New Approaches to the Management of Adult Acute Lymphoblastic Leukemia

Renato Bassan, Jean-Pierre Bourquin, Daniel J. DeAngelo, and Sabina Chiaretti

A B S T R A C T

Traditional treatment regimens for adult acute lymphoblastic leukemia, including allogeneic hematopoietic cell transplantation, result in an overall survival of approximately 40%, a figure hardly comparable with the extraordinary 80% to 90% cure rate currently reported in children. When translated to the adult setting, modern pediatric-type regimens improve the survival to approximately 60% in young adults. The addition of tyrosine kinase inhibitors for patients with Philadelphia chromosome-positive disease and the measurement of minimal residual disease to quide risk stratification and postremission approaches has led to additional improvements in outcomes. Relapsed disease and treatment toxicity-sparing no patient but representing a major concern especially in the elderly—are the most critical current issues awaiting further therapeutic advancement. Recently, there has been considerable progress in understanding the disease biology, specifically the Philadelphia-like signature, as well as other high-risk subgroups. In addition, there are several new agents that will undoubtedly contribute to additional improvement in the current outcomes. The most promising agents are monoclonal antibodies, immunomodulators, and chimeric antigen receptor T cells, and, to a lesser extent, several new drugs targeting key molecular pathways involved in leukemic cell growth and proliferation. This review examines the evidence supporting the increasing role of the new therapeutic tools and treatment options in different disease subgroups, including frontline and relapsed or refractory disease. It is now possible to define the best individual approach on the basis of the emerging concepts of precision medicine.

J Clin Oncol 36. © 2018 by American Society of Clinical Oncology

INTRODUCTION

In Western countries, new cases of adult acute lymphoblastic leukemia (ALL) occur at an annual rate of approximately one per 100,000, with a bimodal distribution decreasing at age 45 to 54 years and increasing again in people older than 55 years, totaling approximately 2,300 new cases per year for patients older than 15 years (n = 1,750 between ages 15 and 55 years) in the United States.^{1,2} Over the past decade, we have witnessed an incredible therapeutic improvement. Currently, pediatric patients have an estimated 5-year overall survival (OS) approaching 90%.³⁻⁵ Modern pediatric programs thrive on an intensified use of corticosteroids (mainly dexamethasone), antimetabolites (especially methotrexate and 6-mercaptopurine) and L-asparaginase/ pegylated-asparaginase, and rely on minimal residual disease (MRD) analysis for additional dose intensification or allogeneic hematopoietic cell transplantation (HCT).⁶⁻⁸

RECENT ADVANCES USING PEDIATRIC REGIMENS IN ADULTS

The results in adult ALL, unfortunately, have not kept pace with those in pediatric ALL, with OS rates $< 45\%^9$ despite the addition of CNS prophylaxis, late intensification with prolonged maintenance chemotherapy, and an extensive use of HCT in high-risk (HR) subsets. Currently, pediatric-inspired regimens are being administered in young adult patients, leading to improvements in event-free survival (EFS) and OS rates as compared with historical controls.¹⁰⁻¹³ This approach, initially reserved for adolescents and young adults (AYA; < 40 years old)^{10,14,15} and later applied to patients up to 50 to 60 years of age,^{11,12,16} has increased the 5-year OS rate to \geq 50%, and up to 70% to 80% in favorable subsets (ie, AYA, standard risk, MRD negative; Appendix Table A1, online only),¹⁷ but not in older patients, whose survival decreases progressively to < 20%.²⁻⁴ Finally, allogeneic HCT is

© 2018 by American Society of Clinical Oncology 1

Author affiliations and support information (if applicable) appear at the end of this article.

Published at jco.org on September 21, 2018.

Corresponding author: Renato Bassan, MD, Hematology Unit, Ospedale dell'Angelo, Via Paccagnella 11, 30174 Mestre, Venezia, Italy; e-mail: Renato. bassan@aulss3.veneto.it.

© 2018 by American Society of Clinical Oncology

0732-183X/18/3699-1/\$20.00

ASSOCIATED CONTENT

DOI: https://doi.org/10.1200/JCO.2017. 77.3648

	Table 1. Summary of	Clinical Evidence of Antibody	Therapy in Acute Lymphoblastic Leuk	emia in Select CI	ed Clinical Trials inical Trials	
Target Antigen	Agents	Class	Patients	No.	Regimen	Study Results
CD19	Blinatumomab	BiTE (CD19 × CD3) antibody	MRD positive (> 10^{-4})	21	Blinatumomab IVCl × 4 weeks	Phase II: 61% RFS rate at median follow-up of 33 months ³⁵
			MRD positive (> 10^{-3})	116	Blinatumomab IVCI × 4 weeks (HCT after response)	Phase II: complete MRD response, 80% (78% at cycle 1); median OS, 38.9 months; and RFS, 23.6 months in MRD responders (<i>P</i> = .002 <i>v</i> nonresponders) ³⁶
			Relapsed/refractory	36	Blinatumomab IVCI × 4 weeks	Phase I/II: 69% CR/CRi with 88% MRD negative ³⁷
				189	Blinatumomab IVCI × 4 weeks	Phase II: 43% CR/CRi with 82% MRD negative; median OS of responders, 6.1 months v nontresponders, 3.5 months ³⁸
			Relapsed/ refractory (Ph-)	376	Blinatumomab IVCI × 4 weeks	Phase III <i>v</i> SOC: Improved CR/ CRi 44 <i>v</i> 25%; MRD negative rate 76% <i>v</i> 48%; OS 7.7 <i>v</i> 4.0 months ³⁹ (<i>P</i> = .01)
			Relapsed/ refractory (Ph+)	45	Blinatumomab IVCI × 4 weeks	36% CR/CRi (40% with T315I), with 88% MRD negative; median RFS, 6.7 months ⁴⁰
	SGN19a (denintuzumab mafodotin)	Immunoconjugate (monomethyl auristatin F)	Relapsed/ refractory	29	Weekly (days 1 and 8) or day 1 every 3 weeks	Phase I: 19% CR/CRi weekly arm and 35% in the every- 3-week arm ⁴¹
	SAR3419 (coltuximab ravtansine)	Immunconjugate (maytansine DIM4)		36	Monotherapy weekly (escalating dose and selected dose in expansion cohort)	Study discontinued because of toxicity; overall response rate, 25.5% ⁴²
CD19/22	Combotox	Immunotoxin (ricin A chain)	Relapsed/refractory	17	Maximum tolerated dose, 7 mg/m ²	Phase I: one patient achieved partial remission ⁴³
CD20	Rituximab	Naked antibody	Newly diagnosed	282	Rituximab + hyper- CVAD	Phase II: Improved CMR, RFS, and OS in patients < 60 years old ⁴⁴
				263	Rituximab + chemotherapy	Phase II: improved rate of negative MRD, CRD, and 3-year OS ⁴⁵
				209	Rituximab + chemotherapy	Phase III: improved rate of 2-year EFS (65% v 52%, $P = .04$) ¹³
	Ofatumumab	Naked antibody	Newly diagnosed	55	Ofatumumab + hyper-CVAD	Phase II: CR 98% and MRD negativity 93%; 3-year CRD rate, 78%; and OS, 68% ⁴⁶
		(cont	inued on following page)			

JOURNAL OF CLINICAL ONCOLOGY

				Clinica	al Trials	
Target Antigen	Agents	Class	Patients	No.	Regimen	Study Results
CD22	Epratuzumab	Naked antibody	Relapsed/refractory	15 Ep	ratuzumab + chemotherapy	Phase I: 60% CR, 40% MRD negative ⁴⁷
			Relapsed (first)	114 Ep	raturumentery raturumentery (two chemotherapy (two sortetuzumab)	Phase II: 65% and 66% CR rates, 42% MRD negative rate (higher than historical controls) ⁴⁸
			Relapsed/refractory	32 Ep	ratuzumab + clofarabine + cytarabine	Phase II: 52% CR/CRi rate; median OS, 5 months ⁴⁹
				20 Ep	ratuzumab + hyper- CVAD	Phase II:CR/CRi, 33%; median OS, 3 months ⁵⁰
		Radioconjugate (^{so} Y-labeled)	Relapsed/refractory	70 ⁰	-Epratuzumab days 1 and 8, dose evel 1-4	Phase I: well tolerated, with three CRs; recommended dose for phase II study (2 × 10.0 mCi/m ²) ⁵¹
	Inotuzumab	Immunconjugate (calicheamicin)	Relapsed/refractory	06	tuzumab every 3 to 4 weeks (n = 49 patients) or weekly in = 41 patients)	Phase I/II: CR/CRi rate 58%, and 72% MRD negative rate ⁵²
				72 Inc	otuzumab weekly	Phase I/II; multicenter trial with CR/CRi rate of 68% and 84% MRD negative; median OS, 7.4 months ⁶³
				326 Inc	tuzumab weekly	Phase III <i>v</i> SOC: Improved CR rate 81% <i>v</i> 33%; MRD negative rate 78% v28%; OS 7.7 v6.7 months (P = .04) ^{54,39}
				100	tuzumab weekly + mini-hyper-CVD	Phase II: CR/CRI rate of 78%, with 82% MRD negative; median RFS and OS, 8 and 11 months, respectively; 1+year RFS in first salvade. 77% ⁶⁸
			Newly diagnosed, older age (> 60 years)	48 Inc	tuzumab weekly + mini-hyper-CVD	Phase II: 98% CR/CRi rate with 76% MRD negative; 2-year PFS, 52%; OS, 66% (<i>v</i> historical OS 36% (<i>P</i> <.05 ¹⁶³ 108
	BL22 and moxetumomab pasudotox	Immunotoxin (<i>Pseudomonas</i> exotoxin)	Relapsed/refractory (children)	47 BL	22 and moxetumomab aasudotox every other day × 6	Phase I: 32% objective response with 23% CR (n = 11, with 5 MRD negative) ⁵⁷
			Relapsed/refractory	16 BL	22 and moxetumomab aasudotox every other day × 6	Phase I: overall response rate 13%, 2 CR/CRi; safe at higher dose level ⁵⁸
CD52	Alemtuzumab	Naked antibody	Newly diagnosed	24 Po	stremission in fourth treatment module	Phase I: median OS, 55 months: 1-log MRD reduction; immune suppression/toxicity led to study discontinuation ⁵⁹
Abbreviations: BiTE, count recovery/; HCT, intravenous continuou	bispecific T-cell engaging; CMR, complete mo hematopoietic cell transplantation; hyper-CVAT Ls infusion; MRD, minimal residual disease; C	ecular remission; CR, comple , hyperfractionated cyclopho: S, overall survival; PFS, prog	ste remission; CRD, complete remission c sphamide, vincristine, doxorubicin, dexam gression free-survival; Ph, Philadelphia ch	duration; CRi, con lethasone; hyper- romosome; RFS,	pplete remission with incom CVD, cyclophosphamide, vir relapse-free survival; SOC,	plete neutrophil and/or platelet cristine, dexamethasone, ICVI, standard of care.

	Table 2. Representative Cl	D19 Chimeric Antigen Recept	or T-Cell Studies	for R/R and MRD+ B-Cell Precurse	or ALL
Study	Phase, Status	Population	Costimulatory Domain	Efficacy	Toxicity
Novartis (ELIANA) ⁶⁰	Phase II, FDA-approved (children and adolescents)	Pediatric/young adult (n = 92; effective infusion, n = 75)	4-1BB	CR/CRi 81%, all MRD negative; 1-year OS, 76%; 1 year EFS, 50%	77% CRS (48% to tocilizumab), 40% neurotoxicity (no cerebral edema)
Kite Pharma (ZUMA-3) ⁶¹	Phase I/II	Adults (n = 11; infused, n = 10)	CD28	CR/CRi 75%, all MRD negative	Grade 3+ CRS, 20%; grade 3+ neurologic toxicity, 40%; one grade 5 MOF, CRS related (no cerebral edema)
Kite Pharma (ZUMA-4) ⁶²	Phase I/II, ongoing	Pediatric and adolescents (n = 5; infused, n = 4)	CD28	CR/CRi 100%, all MRD negative	No grade 3+ CRS; one grade 3 neurologic event
MSKCC ⁶³	Phase I	Adults (n = 32 R/R; n = 21 MRD+ [marrow blasts < 0.01% to < 5%])	CD28	CR, 83%; CMR 67%; median EFS, 6.1 months (CMR v no CMR patients: 12.5 months v 3.1 months; $P < .001$). Median OS, 12.9 months (CMR v no CMR patients: 20.7 months v 6.6 months; P < .001)	26% severe CRS (one related death); grade 3-4 neurotoxicity, 42%
Juno Therapeutics ⁶⁴	Phase II (Rocket), discontinued	Adults (n = 32 R/R; n = 6 MRD+)	CD28	CR of 47% with 40% MRD negative. Median OS, 8.1 months	24% severe CRS; 53% neurotoxicity (five fatal cases of cerebral edema)

Abbreviations: CMR, complete molecular remission; CR, complete remission; CRi, complete remission with incomplete count recovery; CRS, cytokine release syndrome; EFS, event-free survival; FDA, US Food and Drug Administration; MOF: multiorgan failure; MRD, minimal residual disease; MSKCC, Memorial Sloan Kettering Cancer Center; OS, overall survival; RFS, relapse-free survival; R/R, relapsed/refractory.

often considered in first complete remission (CR) in adults with HR disease to reduce the risk of relapse,¹⁸ but potential benefits may be offset by transplant-related morbidity and mortality, especially in the elderly.¹⁹

Risk Stratification

Current risk stratification criteria reflect the clinical and prognostic heterogeneity of ALL and determine which patients should undergo more intensive treatment including HCT, due to the high risk of relapse. Besides patient-related characteristics, namely advanced age and poor performance status, recognized risk factors include hyperleukocytosis, early thymic-precursor (ETP) phenotype and adverse cytogenetics or genetics (ie, t(9;22)/BCR-ABL1 rearrangement [Philadelphia chromosome positive (Ph+) ALL], Ph-like ALL, t(4;11)/KMT2A-AFF1 rearrangement, hypodiploidy, mutated TP53, and other abnormalities).²⁰ In all studies, MRD has proven to be a major independent risk factor for relapse.²¹ In contrast to MRD-negative patients (typically defined as having $< 10^{-4}$ residual leukemic cells in their CR marrow compared with baseline), MRD-positive patients are seldom cured with chemotherapy alone. In prospective trials performed over the past 25 years, enrolling > 1,500 patients, ²²⁻²⁴ OS was between 60% and 80% with chemotherapy alone in MRD-negative patients, even in HR subsets and Ph+ ALL.²⁵ Instead MRD-positive patients benefit partially from HCT, although with OS rates \leq 50% in intention-totreat analyses, due to the cumulative effects of pre- and posttransplantation relapse and transplant-related deaths.²⁶⁻²⁸

Current Therapeutic Limitations

The treatment of older patients represents a major obstacle,²⁹ and, at all ages, relapse affects one-third or more of the patients and remains an unsolved issue due to extremely poor results with

standard salvage chemotherapy. An international study of 1,706 patients with refractory or recurrent (R/R) B-cell precursor (BCP) ALL reported 3-year survival rates of only 10%.³⁰ Results are worse in Ph+ ALL³¹ and T-cell precursor (TCP) ALL, with some mitigation provided by nelarabine.³² Another concern is high-grade toxicity causing death in remission, which increases with age and with transplants (\geq 20% in most studies).

The Challenge of New Management Options

Despite these constraints, the management of adult ALL can be improved. This new era started with the advent of tyrosine kinase inhibitors (TKI) for Ph+ ALL,³³ flourished with immunotherapy for BCP ALL and is now empowered by novel immunotherapeutics (Tables 1 and 2)^{13,34-64} and several small molecules targeting critical metabolic pathways (Fig 1; Tables 3 and 4), used alone or in combination in specific ALL subsets (Fig 2). More robust data on toxicity, dosing, and therapeutic implications are required and will be generated by ongoing trials (Appendix Tables A2-A7, online only); however, some of these agents could improve the cure rate and prompt a shift in the therapeutic regimens for ALL. The most promising agents currently available are those targeting cell membrane antigens (namely, CD19, CD20, and CD22) and major molecular pathways controlling cell proliferation and apoptotic response (ie, multiple kinases and members of Bcl-2, TP53, RAS, mTOR/PI3K, pre-B/B-cell receptor, and NOTCH networks). Furthermore, new molecular and drug profiling techniques might become essential to define targets and compounds deserving evaluation in trials or individual patients. This new strategy is still largely speculative, especially in frontline therapy, because molecular sequencing and new drug-sensitivity screening models have not yet been sufficiently tested or validated in early clinical trials. This review focuses on the rationale supporting this change and illustrates

Fig 1. Actionable targets and drugs for innovative therapeutics in adult ALL. New therapeutic targets are membrane markers associated with B- or T-cell functions (type A), intracellular molecules involved in the regulation of key cell proliferation and differentiation pathways (type B), and receptors involved in the interaction with the supportive marrow niche (type C). Examples are shown for each category. Multitargeted therapy is possible, and synergy with chemotherapy is reported. Molecular profiling and new-drug profiling techniques can help identify suitable targets and the more active compounds and drug combinations to be exploited in clinical trials of subset- and patient-specific therapy. ALL, acute lymphoblastic leukemia; NK, natural killer; PDX, patient-derived xenograft.

how new treatment approaches and related experimental work are likely to modify and improve the management of adult ALL.

ACTIONABLE TARGET AND DRUG SCREENING

Molecular Profiling

Although targets for immunotherapy can be identified by diagnostic immunophenotype, ALL subtype classification and target identification rely mostly on molecular genetics for the detection of gene rearrangements, translocations, and actionable recurrent mutations with genome-wide technologies.⁶⁵⁻⁶⁹ In the era of precision medicine, molecular profiling has gained in importance for the management of this disease. New concepts for targeted therapies and combinatory approaches with immuno-therapy and/or chemotherapy require sophisticated experimental modeling and are now increasingly entering clinical development (Fig 2; Appendix Tables A2-A10).

Drug Profiling Platforms

Because the molecular classification of ALL is often insufficient to capture the complex biology of the disease and provide a predictive guide for treatment,⁷⁰ functional screening approaches are being explored to generate drug response profiles directly from clinical samples, leading to proof-of-concept results and raising interest in exploring this approach in clinical trials (Fig 3). The first screening platform tested a customized library of kinase inhibitors,⁷¹ leading to a prospective trial in relapsed acute myeloid leukemia. The Primary Blood Cancer Encyclopedia project, which integrates short-term drug testing data with transcriptome and DNA methylome analysis, strongly supported the value of phenotypic screening in hemato-oncology.⁷² Some platforms are based on large viability assays for high-throughput testing⁷²⁻⁷⁴ with the advantage of simplicity and lower costs, and other, more sophisticated platforms are based on automated microscopy, which can discriminate leukemia cells with the normal microenvironment at the single-cell level.^{75,76} Functional screens of ALL samples maintained on mesenchymal stromal cells identified unexpected dependencies in defined HR ALL subtypes,⁷⁷ captured response heterogeneity across ALL subtypes, efficiently discriminated patients on the basis of drug sensitivity^{75,78,79} and detected new pathways and vulnerabilities in resistant disease.^{75,77-80}

New Disease Models

Drug development can be accelerated using humanized mouse models with primary leukemia^{81,82} that enable systematic preclinical drug testing.^{83,84} Patient-derived xenograft (PDX) biobanks integrate extensive genomic and clinical information,^{75,85-88} mirror the clonal architecture of leukemia initiating cells,⁸⁹⁻⁹² maintain the genetic composition of the

ALL Subset	Prevalence; Prognosis	Main Aberration	Other Aberration
BCP ALL <i>BCR-ABL1</i> +/ t(9;22)(q34;q11.2) (Ph+)	20% to approximately 50%, increasing with age; unfavorable,	BCR-ABL1 rearrangement	Deletions of <i>IKZF1</i> and <i>CDKN2A/</i> <i>B</i> ; ABL1 mutations
Ph-like	10%-15% of childhood ALL, 27% of AYA, 20% in adult ALL; unfavorable	Gene expression profile similar to BCR-ABL1+ ALL except for lack of BCR-ABL1 rearrangement	Deletions of <i>IKZF1, TCF3, EBF1,</i> <i>PAX5,</i> and <i>VPREB1;</i> dic(9;20) and <i>iAMP21; CRLF2</i> deregulated; <i>JAK</i> members mutations; rearrangements involving <i>ABL1, JAK2, CRLF2,</i> <i>PDGFRB, EBF1</i>
<i>KMT2A-AFF1+/</i> t(4;11)(q21; q23.3), <i>KMT2A-</i> rearranged/t(v; 11q23.3)	Approximately 5% (<i>MLL-KMT2A+</i>); unfavorable	<i>KMT2A-AFF1 or KMT2A</i> -other partner-gene rearrangement	Few additional aberrations; KRAS, NRAS, FLT3, NF1, PTPN11, and PIK3R1 mutations; epigenetic regulatory gene mutations
<i>TCF3-PBX1+/</i> t(1;19)(q23;p13)	10%-15%; relatively favorable with intensive therapy	TCF3-PBX1 rearrangement	Deletions of PAX5 and CDKN2A/B
iAMP21	Approximately 2%; unfavorable	_	Deletions of IKZF1, CDKN2A/B, PAX5, ETV6, and RB1; chromosome X gain; P2RY8- CRLF2 rearrangement
Hypodiploid, further classified as near-haploid (24-30 chromosomes) and low- hypodiploid (31-39 chromosomes)	Children: 0.5% of both near-haploid or low-hypodiploid, adults: low hypodiploid 3%-4%; poor prognosis	TP53, RAS, PI3K, and IKZF members	_
t(v;14q32)	< 5%, higher incidence in adolescents; unfavorable	IGH fusion with partner genes CRLF2, ID4, CEBP, BCL2, EPOR, LHX4, and IL-3	CDKN2A deletions
Translocations/deletions/ mutations in Xp22.3/Yp11.3	≤ 7%, > 50% in Down syndrome ALL, 50% in <i>BCR-ABL1</i> -like ALL; unfavorable	CRLF2-IGH, P2RY8-CRLF2 rearrangements	$JAK1/2$ mutations (\leq 50%); IKZF1 deletions in HR ALL
9p13 deletions/translocations	Approximately 25%, possibly involved in leukemogenesis; no effect on outcome	PAX5 fusion with partner genes ETV6, ELN, POM121, PML, FOXP1, MLLT3, JAK2, C20orf112, AUTS2, CHFR, SOX5, POM121C	_
7p12.2 focal deletions/mutations	40% overall; 15% in childhood and 50% in adult ALL; unfavorable/ controversial prognosis	Deletion of <i>IKZF1</i>	_
TCP ALL	000/ 100/ 1		
/AL and L//O rearrangements/ del(1)(p32), t(1;14)(p32;q11), t(1;7)(p32;q34), t(7;9)(q34;q32), t(11;14)(p15;q1), t(11;14) (p13;q1), t(7;11)(q35;p13)	30%-40%; favorable, partly depending on additional lesions	SIL-IAL / rearrangement, TCR rearrangements with TAL1, TAL2, LMO1, LMO2	MYC rearrangements
HOXA aberrations/inv(7) (p15q34), t(7;7)(p15;q34), t(10;11)(p13;q14), t(v;11q23), del(9)(q34),	Approximately 20%-25%; outcome depending on additional lesions	TCR-HOXA rearrangement, MLLT10 and MLL rearrangements with various partners, SET-NUP214 rearrangement	IL7R and JAK1/3 mutations
TLX3-5q35 rearrangement/	20%-24% childhood ALL, 10%	TLX3-BCL11B rearrangement	_
<i>TLX1</i> -10q24 rearrangements/ t(7;10)(q34;q24), t(10;14), (q24;q11)	3%-8% childhood ALL, 20%-30% adult ALL	TCR-TLX11 rearrangement	PTPN2 mutations and deletions, PHF6 mutations, NUP214- ABL1 and EML1-ABL1 rearrangements
NKX2-1//VKX2-2 rearrangements/ inv(14)(q11.2q13), t(7;14) (q34;q13), inv(14)(q13q32.33), t(14;20)(q11;p11)	6%	TCR/IGH-NKX2- or NKX2-2 rearrangements	
LYL/MEF2C rearrangement and immature cluster/t(7;19), (q34;p13), del(5)(q14)	3%-17%; unfavorable, survival improved by intensive treatment	TCR with LYL1 and MEF2C rearrangements	JAK1/3 mutations, IL7R, N-RAS, FLT3, epigenetic modulators (ie, IDH1/2, DNMT3A, EZH2, EED, SUZ12, SETD2 and EP300), transcription factors (ie, RUNX1, ETV6, GATA3 and IKZF1); RUNX1-AFF3, ETV6- NCOA2, BCL11B-

NOTE. Dashes indicate no data. Abbreviations: ALL, acute lymphoblastic leukemia; AYA, adolescents and young adults; BCP, B-cell precursor; HR, high risk; TCP, T-precursor; TKI, tyrosine kinase inhibitor.

6 © 2018 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY

Downloaded from ascopubs.org by 157.92.6.32 on October 7, 2018 from 157.092.006.032 Copyright © 2018 American Society of Clinical Oncology. All rights reserved.

ALL Subsets	Dysfunctional Gene Category	Molecular Targets	Targeting Agents
BCP: <i>BCR-ABL1+</i> (Ph+), Ph-like, <i>TCF3-PBX1+</i>	Kinase aberrations	BCR-ABL1, PDGFRB, MERTK, ICK, TNK2	ТКІ
TCP: NUP214-ABL1+, EML1- ABL1+	Kinase aberrations	BCR-ABL1, PDGFRB, MERTK, ICK, TNK2	ТКІ
Various (BCP and TCP)	JAK/STAT deregulation	JAK1/2, CRLF2, IL7R, PTPRC, PTPN2	JAK inhibitors, mTOR inhibitors
	PI3K/PTEN/AKT/mTOR deregulation	PTEN, N/K-RAS, AKT, PI3K	PI3K/mTOR dual inhibitors, allosteric MEK1/2 inhibito
<i>KMT2A</i> -rearranged, hyperdiploid and hypodiploid, <i>FLT3</i> -mutated TCP	RAS signaling deregulation	FLT3, N/K-RAS	FLT3 inhibitors, mTOR inhibitors, PI3K/mTOR dual inhibitors, allosteric MEK1/2 inhibitor
KMT2A-rearranged	Epigenetic deregulation	CREBBP, SETD2, DOT1L	DOT1L inhibitors, histone deacetylase inhibitors
MLL-rearranged, TCF3-HLF+	Apoptosis deregulation	BCL2	Bcl-2 inhibitors
TCP	NOTCH1 mutations	NOTCH1	γ-Secretase inhibitors

xenografted sample,^{75,77,89,93} and enable testing of new agents on samples from clinically representative cohorts of patients, providing survival cues and a longer window for combinatorial drug testing. Impressive results have been reported from a first trial assessing drug sensitivity in patients with refractory hematologic malignancies, using multiparametric image-based

immunocytometry to distinguish the effect of drugs on malignant and normal blood cells.⁷⁶ Of 48 patients, informative results could be used for 17 who received assay-guided treatment, including two patients with BCP ALL, resulting in responses in eight patients (one with ALL). These results will stimulate the design of larger clinical studies on specific disease entities to capture the full potential

Fig 2. Subset-specific approaches with new therapeutics in adult ALL. Clinical and preclinical experimental approaches with new management options for adult ALL and subsets. Clinical trial evidence extracted from ClinicalTrials.gov repository, accessed April 2017. ALL, acute lymphoblastic leukemia; CAR, chimeric antigen receptor; BCP, B-cell precursor; MoAb, monoclonal antibody; NK, natural killer; PBD, pyrrolobenzodiazepine; TCP, T-cell precursor; TKI, tyrosine kinase inhibitor. (*) By trial eligibility

Fig 3. Drug response profiling of primary patient samples. (A) Workflow for phenotypic screens of cocultures of primary ALL cells on human MSCs using large-scale automated microscopy. Generation of PDXs provides a renewable source of representative ALL cells for mechanistic research but may also be invaluable for deeper coclinical validation experiments depending on the clinical situation. (B) Example of drug response profiling output. IC₅₀ values on the basis of (continued on next page)

Downloaded from ascopubs.org by 157.92.6.32 on October 7, 2018 from 157.092.006.032 Copyright © 2018 American Society of Clinical Oncology. All rights reserved. of drug response profiling with the aims of avoiding unnecessary toxicity of inappropriate salvage regimens and improving responses in selected subgroups.

Functional Drug Screening for Molecularly Unclustered ALL

The usefulness of functional drug screening is being explored in patients with ALL not included in specific molecular clusters. For example BCL2-dependent ALL was identified by screening PDX models for sensitivity to BH3 mimetics, including venetoclax,^{75,77,85,94,95} and drug combinations established to overcome resistance.75,96 Similarly, selective sensitivity to alternative RIP-1-dependent cell-death pathways (eg, necroptosis by SMAC [second mitochondrial-derived activator of caspases] mimetics) not exploited by current antileukemic agents were discovered.^{80,97} PDX models have also been used to elucidate the critical dependence on altered metabolic function.⁹⁸⁻¹⁰⁰ This underscores the importance of cross-referencing drug responses over many samples in a structured database to establish the effective and expected dose-response range for relevant outliers (ie, drug-sensitivity patterns not predicted by the molecular ALL subset).

NEW MANAGEMENT OPTIONS WITH IMMUNOTHERAPEUTICS

Rituximab

In BCP ALL, the expression of CD20 confers a poor prognosis.¹⁰¹ Rituximab, a chimeric anti-CD20 antibody, was evaluated in combination with chemotherapy for untreated patients with Ph- CD20+ BCP ALL. At the MD Anderson Cancer Center (MDACC), rituximab was added to the first four courses of the hyper-CVAD (cyclophosphamide, vincristine, doxorubicin) regimen.44 The results demonstrated an improved CR duration, a lower relapse rate, and an improved OS, but only in patients younger than 60 years as compared with historical controls (70% v 38%, *P* < .001; and 75% *v* 47%, *P* = .003). Comparable data were produced by the German adult ALL Study Group.45 The French-Belgian-Swiss Group for Research on Adult ALL evaluated the addition of rituximab in a phase III study using a pediatric-inspired regimen¹³: Patients 18 to 59 years old received 16 to 18 rituximab doses, resulting in improved 2-year EFS from 52% to 65% (P =.004) due to a decreased relapse rate with no increase in toxicity.

Blinatumomab

New antibody constructs have shown promise for R/R ALL.¹⁰² Blinatumomab, a bispecific T-cell engager construct, received US Food and Drug Administration and European Medicines Agency approval. Blinatumomab simultaneously targets CD19 (present on most BCP ALL cells) and CD3 (present on cytotoxic T cells) and acts to bring ALL cells into proximity of T cells, which are capable of tumor eradication. In a phase II study,³⁸ 189 adult patients with Ph- R/R BCP ALL received blinatumomab with 43% (n = 81 of 189) of them achieving CR or CR with defective hematologic recovery, and 40% of responders able to successful transition to allogeneic HCT Importantly, 60 of 73 evaluable patients with CR (82%) achieved MRD negativity. Results were similar in the phase III trial, with a 44% CR or CR with defective hematologic recovery rate in the blinatumomab arm compared with 25% in patients receiving chemotherapy,³⁹ and a 76% rate compared with 48% in patients whose disease turned MRD negative. Although generally well tolerated, grade 3 or higher cytokine release syndrome (CRS) and neurologic toxicity was seen in 4.9% and 9.4% of patients, respectively. Blinatumomab was tested as a single agent in patients with R/R Ph+ ALL; it induced a CR rate of 36% associated with 88% MRD-negative status⁴⁰ and, in Ph- MRD-positive ALL, achieved an excellent response rate of 78%, with prolonged survival, occasionally without HCT.36,103 Resistance mechanisms include a defective T-memory or regulator-cell response, PD1/PD-L1 overexpression,¹⁰⁴ and emergence of CD19-negative subclones.¹⁰⁵

Inotuzumab Ozogamicin

Inotuzumab ozogamicin (INO) is an anti-CD22 antibody conjugated to calicheamicin; it is in late clinical development. A phase I/II study demonstrated a CR/ incomplete hematologic recovery rate of 68%, with 84% of responding patients achieving MRD negativity.⁵³ In a recent phase III trial, INO was superior to salvage chemotherapy for R/R ALL. Among the first 218 patients randomly assigned to treatment arm, 81% of those assigned to INO achieved CR, compared with 29% who received the standard of care, with a higher percentage of MRD-negative cases (78% v 28%; P < .001).⁵⁴ Duration of remission and OS favored INO, as confirmed by a long-term update reporting a 2-year rate of 22.8% versus 10% in standard-care group (P.001).¹⁰⁶ However, hepatotoxicity was more frequent in the INO group (51% v 34%), including incidence of sinusoidal obstruction syndrome (13% v < 1%). Although most of the cases occurred after HCT, sinusoidal obstruction syndrome developed in five patients (3%) receiving INO therapy alone.¹⁰⁷ Given the proven efficacy of this compound on these studies, INO is being combined with chemotherapy in the frontline setting. Using a mini-hyper-CVD (cyclophosphamide, vincristine, dexamethasone) regimen with INO in elderly patients, 47 of 48 evaluable patients (98%) achieved a CR/incomplete hematologic recovery (n = 35 CR), coupled with flow-cytometric MRD-negative status in 76%. Two-year progression-free survival and OS were 52% and 66%, respectively.^{56,108}

Chimeric Antigen Receptor T Cells

Cellular immunotherapy with CD19-directed chimeric antigen receptor (CAR) T cells represents another promising approach for R/R disease. Anti-CD19 CAR T cells have been the most

(Continued). dose-response curves with eight datapoints after 72-hour exposure of ALL cells to a selection of drugs are shown as a heatmap (red responses in the nanomolar range; deep blue represents resistance in the 10-µM range). Two examples of individual strong activity to the SMAC mimetic birinapant and to dasatinib are provided, with validation in an extended set of ALL PDX. ALL, acute lymphoblastic leukemia; B-ALL, B-cell (or Burkitt) acute lymphoblastic leukemia; IC₅₀, half maximal inhibitory concentration; MRD, minimal residual disease; MSC, mesenchymal stromal cell; NK, natural killer; PDX, patient-derived xenograft; SMAC, second mitochondrial-derived activator of caspases; T-ALL, T-cell acute lymphoblastic leukemia.

extensively studied in trials using second-generation receptors, which comprise three components: an extracellular antigenrecognition domain derived from the single-chain variable fragment of a monoclonal antibody, an intracellular signaling domain (the CD3z chain from the T-cell receptor), and a costimulatory domain (most commonly, 4-1BB or CD28).¹⁰⁹⁻¹¹¹ Initial phase I/II studies using the CTL019 construct reported a 90% CR rate in 30 patients (n = 25 children, n = 5 adults).¹¹⁰ In addition, 88% of the patients who achieved a CR were MRD negative. Responses were durable, with seven relapses and 19 ongoing remissions (2 to 24 months) and with 15 patients receiving no additional therapy. High rates of CAR T-cell persistence (68%) and associated B-cell aplasia was reported at 6 months. In collaboration with Novartis, CTL019 was administered to 75 children and young adults, with 81% achieving CR and concurrent MRD-negative status. At a median follow-up of 10.6 months, 29 remained in CR. One-year EFS and OS were 50% and 76%, respectively.⁶⁰ This led to the approval of tisagenlecleucel (Kymriah; Novartis, Basel, Switzerland), the first CAR product in the United States.

The outcomes in adult patients treated with CAR T cells has been less impressive, with median EFS and OS of 6.1 months and 12.9 months, respectively.⁶³ CAR T cells but not natural killer cells¹¹² could also be effective against CNS leukemia.¹¹³ Although anti-CD19 CAR T cells can generate rapid and impressive responses, therapy is associated with a unique set of severe adverse effects. The two major toxicities include CRS and neurotoxicity. In the CTL019 study, all patients experienced signs and symptoms of CRS, with eight of 30 patients requiring transfer to the intensive care unit.¹¹⁰ Fortunately, tocilizumab, an anti-IL6 receptor antibody, was found effective and has become the mainstay of management for severe CRS, because it is well tolerated and rapidly effective in most cases. Current approaches include optimization of the CAR T-cell product in defined proportions of CD4 and CD8 T-cell subsets, development of humanized CARs, CARs with two costimulatory domains, allogeneic CARs, and CARs against other antigens such as CD22.

NEW MANAGEMENT OPTIONS IN MOLECULARLY DEFINED ALL SUBSETS

Ph + ALL

Outcome of Ph+ ALL was dramatically improved by TKIs.¹¹⁴⁻¹¹⁸ Single-agent imatinib or dasatinib plus corticosteroids therapy, pioneered by the Gruppo Italiano Malattie Ematologiche dell'Adulto^{114,119} induced CR virtually in all patients without risk of induction death. With TKI-chemotherapy combinations, CR rate exceeded 95% but death occurred in 2% to 7% of the cases. In a randomized trial from the French-Belgian-Swiss Group for Research on Adult ALL,¹¹⁶ a combination of de-escalated chemotherapy plus TKI resulted in less induction toxicity and noninferior CR and survival results compared with standard chemotherapy plus TKI. In a MDACC study, ponatinib combined with hyper-CVAD led to an excellent 83% 2-year OS, even without HCT.¹¹⁵ In elderly and/ or frail patients (median age, 68 years; range, 27 to 85 years), ponatinib monotherapy resulted in 87.5% 1-year OS, associated with a 45% molecular response rate in a Gruppo Italiano Malattie Ematologiche dell'Adulto study.¹²⁰ Postremission consolidation is still based on intensive chemotherapy (plus TKI) and HCT, when feasible. This "global" strategy led to survival rates approaching 50%, thus meaning we still need to improve.

Chemotherapy-free trials with TKI-immunotherapy combinations (eg, TKI-blinatumomab) are ongoing (Clinicaltrial.gov identifier: NCT02744768) and will clarify the place of this antibody construct especially in eradicating MRD. As for other ALL subsets, MRD persistence is associated with recurrence, whereas its negativity may identify patients with favorable prognosis in whom the indication for HCT could be reconsidered to spare morbidity and mortality.²⁵ With these premises, relapse remains relatively frequent and is often sustained by mutations, the most deleterious being T315I. New, potentially active agents include axitinib,⁷³ a vascular endothelial growth factor receptor inhibitor active in T315I-mutant disease; a new TKI, danusertib¹²¹; and ABL001 (asciminib),¹²² a novel allosteric TKI that binds to the myristoyl pocket of ABL1, causing an inactive kinase conformation (Clinicaltrial.gov identifier: NCT02081378, a phase I trial for patients intolerant/ refractory to standard TKI). Notably, a drug-sensitivity testing platform¹²³ allowed the identification of axitinib as a selective inhibitor of the T315I mutation.73

As for combinatory studies, of interest is the simultaneous administration of dasatinib, ruxolitinib, and dexamethasone, which research in vitro was shown to restore cytokine dependency, inhibit STAT3 and STAT5 activation, and prevent leukemia initiating cell growth and acquisition of mutations (Clinicaltrial.gov identifier: NCT02494882),¹²⁴ and the combination of ruxolitinib with nilotinib (Clinicaltrial.gov identifier: NCT01914484). In cases with IKZF1 impairment, retinoids can induce *IKZF1* re-expression, stimulate cell maturation. and restore in vitro TKI sensitivity.¹²⁵ Moreover, promoters of myelomonocytic differentiation can successfully induce Ph+ ALL cells into nonleukemic monocytes/macrophages.¹²⁶

Ph-Like ALL

The Ph-like subgroup, initially identified by gene expression profiling, accounts for approximately 20% of adult BCP ALL cases, with a prevalence in AYA. These cases are characterized by a transcriptional profile similar to that of Ph+ ALL but lacking the t(9;22)/BCR-ABL1 rearrangement.¹²⁷⁻¹³⁰ Instead, the underlying genomic lesions are heterogeneous, making its recognition difficult and uneven among trials. CRLF2 rearrangements are detected in approximately 50%; lesions affecting ABL class genes (ie, ABL1, ABL2, CSF1R, PDGFRA, PDGFRB) in approximately 10%; and JAK/STAT genes (ie, JAK1-3, IL7R, and CRLF2 mutations) in < 10%. Rearrangements in other TKs and the EPOR gene are extremely rare. *IKZF1* deletions occur in \leq 80% of cases. Patients with Ph-like ALL have a poorer outcome when compared with other BCP ALL subsets and it is not yet clear whether they should receive an HCT up front, on the basis of MRD persistence only.^{128,131} Given the activated kinome profile, several groups are testing the combination of TKIs with chemotherapy. Children's Oncology Group is testing ruxolitinib in patients with CRLF2 rearrangements and/or JAK-STAT deregulation (Clinicaltrial.gov identifier: NCT02723994) or dasatinib in untreated patients (Clinicaltrial.gov identifier: NCT02883049), while MDACC is testing these drugs in pretreated patients (Clinicaltrial.gov identifier: NCT02420717) with disappointing results.¹³² Other experimental

approaches use a variety of inhibitors on the basis of the individual molecular profile. The pan-TKI ponatinib could be effective regardless of the underlying genetic lesion.¹³³

MLL-Rearranged ALL

The prognosis of t(4;11)/KMT2A-AFF1+ and other MLLrearranged ALLs is poor and could be improved by new targeted approaches. MLL (ie, KMT2A) rearrangements are associated with high levels of H3K79 methylation catalyzed by the DOTL1 enzyme. Therefore, DOT1L inhibitors, particularly EPZ-5676 (pinometostat), have been tested in R/R cases (Clinicaltrial.gov identifiers: NCT02141828 and NCT01684150) in both pediatric and adult cohorts.¹³⁴ Furthermore, MLL-rearranged cases express high levels of Bcl-2, BAX, and BIM, but relatively low levels of BCL-XL and MCL-1, a mechanism directly sustained by KMT2A rearrangement on BCL2 expression and partly mediated by interaction with H3K79me2/3. As a consequence, in vitro and xenograft model studies showed that the Bcl-2 inhibitor venetoclax induces cell killing in synergy with chemotherapy.^{85,135,136} In addition, histone deacetylase inhibitors (HDACis) can exert synergistic activity with cytarabine by repressing cytidine deaminase.¹³⁷

TCF3-*Rearranged ALL*

TCF3-PBX1+ ALL associated with t(1;19) represents approximately one-half of the cases of the newly recognized pre–B-cell receptor (BCR)+ subset and is characterized by a favorable outcome with intensive treatment. These cases could be targeted by dasatinib because they overexpress many TKs,¹³⁸ including the BCR-dependent TK ROR1¹³⁹ and Mer TK, which correlates with risk of CNS progression,¹⁴⁰ by idelasib due to the high levels of *PIK3CD*¹⁴¹ and ibrutinib via downmodulation of the pre-BCR signaling on *BCL6*.^{98,142,143}

Instead, *TCF3-HLF*+ ALL is a very HR subset associated with t(17;19), often with high levels of *BCL2* expression recalling venetoclax as a potential therapeutic compound.⁷⁷ Drug response profiling predicted robust resistance to conventional drugs and confirmed a unique sensitivity to venetoclax. Combination therapy with dexamethasone, vincristine, and venetoclax in PDX from two patients maintained CR for up to 1 year.⁷⁷

Hypodiploid BCP ALL

Hypodiploid ALL is a rare, poor prognostic subtype including near-haploid (24 to 31 chromosomes), low hypodiploid (32 to 39 chromosomes), and high hypodiploid (40 to 43 chromosomes) ALL.¹⁴⁴ RAS and PI3K pathways are frequently altered in nearhaploid ALL, whereas TP53 and IKZF members are often mutated in low hypodiploid ALL, pinpointing functional targeting using PI3K and PI3K/mTOR inhibitors.^{144,145} Germline mutational screening of *TP53* should always be performed in these cases.

Other BCP ALL Subsets

Many other actionable deletions or mutations are emerging in BCP ALL (and sometimes TCP ALL).^{127,144,146-148} These involve pathways affecting lymphoid development, cell cycle, regulation of transcription, lymphoid and RAS signaling, epigenetic modifications, cytokine receptors, TK expression, and the JAK/STAT

phosphorylation system (Tables 3 and 4). Focus is now on downstream members of the RAS pathway, namely the MEK and PI3K inhibitor BEZ235 (Clinicaltrial.gov identifier: NCT01756118), the allosteric MEK1/2 inhibitor selumetinib, trametinib, steroids, and FLT3 inhibitors (ie, lestaurtinib, midostaurin, and quizartinib, all being evaluated in phase I-II and III trials, respectively; Clinicaltrial. gov identifiers: NCT 00866281, NCT00557193, and NCT01411267). Among epigenetic regulators, the HDACis vorinostat and panobinostat are being investigated in phase I-II trials for R/R disease (Clinicaltrial.gov identifiers: NCT01483690, NCT01321346, and NCT01321346); however, there have been reports of toxicity.^{148a} JAK2 inhibitors (ruxotilinb) and Bcl-2 inhibitors might be used in cases harboring target mutations. SMAC mimetics, directly acting on apoptosis and necroptosis pathways, proteasome inhibitors, and checkpoint inhibitors, have shown in vitro activity and are being studied (Supplemental Data). The role of inhibitors of molecules involved in interaction with the marrow niche (ie, NOTCH3 and NOTCH4) is still largely undetermined¹⁴⁹; targeting SCD and SPP1 genes and proteins¹⁵⁰ and vascular endothelial growth factor A (with bevacizumab) could be useful against CNS leukemia.¹⁵¹

B-ALL (mature B/Burkitt leukemia)

MYC rearrangements are the hallmark of B-ALL, leading to escape from cell-cycle control and a high proliferative rate. Thus, inhibition of *MYC*-related pathways is an attractive option for refractory disease. MYC inhibitors JQ1 and THZ1 target MYC/ MAX heterodimerization and CDK7 (THZ1), whereas dependency of MYC activation on multiple enhancers and so-called superenhancers, such as a BET proteins and PI3K, are targeted by mTOR or HDACis, Aurora kinase A and B, and other BET inhibitors (namely, I-BET 151, GSK525762, and CPI-0610).¹⁵² New phase I trials are underway.

TCP ALL

TCP ALL accounts for approximately 25% of ALL cases and is further classified according to maturation stage (ie, early-, cortical-, and mature T). With modern pediatric-based regimens adopting MRD or risk-oriented intensification, outcome of TCP ALL may be excellent and superior to that of BCP ALL. Among actionable molecular lesions,¹⁵³ the most frequent is NOTCH1 mutation. NOTCH1 and the strictly associated γ -secretase inhibitors were tested in late-stage disease, with some responses of short duration and considerable gut toxicity.¹⁵⁴ The best study reported one CR and an overall 32% response rate in 25 patients with relapsed disease.¹⁵⁵ Theoretically, targeting NOTCH1-related overexpression of chemokine receptor CCR7 and its ligand CCL19 could reduce the risk of CNS disease.¹⁵⁶ Many other targeting agents are being investigated, often in combination, like y-secretase inhibitors and AKT inhibitors to revert glucocorticoid resistance¹⁵⁷⁻¹⁵⁹ (Fig 2; Tables 3 and 4). Moreover, induction of T-cell receptor signaling led to apoptosis mimicking thymic negative selection,¹⁶⁰ and targeting contact structures with the marrow microenvironment (ie, CXCR4, CXCL12) reduces proliferation and the propagation potential of leukemic stem cells.^{161,162} Notably, PDX and drug screening models identified a subset of refractory T-ALL responsive to dasatinib in a nanomolar range,

correlating with strong responses in vivo after resistance to multiple other treatments.⁷⁵

ETP ALL

This peculiar diagnostic subset (with weak or absent CD5 expression and mixed T-lympho/myeloid phenotype and genotype) is associated with poor outcome unless treated with very intensive MRD-based chemotherapy or HCT in first CR.¹⁶³ ETP ALL is characterized by abnormalities typically observed in myeloid disorders, including mutations in RUNX1, ETV6, GATA3, IDH1, IDH2, DNMT3A,^{164,165} and the JAK/STAT pathway. In an experimental PDX model, ETP ALL was exquisitely sensitive to ruxolitinib, which abrogated IL-7–induced STAT5 phosphorylation.¹⁶⁶ Furthermore, FLT3 inhibitors might be considered, because mutations are detected in approximately 35% of cases.¹⁶⁷

FUTURE DIRECTIONS

We are entering an intensive phase of clinical investigations with new agents. To take advantage of these new treatment options, we will have to gradually shift from R/R ALL to the frontline setting, where treatment resistance is less likely to occur.¹⁶⁸ We will certainly need to develop solutions to integrate functional and genomic data for reference bioinformatics tools supporting clinical decisions, in accordance with studies in patients with cancer including acute myeloid leukemia and childhood ALL.¹⁶⁹⁻¹⁷¹ For the exploration of individualized or subset-specific treatment forms, it will be crucial to design prospective clinical studies with modular elements to evaluate optimal strategies for chemotherapy,¹⁷² immunotherapy, and combinations of molecularly targeted drugs and synergistic drug pairs,^{74,173} and detect activity in the early clinical trials more rapidly to pilot subsequent therapeutic developments.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at jco.org.

AUTHOR CONTRIBUTIONS

Conception and design: All authors Collection and assembly of data: All authors Data analysis and interpretation: All authors Manuscript writing: All authors Final approval of manuscript: All authors Accountable for all aspects of the work: All authors

REFERENCES

1. Sant M, Allemani C, Tereanu C, et al: Incidence of hematologic malignancies in Europe by morphologic subtype: Results of the HAEMACARE project. Blood 116:3724-3734, 2010

2. Howlander N., Noone A.M., Krapcho M., et al: SEER Cancer Statistics Review (CSR), 1975-2014. https://seer.cancer.gov/archive/csr/1975_2014/

3. Pulte D, Gondos A, Brenner H: Improvement in survival in younger patients with acute lymphoblastic leukemia from the 1980s to the early 21st century. Blood 113:1408-1411, 2009

4. Dores GM, Devesa SS, Curtis RE, et al: Acute leukemia incidence and patient survival among children and adults in the United States, 2001-2007. Blood 119:34-43, 2012

5. Pui CH, Evans WE: A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin Hematol 50:185-196, 2013

6. Pui CH, Campana D, Pei D, et al: Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 360:2730-2741, 2009

7. Wood BL, Winter SS, Dunsmore KP, et al: T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early thymic precursor (ETP) immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children's Oncology Group (COG) Study AALL0434. Blood 124:1, 2014

 Larsen EC, Devidas M, Chen S, et al: Dexamethasone and high-dose methotrexate improve outcome for children and young adults with high-risk B-acute lymphoblastic leukemia: A report from Children's Oncology Group Study AALL0232. J Clin Oncol 34:2380-2388, 2016 9. Bassan R, Hoelzer D: Modern therapy of acute lymphoblastic leukemia. J Clin Oncol 29:532-543, 2011

10. Stock W, La M, Sanford B, et al: What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children's Cancer Group and Cancer and Leukemia Group B studies. Blood 112:1646-1654, 2008

11. Huguet F, Leguay T, Raffoux E, et al: Pediatricinspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: The GRAALL-2003 study. J Clin Oncol 27: 911-918, 2009 [Erratum: J Clin Oncol 2009;27(15): 2574]

12. DeAngelo DJ, Stevenson KE, Dahlberg SE, et al: Long-term outcome of a pediatric-inspired regimen used for adults aged 18-50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia 29:526-534, 2015

13. Maury S, Chevret S, Thomas X, et al: Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med 375:1044-1053, 2016

14. Ribera JM, Oriol A, Sanz MA, et al: Comparison of the results of the treatment of adolescents and young adults with standard-risk acute lymphoblastic leukemia with the Programa Español de Tratamiento en Hematología pediatric-based protocol ALL-96. J Clin Oncol 26:1843-1849, 2008

15. Boissel N, Auclerc MF, Lhéritier V, et al: Should adolescents with acute lymphoblastic leukemia be treated as old children or young adults? Comparison of the French FRALLE-93 and LALA-94 trials. J Clin Oncol 21:774-780, 2003

16. Storring JM, Minden MD, Kao S, et al: Treatment of adults with BCR-ABL negative acute lymphoblastic leukaemia with a modified paediatric regimen. Br J Haematol 146:76-85, 2009 17. Curran E, Stock W: How I treat acute lymphoblastic leukemia in older adolescents and young adults. Blood 125:3702-3710, 2015 [Erratum: Blood 2015;126(15):1868]

18. Goldstone AH, Richards SM, Lazarus HM, et al: In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/ maintenance chemotherapy in all patients: Final results of the International ALL Trial (MRC UKALL XII/ ECOG E2993). Blood 111:1827-1833, 2008

19. Gupta V, Richards S, Rowe J: Allogeneic, but not autologous, hematopoietic cell transplantation improves survival only among younger adults with acute lymphoblastic leukemia in first remission: An individual patient data meta-analysis. Blood 121: 339-350, 2013

20. Hoelzer D, Bassan R, Dombret H, et al: Acute lymphoblastic leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 27(suppl 5):v69-v82, 2016

21. Berry DA, Zhou S, Higley H, et al: Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: A meta-analysis. JAMA Oncol 3:e170580, 2017

22. Brüggemann M, Raff T, Kneba M: Has MRD monitoring superseded other prognostic factors in adult ALL? Blood 120:4470-4481, 2012

23. van Dongen JJ, van der Velden VH, Brüggemann M, et al: Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood 125: 3996-4009, 2015

24. Bassan R, Spinelli O: Minimal residual disease monitoring in adult ALL to determine therapy. Curr Hematol Malig Rep 10:86-95, 2015 **25.** Short NJ, Jabbour E, Sasaki K, et al: Impact of complete molecular response on survival in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 128:504-507, 2016

26. Gökbuget N, Kneba M, Raff T, et al: Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood 120:1868-1876, 2012

27. Bassan R, Spinelli O, Oldani E, et al: Different molecular levels of post-induction minimal residual disease may predict hematopoietic stem cell transplantation outcome in adult Philadelphia-negative acute lymphoblastic leukemia. Blood Cancer J 4: e225, 2014

28. Dhédin N, Huynh A, Maury S, et al: Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia. Blood 125:2486-2496, guiz 2586, 2015

29. Gökbuget N: How I treat older patients with ALL. Blood 122:1366-1375, 2013

30. Gökbuget N, Dombret H, Ribera JM, et al: International reference analysis of outcomes in adults with B-precursor Ph-negative relapsed/refractory acute lymphoblastic leukemia. Haematologica 101: 1524-1533, 2016

31. Cortes JE, Kantarjian H, Shah NP, et al: Ponatinib in refractory Philadelphia chromosomepositive leukemias. N Engl J Med 367:2075-2088, 2012

32. DeAngelo DJ, Yu D, Johnson JL, et al: Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood 109: 5136-5142, 2007

33. Maino E, Sancetta R, Viero P, et al: Current and future management of Ph/BCR-ABL positive ALL. Expert Rev Anticancer Ther 14:723-740, 2014

34. Maino E, Bonifacio M, Scattolin AM, et al: Immunotherapy approaches to treat adult acute lymphoblastic leukemia. Expert Rev Hematol 9: 563-577, 2016

35. Topp MS, Gökbuget N, Zugmaier G, et al: Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood 120: 5185-5187, 2012

36. Gökbuget N, Dombret H, Bonifacio M, et al: Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood 131:1522-1531, 2018

37. Topp MS, Gökbuget N, Zugmaier G, et al: Phase II trial of the anti-CD19 bispecific T cellengager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol 32:4134-4140, 2014

38. Topp MS, Gökbuget N, Stein AS, et al: Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: A multicentre, single-arm, phase 2 study. Lancet Oncol 16:57-66, 2015

39. Kantarjian H, Stein A, Gökbuget N, et al: Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 376: 836-847, 2017

40. Martinelli G, Boissel N, Chevallier P, et al: Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: Results from a phase II, single-arm, multicenter study. J Clin Oncol 35:1795-1802, 2017

41. Fathi AT, Borate U, DeAngelo DJ, et al: A phase 1 study of denintuzumab mafodotin (SGN-CD19A) in adults with relapsed or refractory B-lineage acute leukemia (B-ALL) and highly aggressive lymphoma. Blood 126:1328, 2015

42. Kantarjian HM, Lioure B, Kim SK, et al: A phase II study of coltuximab ravtansine (SAR3419) monotherapy in patients with relapsed or refractory acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk 16:139-145, 2016

43. Schindler J, Gajavelli S, Ravandi F, et al: A phase I study of a combination of anti-CD19 and anti-CD22 immunotoxins (Combotox) in adult patients with refractory B-lineage acute lymphoblastic leukaemia. Br J Haematol 154:471-476, 2011

44. Thomas DA, O'Brien S, Faderl S, et al: Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor Blineage acute lymphoblastic leukemia. J Clin Oncol 28:3880-3889, 2010

45. Hoelzer D, Huettmann A, Kaul F, et al: Immunochemotherapy with rituximab improves molecular CR rate and outcome in CD20+ B-lineage standard and high risk patients; results of 263 CD20+ patients studied prospectively in GMALL Study 07/ 2003. Blood 116:170, 2010

46. Sasaki K, Kantarjian HM, Ravandi F, et al: Frontline ofatumumab in combination with hyper-CVAD for adult patients with CD-20 positive acute lymphoblastic leukemia (ALL): Interim result of a phase II clinical trial. Blood 128:2783, 2016

47. Raetz EA, Cairo MS, Borowitz MJ, et al: Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: A Children's Oncology Group Pilot Study. J Clin Oncol 26:3756-3762, 2008

48. Raetz EA, Cairo MS, Borowitz MJ, et al: Reinduction chemoimmunotherapy with epratuzumab in relapsed acute lymphoblastic leukemia (ALL) in children, adolescents and young adults: Results from Children's Oncology Group (COG) Study ADVL04P2. Blood 118:573, 2011

49. Advani AS, McDonough S, Coutre S, et al: SWOG S0910: A phase 2 trial of clofarabine/ cytarabine/epratuzumab for relapsed/refractory acute lymphocytic leukaemia. Br J Haematol 165:504-509, 2014

50. Chevallier P, Chantepie S, Huguet F, et al: Hyper-CVAD + epratuzumab as a salvage regimen for younger patients with relapsed/refractory CD22positive precursor B-cell acute lymphocytic leukemia. Haematologica 102:e184-e186, 2017

51. Chevallier P, Eugene T, Robillard N, et al: (90)Ylabelled anti-CD22 epratuzumab tetraxetan in adults with refractory or relapsed CD22-positive B-cell acute lymphoblastic leukaemia: A phase 1 dose-escalation study. Lancet Haematol 2:e108-e117, 2015

52. Kantarjian H, Thomas D, Jorgensen J, et al: Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer 119:2728-2736, 2013

53. DeAngelo DJ, Stock W, Stein AS, et al: Inotuzumab ozogamicin in adults with relapsed or refractory CD22-positive acute lymphoblastic leukemia: A phase 1/2 study. Blood Adv 1:1167-1180, 2017

54. Kantarjian HM, DeAngelo DJ, Stelljes M, et al: Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 375: 740-753, 2016 **55.** Jabbour E, Ravandi F, Kebriaei P, et al: Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini–hyper-CVD for patients with relapsed or refractory Philadelphia chromosome-negative acute lymphoblastic leukemia: A phase 2 clinical trial. JAMA Oncol 4:230-234, 2018

56. Sasaki K, Jabbour EJ, O'Brien SM, et al: Inotuzumab ozogamicin in combination with lowintensity chemotherapy (mini-hyper-CVD) as frontline therapy for older patients with acute lymphoblastic leukemia (ALL): Interim result of a phase II clinical trial. Blood 128:588, 2016

57. Wayne AS, Shah NN, Bhojwani D, et al: Phase 1 study of the anti-CD22 immunotoxin moxetumomab pasudotox for childhood acute lymphoblastic leukemia. Blood 130:1620-1627, 2017

58. Short NJ, Kantarjian H, Jabbour E, et al: A phase I study of moxetumomab pasudotox in adults with relapsed or refractory B-cell acute lymphoblastic leukaemia. Br J Haematol doi: 10.1111/bjh.14806 [epub ahead of print on June 14, 2017]

59. Stock W, Sanford B, Lozanski G, et al: Alemtuzumab can be incorporated into front-line therapy of adult acute lymphoblastic leukemia (ALL): Final phase I results of a Cancer and Leukemia Group B study (CALGB 10102). Blood 114:838, 2009

60. Maude SL, Laetsch TW, Buechner J, et al: Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378: 439-448, 2018

61. Shah B, Wierda W-G, Schiller GJ, et al: KTE-C19 chimeric antigen receptor (CAR) T cell therapy in adults with high-burden relapsed/refractory acute lymphoblastic leukemia (R/R ALL): Updated results from phase 1/2 of ZUMA-3. Haematologica 102:200, 2017 (suppl 2; abstr P523)

62. Lee DW Wayne AS, Huynh V, et al: Updated results from ZUMA-4: A phase 1/2 study of KTE-C19 chimeric antigen receptor (CAR) T cell therapy in pediatric and adolescent patients with relapsed/refractory acute lymphoblastic leukemia. Haematologica 102:346-347 (suppl 2; abstr E840), 2017

63. Park JH, Rivière I, Gonen M, et al: Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 378:449-459, 2018

64. DeAngelo DJ, Ghobadi A, Park JH, et al: Clinical outcomes for the phase 2, single-arm, multicenter trial of JCAR015 in adult B-ALL (ROCKET Study). J Immunother Cancer 5:305-306, 2017 (suppl 2)

65. Chiaretti S, Li X, Gentleman R, et al: Gene expression profiles of B-lineage adult acute lymphocytic leukemia reveal genetic patterns that identify lineage derivation and distinct mechanisms of transformation. Clin Cancer Res 11:7209-7219, 2005

66. Mullighan CG: The molecular genetic makeup of acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program) 2012:389-396, 2012

 Moorman AV: The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Rev 26: 123-135, 2012

68. Inaba H, Greaves M, Mullighan CG: Acute lymphoblastic leukaemia. Lancet 381:1943-1955, 2013

69. Hunger SP, Mullighan CG: Acute lymphoblastic leukemia in children. N Engl J Med 373: 1541-1552, 2015

70. Friedman AA, Letai A, Fisher DE, et al: Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer 15:747-756, 2015 **71.** Tyner JW, Yang WF, Bankhead A III, et al: Kinase pathway dependence in primary human leukemias determined by rapid inhibitor screening. Cancer Res 73:285-296, 2013

72. Dietrich S, Oleś M, Lu J, et al: Drugperturbation-based stratification of blood cancer. J Clin Invest 128:427-445, 2018

73. Pemovska T, Johnson E, Kontro M, et al: Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature 519:102-105, 2015

74. Kurtz SE, Eide CA, Kaempf A, et al: Molecularly targeted drug combinations demonstrate selective effectiveness for myeloid- and lymphoid-derived hematologic malignancies. Proc Natl Acad Sci USA 114:E7554-E7563, 2017

75. Frismantas V, Dobay MP, Rinaldi A, et al: Ex vivo drug response profiling detects recurrent sensitivity patterns in drug resistant acute lymphoblastic leukemia. Blood 129:e26-e37, 2017

76. Snijder B, Vladimer GI, Krall N, et al: Imagebased ex-vivo drug screening for patients with aggressive haematological malignancies: Interim results from a single-arm, open-label, pilot study. Lancet Haematol 4:e595-e606, 2017

77. Fischer U, Forster M, Rinaldi A, et al: Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet 47:1020-1029, 2015

78. Suryani S, Carol H, Chonghaile TN, et al: Cell and molecular determinants of in vivo efficacy of the BH3 mimetic ABT-263 against pediatric acute lymphoblastic leukemia xenografts. Clin Cancer Res 20: 4520-4531, 2014

79. Peirs S, Frismantas V, Matthijssens F, et al: Targeting BET proteins improves the therapeutic efficacy of BCL-2 inhibition in T-cell acute lymphoblastic leukemia. Leukemia 31:2037-2047, 2017

80. McComb S, Aguadé-Gorgorió J, Harder L, et al: Activation of concurrent apoptosis and necroptosis by SMAC mimetics for the treatment of refractory and relapsed ALL. Sci Transl Med 8: 339ra70, 2016

81. Kamel-Reid S, Letarte M, Sirard C, et al: A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science 246: 1597-1600, 1989

82. Rongvaux A, Takizawa H, Strowig T, et al: Human hemato-lymphoid system mice: Current use and future potential for medicine. Annu Rev Immunol 31:635-674, 2013

83. Liem NL, Papa RA, Milross CG, et al: Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood 103:3905-3914, 2004

84. Jones L, Carol H, Evans K, et al: A review of new agents evaluated against pediatric acute lymphoblastic leukemia by the Pediatric Preclinical Testing Program. Leukemia 30:2133-2141, 2016

85. Khaw SL, Suryani S, Evans K, et al: Venetoclax responses of pediatric ALL xenografts reveal sensitivity of MLL-rearranged leukemia. Blood 128: 1382-1395, 2016

86. Tasian SK, Teachey DT, Li Y, et al: Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood 129:177-187, 2017

87. Townsend EC, Murakami MA, Christodoulou A, et al: The public repository of xenografts enables discovery and randomized phase II-like trials in mice. Cancer Cell 29:574-586, 2016 [Erratum: Cancer Cell 30:183]

88. Meyer LH, Eckhoff SM, Queudeville M, et al: Early relapse in ALL is identified by time to leukemia in NOD/SCID mice and is characterized by a gene signature involving survival pathways. Cancer Cell 19:206-217, 2011

89. Schmitz M, Breithaupt P, Scheidegger N, et al: Xenografts of highly resistant leukemia recapitulate the clonal composition of the leukemogenic compartment. Blood 118:1854-1864, 2011

90. le Viseur C, Hotfilder M, Bomken S, et al: In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 14:47-58, 2008

91. Lapidot T, Sirard C, Vormoor J, et al: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645-648, 1994

92. Rehe K, Wilson K, Bomken S, et al: Acute B lymphoblastic leukaemia-propagating cells are present at high frequency in diverse lymphoblast populations. EMBO Mol Med 5:38-51, 2013

93. Notta F, Mullighan CG, Wang JC, et al: Evolution of human BCR-ABL1 lymphoblastic leukaemiainitiating cells. Nature 469:362-367, 2011 [Erratum: Nature 471:254]

94. Chonghaile TN, Roderick JE, Glenfield C, et al: Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Cancer Discov 4:1074-1087, 2014

95. Peirs S, Matthijssens F, Goossens S, et al: ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood 124:3738-3747, 2014

96. Leonard JT, Rowley JSJ, Eide CA, et al: Targeting BCL-2 and ABL/LYN in Philadelphia chromosome–positive acute lymphoblastic leukemia. Sci Transl Med 8:354ra114-354ra114, 2016

97. Bonapace L, Bornhauser BC, Schmitz M, et al: Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Invest 120:1310-1323, 2010

98. Geng H, Hurtz C, Lenz KB, et al: Self-enforcing feedback activation between BCL6 and pre-B cell receptor signaling defines a distinct subtype of acute lymphoblastic leukemia. Cancer Cell 27:409-425, 2015

99. Müschen M: Rationale for targeting the pre-Bcell receptor signaling pathway in acute lymphoblastic leukemia. Blood 125:3688-3693, 2015

100. Lu Z, Xie J, Wu G, et al: Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nat Med 23:79-90, 2017

101. Thomas DA, O'Brien S, Jorgensen JL, et al: Prognostic significance of CD20 expression in adults with de novo precursor B-lineage acute lymphoblastic leukemia. Blood 113:6330-6337, 2009

102. DeAngelo DJ: The use of novel monoclonal antibodies in the treatment of acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program) 2015:400-405, 2015

103. Gökbuget N, Zugmaier G, Klinger M, et al: Long-term relapse-free survival in a phase 2 study of blinatumomab for the treatment of patients with minimal residual disease in B-lineage acute lymphoblastic leukemia. Haematologica 102:e132-e135, 2017

104. Duell J, Dittrich M, Bedke T, et al: Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia 31:2181-2190, 2017

105. Braig F, Brandt A, Goebeler M, et al: Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood 129:100-104, 2017

106. Kantarjian HM, DeAngelo DJ, Stelljes M, et al: Inotuzumab ozogamicin (InO) vs standard of care (SC) in patients with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL): Long-term results of the phase 3 INO-VATE Study. Blood 130:2574, 2017

107. Kantarjian HM, DeAngelo DJ, Advani AS, et al: Hepatic adverse event profile of inotuzumab ozogamicin in adult patients with relapsed or refractory acute lymphoblastic leukaemia: Results from the open-label, randomised, phase 3 INO-VATE study. Lancet Haematol 4:e387-e398, 2017

108. Kantarjian H, Ravandi F, Short NJ, et al: Inotuzumab ozogamicin in combination with lowintensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: A single-arm, phase 2 study. Lancet Oncol 19:240-248, 2018

109. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al: T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 385:517-528, 2015

110. Maude SL, Frey N, Shaw PA, et al: Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507-1517, 2014

111. Davila ML, Riviere I, Wang X, et al: Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6:224ra25, 2014

112. Frishman-Levy L, Shemesh A, Bar-Sinai A, et al: Central nervous system acute lymphoblastic leukemia: Role of natural killer cells. Blood 125: 3420-3431, 2015

113. Rheingold SR, Chen LN, Maude SL, et al: Efficient trafficking of chimeric antigen receptor (CAR)-modified T cells to CSF and induction of durable CNS remissions in children with CNS/combined relapsed/refractory ALL. Blood 126:3769, 2015

114. Foà R, Vitale A, Vignetti M, et al: Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 118:6521-6528, 2011

115. Jabbour E, Kantarjian H, Ravandi F, et al: Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: A single-centre, phase 2 study. Lancet Oncol 16: 1547-1555, 2015

116. Chalandon Y, Thomas X, Hayette S, et al: Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood 125:3711-3719, 2015

117. Chiaretti S, Vitale A, Vignetti M, et al: A sequential approach with imatinib, chemotherapy and transplant for adult Ph+ acute lymphoblastic leukemia: Final results of the GIMEMA LAL 0904 study. Haematologica 101:1544-1552, 2016

118. Ravandi F, Othus M, O'Brien SM, et al: US intergroup study of chemotherapy plus dasatinib and allogeneic stem cell transplant in Philadelphia chromosome positive ALL. Blood Adv 1:250-259, 2016

119. Vignetti M, Fazi P, Cimino G, et al: Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: Results of the Gruppo Italiano Malattie Ematologiche dell'Adulto (GIMEMA) LAL0201-B protocol. Blood 109:3676-3678, 2007 **120.** Martinelli G, Piciocchi A, Papayannidis C, et al: First report of the Gimema LAL1811 phase II prospective study of the combination of steroids with ponatinib as frontline therapy of ederly or unfit patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 130:99, 2017

121. Borthakur G, Dombret H, Schafhausen P, et al: A phase I study of danusertib (PHA-739358) in adult patients with accelerated or blastic phase chronic myeloid leukemia and Philadelphia chromosomepositive acute lymphoblastic leukemia resistant or intolerant to imatinib and/or other second generation c-ABL therapy. Haematologica 100:898-904, 2015

122. Wylie AA, Schoepfer J, Jahnke W, et al: The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1. Nature 543:733-737, 2017

123. Pemovska T, Kontro M, Yadav B, et al: Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov 3:1416-1429, 2013

124. Appelmann I, Rillahan CD, de Stanchina E, et al: Janus kinase inhibition by ruxolitinib extends dasatinib- and dexamethasone-induced remissions in a mouse model of Ph+ ALL. Blood 125:1444-1451, 2015

125. Churchman ML, Low J, Qu C, et al: Efficacy of retinoids in IKZF1-Mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell 28:343-356, 2015

126. McClellan JS, Dove C, Gentles AJ, et al: Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages. Proc Natl Acad Sci USA 112:4074-4079, 2015

127. Roberts KG, Li Y, Payne-Turner D, et al: Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 371: 1005-1015, 2014

128. Roberts KG, Pei D, Campana D, et al: Outcomes of children with BCR-ABL1–like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol 32:3012-3020, 2014

129. Roberts KG, Gu Z, Payne-Turner D, et al: High frequency and poor outcome of Philadelphia chromosome-like acute lymphoblastic leukemia in adults. J Clin Oncol 35:394-401, 2017

130. Herold T, Baldus CD, Gökbuget N: Ph-like acute lymphoblastic leukemia in older adults. N Engl J Med 371:2235, 2014

131. Heatley SL, Sadras T, Kok CH, et al: High prevalence of relapse in children with Philadelphia-like acute lymphoblastic leukemia despite risk-adapted treatment. Haematologica 102:E490-E493, 2017

132. Jain N, Jabbour EJ, McKay PZ, et al: Ruxolitinib or dasatinib in combination with chemotherapy for patients with relapsed/refractory Philadelphia (Ph)-like acute lymphoblastic leukemia: A phase I-II trial. Blood 130:1322, 2017

133. Chiaretti S, Messina M, Grammatico S, et al: Rapid identification of BCR/ABL1-like acute lymphoblastic leukaemia patients using a predictive statistical model based on quantitative real timepolymerase chain reaction: clinical, prognostic and therapeutic implications. Br J Haematol 181:642-652, 2018

134. Klaus CR, Iwanowicz D, Johnston D, et al: DOT1L inhibitor EPZ-5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents in MLLrearranged leukemia cells. J Pharmacol Exp Ther 350:646-656, 2014

135. Benito JM, Godfrey L, Kojima K, et al: MLLrearranged acute lymphoblastic leukemias activate BCL-2 through H3K79 methylation and are sensitive to the BCL-2-specific antagonist ABT-199. Cell Reports 13:2715-2727, 2015

136. Ackler S, Oleksijew A, Chen J, et al: Clearance of systemic hematologic tumors by venetoclax (Abt-199) and navitoclax. Pharmacol Res Perspect 3: e00178, 2015

137. Cruickshank MN, Ford J, Cheung LC, et al: Systematic chemical and molecular profiling of MLLrearranged infant acute lymphoblastic leukemia reveals efficacy of romidepsin. Leukemia 31:40-50, 2017

138. Messina M, Chiaretti S, Tavolaro S, et al: Protein kinase gene expression profiling and in vitro functional experiments identify novel potential therapeutic targets in adult acute lymphoblastic leukemia. Cancer 116:3426-3437, 2010

139. Bicocca VT, Chang BH, Masouleh BK, et al: Crosstalk between ROR1 and the Pre-B cell receptor promotes survival of t(1;19) acute lymphoblastic leukemia. Cancer Cell 22:656-667, 2012

140. Krause S, Pfeiffer C, Strube S, et al: Mer tyrosine kinase promotes the survival of t(1;19)-positive acute lymphoblastic leukemia (ALL) in the central nervous system (CNS). Blood 125:820-830, 2015

141. Eldfors S, Kuusanmäki H, Kontro M, et al: Idelalisib sensitivity and mechanisms of disease progression in relapsed TCF3-PBX1 acute lymphoblastic leukemia. Leukemia 31:51-57, 2017

142. Deucher AM, Qi Z, Yu J, et al: BCL6 expression correlates with the t(1;19) translocation in B-lymphoblastic leukemia. Am J Clin Pathol 143: 547-557, 2015

143. Kim E, Hurtz C, Koehrer S, et al: Ibrutinib inhibits pre-BCR⁺ B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK. Blood 129: 1155-1165, 2017

144. Holmfeldt L, Wei L, Diaz-Flores E, et al: The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 45:242-252, 2013

145. Safavi S, Paulsson K: Near-haploid and lowhypodiploid acute lymphoblastic leukemia: Two distinct subtypes with consistently poor prognosis. Blood 129:420-423, 2017

146. Mullighan CG, Goorha S, Radtke I, et al: Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446:758-764, 2007

147. Paulsson K, Cazier JB, Macdougall F, et al: Microdeletions are a general feature of adult and adolescent acute lymphoblastic leukemia: Unexpected similarities with pediatric disease. Proc Natl Acad Sci USA 105:6708-6713, 2008

148. Roberts KG, Morin RD, Zhang J, et al: Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 22:153-166, 2012

148a. Burke MJ, Lamba JK, Pounds S, et al: A therapeutic trial of decitabine and vorinostat in combination with chemotherapy for relapsed/refractory acute lymphoblastic leukemia. Am J Hematol 89: 889-895, 2014

149. Nwabo Kamdje AH, Krampera M: Notch signaling in acute lymphoblastic leukemia: Any role for stromal microenvironment? Blood 118:6506-6514, 2011

150. van der Velden VH, de Launaij D, de Vries JF, et al: New cellular markers at diagnosis are associated with isolated central nervous system relapse in paediatric B-cell precursor acute lymphoblastic leukaemia. Br J Haematol 172:769-781, 2016

151. Münch V, Trentin L, Herzig J, et al: Central nervous system involvement in acute lymphoblastic leukemia is mediated by vascular endothelial growth factor. Blood 130:643-654, 2017

152. Dozzo M, Carobolante F, Donisi PM, et al: Burkitt lymphoma in adolescents and young adults: Management challenges. Adolesc Health Med Ther 8:11-29, 2016

153. Belver L, Ferrando A: The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer 16:494-507, 2016

154. Gu Y, Masiero M, Banham AH: Notch signaling: Its roles and therapeutic potential in hematological malignancies. Oncotarget 7:29804-29823, 2016

155. Zweidler-McKay PA, DeAngelo DJ, Douer D, et al: The safety and activity of BMS-906024, a gamma secretase inhibitor (GSI) with anti-notch activity, in patients with relapsed T-cell acute lymphoblastic leukemia (T-ALL): Initial results of a phase 1 trial. Blood 124:968, 2014

156. Buonamici S, Trimarchi T, Ruocco MG, et al: CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature 459:1000-1004, 2009

157. Piovan E, Yu J, Tosello V, et al: Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell 24:766-776, 2013

158. Mendes RD, Canté-Barrett K, Pieters R, et al: The relevance of PTEN-AKT in relation to NOTCH1directed treatment strategies in T-cell acute lymphoblastic leukemia. Haematologica 101:1010-1017, 2016

159. Daver N, Boumber Y, Kantarjian H, et al: A phase I/II study of the mTOR inhibitor everolimus in combination with hyperCVAD chemotherapy in patients with relapsed/refractory acute lymphoblastic leukemia. Clin Cancer Res 21:2704-2714, 2015

160. Trinquand A, Dos Santos NR, Tran Quang C, et al: Triggering the TCR developmental checkpoint activates a therapeutically targetable tumor suppressive pathway in T-cell leukemia. Cancer Discov 6:972-985, 2016

161. Pitt LA, Tikhonova AN, Hu H, et al: CXCL12producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell 27: 755-768, 2015

162. Passaro D, Irigoyen M, Catherinet C, et al: CXCR4 Is required for leukemia-initiating cell activity in T cell acute lymphoblastic leukemia. Cancer Cell 27:769-779, 2015

163. Bond J, Graux C, Lhermitte L, et al: Early response-based therapy stratification improves survival in adult early thymic precursor acute lymphoblastic leukemia: A Group for Research on Adult Acute Lymphoblastic Leukemia Study. J Clin Oncol 35:2683-2691, 2017

164. Zhang J, Ding L, Holmfeldt L, et al: The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481:157-163, 2012

165. Van Vlierberghe P, Ambesi-Impiombato A, Perez-Garcia A, et al: ETV6 mutations in early immature human T cell leukemias. J Exp Med 208: 2571-2579, 2011

166. Maude SL, Dolai S, Delgado-Martin C, et al: Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood 125:1759-1767, 2015

167. Neumann M, Coskun E, Fransecky L, et al: FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors. PLoS One 8: e53190, 2013

168. Oshima K, Khiabanian H, da Silva-Almeida AC, et al: Mutational landscape, clonal evolution patterns,

and role of RAS mutations in relapsed acute lymphoblastic leukemia. Proc Natl Acad Sci USA 113: 11306-11311, 2016

169. Jensen MA, Ferretti V, Grossman RL, et al: The NCI Genomic Data Commons as an engine for precision medicine. Blood 130:453-459, 2017

170. Pearson ADJ, Pfister SM, Baruchel A, et al: From class waivers to precision medicine in

paediatric oncology. Lancet Oncol 18:e394-e404, 2017

171. Estey E, Levine RL, Löwenberg B: Current challenges in clinical development of "targeted therapies": The case of acute myeloid leukemia. Blood 125:2461-2466, 2015

172. Chakrabarti S, Michor F: Pharmacokinetics and drug-interactions determine optimum combination

strategies in computational models of cancer evolution. Cancer Res 77:3908-3921, 2017

173. Holbeck SL, Camalier R, Crowell JA, et al: The National Cancer Institute ALMANAC: A comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Cancer Res 77:3564-3576, 2017

Affiliations

Renato Bassan, Ospedale dell'Angelo, Mestre-Venezia; Sabina Chiaretti, "Sapienza" University, Rome, Italy; Jean-Pierre Bourquin, University Children's Hospital, Zurich, Switzerland; and Daniel J. DeAngelo, Dana-Farber Cancer Institute, Boston, MA.

Support

Supported by Associazione Italiana per la Ricerca sul Cancro, Milan, Italy, Special Program Molecular Clinical Oncology-Extension program (Grant No. MCO10007) to Division of Hematology, "Sapienza" University, Rome, Italy.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

New Approaches to the Management of Adult Acute Lymphoblastic Leukemia

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/site/ifc.

Renato Bassan

Honoraria: Shire, Incyte, Amgen, Pfizer Consulting or Advisory Role: Amgen, Pfizer, Incyte Travel, Accommodations, Expenses: Amgen, Shire, Incyte, Pfizer

Jean-Pierre Bourquin Consulting or Advisory Role: Amgen Travel, Accommodations, Expenses: Amgen

Daniel J. DeAngelo

Consulting or Advisory Role: Incyte, Pfizer, Bristol-Myers Squibb, Amgen, Novartis, Celgene, Shire, Immunogen, Takeda **Research Funding:** Glycomimetics, Blueprint Medicines

Sabina Chiaretti

Honoraria: Shire, Incyte, Amgen, Pfizer Consulting or Advisory Role: Amgen, Pfizer, Incyte Travel, Accomodation, Expenses: Amgen

Acknowledgment

We thank Francesca Carobolante, Division of Hematology, Ospedale dell'Angelo, Mestre-Venice, Italy, for support in editing the manuscript.

Appendix

Table A1. R	lesults	of Recent Trials \	With Pedia	atric Elements	for Adolescent and	Young Adult Patient	s and Adult F	Patients W	/ith Ph- ALL
Study*	No.	Age (years), mea or median (range)	n CR 1† (%)	DFS (%)	CRD (%)	OS (%)	EFS (%)	FUP (years)‡	Annotations
JALSG ALL-202U (Sakura T, et al: Blood 120, 2012 [abstr 1464])	138	19 (16-24)	97	71	—	74	—	4	Allo-HCT in t(4;11)+
UKALL 2003 (Hough R et al, Br J Haematol 172:439- 451, 2015)	229	16-24	97	_	_	76.4	72.3	5-у	CR rate calculated upon induction failures (2.6%); EFS correlating with MRD risk class (<i>P</i> = .0001)
GMALL 05/93 07/03 (Goekbuget N, et al: Blood 122, 2013 [abstr 839])	642 887	15-35	88 91	_	49 61	46 65	_	5	07/03: intensified Peg-Asp, dexamethasone, and HD consolidation; allo-HCT in HR or MRD+; P < .05 for CRD and OS
GIMEMA 1398 [Testi AM, et al: Haematologica 99:259, 2014 (suppl 1; abstr S725)]	61	18-35	98	_	_	72.3	_	2	_
GMALL 07/03; (Goekbuget N, et al: Blood 116, 2010 [abstr 494])	1,226	35 (15-55)	91	_	61 (SR cohort 1) 74 (SR cohort 2) 60 (AYA cohort 1) 78 (AYA cohort 2)	60 (cohort 1) 67 (cohort 2) 68 (SR cohort 1) 80 (SR cohort 2) 77 (AYA cohort 1) 86 (AYA cohort 2)	_	3	Peg-Asp 1,000 and 2,000 UI/m ² (cohort 1 and cohort 2), \times 7 in SR; allo-HCT if HR or MRD+; $P < .05$ for CRD and OS in SR cohort 2
MDACC augmented BFM (Rytting ME, et al: Am J Hematol 91:819- 823, 2016)	106	22 (13-39)	93		60	53		5	Allo-HCT in t(4;11)+ or MRD+; MRD- v MRD+ on days 29-84: OS 75% v 40%-22% (P = .004); CRD 64%-63% v 33%- 26% (P = .017); CRD/OS comparable to hyper- CVAD
US Intergroup C10403 (Stock W, et al. Blood 124, 2014 [abstr 796])	296	24 (17-39)	-	_	_	78	66	2	Ph-like signature: EFS, 52% v 81% (P = .04); MRD- day 28: EFS, 100% (P < .0006)
NOPHO ALL2008 (Toft N, et al: Leukemia 32: 606-615, 2018)	221	26 (18-45)	_	_	_	_	73 87 (SR) 78 (IR) 66 (HR) 61 (HCT)	5	Allo-HCT if day 29 MRD > 5% or day 79 \ge 0.1%
Saudi Arabia/Egypt (Alabdulwahab AS, et al: Leuk Res 60:58- 62, 2017)	73	< 50 (37 ≥ 21)	91 (D), 84 (H)	71 (D) 42 (H)	_	73 (D) 48.5 (H)	—	3	Comparing D (n = 43) with H (n = 30); better OS with D protocol (P = .04)
DFCI 01-175 ¹²	82	28 (18-50)	78	66 (B) 87 (T)	_	68 (B) 76 (T)	—	4	Allo-HCT in t(4;11)+, +8, t(9;12)+; intensified L-Asp
DFCI 06-254 (DeAngelo DJ, et al: Blood 126:80, 2015 [abstr])	89	32 (18-50)	89	80	_	75	_	3	Intensified Peg-Asp (toxicity reduced from 2,500 to 2,000 UI/m ² and from 16 to 10 doses)
GRAALL 2003 ¹¹	225	31 (15-60)	93.5 53 (> 45 y)	_	61 (15-45 y) 53 (> 45 y)	60 64 (15-45 years) 47 (> 45 years)	55	3.5	Allo-HCT in t(4;11)+, HR or MRD $> 10^{-2}$, age ≤ 55 years
GRAALL 2003, 2005 (Beldjord K, et al: Blood 123:3739-3749, 2014)	955	35 (15-60)	92	_	_	57	—	5	Allo-HCT in HR MRD and oncogenetics significantly affecting risk of relapse
				(conti	nued on following pa	ge)			

© 2018 by American Society of Clinical Oncology

JOURNAL OF CLINICAL ONCOLOGY

Downloaded from ascopubs.org by 157.92.6.32 on October 7, 2018 from 157.092.006.032 Copyright © 2018 American Society of Clinical Oncology. All rights reserved.

Study*	No.	Age (years), me or median (range	an (e)† (CR %) DFS (%)	CRD (%)	OS (%)	EFS (%)	FUP (years)‡	Annotations
RAALL 2009 (Parovichnikova EN, et al: Blood 124:3662, 2014 [abstr])	250	30 (15-60)	87	69.3 71.5 (< 30 y) 61.2 (≥ 30 y)	_	65.6 73.6 (< 30 years) 52.7 (≥ 30 years)	—	4	Allo-HCT in HR
PETHEMA HR-11 (Ribera J-M, et al: Blood 128:180, 2016 [abstr])	126	30-60	86	40 (L-Asp) 58 (Peg-Asp)	_	60 (L-Asp) 57 (Peg-Asp)	_	3	HR only, for allo-HCT if MRD+; comparable MRD response L-Asp Peg-Asp
NILG 10/07 (Bassan R, et al: Blood 128:176, 2016, [abstr])	163	41 (17-67)	Ę	37 55 48 (B) 61 (T)	—	52 48 (B) 74 (T)	_	5	Allo-HCT in MRD+ or ve HR; MRD highly predictive of outcome
JALSG ALL 202-O (Sakura T, et al: Leukemia 32: 626-632, 2018; 2017)	344	24-65	Ę	36 42	_	52	_	5	Phase III trial (MTX 0.5 v 3 g/m ² : DFS 32% v 56 <i>P</i> = .015)

NOTE. Dashes indicate no data.

Abbreviations: ALL, acute lymphoblastic leukemia; allo-HCT, allogeneic hematopoietic cell transplantation; B, B-precursor ALL; CR, complete remission; CRD, duration of complete remission; D, Dana Farber consortium protocol; DFCI, Dana Farber Cancer Institute; DFS, disease-free survival; EFS, event-free survival; FUP, follow-up; GIMEMA, Gruppo Italiano Malattie Ematologiche dell'Adulto; GMALL, German Multicenter Group for Adult ALL; GRAALL, Group for Research on Adult ALL; H, hyper-CVAD protocol; hyper-CVAD, hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone; HD, high dose; HR, high risk; IR, intermediate risk; JALSG, MOACC, MD Anderson Cancer Center; MRD, minimal residual disease; MTX, methotrexate; NILG, Northern Italy Leukemia Group; NOPHO, Nordic Society of Pediatric Haematology and Oncology; OS, overall survival; Peg-Asp, pegylated asparaginase; Ph, Philadelphia chromosome; PETHEMA, Programa Español de Tratamientos en Hematologia; RAALL, Russian Adult ALL Group; SR, standard risk; T, T-precursor ALL.

*Studies are ordered by increasing patient age. There were a minimum of 50 patients; outcome estimates at ≥3 years except GIMEMA 1398 and US Intergroup C10403, for which 2-year results are reported.

†Age given as mean (range) or range.

‡Number of years of CR/DFS/CRD/OS/EFS estimates.

Table A2. Registered or ongoin	ng trials (n = 25)	With Innovative Therapeuti	cs For Relapsed/Refractory, MR	D-Positive or Unt	reated Adu	ult B-Precursor Ph- ALL*
Institution/Trial Denomination	ClinicalTrials. gov Identifier	Patient Age, Years (No.), ALL Subset	Study Drug	Associated Chemotherapy	Trial Design (phase)	Primary Objective/ Outcome Measures
Relapsed/refractory						
Albert Einstein College of Medicine/11-04-146	NCT01408160	≥ 18 (18)	Deglycosylated ricin A chain- conjugated CD19/CD22 immunotoxins	Yes (cytarabine)	I	Dose-limiting toxicity
University of California/UCDCC 266	NCT02997761	≥ 18 (20)	Ibrutinib (BCR inhibitor), blinatumomab (CD19 × CD3 bispecific antibody)	No	II	CR rate
ADC Therapeutics/ADCT-402- 102	NCT02669264	\geq 12 (60), any subset	ADCT-42 (CD19)	No	Ι	Dose-limiting toxicities and maximum tolerated
Amgen/20130265	NCT02412306	≥ 18 (57)	Blinatumomab	No	1/11	Dose-limiting toxicities and CR rate
MDACC/2015-0870	NCT03094611	\geq 12 (48), CD22+ ALL	Inotuzumab (calicheamicin- conjugated CD22 immunotoxin)	No	II	CR rate
NCI/COG-ALL1331	NCT02101853	1-30 (598), including AYA	Blinatumomab	Yes (intensive)		Disease-free survival
University of Ulm/AMLSG 23- 14	NCT02310243	\geq 18 (50), <i>MLL</i> rearranged	Palbociclib (CDK4/CDK6 inhibitor)	No	1/11	Adverse events/maximum tolerated dose
Affimed GmbH/AFM11-102	NCT02848911	≥ 18 (50), CD19+, any subset	AFM11 (CD19 \times CD3)	No	I	Maximum tolerated dose
NCI/10030	NCT02879695	≥ 16 (30), CD19+, any subset	Blinatumomab, Nivolumab (anti- PD-1), ipilimumab (CTLA-4 inhibitor)	No	Ι	Adverse events, toxicities, maximum tolerated dose
MDACC/2014-0521	NCT02420717	\geq 10 (92), Ph-like, short -	Ruxolitinib (<i>JAK2</i> inhibitor)/ Dasatinib	Yes (hyper- CVAD)	II	CR rate
COG	NCT02723994	≥ 10 (170); Ph-like	Ruxolitinib (<i>JAK2</i> inhibitor)	Yes (modified aBFM regimen)	II	Event-free survival at 3 years
NCI SWOG/S1312	NCT02883049 NCT01925131	1-31 (5437), Ph-like ≥ 18+ (38), CD22+, any subset	Dasatinib Inotuzumab	Yes Yes (CVP)	III I	Outcome description Maximum tolerated dose
Xencor/XmAb14045-01	NCT02730312	≥ 18 (66), CD123+, any subset	XmAb14045 (CD123 $ imes$ CD3)	No	I	Maximum tolerated dose
Janssen Research and Development/CR107241	NCT02454270	≥ 18 (221), any type (including B-cell lymphoma)	Duvortuxizumab (CD19 × CD3 dual-affinity retargeting protein)	No	Ι	Recommended phase II dose/overall response rate
MRD positive MDACC/2014-0844	NCT02458014	≥ 18 (40), MRD CD19+, any subset	Blinatumomab	No	II	Relapse-free survival
Johann Wolfgang Goethe University Hospital/GMALL- MOLACT1-BLINA 2015- 000733-76	NCT03109093	≥18 (30), B-precursor MRD ALL (also after prior HCT)	Blinatumomab	No	II	MRD response, continuous CR, relapse- free survival
Untreated						
NCI/S1318	NCT02003222 NCT02143414	30-70 (360) ≥ 65 (44), including Ph and	Blinatumomab Blinatumomab, Dasatinib	Yes (intensive) Yes	II	Improved OS Improved OS
MDACC/2010-0091	NCT01371630	≥ 60 (206)	Inotuzumab	Yes (low	1/11	Maximum tolerated dose
NCI/ALL1131	NCT02883049	1-30 (5437), including AYA,	Dasatinib (Ph-like)	Yes (intensive BEM-type)	Ш	Improved DFS
University of California/UCDCC	NCT02293109	18-64 (18)	Carfilzomib	Yes (hyper-	T	Safety, tolerability, dosing
DFCI/14-200	NCT02228772	51-75 (28)	Ixazomib (20 S proteasome	Yes	I	Safety and maximum
MDACC/2014-0845	NCT02877303	≥ 14 (60)	Blinatumomab	Yes (hyper-	II	Relapse-free survival
MDACC/2010-0708	NCT01363128	Any age (80)	Ofatumumab (CD20)	Yes (hyper- CVAD)	Ш	ALL control and safety
MDACC/2014-0396	NCT02419469	12-30 (100), including AYA	Ofatumumab (CD20)	Yes (augmented BFM)	II	Relapse-free survival
Unspecified disease status Regeneron Pharmaceuticals/ <i>R</i> -1979-ONC-1504	NCT02651662	≥ 18 (100), CD20 ALL (any subset)	REG2810 (anti-PD-1), REGN1979 (CD20 × CD3)	Not reported	I	Treatment-emergent adverse events

Abbreviations: aBFM, augmented Berlin-Frankfurt-Münster; ALL, acute lymphoblastic leukemia; AYA, adolescents and young adults; BCR, B-cell receptor; BFM, Berlin-Frankfurt-Münster; COG, Children's Oncology Group; CR, complete remission; CVP, cyclophosphamide, vincristine, prednisone; CR, complete response; DFCI, Dana Farber Cancer Institute; DFS, disease-free survival; ECOG, Eastern Cooperative Oncology Group; hyper-CVAD, hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone; MDACC, MD Anderson Cancer Center; MRD, minimal residual disease; NCI, National Cancer Institute; OS, overall survival; Ph, Phil-adelphia chromosome; SWOG, Southwest Oncology Group. *Ph+ ALL is included when "any subset" is added (extracted from ClinicalTrials.gov website, accessed April 2017).

Table A3. Registered of	r Ungoing Triais (n =	7) with innovative Therapeu	Leukemia*	ctory or Untreated .	Adult B-Pre	ecursor Pn+ Acute Lymphoblastic
Institution/Trial Denomination	ClinicalTrials.gov identifier	Patient Age, Years (No.)	Study Drug	Associated Chemotherapy	Trial Design (phase)	Primary Objective/Outcome Measures
Relapsed/refractory						
Northwestern University/NU 15H13	NCT02819804	≥ 18 (22)	Nivolumab (with dasatinib)	No	I	Dose-limiting toxicity
Novartis Pharmaceuticals/ CABL001X2101	NCT02081378	≥ 18 (250)	ABL001 (selected allosteric ABL1 inhibitor)	No	I	Dose-limiting toxicity
Danusertib	EudraCT number 2007-004070- 18	≥ 18 (37)	Danusertib	No	I	Dose-limiting toxicity
MDACC/2014-0435	NCT02311998	\geq 18 (80), CD22+	Inotuzumab (with bosutinib)	No	1/11	Maximum tolerated dose
University Health Network Toronto/ OZM-051	NCT01914484	≥ 18 (32)	Ruxolitinib (with nilotinib)	No	1/11	Maximum tolerated dose/major cytogenetic response
Untreated						
GIMEMA/D-ALBA	NCT02003222	≥ 18 (60)	Blinatumomab (after dasatinib)	No	Ш	MRD negativity after induction at two cycles of blinatumomab
MSKCC/14-272	NCT02494882	≥ 40 (12) (patients with relapsed disease allowed)	Ruxolitinib (with dasatinib)	No	Ι	Clinical response
University of Utah/ HCI85188	NCT02815059	≥ 60 (24)	lbrutinib (with dasatinib)	No	I	Adverse events

Abbreviations: GIMEMA; Gruppo Italiano Malattie Ematologiche dell'Adulto; MDACC, MD Anderson Cancer Center; MSKCC, Memorial Sloan Kettering Cancer Center; MRD, minimal residual disease; Ph+, positive for Philadelphia chromosome. *Extracted from ClinicalTrials.gov website, accessed April 2017.

Table A4. Registered or C	Ongoing Trials (n = 4	1) With Innovative Ther	apeutics for Relapsed/Refractory o	r Untreated Adult T-P	recursor Acute	Lymphoblastic Leukemia*
Institution/Trial Denomination	ClinicalTrials.gov Identifier	Patient Age, Years (No.)	Study Drug	Associated Chemotherapy	Trial Design (phase)	Primary Objective/ Outcome Measures
Relapsed/refractory						
Washington University/ 201606146	NCT02763384	≥ 18 (20)	BL-8040 (CXCR-4 inhibitor)	Yes (nelarabine)	II	Safety and tolerability
Eli Lilly and Co./14548	NCT02518113	\geq 2 (92, including adults)	LY3039478 (<i>NOTCH</i> inhibitor; with dexamethasone)	No	1/11	Dose-limiting toxicities/CR
Sanofi/ACT14596	NCT02999633	≥ 16 (39)	Isatuximab (CD38)	No	II	Objective response rate
Untreated						
NCI/AALL1231	NCT02112916	Age 2-30 (1,400), including AYA	Bortezomib	Yes (intensive, BFM-type)		Improved event-free survival

Abbreviations: AYA, adolescents and young adults; B, B-precursor ALL; BFM, Berlin-Frankfurt-Münster; CR, complete response; NCI, National Cancer Institute; *Extracted from ClinicalTrials.gov website, accessed April 2017.

Table A5. Registered or Ongoing 1	Frials (n = 13) With I	nnovative Therapeutics for or Othe	r Relapsed/Refractory, MF rr Leukemias*	Positive or Untrea	ted Adult ALL, l	Jnspecified Subset and/
Institution/Trial Denomination	ClinicalTrials.gov Identifier	Patient Age, Years (No.), ALL Subset	Study Drug	Associated Chemotherapy	Trial Design (phase)	Primary Objective/ Outcome Measures
Relapsed/refractory ADC Therapeutics/301-002	NCT02588092	≥ 18 (60), CD25+ ALL	ADCT-301 (PBD- conjugated CD25 immunotoxin)	No	I	Dose-limiting toxicity
Children's Mercy Hospital/ MERCY01	NCT02535806	1-39 (10), including AYA	Bortezomib	Yes	Ш	Adverse events
OHSU Knight Cancer Institute/ IRB00007195	NCT01620216	≥ 18 (24), including nonlymphoid leukemia	Dasatinib or nilotinib or sunitinib or sorafenib or ponatinib (based on kinase inhibition profile obtained on primary patient samoles)	No	II	Clinical activity (decrease of ≥ 25% in bone marrow blast counts)
Daiiki Sankyo/DS3032-A-U102	NCT02319369	≥ 18 (100), including nonlymphoid leukemia	DS302-b (<i>MDM2</i> inhibitor)	No	I	Maximum tolerated dose
Children's Hospital of Philadelphia/10-007444	NCT01162551	≤ 25 (17), including AYA; second/greater relapse)	Sirolimus (mTOR inhibitor)	Yes (oral methotrexate)	II	Efficacy and toxicity
NCI/150093	NCT02390752	3-35 (45), including AYA, nonlymphoid leukemia/other tumors)	PLX3397 (multitargeted TKI)	No	1/11	Determine phase II dose/antitumor activity
University of Washington/ 9226	NCT02551718	≥ 3 (15), including adults, nonlymphoid leukemias, prior exhaustion of two treatment lines	Various agents† (based on high-throughput drug sensitivity assay)	Various agents	Pilot	Feasibility within 21 days (drug combination)
NCI/COG ADVL1411	NCT02116777	1-30 (148), including AYA and solid tumors	Talazoparib (PARP inhibitor)	Yes (temozolomide)	1/11	Maximum tolerated dose and antitumor activity
MDACC/2014-0731	NCT02392572	≥ 18 (120), including nonlymphoid leukemias	ONC201 (DRD2 inhibitor)	No	1/11	Maximum tolerated dose
MDACC/2013-0116	NCT02089230	≥ 18 (57), including nonlymphoid leukemias, not suitable for standard therapy	MEK 162 (MEK inhibitor)	No	1/11	Maximum tolerated dose
MRD positive	NCT02767024	> 19 (21)	Pombrolizumah (anti	No	Ш	
9458	110102707304	= 10 (21)	PD-L1)	110		IVIND NEgativity
Gilead Sciences/GS-US-339- 1560	NCT02404220	≥ 18 (35)	Entospletinib (SYK inhibitor)	Yes (vincristine, prednisone)	Ι	Adverse events and dose-limiting toxicities
Untreated		> 10 (10)	lu en e veile			Marian was to be not a
PRO25835	NCT02578511	< 18 (18)	IXaZOMID	maintenance)	L	dose

Abbreviations: ALL, acute lymphoblastic leukemia; COG, Children's Oncology Group; MDACC, MD Anderson Cancer Center; MRD, minimal residual disease; NCI, National Cancer Institute; OHSU, Ohio State University; NCI, National Cancer Institute; PBD, pyrrolobenzodiazepine dimer; TKI, tyrosine kinase inhibitor. *Extracted from ClinicalTrials.gov website, accessed April 2017.

†Afatinib, arsenic trioxide, axitinib, bexarotene, bosutinib, cabazitaxel, cabozantinib, carfilzomib, ceritinib, crizotinib, dabrafenib, dasatinib, erlotinib, everolimus, gefitinib, imatinib, lapatinib, nilotinib, pazopanib, ponatinib, rapamycin, regorafenib, romidepsin, ruxolitinib, sorafenib, sunitinib, temsirolimus, trametinib, tretinoin.

Table A6. Registered or Ong	going trials (n = 1	2) With Innovative Therap	eutics After HCT Re	lapse and After, During c	or Before HCT	in Adult ALL*
Institution/Trial Denomination	ClinicalTrials. gov Identifier	Patient Age, Years (No.), ALL Subset	Study Drug	Associated Chemotherapy	Trial Design (phase)	Primary Objective/ Outcome Measures
After HCT relapse MSKCC/11-038	NCT01430390	Any age (12), CD19+ BCP ALL or lymphoma	Expanded EBV- specific allogeneic T-cytotoxic cells	No	I	Safety/persistence of escalating doses of allogeneic modified T cells
Masonic Cancer Center, University of Minnesota/ HM2013-12	NCT01885897	≥ 18 (61), ALL and other leukemias	ALT-803 (IL-15 superagonist complex)	No	1/11	Safety/efficacy, toxicity, incidence of acute and chronic GvHD
Case Comprehensive Cancer Center/CASE1916	NCT03104491	16-75 (44), CD22+ BCP ALL	Inotuzumab ozogamicin (calicheamicin- conjugated anti- CD22)	No	1/11	Maximum tolerated dose, posttransplant relapse, response rate
After HCT University of Colorado, Denver/ NCI-2013-00824	NCT01841333	\geq 18 (28), ALL and AML	PF-04449913 (Hedgehog inhibitor)	No	II	RFS and remission duration
Sidney Kimmel Comprehensive Cancer Center/IRB00125679	NCT03114865	≥ 18 (12), CD19+ BCP ALL, HR and/or MRD+ before HCT	Blinatumomab	No	Ι	OSOS, DFS, MRD response
MDACC/2015-0576	NCT02807883	18-70 (30), BCP ALL, HCT beyond CR1 or MRD+	Blinatumomab	No	II	Feasibility, OS and PFS
Fate Therapeutics/PT-001	NCT02743351	18-70 (70), ALL and AML	ProTmune (FT1050/PGE2 inhibitor and FT4145/CXCR4 inducer, enhancing programmed T- cell alloreactivity and antitumoral properties)	No	I/II	Adverse event, acute GvHD CMV viremia and disease, febrile neutropenia
During or before HCT Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubirca (NCMNISZ REE 917	NCT02605460	18-60 (20), ALL and AML	CXCR-4 antagonist	Yes (busulfan, cyclophosphamide)	Ш	OS and DFS
Kiadis Pharma/CR-AIR-009	NCT02999854	18-70 (195), ALL and AML	ATIR101 (haploidentical graft depleted of T-alloreactive cells)	Yes (<i>v</i> post-HCT cyclophosphamide arm)	111	GvHD, RFS and OS, transplant mortality
Kiadis Pharma/CR-AIR-008	NCT02500550	18-65 (15), ALL and AML	ATIR101	No	II	Incidence of grade III/ IV GvHD, time to T-cell reconstitution, transplant-related mortality, relapse and survival rates
First Affiliated Hospital of Wenzhou Medical University/ 20170316	NCT03110640	5-70 (20), CD19+ BCP ALL, other leukemia	Autologous anti- CD19 CAR-T followed by allogeneic HCT	Yes (fludarabine, cyclophosphamide)	I	Safety/feasibility of autologous CD19 CAR T cells before HCT
Bellicum Pharmaceuticals/BP-HM- 001	NCT01744223	18-65 (36), ALL and AML	BPX-501 modified donor T cells reactive to AP1903 self- destruct switch (mismatch donors)	No	I/II	BPX-501 dose that produces no more than day 100 45% grade II-IV aGVHD, OS and DFS, GvHD response to AP1903

Abbreviations: aGVHD, acute graft-versus-host disease; ALL, acute lymphoblastic leukemia; AML, acute myelogenous leukemia; BCP, B-cell precursor; CAR, chimeric antigen receptor; CMV, cytomegalovirus; DFS, disease-free survival; EBV, Epstein-Barr virus; GVHD, graft-versus-host disease; HCT, hematopoietic cell transplantation; HR, high risk; MDACC, MD Anderson Cancer Center; MSKCC, Memorial Sloan Kettering Cancer Center; OS, overall survival; PFS, progression-free survival; RFS, relapse-free survival.

*Extracted from ClinicalTrials.gov website, accessed April 2017.

Instructure Number of the Part of the	Table A7.	Registered	or Ongoing Trials (n = 45	5) With Cellular Immunotherap	y for Relapsed/Refractory or N	/IRD-Po:	sitive Adult ALL*
Peter best Peter b	Institution/Trial Denomination	ClinicalTrials. gov Identifier	Patient Age, Years (No.), ALL Subset	Study Drug	Associated Chemotherapy	Trial Design (phase)	Primary Objective/Outcome Measures
Instance with the second sec	Relapsed/refractory Kite Pharma/KCE-C19-103	NCT02614066	≥ 18 (75), BCP ALL	KTE-C19 (autologous CD19 CAR T)	Yes (fludarabine, cyclophosphamide)	1/11	Safety/toxicity and dose-limiting toxicity, overall CR rate, duration of remission,
Attract Sector Sector Sec	Institute of Hematology and Blood Diseases Hospital/ XH-CD19CABT-001	NCT02975687	18-70 (20), BCP ALL, including Ph+	CD19 CAR T	No	T	CR and DFS, safety/toxicity, persistence of CAR T cells
Control Control Part (C) 2014	Affiliated Hospital to Academy of Military Medical	NCT02186860	18-65 (5), BCP ALL	3 rd generation CAR T (CD28, CD137)	No	T	Safety/toxicity, antileukemic effect
Hum, Cover, Strand Mathematics, Strandskield, Markelson, Ma	City of Hope Medical Center/ 13447 NCI-2014-01060	NCT02146924	\geq 18 (48), BCP ALL	CAR T (autologous; CD19, CD28)	No/yes (lymphodepletion \pm cetuximab	I	Safety/toxicity, CR rate, persistence of CAR T cells
Control Control Control Control Control Model Control	Henan Cancer Hospital/ HenanCH080 Servier/CL1-68587-002	NCT02924753	4-70 (20), BCP ALL	CART-19 (autologous)	Yes (fludarabine, cyclophosphamide)	1	Safety/toxicity, antitumor activity, persistence of CAR T cells Safety/toxicity, antileukemic activity
Control Design of the second sec	Collular Riomodicino Groun/	NCT02019002	14 75 (20) BCR ALL including		No		MRD response, DFS, OS rate
Operational Control No. 1999 ALL Operational Control No. Image: Control No. Total Control No. Control Contro	CBMG2016003	NCT02016277	Ph+	iC0 CAR10 (autologoup): AR1002	No		and survival rate, MRD response
Decision 000233 Note 3 multicast Part R000 Sec 3 multi	Comprehensive Cancer Center/LCCC 1541-ATL	NC103016377	1+ (40), BCP ALL	(tacrolimus analog)	INO	,	T cells, overall response, overall, event-free and disease-free rates, optimal dosp of AP1002
Number Number Processing View Processing V	FHCRC/2639.00 NCI-2013- 00073	NCT01865617	≥ 18 (169), BCP ALL	CD19CAR-4-1BB-CD3zeta-EGFRt- expressing T lymphocytes (autologous)	No/yes (lymphodepleting regimen)	11/11	Safety/toxicity, persistence of CAR T cells, CR, OS and PFS rates
PHOE02202 H02001 Y02001 NUT3012200 m 12 M 20 ALL March 20 ALL America Control Class CDE TH Yes (Mudatables, cyclostocaptamidal of the Selectocaptamidal of	Wuhan Sian Medical	NCT02965092	up to 60 (20), BCP ALL	Second generation CAR-T cells (CD19, CD137)	No	I	Safety/toxicity, antileukemic effect
Uncentral Uncentral UNC 2114 NT 202008 (2) *** 0.8 I Stepsympticity further of adverse several sev	FHCRC/9364 NCI-2017-00421	NCT03103971	≥ 18 (66), BCP ALL	Anti-CD19CAR-4-1BB-CD3zeta-EGFRt- expressing CD4+/CD8+ T	Yes (fludarabine, cyclophosphamide)	I	Safety/toxicity, pharmacokinetic profile, antitumor activity, PFS and OS survival rates
Description Description CRT0210223 FAB DD, BCF ALL CART-19 isotologouit No I Selection Sherghal Uncar, Tearger (inc.) No 1 Sherghal Uncar, Tearger (inc.) Sherghal Unca	University of Pennsylvania/	NCT02030847	\geq 18 (24), BCP ALL including	CART-19 (autologous)	No	Ш	Safety/toxicity (number of adverse
Note earthing earthing earthing earthing No 1 SafetyNoolky, CR rate SafetyNoolky, CR rate No 1 SafetyNoolky, CR rate SafetyNoolky, CR rate No 1 SafetyNoolky, CR rate SafetyNoolky, CR rate ULL 140529 No 1 SafetyNoolky, CR rate No 1 SafetyNoolky, CR rate SafetyNoolky, CR rate No 1 SafetyNoolky, Michael Rate SafetyNoolky, Michael Rate SafetyNoolky, Michael Rate No 1 SafetyNoolky, Michael Rate SafetyNoolky, Michael Rate CL Rate No 1 Overall Rate CR rate, Michael Rate CL Rate No 1 Feaseware CR rate, Michael Rate CL Rate No 1 Feaseware CR rate, Michael Rate CL Rate No 1 SafetyNoolky, Michael Rate CL Rate CL Rate No 1 SafetyNoolky, Michael Rate CL Rate CL Rate No 1 SafetyNoolky, Michael Rate CL Rate <td>Beijing Sanwater Biologic</td> <td>NCT02810223</td> <td>Pn+ 1-60 (20), BCP ALL</td> <td>CART-19 (autologous)</td> <td>No</td> <td>I</td> <td>Safety/toxicity (number of adverse</td>	Beijing Sanwater Biologic	NCT02810223	Pn+ 1-60 (20), BCP ALL	CART-19 (autologous)	No	I	Safety/toxicity (number of adverse
Alterative Process of Alter States Sol Control States No I Safetybacky, antumor setwy Ubite Violage, London No I Safetybacky, antumor setwy Safetybacky, antumor setwy Ubite Violage, London No III Classes Safetybacky, antumor setwy Ubite Violage III Violage III Violage III Violage III Violage Ubite Violage III Violage III Violage III Violage IIII Violage IIIII Violage IIIII Violage IIIII Violage IIIII Violage IIIII Violage IIIII Violage IIIIII Violage IIIIIIIII Violage IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Technology/IT1601-CART19 Shanghai Unicar-Therapy Bio- medicine Technology	NCT03064269	10-60 (10), BCP ALL, CNS+	CD19 CAR-T	No	T	events) Safety/toxicity, CR rate
United United WCT0244281 ± 21.01.8, Bioteage ALL CD19 CART faulations, explayehoushamide 1 Satelyhousing, metacule response parameters of CAT Teells, inclusion Noratis Parameterizing NCT0228006 1-21.807, BCP ALL including Parameterizing CT0.19 Teells No 10 Description University of Pennsylvania NCT0228006 1-21.807, BCP ALL including Parameterizing CT0.19 Teells No 10 Description University of Pennsylvania NCT0228007 1-24.809, BCP ALL including Parameterizing CT0.19 Teells No 10 Frequency of option Parameterizing CAP Colline relates and option University of Pennsylvania NCT02280297 16.66 009, BCP ALL CD19CAT Halls CART Ceals Yes efluctuations, cyclophosphamidal 11 Satelyhoucin, teaching of antion University of Pennsylvania NCT02280297 16.66 009, BCP ALL CD19CAT Parameterizing CART Ceals Yes efluctuations, cyclophosphamidal 11 Satelyhoucin, versite parameterizing CART Ceals Bindro Collage of Ministrin NCT02280297 16.66 009, BCP ALL CD19CAR28286 AT Ceals Yes efluctuations, cyclophosphamida, cyclophosphamidal,	/UnicarTherapy The First People's Hospital of	NCT02968472	\geq 0.5 (30), BCP ALL	4SCAR19 (autologous)	No	I.	Safety/toxicity, antitumor activity
Name Not Description Description University of Priority/stand NCT2228288 12 407, 827 AL CTL019 T cells No Different standard University of Priority/stand NCT2228287 12 45 298, BCP ALL including Priority CTL019 T cells No Different standard Priority of Priority	Yunnan/LXUN University College, London/ UCL 14/0529	NCT02443831	≤ 24 (18), B-lineage ALL including Burkitt's leukemia/ lymphoma	CD19 CAR T (autologous)	Yes (fludarabine, cyclophosphamide)	I	Safety/toxicity, molecular response and duration of response, persistence of CAR T cells, incidence of hypogammaglobulinemia, relapse and
LCL101962/08/1/61/022 Proceedings Proceed	Novartis Pharmaceuticals/	NCT02228096	1-21 (67), BCP ALL including Ph+	CTL019 T cells	No	Ш	Overall response rate, safety/toxicity
University Callege, Loxdorf, MC12235257 16-85 201, BCP ALL CD19CAT-118EZ CAR Teals and Classified Carlos (actogoval actogoval	University of Pennsylvania/ 16CT022	NCT02906371	1-24 (39), BCP ALL including Ph+	CTL019 autologous T-cells (with tocilizumab)	No	1/11	Frequency of cytokine release syndrome grade 4, CR rate, MRD response, duration of remission
LUCL 190.30 NCT01553631 ≤ 75 (64), BCP ALL CD13 CAR28.157 Yes (fludarabine, cyclophosphamide) II Safety/backing, persistence of CAR Sheak Madical Canter NCT01553631 ≤ 75 (64), BCP ALL CD13 CAR28.157 Yes (fludarabine, cyclophosphamide) III Safety/backing, persistence of CAR Biglor College of Medicand NCT030591910 ≤ 75 (14), T-ALL CD5 CAR28Eta CAR T cells Yes (fludarabine, cyclophosphamide) III Safety/backing, persistence of CAR Haddes GARCENTA NCT02729350 ≥ 60 (10), BCP ALL CCAFT-19 (allogeneic) Yes (fludarabine, cyclophosphamide) III Safety/backing and overall response, DFS Addes MARCENTA NCT022784323 1.24 (50), BCP ALL CART-19 (allogeneic) Yes (fludarabine, cyclophosphamide) III Safety/backing and overall response, DFS MCT02758237 1.44 (50), BCP ALL NuCART19 (autologous) Yes (fludarabine, cyclophosphamide) III Safety/backing and overall response, DFS MCT02758237 1.45 (50), BCP ALL CD19-CAR transduced T cells Yes (fludarabine, cyclophosphamide) III Safety/backing and overall response, DFS MCT02756239 1.45 (50), BCP ALL CD19-CAR transduced T cells Yes (fludarabine, cyclophosphamide) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	University College, London/	NCT02935257	16-65 (20), BCP ALL	CD19CAT-41BBZ CAR T-cells	Yes (fludarabine, cyclophosphamide)	I	Safety/toxicity, feasibility of
H-3197 SAGAM NCT0277219 1-39 (40) BCP ALL CD19 CAR T cells (autoogous) Test (fludarabine, cyclophosphamide) I/II Setery/hocking and testability, persistence of CAR T cells Byte Callege et Medicing NCT02772191 1-39 (40) BCP ALL CD19 CAR T cells (autoogous) Yes (fludarabine, cyclophosphamide) I/II Setery/hocking and testability, persistence of CAR T cells The Affisted Hospital of the NCT02729850 ≈ 60 (10), BCP ALL CART-19 (allogeneic) Yes (fludarabine, cyclophosphamide) I/II Setery/hocking and testability, persistence of CAR T cells (autoogous) CART-ALL 2015 No I Setery/hocking and testability, and weatlift response, persistence of CAR T cells (autoogous) Sharahozzi CART-19 (autoogous) No I Setery/hocking and testability, cellinatility, and vessitility, cellinatility, and vessitility, and vessitility, and vessitility, cellinatility, and vessitility, and vessitility, and vessitility, and vessitility, cellinatility, and vessitility, cellinatility, and vessitility,	Baylor College of Medicine/	NCT01853631	≤ 75 (64), BCP ALL	(autologous) CD19.CAR/28 and CD19.CAR/28.137	Yes (fludarabine, cyclophosphamide)	I	Safety/toxicity, persistence of CAR
SHEBA152076A1.CTIL persistence of CART cells persistence of CART cells Baylor College Medicine/ NCT03081910 > 75 (14), T-ALL CD5.CAR/25zeta CART cells Yes (fludarabine, cytoxin) I Safety/toxicity, and overall response, DFS and OS rates Markate Markat	H-31970 SAGAN Sheba Medical Center/	NCT02772198	1-39 (40) BCP ALL	T cells (autologous) CD19 CAR T cells (autologous)	Yes (fludarabine, cyclophosphamide)	1/11	T cells, tumor response Safety/toxicity and feasibility,
The difficient of the displayed in the displayed displayed in the displayed displayed intered	SHEBA-15-20/6-AT-CTL Baylor College of Medicine/	NCT03081910	≤ 75 (14), T-ALL	CD5.CAR/28zeta CAR T cells	Yes (fludarabine, cytoxan)	I	persistence of CAR T cells Safety/toxicity, overall response rate
Christerity of Pennsylvania NCT0237433 1-24 (50), BCP ALL huCART19 (autologous) No I Safety/toxicity Shernhen institute for Institute for Movition and Timisational Investion and Timisational Investion and Timisational Investional Account deposition No I Safety/toxicity and feasibility, clinical response, persistence of CAR T cells Shernhen Institute for Movition and Timisational Investional Control C	The Affiliated Hospital of the Chinese Academy of Military Medical Sciences/	NCT02799550	≥ 60 (10), BCP ALL	CART-19 (allogeneic)	Yes (vindesine, mitoxantrone, cyclophosphamide, peg-aspargase, dexamethasone)	I	Safety/toxicity and overall response, DFS and OS rates
Table U22 Shenzhen Institute for Innovation and Translational Medicines/INZ01001154001 NCT03076437 1-80 (36), BCP ALL (2019-CAR transduced T cells (autologous) Yes (fludarabine, cyclophosphamide) I/I Safety/toxicity and feasibility, clinical response, persistence of CAR T cells (autologous) Shenzhen Second People's Hospita/201504001 NCT02456380 1-85 (36), BCP ALL (297CAR transduced T cells (autologous) Yes (fludarabine, cyclophosphamide) I Safety/toxicity and clinical response (autologous) University of Pennsylvania/15- 012219 NCT0285031 1-85 (36), BCP ALL (297CAR transduced T cells (autologous) Yes (fludarabine, cyclophosphamide) I/I Safety/toxicity, overall response and CR rate, duration of remission Chinese PLA General Hospita/ 012219 NCT02850414 1-24 (15), BCP ALL (207CAR transduced T cells (autologous) No I/I Safety/toxicity, overall response and CR rate, duration of remission Chinese PLA General Hospita/ 012219 NCT02850788 ≥ 18 (54), any subset Nk cells (allogeneic non-HLA matched donon, ALT803 No I/I Safety/toxicity, antitumor responses, persistence of CAR T cells (autologous) Chinese PLA General Hospita/ CHinPLAGH B1-000 NCT0289578 ≥ 18 (54), any subset Nk cells (allogeneic non-HLA matched donon, ALT803 No I/I Safety/toxicity, antitumor response, persistence of CAR T cells (autologous) No I/I <	University of Pennsylvania/	NCT02374333	1-24 (50), BCP ALL	huCART19 (autologous)	No	I.	Safety/toxicity
Medicality_Still MCU101175 NCT02456350 1-85 (36), BCP ALL CD19-CAR transduced T cells (autologous) Yes (fludarabine, cyclophosphamide) I Safety/hoxicity and clinical response (autologous) MDACC/2016/001 NCT02456350 1-85 (36), BCP ALL CD19-CAR transduced CB-NK cells (umbilical and ord-blood derived); AP1903 (tacrolimus analog) Yes (fludarabine, cyclophosphamide) I/I Optimal dose, safety/toxicity, CR rate University of Pennsylvania/15- 012219 NCT0256014 1-24 (15), BCP ALL including Ph+ cART22 cells (autologous) No/yes (lymphodepleting regimen) I Safety/toxicity, overall responses activity, persistence of CAR T cells, antitumor responses, flatologous) Chinese PLA General Hospital/ CHNPLACH8T-001 NCT02580578 ≥ 18 (54), any subset NK cells (allogone in on-HLA matched doroid, JLT803 No I/I Safety/toxicity, antitumor activity Chinese PLA General Hospital/ CHNPLACH8T-020 NCT02895670 5-90 (20), BCP ALL CD19/2C-CAR transduced T cells (autologous) No I/I Safety/toxicity, antitumor responses, persistence of CAR T cells, duration of emission, OS CART 4 cells (duration of emission, OS CART 4 cells, duration of emission, OS The Saced Arfilitier Hospital Of Hennin University of Traditional Chinese Beal matiginancies Safety/toxicity, antitumor response, persistence of CAR T cells Safety/toxicity, antitumor response, persistence of CAR T cells <	Shenzhen Institute for Innovation and Translational	NCT03076437	1-80 (36), BCP ALL	CD19-CAR transduced T cells (autologous)	Yes (fludarabine, cyclophosphamide)	1/11	Safety/toxicity and feasibility, clinical response, persistence of CAR T cells
Hospital/201504001 Lation of positive control of the po	Shenzhen Second People's	NCT02456350	1-85 (36), BCP ALL	CD19-CAR transduced T cells	Yes (fludarabine, cyclophosphamide)	I.	Safety/toxicity and clinical response
University of Pennsylvania/15 012219 NCT02650414 1-24 (15), BCP ALL including Ph- 012219 CAR Transduced T cells (autologous) Nolyes (lymphodepleting regimen) I Safety toxicity, overall response and CR rate, duration of remission Chinese PLA General Hospital/ CHN-PLAGH-BT-001 NCT02850758 ≥ 18 (54), any subset NK cells fallogeneic non-HLA matched durolog, ALTB03 No I Maximum tolerated dose, antitumor responses, responses Chinese PLA General Hospital/ CHN-PLAGH-BT-001 NCT02850758 ≥ 18 (54), any subset NK cells fallogeneic non-HLA matched durolog, autologues or allogeneic) No I/I Safety/toxicity, antitumor responses, responses, clutiologous or allogeneic) Chinese PLA General Hospital/ CHN-PLAGH-BT-020 NCT0285070 5-90 (20), BCP ALL CD19/20-CAR transduced T cells (autologous) No I/I Safety/toxicity, antitumor responses, cD137 (autologous) The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine/ NCT01864889 5-90 (12), BCP ALL CD19-CAR transduced T cells (autologous) No I Safety/toxicity, antitumor response, cD137 (autologous) PersonGen BioTherapeutics (Suzhou) /PG-019001 NCT01864889 5-90 (12), BCP ALL (autologous) CD19-CAR transduced T cells (autologous) No I Safety/toxicity, antitumor response, cPerisitence of CAR T cells PersonG	MDACC/2016-0641	NCT03056339	18-65 (36), BCP ALL	(autologous) iC9/CAR.19/L15-transduced CB-NK cells (umbilical and cord-blood	Yes (fludarabine, cyclophosphamide)	1/11	Optimal dose, safety/toxicity, CR rate
Chinese PLA General Hospital/ CHNPLAGH-BT-001 NCT01735604 18-90 (50), BCP ALL (autologous) CD20-CAR transduced T cells (autologous) No I Maximum toresponses Case Comprehensive Cancer Center/CASE2216 NCT02890758 ≥ 18 (54), any subset NK cells (allogeneic non-HLA matched donon, ALT903 No I Maximum toresponses, persistence of CAR T cells, antitumor responses, (autologous or allogeneic) Chinese PLA General Hospital/ of Henan University of Traditional Chinese Medicine/ DHHUTCM20160106 NCT01864889 5-90 (20), BCP ALL cD19-TCR-CD28 and aCD19-TCR- CD137 (autologous) No I/I Safety/toxicity, antitumor responses, persistence of CAR T cells Chinese PLA General Hospital/ of Henan University of Traditional Chinese Medicine/ DHHUTCM20160106 NCT01864889 5-90 (12), BCP ALL (D19-CAR transduced T cells (autologous) No I Safety/toxicity, antitumor response, persistence of CAR T cells PersonGen BioTherapeutics (Suzhou) /PG-019-01 NCT02819583 ≥ 18 (10), BCP ALL (D19-CAR transduced T cells (autologous) No I Safety/toxicity, objective response rate (autologous) FHCRC/9330 NCI-2015-01753 NCT02819583 ≥ 18 (10), BCP ALL (D19 CAR-NK cells (allogeneic) No I/I Safety/toxicity, cells antitumor response, persistence of CAR T cells FHCRC/9330 NCI-2015-01753 NCT02706392 ≥ 18 (00) ROR1+ ALL, other B-cell malignanci	University of Pennsylvania/15- 012219	NCT02650414	1-24 (15), BCP ALL including Ph+	CART22 cells (autologous)	No/yes (lymphodepleting regimen)	I	Safety toxicity, overall response and CR rate, duration of remission
Case Comprehensive Cancer Center/CASE2218 NCT02890758 ≥ 18 (54), any subset NK cells (allogeneic non-HLA matched donon', ALT803 No I Maximum tolerated dose, antitumor activity Chinese PLA General Hospital/ CHN-PLAGH B1-020 NCT03097770 5-90 (20), BCP ALL CD19-J2C-CAR transduced T cells (autologous or allogeneic) No II Safety/toxicity, antitumor responses, persistence of CAR T cells, duration of remission, OS The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine/ DHHUTCM20160106 NCT01864889 5-90 (12), BCP ALL CD19-CAR transduced T cells (autologous) No II Safety/toxicity, antitumor response, persistence of CAR T cells, duration of remission, OS Chinese PLA General Hospital/ OHHUTCM20160106 NCT02819583 ≥ 18 (10), BCP ALL CD19-CAR transduced T cells (autologous) No II Safety/toxicity, objective response, persistence of CAR T cells PersonGen BioTherapeutics (Suzhou) /PG-19-01753 NCT02819583 ≥ 18 (60) ROR1+ ALL, other B-cell malignancies ROR1 CAR-specific T lymphocytes (autologous) Yes (fludarabine, cyclophosphamide) I Safety/toxicity, objective response, persistence of CAR T cells, antitumor activity PersonGen BioTherapeutics (Suzhou) /PG-119-001 NCT02282625 3-80 (10), BCP ALL CD7 CAR-pNK cells (allogeneic) No II Safety/toxicity, clinical response, persistence	Chinese PLA General Hospital/ CHN-PLAGH-BT-001	NCT01735604	18-90 (50), BCP ALL	CD20-CAR transduced T cells (autologous)	No	1/11	Safety/toxicity, persistence of CAR T cells, antitumor responses
Chinese PLA General Hospital/ CHNPLAGH B1-020 NCT03097770 5-90 (20), BCP ALL (autologous or allogeneic) (autologous or allogeneic) No VII Safety/toxicity, antitumor responses, persistence of CAR T cells (autologous) The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine/ DHHUTCM20160106 NCT02685670 5-70 (20), BCP ALL CD19-CAR transduced T cells (autologous) Yes (fludarabine, cyclophosphamide) VII Safety/toxicity, antitumor responses, persistence of CAR T cells, duration of remission, OS Chinese PLA General Hospital/ DHHUTCM20160106 NCT02819583 ≥ 18 (10), BCP ALL CD19-CAR transduced T cells (autologous) No I Safety/toxicity, antitumor response, persistence of CAR T cells, duration of remission, OS PersonGen BioTherapeutics (Suzhou) /PG-019-001 NCT02819583 ≥ 18 (10), BCP ALL PCAR-019 (autologous) No VII Safety/toxicity, objective response rate (autologous) FHCRC/9330 NCL-2015-01753 NCT02705392 ≥ 18 (60) ROR1+ ALL, other (autologous) ROR1 CAR-specific T lymphocytes (autologous) Yes (fludarabine, cyclophosphamide) I Safety/toxicity, clinical response, persistence of CAR T cells, antitumor activity T cells, antitumor activity PersonGen BioTherapeutics (Suzhou) /PG-019-001 NCT02282695 3-80 (10), BCP ALL CD19 CAR-NK cells (allogeneic) No VII Safety/toxicity, clinical response,	Case Comprehensive Cancer Center/CASE2716	NCT02890758	\geq 18 (54), any subset	NK cells (allogeneic non-HLA matched donor) AI T803	No	1	Maximum tolerated dose, antitumor activity
Chinker Define 1020 The Second Affiliated Hospital NCT02685670 5-70 (20), BCP ALL aCD19-TCR2-CD28 and aCD19-TCR2-CD28 and aCD19-TCR2-CD137 (autologous) Yes (fludarabine, cyclophosphamide) VII Safety/foxicity, CR rate, persistence of CAR T cells, duration of remission, OS Medicine/ DHHUTCM20160106 C CD19-CAR transduced T cells No I Safety/foxicity, antitumor response, persistence of CAR T cells duration of remission, OS PersonGen BioTherapeutics NCT02819583 ≥ 18 (10), BCP ALL CD19-CAR transduced T cells No VII Safety/foxicity, antitumor response, persistence of CAR T cells FHCRC/9330 NCL2015-01753 NCT02706392 ≥ 18 (60) ROR1+ ALL, other Bcoll malignancies ROR1 CAR-specific T lymphocytes (autologous) Yes (fludarabine, cyclophosphamide) I Safety/foxicity, nepresistence of CAR T cells FHCRC/9330 NCL2015-01753 NCT02706392 ≥ 18 (60) ROR1+ ALL, other Bcoll malignancies ROR1 CAR-specific T lymphocytes (autologous) Yes (fludarabine, cyclophosphamide) I Safety/foxicity, clinical response, persistence of CAR T cells, antitumor activity PersonGen BioTherapeutics (Suzhou) /PG-019-001 NCT02742727 ≥ 18 (00, RCP ALL CD7 CAR-pNK cells (allogeneic) No VII Safety/foxicity, clinical response, persistence of CAR T cells, antitumor activity PersonGen BioTherapeutics (Suzho	Chinese PLA General Hospital/	NCT03097770	5-90 (20), BCP ALL	CD19/20-CAR transduced T cells	No	1/11	Safety/toxicity, antitumor responses,
Chinese PLA General Hospital/ CHNPLAGH BT-005 NCT01864889 5-90 (12), BCP ALL (Autologous) CD19-CAR transduced T cells (autologous) No I Safety/toxicity, antitumor response, persistence of CAR T cells PersonGen BioTherapeutics (Suzhou) /PG-107-002 NCT02819583 ≥ 18 (10), BCP ALL PCAR-019 (autologous) No //I Safety/toxicity, objective response, persistence of CAR T cells PersonGen BioTherapeutics (Suzhou) /PG-107-002 NCT02706392 ≥ 18 (60) ROR1 + ALL, other aclunal macies ROR1 CAR-specific T lymphocytes (autologous) Yes (fludarabine, cyclophosphamide) I Safety/toxicity, objective response, persistence of CAR T cells, antitumor activity PersonGen BioTherapeutics (Suzhou) /PG-107-002 NCT02832695 3-80 (10), BCP ALL CD7 CAR-pNK cells (allogeneic) No //I Safety/toxicity, objective response, persistence of CAR-pNK cells PersonGen BioTherapeutics (Suzhou) /PG-109-001 NCT02832695 3-80 (10), BCP ALL CD19 CAR-NK cells (allogeneic) No //I Safety/toxicity and optimal dose, objective response PersonGen BioTherapeutics (Suzhou) /PG-109-002 NCT02831589 ≥ 14 (10), BCP ALL PCAR-019 (autologous) No //I Safety/toxicity, objective response PersonGen BioTherapeutics (Suzhou) /PG-109-002 NCT02851589 ≥ 14 (10), BCP ALL PCAR-019 (aut	The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine/ DHHUTCM20160106	NCT02685670	5-70 (20), BCP ALL	(attologous of anogenetc) αCD19-TCRz-CD28 and αCD19-TCRz- CD137 (autologous)	Yes (fludarabine, cyclophosphamide)	I/II	Safety/toxicity, CR rate, persistence of CAR T cells, duration of remission, OS
Demonstration NetTotal PersonCen BioTherapeutics NetTot2819583 ≥ 18 (10), BCP ALL PCAR-019 (autologous) No VII Safety/toxicity, objective response rate FHCRC/9330 NCI-2015-01753 NCT02706392 ≥ 18 (60) ROR1 + ALL, other ROR1 CAR-specific T lymphocytes Yes (fludarabine, cyclophosphamide) I Safety/toxicity, objective response rate FHCRC/9330 NCI-2015-01753 NCT02706392 ≥ 18 (60) ROR1 + ALL, other ROR1 CAR-specific T lymphocytes Yes (fludarabine, cyclophosphamide) I Safety/toxicity, objective response rate Guzhou/ /PG-107-002 NCT02742727 ≥ 18 (10), T-precursor ALL CD7 CAR-pNK cells (allogeneic) No VII Safety/toxicity, odiptical response, persistence of CAR-pNK cells PersonGen BioTherapeutics (Suzhou) /PG-119-001 NCT02892695 3-80 (10), BCP ALL CD19 CAR-NK cells (allogeneic) No VII Safety/toxicity, odiptinal dose, objective response Vizuhou/ /PG-109-002 NCT02851589 ≥ 14 (10), BCP ALL PCAR-019 (autologous) No VII Safety/toxicity, objective response Continued on following page (continued on following page) I Continued on following page I/II Safety/toxicity, objective response	Chinese PLA General Hospital/	NCT01864889	5-90 (12), BCP ALL	CD19-CAR transduced T cells	No	I	Safety/toxicity, antitumor response,
FHCRC/9330 NCI-2015-01753 NCT02706392 ≥ 18 (60) ROR1+ ALL, other B-cell malignancies ROR1 CAR-specific T lymphocytes (autologous) Yes (fludarabine, cyclophosphamide) I Safety/toxicity, persistence of CAR T cells, antitumor activity PersonGen BioTherapeutics (Suzhou) /PG-107-002 NCT02742727 ≥ 18 (10), T-precursor ALL CD7 CAR-pNK cells (allogeneic) No I/II Safety/toxicity, persistence of CAR T cells, antitumor activity PersonGen BioTherapeutics (Suzhou) /PG-107-002 NCT02892695 3-80 (10), BCP ALL CD19 CAR-NK cells (allogeneic) No I/II Safety/toxicity and optimal dose, objective response PersonGen BioTherapeutics (Suzhou) /PG-019-002 NCT02851589 ≥ 14 (10), BCP ALL CD19 CAR-NIX cells (allogeneic) No I/II Safety/toxicity, objective response PersonGen BioTherapeutics (Suzhou) /PG-019-002 NCT02851589 ≥ 14 (10), BCP ALL PCAR-019 (autologous) No I/II Safety/toxicity, objective response	PersonGen BioTherapeutics	NCT02819583	≥ 18 (10), BCP ALL	PCAR-019 (autologous)	No	1/11	Safety/toxicity, objective response rate
PersonGen BioTherapeutics (Suzhou) /PG-107-002 NCT02892695 3-80 (10), BCP ALL CD19 CAR-PNK cells (allogeneic) No VII Safety/toxicity, clinical response, persistence of CAR-PNK cells PersonGen BioTherapeutics (Suzhou) /PG-119-001 NCT02892695 3-80 (10), BCP ALL CD19 CAR-NK cells (allogeneic) No VII Safety/toxicity, and optimal dose, objective response PersonGen BioTherapeutics (Suzhou) /PG-119-001 NCT02851589 ≥ 14 (10), BCP ALL PCAR-019 (autologous) No VII Safety/toxicity, objective response (Suzhou) /PG-019-002 Continued on following page) (continued on following page) No VII Safety/toxicity, objective response	FHCRC/9330 NCI-2015-01753	NCT02706392	≥ 18 (60) ROR1+ ALL, other	ROR1 CAR-specific T lymphocytes	Yes (fludarabine, cyclophosphamide)	T	Safety/toxicity, persistence of CAR
PersonGen BioTherapeutics NCT02892695 3-80 (10), BCP ALL CD19 CAR-NK cells (allogeneic) No VII Safety/toxicity and optimal dose, objective response PersonGen BioTherapeutics NCT02851589 ≥ 14 (10), BCP ALL PCAR-019 (autologous) No VII Safety/toxicity, objective response (Suzhou) /PG-19-002 (continued on following page) (continued on following page) Continued on following page	PersonGen BioTherapeutics	NCT02742727	≥ 18 (10), T-precursor ALL	CD7 CAR-pNK cells (allogeneic)	No	1/11	Safety/toxicity, clinical response,
PersonCern BioTherapeutics NCT02851589 ≥ 14 (10), BCP ALL PCAR-019 (autologous) No [/I] Safety/toxicity, objective response (Suzhou) /PG-019-002 (continued on following page)	PersonGen BioTherapeutics	NCT02892695	3-80 (10), BCP ALL	CD19 CAR-NK cells (allogeneic)	No	1/11	Safety/toxicity and optimal dose,
(continued on following page)	PersonGen BioTherapeutics	NCT02851589	≥ 14 (10), BCP ALL	PCAR-019 (autologous)	No	1/11	Safety/toxicity, objective response
	(002100) // C-010-002			(continued on following page)			

© 2018 by American Society of Clinical Oncology

JOURNAL OF CLINICAL ONCOLOGY

New Treatments for Adult ALL

Table A7. Registered or Ongoing Trials (n = 45) With Cellular Immunotherapy for Relapsed/Refractory or MRD-Positive Adult ALL* (continued)						
Institution/Trial Denomination	ClinicalTrials. gov Identifier	Patient Age, Years (No.), ALL Subset	Study Drug	Associated Chemotherapy	Trial Design (phase)	Primary Objective/Outcome Measures
Seattle Children's Hospital/ PLAT-02	NCT02028455	1-26 (80), BCP ALL	CD19 specific CAR T cells EGFRt +/- (autologous), ± cetuximab	Yes (lymphodepletion)	I/II	Safety/toxicity and maximum tolerated dose, CR rate (MRD-), feasibility, persistence of CAR T cells
GIMEMA/LAL 2013	NCT02185781	\geq 60 (6), MRD+ Ph+ ALL	NK cells (autologous)	No	I	Maximum tolerated and recommended final dose, safety/toxicity, feasibility, immunologic modifications, MRD response, OS, time to progression
National University Health System Singapore/ NKCARCD19	NCT01974479	0-80 (20), BCP MRD+ ALL	CD19 redirected NK cells (allogeneic haploidentical)	No	II	MRD response
Fujian Medical University/ CART-19-02	NCT03027739	1-60 (20), BCP MRD+ ALL	CART-19	No	Ш	Leukemia-free survival, safety/toxicity
University of Pennsylvania/ 825668	NCT02935543	\geq 18 (24), BCP MRD+ ALL	CART 19 (autologous)	No	I/II	MRD response, OS rate, duration of remission, relapse- and event-free survival rates, feasibility, safety/ toxicity
National University Health System, Singapore/ NKCARCD19	NCT01974479	0-80 (20), BCP MRD+ ALL	CD19 redirected NK cells (allogeneic/ haploidentical)	No	Ш	MRD monitoring

Abbreviations: ALL, acute lymphoblastic leukemia; BCP, B-cell precursor; CAR, chimeric antigen receptor; CR, complete remission; DFS, disease-free survival; FHCRC, Fred Hutchinson Cancer Research Center; GIMEMA, Gruppo Italiano Malattie Ematologiche dell'Adulto; MDACC, MD Anderson Cancer Center; MRD, minimal residual disease; NK, natural killer; OS, overall survival; Ph+, positive for Philadelphia chromosome; pNK, peripheral natural killer. *Extracted from ClinicalTrials.gov website, accessed April 2017.

Table A8. Preclinical Studies With Targeted Therapy for ALL (Any Subset) Targeting Agent Main Findings or Notes Therapeutic Target Study CXCR-4 Plerixafor Enhancing chemosensitivity and sensitizing MLL+ Sison EAR, et al; Oncotarget 5:8947-8958, 2014 ALL to FLT3 inhibitor (lestaurtinib) Teachey DT, et al; Blood 111:705-714, 2008 mTOR Sirolimus Inhibitory effects in synergy with methotrexate Proteasome, CK2 Bortezomib Synergistic NF-ĸB mediated apoptosis Buontempo F, et al; Oncotarget 7:1323-1340, CX-4945 2015 ABT-737 Synergy with mTOR inhibitor CCI-779 lacovelli S, et al; Oncotarget 6:32089-32103, 2015 Bcl-2 /Bcl-xL-Kahw SL, et al; Blood 128:1382-1395, 2016 Venetoclax. Venetoclax for r-MLL+, navitoclax others navitoclax (BCP, TCP) Potential synergy with TKI and chemotherapy Prexasertib Ghelli A, et al, Oncotarget 7:53377-53391, 2016 Chk1/2 Zhao Q, et al; Oncotarget 6:38934-38951, 2015 c-Myc Shikonins CK2 inhibitor TBB Ikaros activation and c-MYC downregulation Ge Z, et al; Oncotarget 6:42300-42311, 2015 TGR-1202 MYC silencing in synergy with carfilzomib Deng C, et al; Blood 129:88-99, 2017 JNK SP600125 Increasing PAX5 and restoring glucocorticoid Nicholson L, et al; Br J Haematol 171: 595-605, sensitivity 2015 HSP90 PU-H71 Active on JAK1/2 mutant leukemia Kucine N, et al; Blood 126:2479-2483, 2015 p53 SB225002* Upregulating p53-related GLIPR1 gene de Vasconcellos JF: PLoS One 10:e0134783, 2015 Erastin, BSO, Potentiating activity of SMAC-mimetic LCL-161 Hass C, et al; Biochem Pharmacol 105:14-22, 2016 Reactive oxygen species detoxification auranofin MerTK UNC2025 Increasing sensitivity to methotrexate and more DeRyckere D, et al; Clin Cancer Res 23:1481active in TCP ALL 1492, 2017 Chang BH, et al; J Hematol Oncol 8:39, 2015 YM155 Survivin Potentiated by dasatinib in Ph+ subset Upregulating LEPR gene with inhibition of ALL LEPR 1-day fasting* Lu Z, et al; Nat Med 23:79-90, 2017 development and ALL cell differentiation

NOTE. Data were generated using ALL cell lines or patient-derived samples; most studies included ex vivo PDX models. Dashes indicate no data. Abbreviations: ALL, acute lymphoblastic leukemia; BCP, B-cell precursor; Ph+, positive for Philadelphia chromosome; PDX, patient-derived xenograft; SMAC, second mitochondrial-derived activator of caspases; TCP, T-cell precursor; TKI, tyrosine kinase inhibitor.

*Compounds inhibited molecular pathways stimulating cell growth and proliferation; agonists upregulating mechanisms related to cell death.

Table A9. Preclinical Studies With Targeted Therapy for BCP ALL and Subsets					
ALL Subtype	Therapeutic Target	Targeting Agent	Main Findings or Notes	Study	
BCP Ph+	PYST1 (Erk activation)	BCI*	Induction of p53-mediated cell death	Shojaee S, et al: Cancer Cell 28:114- 128, 2015	
	JAK-2	Ruxolitinib	Sensitivity restored by dasatinib and synergy with dasatinib/dexamethasone	Appelman et al ²⁴	
	VEGFR-1 and T315I mutant	Axitinib	BCR-ABL1 T315I inhibition	Pernovska T, et al: Nature 519:102-105, 2015	
	T315I	Danusertib	Activity against <i>BCR-ABL1</i> T315I (toxicity reported)	Bortakur G, et al: Haematologica 100: 898-904, 2015	
	Myristoyl pocket of ABL1 MDM2	Asciminib Nutlin-3	Activity on different site of <i>ABL1</i> Restoring p53-mediated apoptosis	Wylie et al ¹²² Trino S, et al: Oncotarget 7: 12951- 12961 2016	
	Macrophage reprogramming pathway	IL-3, M-CSF, GM-CSF, FLT3L, IL-7	Ph+ BCP ALL blast reprogrammed into CD14 ^{high} /CD19 ^{low} nonleukemic	McClellan et al ¹²⁶	
	Retinoid X receptor	Bexarotene, carbacyclin, ATRA, 9- and 13-cis RA*	Inducing expression of <i>IKZF1</i> and potentiating dasatinib activity	Churchman et al ¹²⁵	
	Bcl-2	Venetoclax	In synergy with dasatinib (induction of LYN proapoptotic <i>BCL-2</i> –like protein)	Leonard et al ⁹⁶	
	Reactive oxygen species	Verteporfin*	Synergistic effects with dasatinib	Morishita T, et al: Oncotarget 7:10182- 10192, 2016	
BCP KTM2A+ (MLI	L+) FLT-3	PKC412	_	Torelli GF, et al: Br J Haematol 130:43- 50, 2005	
	MEK, RAS	Trametinib, selumetinib, MEK162	_	Kerstjens M, et al: Oncotarget 8: 14835–14846. 2017	
	Bcl-2	Venetoclax	In synergy with DOT1L inhibitors and chemotherapy	Benito et al ¹³⁵	
		Venetoclax, navitoclax	Demonstrated synergy with cyclophosphamide	Ackler et al ¹³⁶	
	MDM2	RG7112*	Upregulating p53	Richmond J, et al: Clin Cancer Res 21: 1395-1405, 2015	
	Bcl-2 /Bcl-xL- HDAC	Venetoclax, navitoclax Romidepsin	Navitoclax active in B-other subsets Synergy with cytarabine	Khaw et al ⁸⁵ Cruickshank et al ¹³⁷	
BCP unselected/oth	ner Integrin alpha4	Natalizumab	Inhibition of stromal adhesion with drug	Hsieh YT. et al: Blood 121:1814-1818.	
	Proteasomes, histone	Bortezomib, HDCA inhibitor	sensitization (nilotinib in Ph+) Synergistic inhibition	2013 Bastian L, et al: Clin Cancer Res 19:	
	deacetylase (HDAC) Pre-BCR/SYK	INPP5D inhibitor*	SYK hyperactivation causing negative B-cell	1445-1457, 2013 Chen Z, et al: Nature 521:357-361,	
	Bcl-2 /Bcl-xL-	Disulfiram/copper	selection	2015 Deng M, et al: Oncotarget 7:82200-	
	HDAC	LAQ824, WT161, Merck60	Stronger effects from HDAC1 and HDAC2	82212, 2016 Stubbs MC, et al: Clin Cancer Res 21:	
	HDAC, mTOR	Vorinostat/panobinostat,	inhibitors	2348-2358, 2015 Beagle BR, et al: Oncotarget 6:2088-	
	FLT3, PI3K/mTOR pathway	rapamycin/analogs Quizartinib/crenolanib,	_	2100, 2015 Messina M, et al: Oncotarget 7:13886-	
	JAK1/2	BEZ235/rapamycin AZD1480	Synergy with with MEK inhibitor selumetinib	13901, 2016 Suryani S, et al: Mol Cancer Ther 14:	
	MEK 1 / B-Raf	Trametinib/sorafenib	Restoring prednisone sesnsitivity in RAS	364-374, 2015 Aries IM, et al: Haematologica 100:	
	Smac	BV6*	mutant ALL NF-κB activation and TNFα-induced	e132-e136, 2015 Schirmer M, et al: Cell Death Dis 7:	
		Birinapant*	apoptosis Activating RIP-1 apoptosis/necroptosis	e2052, 2016 McComb et al ⁸⁰	
TCF3-HLF+	Bcl-2	Venetoclax	Highly sensitive, synergy with corticosteroids/chemotherapy	Fischer et al ⁷⁷	
TCF3-PBX1+ and pre-BCR+	PI3K-delta BCL-6 (SYK, <i>c-Src,</i> BTK)	Idelalisib PRT062607, dasatinib, ibrutinib	— Downstream <i>BCL-6</i> inhibition	Eldfors et al ⁷⁷ Geng et al ⁹⁸	
	SYK	PRT318, PRT260607	-	Kohrer S, et al: Leukemia 30:1246-	
	SYK, BLK, MERTK, ROR1	Dasatinib	TK overexpression, ROR silencing	Messina et al ¹³⁸ Bicocca et al ¹³⁹	
	BCL-6	RI-BPI, Dasatinih	Expected synergy with <i>SYK</i> inhibitors and other <i>BTK</i> inhibitor ibrutinib	Deucher et al ¹⁴² Kim et al ¹⁴³	
CD22+	CD22AE12	CD22AE12-RTM nanoparticles		Uckun FU, et al: EBioMedicine 2:554- 562, 2015	

NOTE. Data were generated using ALL cell lines or patient-derived samples; most studies included ex vivo PDX models. Dashes indicate no data. Abbreviations: ALL, acute lymphoblastic leukemia; BCP, B-cell precursor; HDCA, histone deacetylase; PDX, patient-derived xenograft; Ph+, positive for Philadelphia chromosome; TK, tyrosine kinase.

*Compounds inhibited molecular pathways stimulating cell growth and proliferation; agonists upregulating mechanisms related to cell death.

New Treatments for Adult ALL

Table A10. Preclinical Studies With Targeted Therapy for TCP ALL							
ALL Subtype	Therapeutic Target	Targeting Agent	Main Findings or Notes	Study			
TCP	CD3	Anti-CD3/CD28 and CD3ε antibodies*	Triggering TCR signaling induces apoptosis	Trinquand et al ¹⁶⁰			
	CD7	CD7-nanobody toxin	Pseudomonas exotoxin A	Tang J, et al: Oncotarget 7:34070-34083,			
	CD38 Bcl-2	Daratumumab Venetoclax	Active in 14 of 15 pediatric T-ALL PDX models Synergy with chemotherapy; most active in <i>TLX3</i> + and <i>HOXA</i> + subsets	Bride KL, et al: Blood 131:995-999, 2018 Peirs et al ⁹⁵			
			More effective in ETP ALL than other T-ALL subsets	Chongaile TN, et al: Cancer Discov 4:1074- 1087, 2014			
	IRAK-1/4	IRAK inhibitors	Reducing MCL1 stability; synergy with ABT- 737 and vincristine	Li Z, et al: J Clin Invest 125:1081-1097, 2015			
		IRAK1/4 inhibitors	Partial inhibition of proliferation and reversal of corticosteroid resistance	Dussiau C, et al: Oncotarget 6:18956- 18965, 2015			
	NOTCH1-4	12 (BMS-906024)	Pan- <i>NOTCH</i> inhibitor	Gavai AV, et al: ACS Med Chem Lett 6:523- 527 2015			
	NOTCH3	MOR antibodies	Inhibiting NOTCH3 mutated T-ALL	Bernasconi-Elias P, et al: Oncogene 35: 6077-6086, 2016			
	Wnt	XAV-939	Targeting hypoxic, leukemia-initiating cell-rich	Giambra V, et al: Blood 125:3917-3927, 2015			
	CXCL-12/ CXCR-4	CXCR4-inh AMD3465	CXCL12 production by vascular endothelial cells mantains T-ALL; CXCL12 and CXCR4 genetic deletion suppresses T-ALL	Pitt et al ¹⁶¹			
			CXCR4 critical to T leukemogenecity; expression mediated by contactin and calcineurin	Passaro et al ¹⁶²			
		BMS-936564/MDX-1338	Fully human anti-CXCR4 antibody	Kuhne MR, et al: Clin Cancer Res 19:357- 366, 2012			
	HDAC	Givinostat	-	Pinazza M, et al: Cell Death Dis 7: e2047, 2016			
	Glutaminase	BPTES	Inhibition of glutaminolysis and autophagy in synergy with NOTCH inhibition by DBZ	Herranz D, et al: Nat Med 21:1182-1189, 2015			
	Hedgehog	GANT61, vismodegib	T-ALL with high GLI1 expression	Dagklis A, et al: Blood 128:2642-2654, 2016			
	HSP90	AUY922	Downregulating TYK2 and BCL-2	Akahane K, et al: Leukemia 30:219-228, 2016			
	CK2	CX-4945	Inhibiting IL-7R mutant T-ALL, in synergy with JAK inhibitors	Melao A, et al: Hematologica 101:1368- 1379, 2016			
	CDK4/6	LEE011	Synergy with glucocorticoids and mTOR inhibitor: antagonism with chemotherapy	Pikman Y, et al: Clin Cancer Res 23:1012- 1024, 2016			
	JAK/STAT pathway	Ruxolitinib	Inhibition IL-7 associated <i>STAT5</i> hyperactivation in FTP ALL	Maude et al ¹⁶⁶			
	TYK2	JAK inhibitor 1, AG490		Sanda T, et al: Cancer Discov 3:564-577, 2013			
	NEDD8-activating enzyme	MLN4924	-	Han K, et al: Oncotarget 7:23812-23824, 2016			
	PI3K/mTOR AKT/mTOR,	Rapamycin, JQ1 (bromodomain	Targeting leukemia-initiating cells	Schubbert S, et al: Cancer Res 74:7048- 7059 2014			
	PI3K/mTOR AKT/mTOR,	IPI-145 (pan <i>PI3K</i> inhibitor)	More efficient than isoform-selective PI3K	Lonetti A, et al: Oncotarget 6:10399- 10414 2016			
		AZD8835/8186, AZD5363, AZD2014	Identification of sensitive T-ALL subsets	Lynch JT, et al: Oncotarget 7:22128-22139, 2016			
		AS605240	Synergistic with glucococorticoids; antagonistic interaction with anthracycline and methotrexate unless administered after 48 hours	Bortolini Silveira A, et al: Oncotarget 6: 13105-13118, 2015			
	hLAT1	JPH2013	_	Rosilio C, et al: Leukemia 29:1253-1266, 2015			
	Calcineurin (Cn)-nuclear factor/GSK-3	Cn/GSK-3 inhibitors	Dual inhibition increasing proteosomal degradation of X-linked inhibitor of apoptosis (in pre-/pro-T ALL)	Tosello V, et al: Leukemia 30:812-822, 2016			
	Src TK LCK	Dasatinib	Activity in <i>TAL1/SIL-TAL1</i> subset	Laukkanen S, et al: Blood Cancer J 7:e604, 2017			
	LCK	Dasatinib, bosutinib, nintedanib, WH-4-023	Restoring sensitivity to dexamethasone in glucocorticoid-resistant leukemic cells	Serafin V, et al: Blood 130:2750-2751, 2017			

NOTE. Data were generated using ALL cell lines or patient-derived samples; most studies included ex vivo PDX models. Dashes indicate no data. Abbreviations: ALL, acute lymphoblastic leukemia; ETP, early thymic precursor; PDX, patient-derived xenograft; TCP, T-cell precursor; TCR, T-cell receptor. *Compounds inhibited molecular pathways stimulating cell growth and proliferation; agonists upregulating mechanisms related to cell death.