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Abstract
Capture-recapture studies have attracted a lot of attention over the past few decades,

especially in applied disciplines where a direct estimate for the size of a population

of interest is not available. Epidemiology, ecology, public health, and biodiversity

are just a few examples. The estimation of the number of unseen units has been a

challenge for theoretical statisticians, and considerable progress has been made in

providing lower bound estimators for the population size. In fact, it is well known

that consistent estimators for this cannot be provided in the very general case. Con-

sidering a case where capture-recapture studies are summarized by a frequency of

frequencies distribution, we derive a simple upper bound of the population size based

on the cumulative distribution function. We introduce two estimators of this bound,

without any specific parametric assumption on the distribution of the observed fre-

quency counts. The behavior of the proposed estimators is investigated using several

benchmark datasets and a large-scale simulation experiment based on the scheme dis-

cussed by Pledger.
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1 INTRODUCTION

Capture-recapture methods were originally developed in the
ecological setting with the aim of estimating the unknown
size of an (possibly elusive) animal population; since then,
they have been gradually applied to other empirical settings,
ranging from epidemiology and public health, see Böhning
et al. (2004), to biodiversity, see Bunge et al. (2012), text
analysis, see Efron and Thisted (1976), and software engi-
neering, see Liu et al. (2015). An overview on closed pop-
ulation capture-recapture methods in given by Chao et al.
(2001). For human populations, we usually observe individ-
ual records from multiple systems; that is, we have informa-
tion in the form of an indicator variable 𝑥𝑖𝑗 that is equal
to 1 if the 𝑖th unit has been recorded by the 𝑗th system,
𝑖 = 1,… , 𝑁 , 𝑗 = 1,… , 𝑚, and equal to 0 otherwise. The
goal is to estimate the size 𝑁 of the population based on
several, incomplete, lists of individuals recorded from that

population; given the study design, the information is avail-
able only for those individuals with 𝑥𝑖 =

∑𝑚
𝑗=1 𝑥𝑖𝑗 > 0, that

is only for individuals that have been registered by at least
one source. Being identified by a list (in human/social stud-
ies) corresponds to being captured on a sampling occasion (in
wildlife studies); the probability of being recorded in a list will
be referred to as the capture probability. Often, the number of
available lists in human studies is lower than the number of
trapping/sampling occasions in wildlife studies.

When the study output is summarized by a frequency of
frequencies distribution, say (𝑥, 𝑛𝑥), where 𝑛𝑥 denotes the
number of units that have been recorded exactly 𝑥 times, the
problem of recovering the population size 𝑁 =

∑
𝑥≥0 𝑛𝑥 is

equivalent to that of recovering the number of unrecorded
units, 𝑛0. By using a specific parametric model to fit the
observed distribution, it is possible to derive an estimate for
𝑛0 and, therefore, for 𝑁 . However, it is well known, see
Sanathanan (1977), that a consistent estimator for 𝑛0 cannot be
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derived in the general family of nonparametric mixture den-
sities. Choosing the best model has been proven to be a com-
plex task, with no general solution, as several data-generating
processes can provide the same fit to the observed, truncated,
distribution, see Link (2003) for a thoughtful example. As a
result, lower bound estimators have attracted particular inter-
est, see Chao (1989) and Mao (2007); in fact, it is generally
acknowledged that a finite upper bound for the population size
does not exist, see Mao and Lindsay (2007).

By using a simple ordinal model to represent the observed
frequency distribution, however, we show that the popula-
tion size may be bounded from above, regardless of the true
data-generating process. Unfortunately, the bound depends on
unknown quantities referring to the complete (untruncated)
distribution; therefore, we show how this can be approximated
by using the observed frequency counts and give some guid-
ance on conditions for such an approximation to work well.

The paper is structured as follows. In Section 3, we intro-
duce the notation, the elementary treatment of the problem,
and some basic relations that can be readily established; in
Section 4, an upper bound for 𝑁 is provided, which can be
estimated by using the approximations given in Section 5.
Section 6 discusses the application of the proposed estima-
tors to five benchmark datasets. All of these datasets have
the essential feature that the population size is known; we
may thus compare the true value of the upper bound with
the proposed estimates, and evaluate the coverage, which is
further investigated through a large-scale simulation exercise
in Section 8. A nonstandard application is discussed in Sec-
tion 7, where the distribution of an ordered categorical vari-
able, potentially prone to measurement error, is analyzed.
The paper closes with Section 9 providing some concluding
remarks. The Supporting Information available at the Biomet-
rics website describes the analytical and bootstrap approaches
to calculate the variance for the proposed upper bound estima-
tors; it also provides some further results for the real data and
simple R code to reproduce our results.

2 MOTIVATION

Before proceeding to introduce the notation and the technical
contents of the paper, we would like to motivate our approach
and briefly explain why a practitioner could be interested in
using it. Our aim is to propose a way to estimate the max-
imum size of a hidden population; the justification for this
approach stems from the empirical evidence that, in some spe-
cific cases, this count may be of major importance.

For example, let us consider the outbreak of hepatitis A
virus (HAV) that occurred in and around a college in north-
ern Taiwan from April to July 1995, see Chao (2001) for
further details. To quantify the extent of this outbreak, the
number of hepatitis cases was determined using an imperfect

T A B L E 1 Benchmark data

Dataset 𝒏𝟎 𝒏𝟏 𝒏𝟐 𝒏𝟑 𝒏𝟒 𝒏𝟓 𝒏𝟔 𝒏𝟕 𝒏𝟖 𝒏

Golf 88 46 28 21 13 23 14 6 11 162

Sidney 22 8 12 16 21 12 31 100

Cottontail 59 43 16 8 6 0 2 1 76

Taxicab 137 142 81 49 7 3 1 283

Hepatitis 274 187 56 28 271

Note. Complete data distribution.

screening procedure based on merging three lists (serum test
records, hospital records, and epidemiologists’ records) of the
infected. Twenty-eight students were present in all three lists,
56 in two lists, and 187 in only one list. Therefore, the number
of infected students observed was 𝑛 = 271. However, some
students with hepatitis were missed by all three sources. In
fact, a definitive serological test was later performed on all
students at the college and a total of 𝑁 = 545 students were
found to have hepatitis. In other words, 𝑛0 = 274 infected stu-
dents were not recorded by any of the sources. The data are
presented in the last row of Table 1. In this case, having an esti-
mate of the maximum extent of the outbreak could be impor-
tant from the perspective of prevention and healthcare. This
may help to plan specific health policy actions and to define
the size of the corresponding health-providing services. The
same question may arise in the social sciences, when we con-
sider deviant (Böhning et al., 2004) or illegal (van der Heij-
den et al., 2003; King et al., 2014) behavior; in fact, the esti-
mates we provide may give an idea of the social burden of the
problem.

Even when the problem is that of estimating the richness of
a population, the maximum number of classes/species could
be of interest in itself or worth using to obtain a more precise
estimate, based on both lower and upper bounds for such a
quantity; see Eren et al. (2012) for an application to archaeol-
ogy. A similar aim can also be found in software engineering,
where the maximum number of defects in a software applica-
tion is often of interest, see Liu et al. (2015) or, just to give an
example, the web page Software Testing Help (2020) contain-
ing a discussion of the importance of such information in soft-
ware testing. In all of these cases, having a reliable estimate
of the maximum size of the population of interest could be a
crucial step toward providing a timely and successful solution
to the problem.

3 ORDINAL MODELS FOR
CAPTURE-RECAPTURE
EXPERIMENTS

Let us start by defining some notation that will be used in the
following sections. We start from a target, partially observed,
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population, with the aim of estimating its size, denoted by 𝑁 .
For this purpose, we use 𝑚 identification sources/sampling
occasions that register units from the population. We may
consider empirical situations where we either use the same
mechanism repeatedly on 𝑚 subsequent occasions, or several
different registration sources. The mechanism(s) allow us to
observe only a portion of the population. More precisely, we
consider a binary indicator variable 𝑥𝑖𝑗 that equals 1 if the
𝑖th unit has been identified by the 𝑗th source/sampling occa-
sion, and 0 otherwise. Observed units fulfill the condition
𝑥𝑖 =

∑𝑚
𝑗=1 𝑥𝑖𝑗 > 0, whereas the others, having 𝑥𝑖 = 0, remain

unobserved. The number of sampling occasions, 𝑚, may be
known a priori, or it may be the maximum observed count.
Rearranging unit indices, we may denote the global popu-
lation by 𝑥1,… , 𝑥𝑁 and the observed sample by 𝑥1,… , 𝑥𝑛;
in this way, 𝑥𝑛+1 = ⋯ = 𝑥𝑁 = 0, without any loss of
generality.

The target population can be described by the probability
density function (𝑥, 𝜏𝑥), where 𝑥 = 0, 1,… , 𝑚, and 𝜏𝑥 denotes
the probability that a generic unit from the population is
observed exactly 𝑥 times. Clearly, the usual constraints 𝜏𝑥 ≥ 0
and

∑𝑚
𝑥=0 𝜏𝑥 = 1 apply. In the following, we will denote the

observed frequency distribution by (𝑥, 𝑛𝑥). The size of the
observed sample is 𝑛 =

∑
𝑥>0 𝑛𝑥 and the corresponding dis-

tribution is truncated at zero, in the sense that units with 𝑥 = 0
are not observed and therefore not in the sample. An obvious
estimate for 𝜏𝑥 would be the relative frequency 𝑛𝑥∕𝑁 that,
however, cannot be computed as 𝑁 is unknown. The empiri-
cal relative frequency 𝑛𝑥∕𝑛 provides an estimate of the zero-
truncated probability 𝜏𝑥∕(1 − 𝜏0). Due to such a design, 𝑛0
and 𝑁 =

∑𝑚
𝑥=0 𝑛𝑥 are both unknown, and finding an estimate

for the population size 𝑁 on the basis of the observed zero-
truncated distribution is a special case of the general capture-
recapture problem, see Bunge and Fitzpatrick (1993), Wilson
and Collins (1992), Chao (2001).

In this framework, the random variable 𝑋𝑖 =
∑𝑚

𝑗=1𝑋𝑖𝑗 ,
𝑋𝑖𝑗 ∈ {0, 1} denotes the number of captures for a given
individual; the corresponding values can be considered as
the categories of an ordinal random variable. As noted
before, the equalities 𝑛 =

∑𝑁
𝑖=1 𝕀(𝑋𝑖 > 0) and 𝑛0 = 𝑁 − 𝑛 =∑𝑁

𝑖=1 𝕀(𝑋𝑖 = 0) hold by definition, where 𝕀(𝑎) represents the
indicator function for the event 𝑎. We write the complete data
cumulative distribution function as

Pr (𝑋 ≤ 𝑗) =
∑
𝑥≤𝑗

𝜏𝑥 = 𝜋𝑗 = exp(𝜃𝑗)∕[1 + exp(𝜃𝑗)],

where

𝜃𝑗 = log
(

𝜋𝑗

1 − 𝜋𝑗

)
, 𝑗 = 1,… , 𝑚.

Clearly, we have that 𝜋𝑗 ≤ 𝜋𝑗′ and 𝜃𝑗 ≤ 𝜃𝑗′ , 𝑗 < 𝑗′ = 1,… , 𝑚.
If we consider the zero-truncated distribution, we may write

Pr (𝑋 ≤ 𝑗 ∣ 𝑋 > 0) = 𝑝𝑗

and the following equality holds:

𝜋𝑗 = Pr (𝑋 ≤ 𝑗) = Pr(𝑋 = 0) + Pr(0 < 𝑋 ≤ 𝑗)

= 𝜋0 + (1 − 𝜋0)𝑝𝑗.

Solving for 𝜋0, we obtain

𝜋0 =
𝜋𝑗 − 𝑝𝑗

1 − 𝑝𝑗
,

or, rather

𝑝𝑗 =
𝜋𝑗 − 𝜋0

1 − 𝜋0
. (1)

Based on the ordinal nature of 𝑋, we may write

𝜃𝑗 = 𝜃0 + 𝜓𝑗,

where

𝜓𝑗 = log
(
𝜋𝑗(1 − 𝜋0)
𝜋0(1 − 𝜋𝑗)

)
= log

(
𝜋𝑗

𝜋0

1
(1 − 𝑝𝑗)

)
= log

(
𝜋𝑗

𝜋𝑗 − 𝑝𝑗

)
,

and obtain the following constraints:

𝜓𝑗 ≥ 0, 𝜓𝑗 ≤ 𝜓𝑗′ , for 𝑗 ≤ 𝑗′ = 1,… , 𝑚.

As exp(𝜃𝑗) = exp(𝜃0 + 𝜓𝑗) = exp(𝜓𝑗) exp(𝜃0), the generic
term of the truncated probability distribution 𝑝𝑗 can be written
as

𝑝𝑗 =
exp(𝜃𝑗) − exp(𝜃𝑗 − 𝜓𝑗)

1 + exp(𝜃𝑗)
=

exp(𝜃𝑗)
1 + exp(𝜃𝑗)

(
1 − 1

exp(𝜓𝑗)

)
= 𝜋𝑗(1 − 𝛾𝑗), (2)

where the elements 𝛾𝑗 = exp(−𝜓𝑗) =
exp(𝜃0)
𝜃𝑗

fulfill the con-

straints

1 ≥ 𝛾𝑗 ≥ 𝛾𝑗′ , 𝑗 ≤ 𝑗′ = 1,… , 𝑚.

We can thus write 𝜋𝑗 =
𝑝𝑗

1−𝛾𝑗
and obtain the following𝑚 equal-

ities for 𝜋0:

𝜋0 =
𝜋𝑗 − 𝑝𝑗

1 − 𝑝𝑗
=

𝛾𝑗𝑝𝑗

(1 − 𝛾𝑗)(1 − 𝑝𝑗)
, 𝑗 = 1,… , 𝑚. (3)

Given that the truncated distribution 𝑛𝑗 , 𝑗 = 1,… , 𝑚, is
observed, providing an estimate for 𝜋0 is equivalent to pro-
viding an estimate for 𝛾𝑗 , for a given 𝑗 = 1,… , 𝑚. However,
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the only information we can derive for 𝛾𝑗 is that 𝛾𝑗 ≤ (1 − 𝑝𝑗),
𝑗 = 1,… , 𝑚, as 𝜋0 ≤ 1 in Equation (3), and this is of limited
value. In fact, as 𝛾𝑗 → (1 − 𝑝𝑗), 𝜋0 → 1, leading to an unin-
formative infinite upper bound for the population size.

4 AN UPPER BOUND FOR 𝑵

Our purpose is, however, to develop an upper bound for𝑁 that
can be readily used in empirical applications. For this purpose,
let us consider two indices 𝑗 and ℎ with 𝑗 < ℎ = 1,… , 𝑚. We
know that the following inequalities hold:

𝜋ℎ ≥ 𝜋𝑗 ∶

𝑝ℎ ≥ 𝑝𝑗 ; (4)

𝛾ℎ ≤ 𝛾𝑗 .

Based on Equation (1), we may write

1 − 𝑝𝑗 = 1 −
𝜋𝑗 − 𝜋0

1 − 𝜋0
=

1 − 𝜋0 − 𝜋𝑗 + 𝜋0

1 − 𝜋0
=

1 − 𝜋𝑗

1 − 𝜋0
,

and therefore, from Equation (2), we have

1 − 𝑝𝑗

1 − 𝑝ℎ
=

1 − 𝜋𝑗

1 − 𝜋ℎ
=

1 − 𝑝𝑗

1−𝛾𝑗

1 − 𝑝ℎ
1−𝛾ℎ

=

1−𝛾𝑗−𝑝𝑗
1−𝛾𝑗

1−𝛾ℎ−𝑝ℎ
1−𝛾ℎ

=
1 − 𝛾𝑗 − 𝑝𝑗

1 − 𝛾ℎ − 𝑝ℎ

1 − 𝛾ℎ
1 − 𝛾𝑗

=
1 − 𝛾𝑗 − 𝑝𝑗

1 − 𝛾ℎ − 𝑝ℎ

𝑝ℎ
𝜋ℎ

𝜋𝑗

𝑝𝑗

=
1 − 𝛾𝑗 − 𝑝𝑗

1 − 𝛾ℎ − 𝑝ℎ

𝑝ℎ
𝑝𝑗

𝜋𝑗

𝜋ℎ
≤

1 − 𝛾𝑗 − 𝑝𝑗

1 − 𝛾ℎ − 𝑝ℎ

𝑝ℎ
𝑝𝑗

(5)

as 𝜋𝑗 ≤ 𝜋ℎ. The inequality holds for 𝑗 < ℎ = 1,… , (𝑚 − 1) as
for ℎ = 𝑚 we would have 𝑝ℎ = 𝜋ℎ = 1 and the ratio in Equa-
tion (5) would be infinite. Taking first and last terms of Equa-
tion (5) into account, we obtain

1 − 𝑝𝑗

1 − 𝑝ℎ
≤

( 1 − 𝛾𝑗 − 𝑝𝑗

1 − 𝛾ℎ − 𝑝ℎ

)
𝑝ℎ
𝑝𝑗

(6)

or, equivalently( 1 − 𝛾𝑗 − 𝑝𝑗

1 − 𝛾ℎ − 𝑝ℎ

)
≥

𝑝𝑗(1 − 𝑝𝑗)
𝑝ℎ(1 − 𝑝ℎ)

. (7)

Let us recall the definition for 𝛾𝑗 :

𝛾𝑗 =
exp(𝜃0)
exp(𝜃𝑗)

=
exp(𝜃0)
exp(𝜃𝑗)

exp(𝜃ℎ)
exp(𝜃ℎ)

=
exp(𝜃0)
exp(𝜃ℎ)

exp(𝜃ℎ)
exp(𝜃𝑗)

= 𝛾ℎ
𝜋ℎ(1 − 𝜋𝑗)
𝜋𝑗(1 − 𝜋ℎ)

= 𝛾ℎ
𝜋ℎ(1 − 𝑝𝑗)
𝜋𝑗(1 − 𝑝ℎ)

= 𝛾ℎ
1
𝛼𝑗,ℎ

.

This helps us restate the inequality in Equation (7) as follows:

(1 − 𝛾𝑗 − 𝑝𝑗) ≥ (1 − 𝛾ℎ − 𝑝ℎ)
𝑝𝑗(1 − 𝑝𝑗)
𝑝ℎ(1 − 𝑝ℎ)

= (1 − 𝛾𝑗𝛼𝑗,ℎ − 𝑝ℎ)
𝑝𝑗(1 − 𝑝𝑗)
𝑝ℎ(1 − 𝑝ℎ)

. (8)

Simplifying the inequality in Equation (8) gives

𝛾𝑗

[
1 − 𝛼𝑗,ℎ

𝑝𝑗(1 − 𝑝𝑗)
𝑝ℎ(1 − 𝑝ℎ)

]
≤ (1 − 𝑝𝑗) − (1 − 𝑝ℎ)

𝑝𝑗(1 − 𝑝𝑗)
𝑝ℎ(1 − 𝑝ℎ)

=
(
1 − 𝑝𝑗

)
−
𝑝𝑗(1 − 𝑝𝑗)

𝑝ℎ
=

(
𝑝ℎ − 𝑝𝑗

)(
1 − 𝑝𝑗

)
𝑝ℎ

.

Let us recall that

𝛾𝑗

[
1 − 𝛼𝑗,ℎ

𝑝𝑗
(
1 − 𝑝𝑗

)
𝑝ℎ
(
1 − 𝑝ℎ

)] = 𝛾𝑗

[
1 −

𝜋𝑗
(
1 − 𝑝ℎ

)
𝜋ℎ

(
1 − 𝑝𝑗

) 𝑝𝑗
(
1 − 𝑝𝑗

)
𝑝ℎ
(
1 − 𝑝ℎ

)]

= 𝛾𝑗

[
1 −

𝜋𝑗

𝜋ℎ

𝑝𝑗

𝑝ℎ

]
.

It is straightforward to show that the simplified term in the
square brackets (1 − 𝜋𝑗

𝜋ℎ

𝑝𝑗

𝑝ℎ
) is positive; solving for 𝛾𝑗 , 𝑗 < ℎ =

1,… , (𝑚 − 1), we obtain the upper bound we have been look-
ing for:

𝛾𝑗 ≤

(
𝑝ℎ − 𝑝𝑗

)(
1 − 𝑝𝑗

)
𝑝ℎ

[
1 − 𝜋𝑗

𝜋ℎ

𝑝𝑗

𝑝ℎ

] = (1 − 𝑝𝑗)
⎛⎜⎜⎝

𝑝ℎ − 𝑝𝑗

𝑝ℎ − 𝑝𝑗
𝜋𝑗

𝜋ℎ

⎞⎟⎟⎠ = 𝛾𝑢𝑗 (9)

for any 𝑗 and ℎ such that 𝑗 < ℎ = 1,… , (𝑚 − 1). It is worth
noting that as 𝜋𝑗 ≤ 𝜋ℎ for 𝑗 < ℎ = 1,… , (𝑚 − 1), we have that
𝛾𝑢
𝑗
≤ (1 − 𝑝𝑗), where the term (1 − 𝑝𝑗) defines a trivial bound

for 𝛾𝑗 , as we have discussed previously. Recalling Equation
(3), an upper bound is also obtained for 𝜋0:

𝜋0 =
𝜋𝑗 − 𝑝𝑗

1 − 𝑝𝑗
=

𝛾𝑗𝑝𝑗

(1 − 𝛾𝑗)(1 − 𝑝𝑗)
≤

𝛾𝑢
𝑗
𝑝𝑗

(1 − 𝛾𝑢
𝑗
)(1 − 𝑝𝑗)

= 𝜋𝑢0𝑗 , 𝑗 = 1,… , 𝑚 (10)

and for the population size:

𝑁𝑢
(𝑗) =

𝑛

1 − 𝜋𝑢0𝑗
= 𝑛

1 −
[

𝛾𝑢
𝑗

1−𝛾𝑢
𝑗

𝑝𝑗

1−𝑝𝑗

] . (11)

5 AN APPROXIMATION

Unfortunately, 𝛾𝑢
𝑗

cannot be computed as the ratio
𝜋𝑗

𝜋ℎ
is

unknown, as is 𝜋0. For one of the elements in the ratio, say
𝜋ℎ, we may use the fact that if ℎ = 𝑚, 𝜋𝑚 = 1. But, as we
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have seen before, in this case 𝛾𝑢
𝑗

is undefined. To get around
this, we can approximate 𝛾𝑢

𝑗
using the data at hand, which is

the observed truncated distribution. The first approximation
comes from considering that

𝑝𝑗

𝑝ℎ
≃

𝜋𝑗

𝜋ℎ
,

leading to

𝛾𝑗 ≃ 𝛾⋆𝑗 = (1 − 𝑝𝑗)
⎛⎜⎜⎝
𝑝ℎ − 𝑝𝑗

𝑝ℎ − 𝑝𝑗
𝑝𝑗

𝑝ℎ

⎞⎟⎟⎠. (12)

To get a good approximation, however, one of two conditions
should be met: either 𝜋0 is close to 0 or, if this is not the case, 𝑗
and ℎ should be large enough to ensure that 𝜋ℎ > 𝜋𝑗 ≫ 𝜋0. In
other words, we should look at higher categories (eg, counts).
In particular, due to the problems with setting ℎ = 𝑚 that we
have already outlined, we suggest to set ℎ = 𝑚 − 1 and 𝑗 =
ℎ − 1 = 𝑚 − 2. In this case,

𝛾⋆(𝑚−2) =
𝑝𝑚−1

(𝑝𝑚−1 + 𝑝𝑚−2)
(1 − 𝑝𝑚−2). (13)

Obviously, we have that

𝜋(𝑚−2)

𝜋(𝑚−1)
=

𝑝(𝑚−2)

1 − 𝛾(𝑚−2)

1 − 𝛾(𝑚−1)

𝑝(𝑚−1)
=

𝑝(𝑚−2)

𝑝(𝑚−1)

1 − 𝛾(𝑚−1)

1 − 𝛾(𝑚−2)
≥

𝑝(𝑚−2)

𝑝(𝑚−1)

as 𝛾(𝑚−2) ≥ 𝛾(𝑚−1). The equality holds either when 𝜋0 = 0
or 𝑝(𝑚−2) = 𝑝(𝑚−1), that is 𝜋(𝑚−2) = 𝜋(𝑚−1), which, however,
leads to the trivial bound 𝛾⋆(𝑚−2) = (1 − 𝑝(𝑚−2)). According to
the previous inequality, in the general case, it holds that

𝛾𝑢(𝑚−2) > 𝛾⋆(𝑚−2).

Using 𝛾⋆(𝑚−2) instead of 𝛾𝑢(𝑚−2), we obtain the following
approximation for the upper bound in Equation (11):

𝑁𝑢
(𝑚−2) = 𝑁𝑢 = 𝑛

1 − 𝜋0(𝑚 − 2)
≃ 𝑁𝑢

⋆

= 𝑛

1 −
[

𝛾⋆(𝑚−2)
1−𝛾⋆(𝑚−2)

𝑝(𝑚−2)
1−𝑝(𝑚−2)

] = 𝑛

1 −
(

𝑝(𝑚−1)
1+𝑝(𝑚−1)

) . (14)

This estimator has a remarkably simple structure and is easy
to obtain; if we look at the observed frequency distribution

(𝑥, 𝑛𝑥), 𝑥 = 1,… , 𝑚 and use 𝑝𝑗 =
∑

𝑙≤𝑗 𝑛𝑙

𝑛
, 𝑗 = 1,… , 𝑚, we get

the estimate:

�̂�𝑢
⋆ = 𝑛

1 −
(

𝑝(𝑚−1)
1+𝑝(𝑚−1)

) = 𝑛(1 − 𝑝(𝑚−1))

= 𝑛 +
(𝑚−1)∑
𝑗=1

𝑛𝑗 = 2𝑛 − 𝑛𝑚. (15)

A sufficient condition for 𝑁𝑢
⋆ to be an upper bound for 𝑁 is

that 𝛾⋆(𝑚−2) ≥ 𝛾(𝑚−2), that is

𝛾⋆(𝑚−2) =
𝑝(𝑚−1)

𝑝(𝑚−1) + 𝑝(𝑚−2)
(1 − 𝑝(𝑚−2))

≥ 1 −
𝑝(𝑚−2)

𝜋(𝑚−2)
= 𝛾(𝑚−2). (16)

If we solve for 𝜋(𝑚−2), we obtain the following condition for
𝑁𝑢

⋆ to be an upper bound of the true population size, 𝑁 :

𝜋(𝑚−2) ≤
𝑝(𝑚−1) + 𝑝(𝑚−2)

𝑝(𝑚−1) + 1
. (17)

By exploiting the dependence of 𝜋(𝑚−2) on 𝜋0 and 𝑝(𝑚−2), we
may also derive a condition on 𝜋0 for𝑁𝑢

⋆ to be an upper bound
of 𝑁 :

𝜋0 ≤
𝑝(𝑚−1)

1 + 𝑝(𝑚−1)
≃ 0.5. (18)

However, this sufficient condition cannot be fulfilled in
every situation, as the probability of zero counts could be
higher than 0.5, and/or the number of capture occasions
could be very small (eg, three), leading to a substantial dif-
ficulty in the use of 𝑝(𝑚−2)∕𝑝(𝑚−1) to approximate the ratio
𝜋(𝑚−2)∕𝜋(𝑚−1). More importantly, no method can be used to
check (empirically) that the condition in Equation (18) holds.
Therefore, we introduce a further upper bound approximate
estimator, which we will refer to as 𝑁𝑢

𝑐 .
This is simply based on estimating 𝜋0 from the observed

distribution, plugging in the estimate to obtain an estimate for
𝜋𝑗 , 𝑗 = 1,… , 𝑚 − 1, and deriving the upper bound based on
this augmented empirical distribution.

For this purpose, we use the Chao’s (1984) lower bound
estimator to approximate the number of missing units 𝑛0:

𝑛𝑐0 =
𝑛21
2𝑛2

or, equivalently

𝜋𝑐0 =
𝑛𝑐0

𝑛𝑐0 + 𝑛
.

Based on such an estimator, we derive a completed distribu-
tion (𝑛𝑐0, 𝑛1,… , 𝑛𝑚) and calculate the upper bound for 𝑁 on
such a completed distribution. Clearly, a different estimator
for 𝑛0 can be used, such as those described in Lanumteang
and Böhning (2011) or Rocchetti et al. (2014), as the proce-
dure does not depend on the specific form of the estimator.
The approach we propose leads to the following values for
the cumulative probabilities of the completed data:

𝜋𝑐𝑗 = 𝜋𝑐0 +
(
1 − 𝜋𝑐0

)
𝑝𝑗, 𝑗 = 1,… , (𝑚 − 1).
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The approximation for 𝛾𝑢(𝑚−2) obviously follows:

𝛾𝑐(𝑚−2) = (1 − 𝑝(𝑚−2))
⎛⎜⎜⎜⎝

𝑝(𝑚−1) − 𝑝(𝑚−2)

𝑝(𝑚−1) − 𝑝(𝑚−2)
𝜋𝑐(𝑚−2)
𝜋𝑐(𝑚−1)

⎞⎟⎟⎟⎠
and the approximation to the upper bound follows from Equa-
tion (11):

𝑁𝑢
𝑐 = 𝑁𝑢

(𝑚−2),𝑐 =
𝑛

1 −
[

𝛾𝑐(𝑚−2)
1−𝛾𝑐(𝑚−2)

𝑝(𝑚−2)
1−𝑝(𝑚−2)

] . (19)

As we have mentioned previously, we know that 𝑁 ≤ 𝑁𝑢
𝑐

whenever 𝛾(𝑚−2) ≤ 𝛾𝑐(𝑚−2). Starting from this inequality, we
obtain the following condition for 𝑁𝑢

𝑐 to be an upper bound
for the true population size, 𝑁 :

𝜋(𝑚−2)

≤ 𝑝(𝑚−2)

⎡⎢⎢⎢⎣1 −
(
1 − 𝑝(𝑚−2)

)⎛⎜⎜⎜⎝
𝑝(𝑚−1) − 𝑝(𝑚−2)

𝑝(𝑚−1) − 𝑝(𝑚−1)
𝜋𝑐(𝑚−2)
𝜋𝑐(𝑚−1)

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
−1

(20)

or, by doing a little algebra, the equivalent condition

𝜋0 ≤
(𝑝(𝑚−1) − 𝑝(𝑚−2))[(

1 −
𝜋𝑐(𝑚−2)
𝜋𝑐(𝑚−1)

)
+
(
𝑝(𝑚−1) − 𝑝(𝑚−2)

)] . (21)

That is, with an increasing number of capture occasions,

𝑚, and/or an increasing value of the ratio
𝜋𝑐(𝑚−2)
𝜋𝑐(𝑚−1)

, the proposed

estimator gives a reliable upper bound for 𝑁 .

6 REAL DATA EXAMPLES

In this section, we provide a re-analysis of five well-known
benchmark datasets. For each of these, the global popula-
tion size 𝑁 , as well as 𝑛0, are known; this is the reason
for selecting them, as we aim to compare the approximate
upper bound estimate and the true population size. For each of
these studies, we calculate the exact value for 𝑁𝑢, the upper
bound estimate in (11), and compare it with the estimates �̂�𝑢

⋆

and �̂�𝑢
𝑐 , also looking at the difference between 𝑝(𝑚−1)∕𝑝(𝑚−2)

and 𝜋(𝑚−1)∕𝜋(𝑚−2). We also provide the analytical and boot-

strap estimates for the standard deviation of 𝑛𝑢0⋆ = �̂�𝑢
⋆ − 𝑛

and 𝑛𝑢0𝑐 = �̂�𝑢
𝑐 − 𝑛. These are calculated using the procedure

described in the Supporting Information, available at the Bio-
metrics website.

6.1 Golf Tees data

The 1999 statistics honors class at the University of St.
Andrews (Scotland) participated in the following experiment,
see Borchers et al. (2004). A set of 760 golf tees of two
different colors were arranged into 250 groups of various
sizes, which were placed in a survey region of 1680 m2,
either exposed above the surrounding grass, or partly hid-
den by it. A total of 162 groups of tees were found by the
participants while 𝑛0 = 88 were not. The truncated empiri-
cal distribution (see the first row of Table 1) refers to the
number of times each group of tees was found, with 𝑚 = 8
sources corresponding to eight independent observers. The
approximate estimates of the upper bound for the popula-
tion size are �̂�𝑢

⋆ = 313 and �̂�𝑢
𝑐 = 350; these are both rea-

sonable values for 𝑁 = 250, as well as good approximations
for 𝑁𝑢 = 401. The bootstrap estimate for the standard devi-
ation of 𝑛𝑢0⋆ is 𝑏.𝑠𝑑(𝑛𝑢0⋆) = 8.9, whereas the analytical esti-
mate is higher, 𝑎.𝑠𝑑(𝑛𝑢0⋆) = 10.9. The bootstrap estimate for
the standard deviation of 𝑛𝑢0𝑐 , 𝑏.𝑠𝑑(𝑛

𝑢
0𝑐) = 23.08, is consider-

ably higher than the former as it likely suffers from the addi-
tional variability in Chao’s estimator 𝑛𝑐0. We also note that
the truncated and untruncated probability ratios for counts
(𝑚 − 2) and (𝑚 − 1) are very close to each other (0.96 and
0.975, respectively).

6.2 Sidney data

The data concern a screening test for bowel cancer, the fecal
occult blood test: this can be used to detect the presence of
a small amount of blood in the bowel motion as an indica-
tor for cancer prior to the manifestation of clear symptoms.
From 1984 onward, about 50 000 subjects were screened for
bowel cancer at St Vincent’s Hospital in Sydney (Australia),
see Lloyd and Frommer (2004a, 2004b, 2008). Given that a
single application of the test is not sufficiently accurate, the
screening procedure was based on a sequence of 𝑚 = 6 binary
diagnostic tests performed on consecutive days; for each test,
the presence (𝑥 = 1) or the absence (𝑥 = 0) of blood in feces
was recorded. People with negative results in all six tests did
not undergo further assessment and their true disease status
remained unknown, as this can only be ascertained by car-
rying out a definitive diagnostic test. People with at least
one positive test result had their true disease status verified
by physical examination, sigmoidoscopy, and colonoscopy. A
sample of 𝑁 = 122 individuals with confirmed bowel can-
cer have been screened again using the same procedure and
the same number of testing occasions (𝑚 = 6). The corre-
sponding distribution is reported in the second row of Table 1.
The approximate estimates of the upper bound for the popu-
lation size, �̂�𝑢

⋆ = 169 and �̂�𝑢
𝑐 = 172, are quite close to each

other and to the true value 𝑁𝑢 = 191, see the second row
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T A B L E 2 Benchmark data

Dataset 𝑵 �̂�𝒖
⋆

�̂�𝒖
𝒄

𝑵𝒖 b.sd(𝒏𝒖𝟎⋆) a.sd(𝒏𝒖𝟎⋆) b.sd(𝒏𝒖𝟎𝒄) 𝒑(𝒎−𝟐)

𝒑(𝒎−𝟏)

𝝅(𝒎−𝟐)

𝝅(𝒎−𝟏)

Golf 250 313 350 401 8.92 10.91 23.08 0.96 0.975

Sidney 122 169 172 191 6.41 7.26 14.94 0.826 0.868

Cottontail 135 151 212 210 6.03 6.99 16.41 0.973 0.985

Taxicab 420 565 691 702 12.02 13.21 34.42 0.989 0.993

Hepatitis 545 543 827 817 11.77 12.45 23.16 0.897 0.949

Note. Upper bound estimates for population size 𝑁 .

of Table 2. The bootstrap estimate for the standard devi-
ation is 𝑏.𝑠𝑑(𝑛𝑢0⋆) = 6.41, whereas the analytical estimate,
𝑎.𝑠𝑑(𝑛𝑢0⋆) = 7.26, is higher. As in Section 6.1, the bootstrap
estimate for 𝑛𝑢0𝑐 is higher than the other two, 𝑏.𝑠𝑑(𝑛𝑢0𝑐) =
14.94. The ratios of the truncated and untruncated probabili-
ties for the counts (𝑚 − 2) and (𝑚 − 1) are equal to 0.83 and
0.87, respectively.

6.3 Cottontail data

A live trapping study of a cottontail rabbit population with
known size𝑁 = 135, confined within a 4-acre zone, was con-
ducted for 𝑚 = 18 consecutive nights by Edwards and Eber-
hardt (1967). This dataset has been studied extensively, start-
ing from the seminal paper by Chao (1987). Here, the number
of trapping occasions is 𝑚 = 18 but the maximum count is
�̃� = 7, see the third row of Table 1.

The approximate estimates of the upper bound for the pop-
ulation size are �̂�𝑢

⋆ = 151 and �̂�𝑢
𝑐 = 212; the latter is essen-

tially equal to the true value 𝑁𝑢 = 210. The bootstrap esti-
mate of the standard deviation for 𝑛𝑢0⋆ is equal to 𝑏.𝑠𝑑(𝑛𝑢0⋆) =
6.03, the analytical estimate is slightly higher, 𝑎.𝑠𝑑(𝑛𝑢0⋆) =
6.99, and 𝑏.𝑠𝑑(𝑛𝑢0𝑐) = 16.41 is, as we have seen before, much
higher than both the previous estimates. The ratios of the
truncated and untruncated probabilities for the counts (𝑚 − 2)
and (𝑚 − 1) are equal to 0.97 and 0.98, respectively.

6.4 Taxicab data

Carothers (1973) conducted an experiment on the taxicab
population of Edinburgh, Scotland. In this example, the pop-
ulation has a known size 𝑁 = 420; the experiment roughly
consisted of a capture when a taxicab was sighted. The taxicab
population was observed on 𝑚 = 10 consecutive days, with
observation points and times changing with each day; how-
ever, no taxis were observed more than �̃� = 6 times, see the
fourth row of Table 1.

In this case, 𝑁𝑢 = 702 is much higher than the proposed
approximation �̂�𝑢

⋆ = 565, but it is well approximated by

�̂�𝑢
𝑐 = 691. Both approximate estimates are, however, quite

successful given that 𝑁 = 420. The ratios of the truncated
and the untruncated probabilities for the counts (𝑚 − 2) and
(𝑚 − 1) are equal to two decimal places with a value of 0.99.

6.5 Hepatitis data

Now we return to the hepatitis data introduced in Section 2.
As we mentioned previously, the data refer to an outbreak
of the HAV recorded in and around a college in northern
Taiwan from April to July 1995, see Chao (2001). Three
sources were merged and the corresponding zero-truncated
distribution is reported in the last row of Table 1. To estimate
the extent of the outbreak, a screening serological check for
all students was conducted, so that the true population size
𝑁 = 545 is known. The proposed approximate estimates are
�̂�𝑢

⋆ = 543 and �̂�𝑢
𝑐=827. Although the former fails in provid-

ing an upper bound for 𝑁 , likely due to the small number
of capture occasions considered and the condition 𝑛0 < 𝑛 not
being fulfilled, the latter satisfactorily approximates the true
value of the bound 𝑁𝑢 = 817. The ratios of the truncated and
untruncated probabilities, provided in Table 1, are equal to 0.9
and 0.95, respectively.

6.6 Summarizing the empirical findings

Based on the results we have just discussed, the approximate
estimate �̂�𝑢

⋆ may fail in two cases: when dealing with a very
low number of capture occasions and/or when the number of
unseen units is greater than 50% of the population size, see
the condition in Equation (18). We face this issue empirically
in the hepatitis example, see Section 6.5, where only three
capture occasions and a high proportion of unseen units were
available, and in the simulation study, see Section 8, which
includes different types of “true” data-generating processes.
However, even in these extreme cases, we are still able to rely
on �̂�𝑢

𝑐 , with the (negligible) further effort of estimating 𝑛0𝑐
and completing the observed data.

Table 2 summarizes the results obtained by calculating the
proposed upper bound for each of the five benchmark datasets
we considered. We report the following quantities: �̂�𝑢

⋆, the
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F I G U R E 1 Benchmark data examples. Successive frequency ratios for the truncated (red stars), completed (blue pluses), and untruncated
(black dots) distributions. This figure appears in color in the electronic version of the article, and any mention of color refers to that version

T A B L E 3 Oman accident data

Gender No injury Mild Moderate Severe Fatal Number of crashes
Total 6790 13 346 9758 2226 3665 35 785

Male (%) 19.9 35.8 27.0 6.5 10.9 31 763

Female (%) 11.9 49.3 29.6 4.0 5.1 4022

Note. Complete data distribution.

approximate estimate of the upper bound for𝑁 given in Equa-
tion 11; �̂�𝑢

𝑐 , the approximate estimate of the upper bound
calculated by completing the observed distribution with 𝑛𝑐0,
the Chao estimate for 𝑛0; 𝑁𝑢, the true value of the upper
bound for 𝑁 ; and the ratios 𝑝(𝑚−2)∕𝑝(𝑚−1) and 𝜋(𝑚−2)∕𝜋(𝑚−1)
to give an idea of the approximation order. We also report
the estimates of the standard deviation for 𝑛𝑢0⋆ and 𝑛𝑢0𝑐 . The
former has been calculated analytically (a.) and via nonpara-
metric bootstrap (b.), while the bootstrap approach is the only
option for the latter, as detailed in Section 1 of the Sup-
porting Information available at the Biometrics website. In
Figure 1, we report, excluding the hepatitis data where 𝑚 = 3,
the ratios 𝑝(𝑗)∕𝑝(𝑗+1) and 𝜋(𝑗)∕𝜋(𝑗+1) for 𝑗 = 1,… , (𝑚 − 2), to

further explore the differences we may observe, in empirical
cases, between the truncated and untruncated distributions.

7 A FURTHER, NONSTANDARD,
EXAMPLE

Up to this point, we have presented the proposed upper bound
in the context of a partially observed count distribution; how-
ever, it can also be fruitfully applied to truncated distributions
involving ordinal categorical variables. The following exam-
ple may suggest an alternative use of the proposed approach.
According to Al Aamri (2018), a total of 35 785 road traffic
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T A B L E 4 Oman accident data

Dataset �̃� �̂�𝒖
⋆

�̂�𝒖
𝒄

�̃�𝒖 b.sd(𝒏𝒖𝟎⋆) a.sd(𝒏𝒖𝟎⋆) b.sd(𝒏𝒖𝟎𝒄) 𝒑(𝒎−𝟐)

𝒑(𝒎−𝟏)

𝝅(𝒎−𝟐)

𝝅(𝒎−𝟏)

Crash 35 785 54 325 63 450 61 115 118.49 120.88 267.47 0.912 0.931

Crash(male) 31 763 47 440 54 969 53 753 110.27 113.07 244.35 0.906 0.927

Crash(female) 4022 6884 8535 7360 41.28 42.57 94.24 0.952 0.958

Note. Upper bound estimates for population size 𝑁 .

T A B L E 5 Mixing distributions for individual capture probabilities

Mixing distribution

Group A Details 𝜇 𝜎2 skew 𝜋0

A1. Beta 𝐵(1.76, 9.99) 0.15 0.010 1.02 0.448

A2. Two-point 𝜋 = (0.942, 0.058), 𝜃 = (0.125, 0.552) 0.15 0.010 3.78 0.422

A3. Two-point 𝜋 = (0.5, 0.5), 𝜃 = (0.05, 0.25) 0.15 0.010 0.00 0.457

A4. Two-point 𝜋 = (0.964, 0.036), 𝜃 = (0.131, 0.669) 0.15 0.010 5.00 0.415

A5. Four-point 𝜋 = (0.4, 0.1, 0.1, 0.4), 𝜃 = (0.05, 0.1, 0.2, 0.25) 0.15 0.009 0.00 0.445

A6. Uniform 𝑎 = 0, 𝑏 = 0.3 on [0, 𝑏] 0.15 0.010 0.00 0.435

Group B
B1. Beta 𝐵(1.31, 3.94) 0.25 0.030 0.80 0.306

B2. Two-point 𝜋 = (0.866, 0.134), 𝜃 = (0.182, 0.690) 0.25 0.030 2.14 0.259

B3. Two-point 𝜋 = (0.5, 0.5), 𝜃 = (0.077, 0.423) 0.25 0.030 0.00 0.329

B4. Two-point 𝜋 = (0.916, 0.084), 𝜃 = (0.198, 0.822) 0.25 0.030 3.00 0.242

B5. Four-point 𝜋 = (0.4, 0.1, 0.1, 0.4), 𝜃 = (0.06, 0.2, 0.3, 0.44) 0.25 0.029 0.00 0.324

B6. Quadratic 𝑓𝑥 = 85.7(𝑥 − 0.4)2 on (0.1,0.6) 0.26 0.030 1.04 0.265

Group C
C1. Beta 𝐵(0.49, 2.76) 0.15 0.030 1.54 0.550

C2. Two-point 𝜋 = (0.935, 0.065), 𝜃 = (0.104, 0.807) 0.15 0.030 3.53 0.441

C3. Exponential 𝜆 = 6, truncated to (0,1] 0.16 0.030 1.68 0.479

C4. Log 𝑓𝑥 = − log(𝑥) on (0,1] 0.25 0.050 0.89 0.371

C5. Beta mix 𝜋 = (0.5, 0.5), 𝐵(0.43, 8.08) and 𝐵(9.13, 27.38) 0.15 0.015 0.27 0.492

C6. Beta mix 𝜋 = (0.5, 0.5), 𝐵(0.81, 4.57) and 𝐵(3.63, 6.74) 0.25 0.030 0.48 0.315

Note. Mean (𝜇), variance (𝜎2) and skewness coefficient of the mixing distributions, 𝜋 = component weight, 𝜃 = component-specific parameter, from Pledger (2005).

crashes were reported in Oman in 2015; 71% of them resulted
in injuries, whereas 10% were fatal. Table 3 details the fre-
quencies and percentages, stratified by gender.

As the burden of mortality and disability has consider-
able economic, social, and healthcare implications, it could
be of interest to estimate the number of crashes resulting in no
injuries, as the corresponding count could be severely down-
ward biased. In fact, not all of the crashes have been reported,
as those with minor consequences are likely to be underre-
ported. That is, the corresponding frequency (𝑛0 in a capture-
recapture setting) may be considered as observed with error;
the aim here is to recover this quantity by looking at the zero-
truncated (ie, truncated at the no injury category) distribution.
We report in Table 4 the approximate estimates �̂�𝑢

⋆ and �̂�𝑢
𝑐 ,

the latter obtained by completing the observed distribution
with the Chao estimate 𝑛𝑐0 and 𝑁𝑢. Further, we give the naive,

likely underestimated, population size �̃� and the correspond-

ing value of the upper bound �̃�𝑢 that is likely underestimated
as well. The ratios 𝑝(𝑚−2)∕𝑝(𝑚−1) and 𝜋(𝑚−2)∕𝜋(𝑚−1) are also
reported to give an idea of the approximation order. We further
provide the standard deviation estimates for 𝑛𝑢0⋆ and 𝑛𝑢0𝑐 , the
approximate estimates of the upper bound for 𝑛0. As before,
the former has been calculated both analytically (a.) and via a
nonparametric bootstrap (b.) approach, whereas the latter has
been calculated by nonparametric bootstrap only.

8 SIMULATION STUDY

Pledger (2005) describes a simulation experiment concern-
ing mixed binomial distributions, where several prior distri-
butions for individual-specific detection probabilities are con-
sidered. The aim is to give a comprehensive assessment of
bias and precision for a class of population size estimators.



10 ALFÒ ET AL.

T A B L E 6 Simulation study

Pledger’s choice 𝑵𝒖 �̂�𝒖
⋆

min(�̂�𝒖
⋆
) �̂�𝒖

𝒄
min(�̂�𝒖

𝒄
) 𝒔𝒅(�̂�𝒖

⋆
) 𝒂.𝒔𝒆(�̂�𝒖

⋆
) 𝒔𝒅(�̂�𝒖

𝒄
) 𝒇𝟏 𝒇𝟐

A3 1545 1092 991 1354 1172 31.395 18.069 53.915 0.998 1

B1 1687 1383 1283 1568 1404 29.044 21.567 43.012 1 1

B3 1671 1346 1246 1501 1385 30.246 21.426 40.867 1 1

B5 1671 1348 1234 1492 1381 29.266 21.389 39.257 1 1

C1 1573 1300 1223 1389 1288 26.679 21.093 33.992 1 1

C4 1613 1247 1148 1414 1289 30.251 20.804 41.825 1 1

C5 1510 1022 917 1212 1051 30.973 17.737 47.371 0.761 1

C6 1678 1363 1278 1520 1399 29.261 21.445 38.847 1 1

Bin(1000, 0.3) 1880 1764 1693 1903 1812 20.268 23.601 27.935 1 1

Bin(1000, 0.7) 1885 1879 1845 1880 1846 10.216 24.009 10.246 1 1

Note. 𝑠𝑑(⋅) and 𝑎.𝑠𝑒(⋅) denote the standard deviation of the estimator across simulations, and the mean of the analytical standard error, respectively. All quantities are
averages over simulation samples, min(⋅) refers to the minimum over simulation samples; 𝑓1 = 𝑓 (�̂�𝑢

⋆
> 𝑁) and 𝑓2 = 𝑓 (�̂�𝑢

𝑐
> 𝑁) are the relative frequencies for the

approximate upper bound being greater than the true population size. In all cases 𝑁 = 1000.

The scheme is reported in Table 5. Rocchetti et al. (2014)
have presented a point estimator for the size of the population,
using this simulation scheme as a benchmark. We propose
to use again the same simulation scheme and, in particular,
those scenarios where the population size was more difficult
to recover, and a substantial underestimation of the true pop-
ulation size was recorded. The study is based on 𝐵 = 1000
replications (samples) drawn from different mixed binomial
distributions with population size 𝑁 = 1000 and 𝑚 = 6 sam-
pling occasions.

Table 5 shows the mixing distributions in the Pledger
scheme divided into three groups: the first (A) is character-
ized by a low mean and heterogeneity and a probability of
having a zero-count (𝜋0) slightly higher than 0.4. The second
group (B) refers to a situation with a higher mean and hetero-
geneity, but a smaller mass at zero; group C is an intermedi-
ate situation between A and B, where the mixing distributions
have a low mean but a high heterogeneity and a large mass at
zero.

We consider one choice from the first group (A3), three
choices from the second group (B1, B3, B5), and four from
the third (C1, C4, C5, C6); to get an idea of the behavior of
the proposed estimator under complete homogeneity condi-
tions, we have also drawn counts from a binomial distribution
with common probability of observing a generic unit equal
to 0.3 and 0.7, respectively. Table 6 shows the upper bound
for 𝑁 that we would get if the complete distribution were
known (𝑁𝑢), the mean (across simulations) of the proposed
approximate estimates (�̂�𝑢

⋆ and �̂�𝑢
𝑐 ), the corresponding min-

imum values obtained in the 1000 replicates (min(�̂�𝑢
⋆) and

min(�̂�𝑢
𝑐 )), the standard deviation of the estimates across simu-

lations (𝑠𝑑(�̂�𝑢
⋆) and 𝑠𝑑(�̂�𝑢

𝑐 )), the mean of the analytical stan-

dard error (𝑠𝑒.𝑎(�̂�𝑢
⋆)), the true 𝑛0, and the mean estimates 𝑛𝑢⋆

and 𝑛𝑢𝑐 . Finally, we report the observed coverage frequency
across simulations for �̂�𝑢

⋆ and �̂�𝑢
𝑐 , computed as the propor-

tion of samples for which the approximate estimates of the
upper bound are greater than the true population size 𝑁 .

Looking at the results in Table 6, we notice that the pro-
posed approximate estimator of the upper bound �̂�𝑢

⋆ always
performs well in both the heterogeneous and homogeneous
settings: its minimum value across replications is always
greater than the true 𝑁 except for choices A3 and C5, where
the coverage frequency is slightly less than 1 (0.998 and 0.761,
respectively). As a matter of fact, these choices (A3 and C5)
correspond to a very high percentage of unseen units, leading
to moderate underestimation of the true upper bound. In all
cases, the estimator �̂�𝑢

𝑐 gives a reliable approximation to 𝑁𝑢

and its coverage is always equal to 1; consequently, it may be
used as a reliable estimator for the upper bound, regardless of
the true data generating distribution.

9 CONCLUDING REMARKS

Capture-recapture studies have been frequently used to esti-
mate the size of a partially observed population; several
approaches based either on semiparametric, for example,
finite mixtures, see Pledger (2005), or parametric, for exam-
ple, negative or beta binomial, see Rocchetti et al. (2011),
count distribution models have been used in such a context.
Starting by considering a frequency of frequencies distribu-
tion and simply exploiting the ordinal nature of the observed
counts, we develop a potentially useful upper bound for the
population size, which seems to be a novel and undevel-
oped area in the capture-recapture literature as the obvious
upper bound is usually infinite. As the upper bound depends
on unobservable terms, we propose two approximate esti-
mators; we study their behavior by using a series of bench-
mark datasets and a simulation study based on the scheme
by Pledger (2005), see Section 8. Across the variety of set-
tings we have discussed, the performance of the proposed
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estimators of the upper bound is reasonably successful, as
at least one of the two gives a reliable upper bound for the
unknown population size. From the results of the simula-
tion experiment, we observe that �̂�𝑢

⋆ is always very close
to or larger than the true population size, and in the major-
ity of the analyzed samples it produces a bound that is larger
than the population size. When this is not the case we may
rely on �̂�𝑢

𝑐 , which always closely resembles the true upper
bound for the population at hand. There is a further argu-
ment as to why the proposed ordinal approach is appropriate
in a capture-recapture setting. In fact, conventionally, only the
lower counts in the observed truncated distribution are used
to get an estimate for the unknown population size. This is
motivated by the higher counts being more sensitive to out-
liers and containing less information. In the proposed ordinal
approach, however, we use the cumulative distribution func-
tion and, therefore, make use of the higher counts in a more
robust framework. An additional reason to consider the pro-
posed approximate upper bound is that it can be used in a
Bayesian setting to define a more detailed prior for 𝑁 , see, for
example, Farcomeni and Tardella (2010), King et al. (2014),
Alunni Fegatelli et al. (2017). One possible route to develop
such an approach is based on following the advice given by
Garthwaite et al. (2005), who discuss the elicitation of prior
distributions based on expert knowledge.
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