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One of the biggest unresolved problems in crystallization phenomena is the significant discrepancy in the
nucleation rate between experiments and simulations even for the simplest liquid, i.e., the hard-sphere system.
A popular explanation for this discrepancy is the neglect of hydrodynamic interactions (HI) in simulation
studies. By comparing simulationswith andwithoutHI, we show that the long-time diffusive dynamics of the
colloids is slowed down more rapidly by hydrodynamic lubrication effects with increasing volume fraction.
We find that the kinetics of both nucleation and growth are controlled by this long-time diffusion and that it is
possible to account for most of the effects of HI by rescaling with this timescale. Therefore, we conclude that
HI is not the primary cause of the accelerated nucleation rates observed in experiments.
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Introduction.—Understanding crystal nucleation is one of
the most important issues in a wide range of materials, from
metals, alloys, pharmaceuticals, to even food products.
Phenomenological theories such as classical nucleation
theory qualitatively capture key trends in crystallization,
yet no common consensus has been reached regarding a
general understanding of how crystallization occurs [1,2]. In
an effort to enhance our understanding, more recent studies
have focused on identifyingmicroscopic pathways to crystal
formation, where investigators followed transformations at
the single-particle level [3–10]. Colloidal suspensions have
aroused great interest in this context as an experimental
system that exhibits analogous thermodynamic behavior to
atomic systems and allows observation using opticalmicros-
copywith single-particle resolution [11]. In particular, hard-
sphere colloids have been studied intensively as a funda-
mental model system showing a liquid-crystal transition,
providing a microscopic picture of crystal birth and growth.
Yet Auer and Frenkel [12] found that therewas an enormous
mismatch in the crystal nucleation rate between light
scattering experiments [13–15] and numerical predictions
based on umbrella sampling simulations [12]. Revealing the
physical origin behind this huge discrepancy remains a key
challenge [10,16–19], andmay be considered a central issue
for the condensed matter field [1,2].
The discrepancy in the nucleation rate between experi-

ments and simulations implies the possibility that there
is an unexpected nucleation pathway that leads to the
efficient formation of a large nucleus. For example, unlike
in classical nucleation theory, three-dimensional observa-
tion by confocal microscopy has shown that nuclei with
a critical size have a nonspherical shape on average [20].
A simulation study [21] also claims that it is important to

consider both nucleus morphology and the crystal poly-
morphs present in the nucleus. Two-step features of
crystallization [4,5,7,22,23] have been widely considered
both in experiments [22] and simulations [4,5,7,23,24].
Recent experiments in charged colloidal systems [25,26]
have also studied the effect of precursors in the nucleation
process. Other effects arising from nonideality in experi-
ments have been pointed out: e.g., polydispersity in the size
of colloids [27], gravity (or, density mismatch between
colloids and a solvent) [28,29]. For a review, see Ref. [2].
However, there is a potentially significant effect that

most simulations neglect: the hydrodynamic degrees of
freedom of the solvent. As far as we know, simulation
studies that take the hydrodynamic interactions (HI)
between colloids into account are limited to the following
two cases. The first is the work on hard-sphere colloids
by Radu and Schilling [30], where they examined the effect
of HI using multiple particle collision dynamics. They
found that the nucleation rate increases with increased
solvent viscosity, concluding that HI may speed up nucle-
ation and help resolve the discrepancy between experi-
ments and simulations. The second work is a numerical
study of crystal growth for colloids interacting via a
Yukawa potential by Roehm et al. [31] using a fluctuating
lattice Boltzmann method, where they reported that HI
slows down crystallization. These works reach opposing
conclusions; thus, further investigation of the effect of HI
is required.
In this Letter, we examine the effect of HI on the

crystallization kinetics of hard-sphere colloids using a fluid
particle dynamics (FPD) method based on a direct com-
putation of the Navier-Stokes equation [32]. By combining
this method with fluctuating hydrodynamics, we may
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correctly introduce Brownian motion while satisfying
statistical mechanical consistency both for the colloids
and the solvent [33,34]. The validity of the FPD method for
colloidal phase separation has been demonstrated previ-
ously by a direct adjustable-parameter-free comparison of
simulation results with single-particle level 3D observation
of a colloidal suspension using confocal microscopy [35].
System description.—To clarify whether HI may in fact

be the origin of the huge mismatch in the crystal nuclea-
tion rate between experiments and molecular dynamics
simulations, we undertake a comparative study of the
crystallization process both in the presence and absence
of HI by employing carefully matched FPD and Brownian
dynamics (BD) simulations (overdamped Langevin equa-
tion without HI), respectively [see Supplemental Material
(SM) [36] for detailed procedures of FPD and BD
methods]. In this study, we approximate the hard-sphere
potential by a Weeks-Chandler-Andersen potential:

UðrÞ ¼ 4ϵ
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where ϵ is the parameter determining the steepness of the
repulsive potential. We set βϵ ¼ 40 following Refs. [4,18].
σ corresponds to the diameter of colloids. We determine
the effective hard-sphere diameter σHS by the following
relation [44–46]:

σHS ¼
21=6

ð1þ 1=
ffiffiffiffiffi
βϵ

p Þ1=6 σ: ð2Þ

With this diameter, we define the volume fraction
ϕ ¼ πσ3HSN=6V, whereN and V are the number of particles
and the volume of the simulation box, respectively.
Verification of simulation methods.—In FPD, solid

colloidal particles are treated as undeformable liquid
droplets with high viscosity. The interaction force between
particles is introduced via a body force acting on the
fluid elements. The first step in our investigation is to
establish a connection between the volume fractions of
the “smoothed” colloids defined in the FPD simula-
tions, and the hard spheres defined in BD simulations.
We look for thermodynamic consistency between the two
types of simulations. We first run direct coexistence
simulations of a crystal slab in coexistence with a fluid
at several volume fractions within the coexistence region.
Thermodynamically stable states in a hard-sphere system
are a liquid for ϕ < ϕf ∼ 0.494 and a face-centered cubic
(fcc) crystal state for ϕ > ϕm ∼ 0.545 with a coexistence
region between them [47]. In the coexistence region, the
volume fraction determines the relative amount of crystal
and liquid according to the lever rule. We run simulations in
the coexistence window until a stable fraction is obtained.
Figure 1(a) shows the fraction of crystalline particles in

coexistence states as a function of the volume fraction ϕ
(see SupplementalMaterial [36] for a detailed description of
how the configurations were prepared). Our results fall on a
straight line, as expected from the lever rule. The only
exception is when the system is in close proximity to the
melting and freezing points; this is simply because simu-
lations cannot stabilize very thin layers of liquid or solid
phases.Additionally, any displacement from the coexistence
points (dashed line), ismost likely due to the fact that there is
some dependence of the fraction of crystalline particles on
the order parameter thresholds used to distinguish crystal
and liquid states (see Supplemental Material [36] for
identification of crystals and their structures).
Having established a correspondence between the phase

diagram of the FPD particles and those of hard spheres, we
now focus on reproducing the thermodynamic properties of
the stable phases, i.e., the liquid and the fcc crystal. To do
this, we measure the osmotic pressure of equilibrium states
using the virial pressure:

p ¼ NkBT
V

−
1

3V

X
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FIG. 1. Identification of liquid-crystal coexistence states.
(a) Volume fraction (ϕ) dependence of the fraction of crystalline
particles Ncry. The dashed line is what is expected from the lever
rule, i.e., ðϕ − ϕfÞ=ðϕm − ϕfÞ. (b) Virial pressure as a function of
volume fraction for BD and FPD. Separate theoretical predictions
for the liquid and crystal branches and their coexistence are given
as solid lines.

PHYSICAL REVIEW LETTERS 123, 258002 (2019)

258002-2



Figure 1(b) shows the volume fraction dependence of the
virial pressure obtained by BD and FPD simulations. We
see almost perfect agreement between the two simulations
techniques, and with theoretical predictions using the
Carnahan-Starling equation of state for the liquid phase,
and the Speedy equation of state for the solid phase [48,49].
This strongly suggests the validity of investigating thermo-
dynamic behavior using FPD.
Normalization of the kinetic factor controlling

nucleation rate.—In dense suspensions, the motion of
colloids significantly slows down due to the steric hindrance
between colloids. However, the presence of the solvent
suggests that the slowing down of colloid dynamics may
also be brought about by the deformation of the solvent flow
field between colloids. To examine the effects of HI on
crystallization kinetics, we perform BD and FPD simulations
and compare the resulting nucleation rates. To do so, it is
crucial to consider the difference arising from the presence
and absence of HI on particle transport. Here, it is worth
mentioning that transport during crystal nucleation may
generally be controlled by the long-time translational dif-
fusion constant DL rather than the suspension viscosity η, or
the structural relaxation time τα [50]. This fact is important
since the Stokes-Einstein relation is violated in a supercooled
state: it is worth confirming this for colloidal systems.
In the inset of Fig. 2, we show the volume fraction

dependence of the mean squared displacement (MSD),
hjΔRj2i, obtained by FPD simulations. We can see that the
diffusive motion of colloids is suppressed as the volume

fraction increases. At ϕ ¼ 0.54, we can see that the MSD
shows a nonlinear dependence at early times and asymp-
totically approaches a linear trend. This behavior is a
consequence of the caging effect, which is a common
feature of supercooled liquids. We determined the long
time diffusion coefficient DL by fitting the long time
behavior of the MSDwith hjΔRj2i ¼ 6DLt. Figure 2 shows
how the ratio between the single-particle diffusion coef-
ficient D0 and the long-time diffusion coefficient DL varies
with volume fraction for both BD and FPD. We see that the
long-term diffusion coefficient obtained with our FPD
method (black circles) is consistent with results from
both experiments (blue squares [51]) and theoretical
calculations (red line [52]). For the BD method instead,
we see a significant deviation from the other results, and
that this difference becomes more significant at large ϕ.
For example, we see that DL in BD is approximately 4
times larger than that in FPD at ϕ ¼ 0.54. This deviation
originates from the presence of many-body HI.
Determination of nucleation rate via brute force

simulations.—We will now consider the effect of HI on
nucleation rates. We proceed to perform BD and FPD
simulations for a range of volume fractions 0.54 ≤ ϕ ≤
0.545. The system size is set to L=σHS ¼ 15.8, with a
particle number N ∼ 4000 for the above volume fractions.
According to a study using BD simulation [4], there are few
finite-size effects on the nucleation rate with the above
simulation size.
To determine the nucleation rate, we observe the time

evolution of colloidal suspensions in a metastable liquid
state at time t ¼ 0, and monitor the number of crystal nuclei
NcðtÞ. Here, we regard a crystal cluster as a crystal nucleus
if the size of the cluster is above 100. For BD and FPD
simulations, we performed 16 independent simulations for
each of the volume fractions ϕ ¼ 0.540; 0.541;…; 0.545
and ϕ ¼ 0.540, 0.5425, 0.545, respectively. For BD, we
confirmed crystallization in all runs. On the other hand, we
were unable to continue FPD simulations until all the runs
crystallized due to computational cost (the simulation time
for each run being approximately ∼3000τB, where τB ¼
σ2HS=6D0 is the Brownian time of a free particle). 2, 9, and
14 runs actually crystallized for ϕ ¼ 0.540, 0.5425, and
0.545, respectively. Thus, we take the following procedure
[4] to estimate the nucleation rate: denoting the average of
Nc as hNci over all 16 trajectories, we determine the
nucleation rate I for each of BD and FPD simulations, by
fitting the data with hNci=V ¼ Iðt − t0Þ, where V is the
volume and t0 is a fitting parameter.
We scale the nucleation rates with the long-time diffusion

coefficientweobtained independentlyandcompare theresults
with the molecular dynamics result by Filion et al. [53].
Figure 3(a) shows that, despite the big difference in long-time
diffusion scaling with ϕ, all nucleation rates collapse onto a
single curve. τL used in this figure is the Brownian time of a
particle at ϕ, defined as τLðϕÞ¼σ2HS=6DLðϕÞ.

FIG. 2. Volume fraction dependence of long-time diffusion
constant DL scaled by the diffusion constant in the dilute limit
D0. Crosses and circles represent results obtained using BD and
FPD, respectively. The light blue squares are experimental data
obtained by dynamic light scattering for hard-sphere like colloids
with 5% polydispersity [51]. The red curve is a theoretical
prediction that takes HI into account (see Ref. [52]). Inset: The
mean square displacement for various volume fractions. Here, τB
stands for the Brownian time of a free particle (τB ¼ σ2HS=6D0).
The red straight line represents the long-time asymptotic dif-
fusion behavior. Here, we only show the results from FPD
simulations.
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Time evolution of critical nucleus: estimation of kinetic
factor.—Nucleation rates in hard spheres are known to
change by many orders of magnitude within a small volume
fraction window. Direct simulation results such as those
reported in Fig. 3(a) can only access a small window
around ϕ ∼ 0.54, where nucleation rates change by 2 orders
of magnitude at most. The huge mismatch between
simulation and experiments is instead more prominent at
lower volume fractions (ϕ ∼ 0.52 or less).
To examine the behavior of nucleation rates at lower

volume fractions, we employ the seeding technique [54],
preparing a critical nucleus in the system and subsequently
evolving it by BD and FPD simulations. By monitoring the
growth or shrinkage of the nucleus, we can determine the
kinetic factor that directly controls the nucleation rate.
Following this strategy, we studied the time evolution of
critical nuclei at ϕ ¼ 0.5183, where the discrepancy
between numerical and experimental nucleation rates is
significantly larger (at least 8 orders of magnitude). To
prepare a nucleus with a critical size, we first calculate the
free energy barrier ΔFðnÞ (n being the size of the nucleus)
using an umbrella sampling method (see Supplemental
Material [36] for the details). Figure S2 shows the results
when the critical size is set to nc ¼ 458. We can indeed see

that the maximum of ΔF is located near n ¼ 458. The
height of the barrier, βΔFðncÞ, and the second derivative,
βΔF00ðncÞ, obtained by fitting are 70.6 and −3.3 × 10−4,
respectively. We used ten independent initial configura-
tions with a nucleus of n ¼ 458 and ran ten independent
simulations of each (thus 100 runs in total). We then
measured the number of runs that reached a crystalline
basin in the energy landscape; the proportion that crystal-
lized was 0.40. The same procedure was repeated with a
nucleus size of n ¼ 465; now, the ratio was 0.52. Given its
proximity to 0.50, we consider n ¼ 465 to be the critical
nucleus size and proceed to consider the time evolution of
nuclei with 465 particles.
We performed BD and FPD simulations for 12 inde-

pendently formed nuclei with 465 particles. Four indepen-
dent runs were performed for each nucleus (48 runs in
total), looking at the MSD in the nucleus size hjΔnðtÞj2i
where ΔnðtÞ ¼ nðtÞ − nð0Þ. Figure 3(b) shows that
hjΔnðtÞj2i increases linearly over time. Since nð0Þ ∼ nc,
we can expect hjΔnðtÞj2i ∼ 2fþðncÞt, where fþðnÞ is the
transition rate for how quickly a nucleus of size n gains a
particle (see Supplemental Material [36] on the detail)
[12,55]. Now, the key question here is what timescale
these kinetic pathways should be scaled by. A natural
candidate is the long-time diffusion time τL. If we use this
diffusion time τL and proceed to determine a scaled
gradient, we find fþðncÞτL ∼ 1.0 × 104 and 0.8 × 104 for
BD and FPD, respectively. Noting that τL is the character-
istic time of particle transport via translational diffusion,
we see that rescaling the kinetic prefactor by τL effectively
resolves the discrepancy in the nucleation rate between BD
and FPD, as we also previously confirmed at a higher
volume fraction (ϕ > 0.54). This fact is a clear indication
that HI, as implemented here, cannot account for the
discrepancy between experiments and simulations.
Conclusion.—In conclusion, our work considers the

effects of hydrodynamic interactions (HI) on the process
of colloidal crystallization. We design a direct numerical
simulation of the Navier-Stokes equations in which par-
ticles are embedded inside a viscous fluid as ultraviscous
droplets that interact with a steep repulsive potential.
We demonstrate that our methodology can reproduce the
thermodynamic properties of the one-component hard-
sphere system with high accuracy. Nucleation and growth
are both activated processes whose kinetic prefactor
depends on the dynamics of the colloidal particles at the
liquid-crystal interface. We consider nucleation at both high
volume fraction (ϕ ∼ 0.54), where it occurs spontaneously
in our simulations, and at low volume fraction (ϕ ∼ 0.52)
with a seeding technique. Our results show that the
dynamics of the colloidal particles changes more abruptly
with HI interactions compared to the one component
hard-sphere system usually adopted in simulations.
Nevertheless, nucleation rates for all considered dynamics
(FPD, BD, MD) collapse on the same curve when scaled by

(a)

(b)

FIG. 3. (a) A comparison of crystal nucleation rates determined
by BD and FPD methods. Rates found using molecular dynamics
simulations (MD) by Filion et al. [53] are also shown. (b) Mean
square displacement for nucleus size hjΔnðtÞj2i at the same
volume fraction ϕ ¼ 0.5183. The red line has a slope of 1. The
inset is the same data on a linear scale plot.
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the long-time diffusion coefficient of the colloidal particles
in the supercooled liquid. Long-time diffusion is thus the
correct factor that controls the kinetic prefactor in nucle-
ation; HI interactions can be accounted for with this single
parameter. In other words, it is possible to account for most
of the effects of HI by rescaling with the long-time
diffusion time: this rules out HI from possible explanations
for the huge discrepancy in the nucleation rate between
experiments and simulations. The discrepancy still stands
as one of the most interesting unresolved problems in soft
condensed matter.
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