—tol = At?
Order 1

107

L L L )
0.2 0.1 0.05 0.025 0.0125

[——tol = AP
—A—tol = At?

1 —o—tol = At

¢ —a—tol = AP
Order 2

107

0.2 0.1 0.05 0.025

Fig. 1. Test 1: Comparison of the order of convergence for
the pruned TSA with different tolerances (top) e =
{At, At3/2 AtT/4 At?} with Euler method to approx-
imate (1), (bottom) er = {At? At%/2 At'1/4 At}
with Heun method to approximate (1)

In Table 1 and Table 2 we present the results of the TSA
applying the Euler scheme for e = {0, At?} respectively.
We first note that the pruning criteria allows to solve
the problem for a smaller temporal step size At since
the cardinality of tree is smaller. The CPU time is then
proportional to the cardinality of the tree. We also note
that, as expected, the order of convergence is 1 in both
cases.



At Nodes CPU Erra Ordera 2
0.2 63  0.05s  9.0e-02
0.1 2047  0.35s  4.4e-02 1.04
0.05 2097151 1.1s 2.2e-02 1.02

Table 1. Test 1: Error analysis and order of
convergence for forward Euler scheme of the
TSA without pruning rule (ey = 0).

At Nodes CPU Erra o Ordersz 2
0.2 42 0.05s  9.1e-02
0.1 324 0.08s  4.4e-02 1.05
0.05 3151 0.6s 2.1e-02 1.04
0.025 29248 2.5s 1.1e-02 1.005
0.0125 252620 150s  5.3e-03 1.004

Table 2. Test 1: Error analysis and order of
convergence for forward Euler scheme of the
TSA with e = At2.

In Table 3 and Table 4 we present the results obtained by
means of the Heun’s method. Similar considerations to the
tables which refer to Euler scheme hold true. However, we
note that the order of convergence is improved as Heun’s
method is a higher order scheme.

At Nodes CPU Errao  Orders
0.2 1365 0.29s  3.51e-03
0.1 1398101 3.92s  8.59e-04 2.0316

Table 3. Test 1: Error analysis and order of
convergence for Heun’s scheme of the TSA
without pruning (e = 0).

At Nodes CPU Erraa  Orders
0.2 160 0.35s  5.32e-03

0.1 2895 0.61s  8.53e-04 2.65
0.05 58888 60s 1.98e-04 2.11
0.025 1018012  9051s 3.9e-05 2.34

Table 4. Test 1: Error analysis and order of
convergence for Heun’s scheme of the TSA
with e = At3,

Finally, we note that to reach an error of order O(1073)
using Euler method with pruning rule needs 150s, At =
0.0125 and |7| = 252620, whereas Heun’s with pruning
requires only At = 0.2,|7| = 160 in 0.35s. This shows
that the choice of the numerical scheme of higher order
allows accurate approximations in reasonable time. How-
ever, one should also consider that the comparison just
discussed presents different pruning criteria. Thus, Euler
scheme has order of convergence O(At), whereas Heun’s
O(At?), which means that the same order is applied when
Ateyrer = A2, if we apply Atpeys, for Heun’s method.
On the other hand the tolerance for Euler scheme will
be Atf‘beum while for Heun’s Atieun. To summarize Heun’s
scheme requires a bigger tolerance to obtain the same error
order and, clearly, lower CPU time.

4.2 Test 2: Bilinear control for advection equation

In the second example we deal with advection equation:

(2.8) € @ x [0,T],
(x,t) € 002 x [0,T7,
x €.

Yt + cyz = yu(t)
y(z,t) =0

y(,0) = yo(x)

(27)

We consider a Finite Difference approximation for equa-
tion (27) and we can note that we fit into the abstract
formulation (1). Here we use Az = 0.01, At = 0.025,
Q = 1[0,3] and ¢ = 1.5. The cost functional we want to
minimize is of tracking-type:

T
Jyo,t(u)=/t (ly(s)II3 d + 0.01fu(s)[*) ds + [|y(T)|3-

Fig. 2. Test 2: Uncontrolled (top) and controlled solution
(bottom) using trapezoidal method.

To avoid narrow CFL conditions we are going to consider
first and second order implicit schemes. In Figure 4.2
we show the results of the uncontrolled solution and the
controlled solution using TSA and trapezoidal rule to
approximate the dynamics. We note that the feedback has
been built on the tree structure with the same control set
as in the computation of the value function as explained in
(13). A more sophisticated method to compute feedback
control goes beyond the scopes of this paper and will
be the focus of future works. As expected we can note
that the controlled solution goes to zero faster than the
uncontrolled one.

Since we do not know the value function in this case to
show the effectiveness of the method we compare the val-
ues of the cost functionals in the top panel of Figure 4.2 for
each time instance. As expected trapezoidal rule performs
better than Euler method. In the bottom plot we show
the final configuration at T' = 1 for both controlled and
uncontrolled solution with Euler and trapezoidal scheme.
The comparison of the cost functional for the controlled
dynamics may be not sufficient, since Euler scheme con-
tains more numerical diffusion.



1.4

—— Implicit Euler scheme
12 Trapezoidal rule

Fig. 3. Test 2: comparison normalized cost functionals

0.15
—— Implicit Euler scheme
Trapezoidal rule

Uncontrolled Implicit Euler
Uncontrolled Trapezoidal
0.8 Controlled Implicit Euler
Controlled T

0.6

0.4

0.2

Fig. 4. Test 2: comparison cost functionals (top), dynamics
at final time (bottom)

To obtain a fair comparison we introduce the following
normalized cost functional
Jyo,t(u)

Jyo ,t (u) = Jyo ¢ (0)

in order to show the real efficiency of trapezoidal rule with
respect to Euler scheme.

5. CONCLUSION

In this work we have extended o high-order methods the
first order approximation scheme based on a tree structure
proposed in Alla et al. (2018,b) t. In particular, we have
shown numerically that with a tree structure we can
achieve the same order of convergence as the numerical
method used in the discretization of the ODEs. We have
also tested our algorithm with high dimensional problem
to show the advantages of the proposed approach. In
particular, dealing with an hyperbolic problem as the
advection equation we were able to control the solution
with first and second order methods. Again, we want to
emphasize the possibility to deal with PDEs via dynamic

programming which was not even possible less than a
decade ago.
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