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Abstract   

Anomaly detection is a crucial aspect for both safety and efficiency of modern process industries. 

This paper proposes a two-steps methodology for anomaly detection in industrial processes, 

adopting machine learning classification algorithms. Starting from a real-time collection of process 

data, the first step identifies the ongoing process phase, the second step classifies the input data as 

“Expected”, “Warning”, or “Critical”. The proposed methodology is extremely relevant where 

machines carry out several operations without the evidence of production phases. In this context, 

the difficulty of attributing the real-time measurements to a specific production phase affects the 

success of the condition monitoring. The paper proposes the comparison of the anomaly detection 

step with and without the process phase identification step, validating its absolute necessity. The 

methodology applies the decision forests algorithm, as a well-known anomaly detector from 

industrial data, and decision jungle algorithm, never tested before in industrial applications. A real 

case study in the pharmaceutical industry validates the proposed anomaly detection methodology, 

using a 10 months database of 16 process parameters from a granulation process.  

 

Keywords:  Machine Learning; Condition-Based Maintenance; Condition Monitoring; Random 

Forests; Decision Jungles. 

1. Introduction 

Condition monitoring and anomaly detection are important topics in industrial productions. 

Condition monitoring is the process of monitoring the trend of one or more meaningful parameters 

that determine a machine performance, in order to identify changes that can indicate a feasible 

fault; anomaly detection refers to the problem of finding patterns in data that do not conform to 

expected [1]. The prevention of accidents is one of the most important goals of condition 

monitoring and anomaly detection; in fact, anomaly detection has a key role in ensuring reliability 

and safety in industrial processes, creating an alert system of dangerous situations to stop or control 

[2]. An uncorrected trend of a parameter can be strictly correlated with the wear of a component 

that can involve, without correct maintenance interventions, the loss of containment of dangerous 

material or the out of control and unexpected growth of temperature with the risk of explosion. As 

a further example, condition monitoring and anomaly detection of the correct air inflow can detect 

a dirty air channel, with the insurgency of overheating and the risk of conflagration. Research 

about anomaly detection is important for several other reasons: forecast a future stop or a future 
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downtime minimize overall maintenance costs [3], reduce the costs associated to the loss of 

production caused by machine downtime [4], and increase product quality in order to give more 

competitiveness in the global marketplace to a company [5]. In this paper, the anomaly detection 

problem is stated as a classification problem; the analysis of data identifies to what classes of 

criticality the monitored industrial process belongs to: “Expected”, “Warning”, “Critical”. For the 

suggested methodology the authors have decided not to consider the ordinality and the correlation 

of these classes, losing some information. This consideration will be an interesting point of 

reflection for future researches and future improvements in the methodology. The difficulty to link 

data from the field to the specific process phase is a common criticality of anomaly detection in a 

real industrial process. This problem applies to anomaly detection in multiphase processes, 

because of the inability to understand if the values of the parameters are expected because they 

can vary depending on the process phase. This assumption refers to the analysis of inhomogeneous 

time series. Inhomogeneous time series refers to some characteristics of the production process: 

the length of both process phases and production cycles can vary during the time; the order of the 

production phases is always the same, but a production cycle may not be complete due to tests or 

failures. The monitored parameters are always the same as well as their sampling interval. So, 

every time the process phase is not known in the system that analyses the parameters data, 

condition monitoring, and anomaly detection probably fails. In actual manufacturing systems, 

process data unlinked to the industrial process phase is a common situation, thus companies need 

methods to detect anomalies with a prior automatic recognition of the process phase. With this 

aim, the paper presents a two steps methodology to solve this multiclass classification situation. 

Both classifications have more than two output classes: the first classification has as many classes 

as the process phases, the second classification has three criticality classes. The authors consider 

as anomalies all the situations that do not represent the expected functioning of the production 

process, and the criticality classes take into account the distance from compliance requirements 

and company target levels. 

The remainder of the paper is organized as follows. Section 2 presents the related literature. Section 

from 3 to 5 present the different algorithms tested is the case study. Section 6 presents a general 

methodology to approach situations like this and in Section 7 is presented a case study. The 

discussion of the results, the conclusions, and future research are summarized in Section 8.   

2. Literature Review 

According to [1] anomaly detection has some important fields of application and it is widely 

discussed in different areas of research, e.g. Cyber-Intrusion Detection, Fraud Detection, Medical 

Anomaly Detection, Industrial Damage Detection, Image Processing, Textual Anomaly Detection, 

and Sensor Networks. The main techniques of anomaly detection are Classification Based, 

Clustering Based, Nearest Neighbor Based, Statistical, Information Theoretic, and Spectral. This 

paper fits in the context of anomaly detection, specifically considering Industrial Damage 

Detection, using Classification Based Anomaly Detection. It is not possible to apply directly what 

is proposed in different areas of application: an anomaly takes on meaning in the specific context 

of the event, requiring a specific field contextualization for its recognition. Consequently, a 

relevant problem in the anomaly detection process is the lack of contextual information for 

identifying the cause of a problem and the domain expertise is necessary to solve it [6]. In fact, the 

contextualization of an anomaly increases the interpretability of the found outliers [7], because 

what is anomalous in a context could be not anomalous in another one [8]. It is necessary to 
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consider that the production process analyzed in this paper is a process that operates "under time-

varying conditions”, composed by seven different sub-processes, i.e. seven different process 

phases. In this kind of process, a relevant problem is that normal changes in the operational 

condition can be interpreted as faults, producing a large number of false alarms [9]. Traditional 

stationary signal processing techniques cannot be applied effectively in a time-varying conditions 

context [10]. Due to the time-varying conditions both for the operating conditions and the healthy 

or faulty state, can be necessary to properly generate data related to the operating context of the 

analyzed system [11].  

The role of the domain experts in the anomaly detection context is crucial even for the definition 

of the boundaries between normal and anomalous behavior as well as for the economic analysis of 

the anomalies impact [12] and the extraction of useful details from the raw signals [13]. 

The interest in anomaly detection is substantial and ever-changing in recent years. Several 

applications provide insights for data security, e.g. the recent papers on botnet traffic [14], data 

stream of network infections [15], physical intrusions in building [16]. Safety applications of 

anomaly detection are not common: some researches forecast specific hazards, e.g. earthquake 

[17], or apply anomaly detection methods on accident reports to identify risk factors and types of 

anomaly conditions [18].  

For condition monitoring, in last years the interest has been in various [19–22], e.g. vertical form 

seal and fill machine [23], rotating machines [9], electrical motors [24], continuous stirred tank 

reactor system and an industrial centrifugal pump [25],  bearings [26], gearbox [27], crankshaft 

forging [20], repetitive machining operations [28], serial multistage manufacturing systems [29], 

electrical discharge machining [30]. 

In industrial production, anomaly detection is widely applied for condition monitoring and to get 

relevant alerts for predictive or on-condition maintenance. Studies on specific types of machinery 

identify anomalies from the monitoring of industrial parameters, e.g. vibration [31,32] or 

temperature, pressure, flow, energy consumption [33]. Some recent interesting applications of 

anomaly detection are in the automotive sector, on CNC machines [34], and in the press-hardening 

process of automotive components [35]. The energy sector is deeply studied because a lot of data 

is collected from resources distributed over large areas, such as in wind turbines [36,37] and 

photovoltaic plants [38], or in production plants [39,40]. Some other recent industrial applications 

of anomaly detection can be found in the chemical sector [41–44], in the food industry [45], 

ultraprecision machining processes [46] or for automated quality control in manufacturing 

processes [47]. Recently, an anomaly detection method has been successfully applied in detecting 

industrial control system cyber-attacks [48], linking security to the monitoring of industrial process 

data.  

All these applications of anomaly detection consider just one process phase, without the need to 

interpret the data collected depending on the process phase in which it was generated. However, 

this scenario is very common in production systems, typically in batch processes, where often the 

time intervals of process phase are not fixed. Due to this lack of experience in the interpretation of 

the multiphase processes is difficult to properly identify anomalies from real-time data, ensuring 

a low number of false alerts. 

Research about anomaly detection is achieving excellent results with the Random Forest 

Algorithm (RFA), which is the most popular Decision Forest prediction model [49]. RFA achieved 

good results for fault detection in industrial chemical processes [50,51]. RFA applications are 

available for real-time predictive maintenance systems in data centers [52], energy transmission 

systems [42], aircraft components [53], processing plants [54,55], supply systems [56]. The high-
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level performance of RFA is presented even in the most common application of anomaly detection, 

which is the intrusion detection and the prevention of data breach [57]. 

This paper applies a two steps methodology using classification algorithms that properly identifies 

the process phase from a set of gathered data, and then performs an anomaly detection through a 

machine learning model that considers the specific process phase. Based on the literature, the 

anomaly detection and production process monitoring methodologies consider the process phase 

known or focus on a specific process phase. These approaches are not suitable for production 

processes in which the same machine carries out several production phases, sometimes all of them; 

the condition monitoring receive data without the specific contextualization of the measurements 

nature (label of the belonging process phase). The proposed methodology innovates suggesting a 

sequential approach, in which the second step, i.e. the anomaly detection, relies on the information 

gained with the first step, i.e. the process phase labeling. The paper proposes a comparison between 

the anomaly detection implemented with and without the proposed methodology. This comparison 

underlines the superiority and consequently the need to apply this methodology. The algorithms 

of the second step have been chosen from literature considerations, and these are not limiting 

factors of the methodology. Firstly, the aim is to evaluate the performance of the well known and 

tested algorithm in the field of anomaly detection, that is the RFA, with the proposed methodology 

and in the specific context of the application, frequently used for classification problems. 

Since the RFA models sometimes bring to a high memory footprint, a valid alternative is Decision 

Jungle Algorithm (DJA). This latter is an evolution of RFA [58], that revisits the idea of ensembles 

of rooted decision Directed Acyclic Graphs (DAGs), and requires dramatically less memory than 

RFA. The application of DJA is a recent field of research, focused on medical classification 

problems: good results are available for the disease prediction [59], for the fetal health status 

prediction [60], for the classification of patients and suggestion of suitable diet [61].  So, the 

authors want to verify the applicability and the performance of the DJA too, that has never been 

applied in industrial anomaly detection; in fact, the memory footprint can be considered a limited 

resource and can be important to have a valid alternative for the algorithm. 

As far as we know, moreover, applications, and comparisons of RFA and DJA in industrial 

anomaly detection are not currently available in the literature. All the considerations obtained by 

the application of these two algorithms must be considered as an additional output of the paper, 

but not its focus. Future researches will apply the same methodology with different algorithms, 

verifying the obtained results. 

The paper provides a methodology to achieve anomaly detection with real-time data from a 

multiphase industrial process, using firstly the  RFA and secondly DJA. 

3. Decision tree 

In machine learning, a decision tree is a predictive model where each internal node is a decision 

node and it represents a predictive variable (feature ), an arc to a child node represents a possible 

value range for that variable, an external node (leaf) represents the predicted value for the target 

variable, a classification or decision.  
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Figure 1. Example of a decision tree 

 

The decision tree uses a series of if-then statements to identify boundaries and define patterns in 

the data. Every internal node split the data into two branches based on a split value, that moves the 

decision to a further node. 

Figure 1 shows a decision tree, where 𝑥1 and 𝑥2  are the variables, 4 is one of the split values in 

the internal nodes (e.g. in the dark grey nodes), the target value to predict is in the leaves y=1 or 

y=2 or y=3.  

The order of decision node in a tree corresponds to the best predictor capacity. A split point is the 

decision tree's version of a boundary. There are several methods to choose the best split [62]. 

4. Random Forest Algorithm 

The RFA is an ensemble learning method for classification. The first idea of Random Forest was 

introduced independently and almost simultaneously by two research teams [63,64]. It was later 

revised and popularized from 2001 [65], with a subsequent unified model of RFA [66].  

The analytical formulation of the algorithm presented in this section follows the research by [66]. 

The algorithm works by building multiple decision trees and then voting on the most popular 

output class.  

In classification problem [66], there is an association between a data point 𝑣 = {𝑥1, … , 𝑥𝑑} ∈  𝐹, 
where 𝐹 is the feature space with a dimension d, with a discrete class 𝑐 ∈ 𝐶, 𝐶 = {𝑐𝑘}, k = 1,…,K, 

K= output classes. Thus, the goal of the training is to understand how to label every input data v 

in the dataset with 𝑐. In this situation, the target is to determine the posterior distribution p(c|v), 

that is the probability of the onset of c when the input is v. Forests can easily handle classifications 

with more than two classes, they produce probabilistic outputs, they generalize in a very good way 

new data and they reduce tests for data point; the outputs are always discrete and categorical. 𝜃𝑗 ∈

 𝛤𝑗  denote the parameters of the test function h at the 𝑗-th split node, with j = 1, …, J, J = number 

of decision nodes; the parametrization of the test function model is 𝜃𝑗 = (φ, ψ, τ),  where ψ defines 

the geometric primitive used to separate the data, the parameter vector τ captures thresholds for 

the inequalities used in the binary test and the filter function φ selects some features of choice out 

of the entire vector v. 
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𝛤 is the entire space of the parameters of the test function. Optimizing over 𝛤 is not feasible, 

because the size of 𝛤 can be extremely large. Instead, when training at the 𝑗-th node it is available 

only a small random subset 𝛤𝑗  ⊂ 𝛤 of parameter values. 

Training optimizes the parameters of the test function at each split node j, j= 1, …, J, J = number 

of split nodes, via (1):  

𝜃𝑗
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐼𝑗 

𝜃𝑗 ∈  𝛤𝑗 
(1) 

The data point v arriving at the node is sent to its left or right child node according to the result of 

the test function; this test is a function with binary outputs ℎ(𝑣, 𝜃𝑗): 𝐹 𝑥 𝛤 → {0, 1}, where 0 and 

1 can be interpreted as “false” and “true” respectively.  

The objective function 𝐼𝑗 takes the form of a classical information gain defined for discrete 

distributions (2): 

𝐼𝑗 = 𝐻(𝑆𝑗) − ∑
|𝑆𝑗

𝑖|

|𝑆𝑗|𝑖 ∈{𝐿,𝑅}
 𝐻(𝑆𝑗

𝑖) (2) 

With i indexes the two child nodes and j indexes the parent node, with i = L, R (Left and Right), 

j= 1, …, J.  

The symbols 𝑆𝑗, 𝑆𝑗
𝐿 e 𝑆𝑗

𝑅 denote the sets of training points before (𝑆𝑗) and after the split, on the left 

(𝑆𝑗
𝐿) and on the right (𝑆𝑗

𝑅). 

The entropy of a training set S is (3): 

H(S) = − ∑ 𝑝(𝑐) 𝑙𝑜𝑔 𝑝(𝑐)𝑐 ∈𝐶  (3) 

Training every classification tree by maximizing the information gain involves that the entropy of 

the class distributions associated with nodes decreases; it means that the prediction confidence 

increases, from the roots to the leaves. p(c) is estimated as the normalized empirical histogram of 

labels corresponding to the training points in S, that is the training set. 

The unified model of RFA [66] recommends the use of the entire dataset, but it does not exclude 

the use of bagging; this reduces the training time.  

So, the randomness model is structured in two phases: 

 

1. Bagging, which is also called Bootstrap AGGregatING, is an ensemble learning, it means 

a methodology that allows you to combine multiple models (typically decision trees for 

classification, both binary and multiclass tasks, and regression) and to aggregate prediction 

results in order to obtain final estimates. The most common aggregation techniques include 

max voting for classification models and averaging or weighted averaging for regression 

models. Intuitively, the idea behind the ensemble algorithms is to emulate common 

"human" decision-making processes, combining the decisions that result from multiple 

models to improve overall performance. Often, bagging produces a combined model that 

outperforms the model that is built using a single instance of the original data. This 

statement is true especially for unstable inducers such as decision trees since bagging can 

eliminate their instability [67]. Breiman [65] refers to bagging decision trees as a particular 

instance of the random forest technique. With bagging the construction of the models takes 
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place in a non-sequential but parallel manner and each model is independent of the others. 

Different models are trained on different subsets, each of which is extracted by sampling 

with replacement from the original training set (bootstrap samples/bags); this sampling 

ensures that the probability of extraction of each example is equal to that of the others. A 

base model is then created on each subset and the final estimates are derived from the 

combination of the prediction results of the individual models. The excellent quality of 

bagging is that it reduces the variance of the model, but not involving the increase of the 

bias. This means that the sensitivity of each tree to the noise of its dataset is "compensated" 

when it comes to considering the trees in their complexity; this happens because the 

individual trees are not related. 

2. Random Decision Forests add a further layer of randomness to bagging. At each node, the 

optimization is done not concerning the entire parameter space 𝛤 because for large 

dimensional problems the size of 𝛤 can be extremely large considering that the 

feature/attribute dimension of each data point can be large. So, during the training at the j-

th node, we only make available a small random subset 𝛤𝑗  ⊂ 𝛤 of parameter values. So, in 

training objective function, randomness is injected via randomized node optimization, with 

𝜌 = |𝛤𝑗| indicating the amount of randomness. It means, for example, that with 𝜌 = 1 each 

split node takes only a single randomly chosen set of values for 𝜃𝑗 . 

 

The output of a classification forest is probabilistic, which is an entire class distribution for the 

posterior distribution. Practically, in every node there is the execution of a test, that directs in 

another specific node; tests stop when there is not a new leaf. 

Every leaf produces 𝑝𝑡(𝑐|𝑣), that is the posterior distribution, and the forest output is (4): 

 

𝑝(𝑐|𝑣) =  
1

𝑇
∑ 𝑝𝑡(𝑐|𝑣)𝑇

𝑡     

With t = 1, … T, T= number of forest trees 
(4) 

5. Decision Jungle Algorithm 

Decision Jungles [58] have been developed to counteract a limit of trees and forests: with a lot of 

data, nodes in decision trees grow with depth. This growth does not occur in DJA, so this algorithm 

requires a dramatically less memory footprint than trees and forests; it is important because 

memory is a limited resource. 

The analytical formulation of the algorithm presented in this section follows the research by [58]. 

DJA revises the idea of ensembles of rooted decision directed acyclic graphs (DAGs); decision 

trees only allow one path to every node, but a DAG allows multiple paths from the root to each 

leaf (Figure 2). 

Using trees, the risk of overfitting can be significant: overfitting occurs when a statistical model 

lies down on observed data, because of the excessive number of parameters compared to 

observations. DJA can avoid overfitting, too. 

A Rooted Binary Decision DAG is a way to combine a binary classifier to a multiclass classifier; 

in DAGs there is a One Root Node, with in-degree 0, Multiple Split Nodes, with in-degree ≥1 and 

out-degree = 2 and there are Multiple Leaf Nodes, with in-degree ≥1 and out-degree = 0. 
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Figure 2. Example of DAG 

In DJA every DAG is built one level at a time; at each level, the algorithm jointly learns the features 

and branching structure of the nodes. This is done by minimizing the objective function defined 

over the predictions made by the child nodes, that are the left and the right nodes reached after the 

split at j-th node, with j = 1, …, J, J = number of split nodes. 

𝜃𝑗  denotes the parameters of the split feature function f for parents node j ∈ 𝑁𝑝 and 𝑆𝑗 denotes the 

set of labeled training instances (x,v) that reach node j. With 𝜃𝑗  and 𝑆𝑗 it is possible to compute the 

set of instances from node j to left and right branches (5): 

 

𝑆𝑗
𝐿(𝜃𝑗) = {(x, y)∈ 𝑆𝑗| 𝑓(𝜃𝑗 , 𝑥) ≤ 0}         LEFT 

   𝑆𝑗
𝑅(𝜃𝑗) =  𝑆𝑗\𝑆𝑗

𝐿(𝜃𝑗)                                  RIGHT 
(5) 

 

𝑙𝑗  denotes the current assignment of the left outwards edge from parent node j to a child node, 

with 𝑙𝑗 ∈  𝑁𝑐 and j ∈  𝑁𝑝 and similarly 𝑟𝑗 ∈  𝑁𝑐 for the right outward edge. 

𝑁𝑐 and 𝑁𝑝 denote respectively a set of child nodes and a set of parent nodes. 

After that, the set of instances that reach any child node z ∈ 𝑁𝑐, 𝑁𝑐 = 𝑙𝑗 , 𝑟𝑗   for the j-th split node, 

is (6): 

𝑆𝑧({𝜃𝑗}, {𝑙𝑗}, {𝑟𝑗}) = [ ⋃ 𝑆𝑗
𝐿(𝜃𝑗)

𝑗∈𝑁𝑝 𝑠.𝑡.𝑙𝑗=𝑧

]   𝑈 [ ⋃ 𝑆𝑗
𝑅(𝜃𝑗)

𝑗∈𝑁𝑝 𝑠.𝑡.𝑟𝑗=𝑧

] (6) 

 

The objective function E associated with the current level of the DAG is a function of {𝑆𝑧}𝑧∈𝑁𝑐
. 

The problem of learning the parameters of the decision DAG can be formulated as a minimization 

of the objective over 𝜃𝑗 , 𝑙𝑗 and 𝑟𝑗. The task of learning the current level of DAG is written as (7): 

      𝑚𝑖𝑛 𝐸({𝜃𝑗} , {𝑙𝑗}, {𝑟𝑗})                                         
𝜃𝑗∈𝑁𝑝

, 𝑙𝑗 ∈ 𝑁𝑐 , 𝑟𝑗 ∈  𝑁𝑐 
(7) 
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The information gain objective requires the minimization of the total weighted entropy of 

instances, defined as (8): 

𝐸({𝜃𝑗}, {𝑙𝑗}, {𝑟𝑗}) =  ∑ |𝑆𝑧|𝐻(𝑆𝑧)

𝑧 ∈ 𝑁𝑐

 (8) 

 

𝑆𝑧 has been defined before in (6) and H(S) is the Shannon entropy of the class labels y in the 

training instances (x,y) ∈ S. The minimization problem (1) is hard to solve exactly; there are two 

local search-based algorithms for its solution, but this paper presents only the most effective [58], 

LSearch. The LSearch Method starts from a feasible assignment of the parameters and then 

alternates between two coordinate descent phases. In the first phase (split-optimization), it 

sequentially goes over every parent node k in turn and it tries to find the split function parameters 

𝜃𝑘 that minimize the objective function, keeping the values of {𝑙𝑗}, {𝑟𝑗} and the split parameters of 

all other nodes fixed (9): 

for k ∈ 𝑁𝑝 

𝜃𝑘  ← 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑘
′  𝐸(𝜃𝑘 

′ 𝑈 {𝜃𝑗}𝑗∈𝑁𝑝\{𝑘}, {𝑙𝑗}, {𝑟𝑗}) 

 

(9) 

The minimization over 𝜃𝑘
′  is done by random sampling similarly to Decision Forest. 

In the second phase (branch-optimization), the algorithm redirects the branches emanating from 

each parent node to different child nodes, to yield a lower objective (10), (11): 

 

for k ∈ 𝑁𝑝 

𝑙𝑘  ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑙𝑘
′ ∈𝑁𝑐

 𝐸({𝜃𝑗}, 𝑙𝑘 
′ 𝑈 {𝑙𝑗}𝑗∈𝑁𝑝\{𝑘}, {𝑟𝑗}) 

 

(10) 

for k ∈ 𝑁𝑝 

𝑟𝑘  ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑟𝑘
′∈𝑁𝑐

 𝐸({𝜃𝑗}, {𝑙𝑗} 𝑟𝑘 
′ 𝑈 {𝑟𝑗}𝑗∈𝑁𝑝\{𝑘}) 

 

(11) 

The algorithm stops when there are no changes and it is guaranteed to converge. 

Moreover, Decision Jungles have stronger generalization performance than decision trees, as can 

be seen in Figure 3:  

 

 
 

Figure 3. Generalization of DAG for “background” classification 
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Figure 3 shows how a DAG works for classifying image patches as belonging to background, 

square, or rectangle classes. A stronger generalization means, using the Figure 3 for the 

explanation, that with DAGs differently colored patches of background (yellow and green), for 

example, are merged into the same node, because of similar class statistics. So, if the algorithm 

detects that two nodes are associated with similar class distributions, it merges them, and the model 

gets a single node with training examples for both the previous nodes. This helps capture the degree 

of variability intrinsic to the training data and reduce the classifier complexity. 

6. Methodology 

For the implementation of the anomaly detection system for a multiphase process using supervised 

classification algorithms, the logical scheme in Figure 4 is proposed.  

 
Figure 4. Methodology logical scheme 

 

The presented model is a supervised learning model, that works with labeled data samples as inputs 

to find relations among process parameters (data) and process condition, e.g. anomaly (label). The 

model uses those relations to classify future unlabeled data. Available data are time-series, with 

the measurements of some parameters involved in the production process. Thus, the first steps of 

the methodology consist of build a labeled dataset. This requires a “phase labeling” step and a 

“criticality labeling” step. 

Please, refer to the following notation in the later explanations:  
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• 𝑛 =  Measured process parameters 

• 𝑥𝑖(𝑡) =   Process parameter i, measured at time 𝑡, with 𝑖 ∈ [1, 𝑛] 
• 𝑚 =  Number of process phases 

• 𝑝𝑗(𝑡) =   Process phase 𝑗 at time 𝑡, with 𝑗 ∈ [1, 𝑚] 

• 𝑤 = Number of criticality levels 

• 𝑐ℎ(𝑡) =   Criticality level at time 𝑡, with ℎ ∈ [1, 𝑤] 
• 𝑥𝑘𝑗(𝑡) = Measured significant process parameter to label the process phase 𝑗,  with 𝑘 ≤ 𝑛 

• 𝛷(𝑥𝑖(𝑡)) = Predictive function of 𝑥𝑖(𝑡) for y 

• 𝑖̂ = Set of parameters among the 𝑛 process parameters, with 𝑖̂ = {ℎ},   ℎ = 1 … , 𝐼 

 

In these situations, the comprehension of the production process, or process knowledge, is 

necessary; this requires interviewing who manages and who carries out the process, considered the 

experts of the process. The experts of the process have three main important roles: 

 

1. Expected data values and trends depend on what is going on in the process, thus the model 

requires a logical decomposition of the production cycle. Thus, the experts of the process 

explain to the data-scientist the process phases, adding meanings to the collected data, 

values, and trends. 

2. They explain the phase signals, that are the combinations of selected parameters and their 

expected values and trends. The experts of the process guide the data-scientist to select the 

parameters among all those monitored that should bring information about the anomaly 

detection, for every phase of the process. The expected values and trends of the selected 

parameters consider historical values, legal requirements, company standards, good 

manufacturing practices. 

3. They help with the definition of the rules of labeling; the labeling will be explained below. 

 

The experts of the process involved in the development of the methodology are: 

 

• MAINTENANCE MANAGER: he explains and clarifies the maintenance procedures 

applied and the needs of the plant, as well as the objectives to be pursued with the 

methodology. He shows to the authors the historical analyses and reports about the 

accidents and the maintenance actions in the line. He also describes the process 

requirements levels (e.g. from GMP, safety, and other compliances) and the maintenance 

requirements levels (e.g. from service continuity, historical costs of interventions). 

• PRODUCTION LINE MANAGER: he explains and clarifies the real functioning of the 

production process. He enables the comprehension of the production process, entering in 

the details of the specific production phases, and the already known correlation between 
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process phases and input parameters. He illustrates the consequences of the criticality in 

each phase on the entire production process, highlighting the most troubling of them. The 

production line manager is fundamental to fully understand the difficulties in the 

identification of the process phases. 

• IT AREA MANAGER: the role of this manager has been after a full understanding of the 

production process. He clarifies the condition monitoring and the data recording process. 

In particular, he explains the measurement frequency, the data aggregation process, the 

motivation of some missing values, the unavailability of further input parameters. He is the 

person who physically extracted from the ERP the data for the analysis. 

 

The first three meetings were set individually with the three managers, in the order of maintenance 

manager, production line manager, and IT area manager. The following two meetings have 

involved the three experts together, for coordinating the development of the methodology. 

 

At the beginning of the experiment, it is necessary to identify the process parameters, 𝑥𝑖, and to 

measure them in predefined time-lapse for structure a time-series composed by several 𝑥𝑖(𝑡1), if 

this time-series is not available. The time-series will be the initial dataset for the following steps. 

The first practical step is to label the dataset with the process phases of the production process. For 

doing that, it is necessary to define which are the parameters that determine the onset of a phase. 

This is a qualitative step, because it does not measure or analyze the performance of the phases, 

but it only determines their sequence. 

The process phases can be identified in one or more of the following analysis. 

 

1. 𝑝𝑗(𝑡1) MEASURED →a historical dataset with the measurements associated with the 

phases is available. Some ERP (Enterprise Resource Planning) get this information, 

generally by manual signals from the process worker. With manual signals, the line 

operator registers firsthand in the ERP system at the beginning of the process phase. This 

kind of registration has some considerable problems: it is not always suitable, when the 

process phase is not clearly visible, e.g. where human intervention is not needed, and it is 

not reliable because of the human factors. A line operator could enter the production phase 

wrong or not timely. Both these human errors strongly compromise the effectiveness of the 

following anomaly detection process.  

2. 𝑝𝑗(𝑡1) is obtained for 𝑥𝑖̂  𝑀𝐼𝑁(𝑡1) < 𝑥𝑖̂ (𝑡1) < 𝑥𝑖̂  𝑀𝐴𝑋(𝑡1) → the process is in a specific 

phase when one or more parameters are in specific ranges. It is possible to link the phase 

to parameter limits, considering legal requirements, company standards, good 

manufacturing practices. For example, considering a spraying phase, there will be a 

specific target of the spray percentage that identifies this phase. 

3. 𝑝𝑗(𝑡1) is obtained for 𝑥𝑖̂ (𝑡1)  = 𝑓(𝑡1) → the specific phase is identified by a trend of one 

or more parameters. For example, the reduction of the temperature can be the symptom of 

the load in the machine of some materials with a lower temperature than the inside 

materials. 

4. 𝑝𝑗(𝑡1) is obtained for 𝑥𝑖̂ (𝑡1) = 𝑔(𝑥𝑖̂ (𝑡1 ± 𝑡′)) → the phase is correlated with the onset of 

the previous phase, the following phase, or both. The insurgency of a phase can be 

determined by what is happened previously or what will happen afterward. If the process 

cycle includes multiple instances of the same phase, but the expected values and trends 
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depend on the specific instance, it is important to automatically identify the number of its 

instances. Moreover, sometimes the easiest way to identify the phase is because it always 

follows another one. For example, a drying phase follows a spraying phase, that moistens 

the product and therefore makes necessary the drying phase. 

 

Substantially, when 𝑝𝑗(𝑡1) is not measured yet, it is possible to identify some “if-then-else” rules 

which determine the link between the measurements and a specific phase. 

This if-then-else approach is possible on historical data sets, while for a real-time identification it 

is generally not a suitable method, mainly for the following reasons: 

 

• In situations in which the identification of the phase depends on a trend of some parameters 

or it is a function of other phases it is impossible to implement a real-time analysis with if-

then-else rules. It becomes possible with a machine learning model; 

• With if-then-else rules, it is possible to create a labeled dataset, but when there is the 

attendance of some anomalies who break the rules it is impossible to determine the phases 

in real-time. The machine learning model can predict the phase even in these situations; 

• When 𝑝𝑗(𝑡1) is measured, the machine learning model can understand the links between 

the observed phases and the parameters. 

 

With machine learning, it is possible to enlarge the tolerance to anomalies analyzing the relative 

behavior of the other parameters. At the end of this step, the result obtained is a labeled dataset 

with the phase labeling inserts in it. 

The second step is the criticality labeling. The analysis of the effective performance of every phase 

defines the criticality with one of the three following quantitative steps: 

 

1. EVENT DRIVEN → the criticality labeling is available: there is, in fact, a historical 

dataset of the performances of every phase; 

2. REQUIREMENTS DRIVEN → compliance requirements are present as machine target 

and upper / lower limits. Therefore, the criticality of the phase depends on the position of 

the value considering the process compliance requirements; 

3. STATISTIC DRIVEN → the statistic analysis of the process labels the phase criticality. 

For every phase, one or more parameters are relevant for the phase performance, with 

specific thresholds to be defined. The thresholds can be defined in two principal ways: 

with control charts or with percentiles. The difference between these modalities is mainly 

their dynamicity. The control charts define a static range, it means that the thresholds of 

every criticality level are not computed by the system but are predefined based on some 

statistical analysis. So, for changing the thresholds it is necessary to repeat the statistical 

analysis for their definition. The percentiles, instead, are dynamic because the thresholds 

are computed by the system, based on the real values of the parameters measured over 

time; the percentiles are easily editable, and the system can quickly compute again the new 

thresholds. A correct and useful criticality labeling, according to us, can be: 

 

• 𝑐1 = WARNING  → the phase trend is slightly different than expected; 

• 𝑐2 = CRITICAL   → the phase trend is completely different than expected; 

• 𝑐3 = EXPECTED → the phase trend is coherent with expectations.  
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The criticality labeling is substantially a function of the input data 𝑥𝑖(𝑡) (12):  

𝑐ℎ(𝑡) = 𝛷(𝑥𝑖(𝑡)) (12) 

The importance of machine learning for real-time anomaly detection system can be summarized 

in different ways depending on the typology of criticality labeling: 

 

• When the criticality labeling is event-driven, the model is necessary in order to understand 

the correlation between the event and a specific trend of one or more parameters; 

• When the criticality labeling is requirement driven or statistical driven, the model is 

necessary to understand the correlation between the trend of two or more parameters. 

 

In both the situations, the link between the model and real-time data is present: the machine 

learning model guarantees the possibility of real-time implementation; likewise, the phase 

labeling, when the evaluation of the performance requires more than one parameter to be measured, 

the model during the training provides the correct prediction in real-time. At the end of this step, 

the output is a labeled dataset with criticality labeling inserts in it. Now it is possible to start the 

machine learning model training; the model develops the ability to independently and in real-time 

predict the process phase and its criticality level, through the study of the labeled dataset.  

The trained machine learning model is now available for the multiphase anomaly detection system; 

in fact, the trained model enables to understand the relations between parameters, process phases, 

and criticality levels. The inputs are the real-time measurements of the machine parameters. 

After all these steps the result is a machine learning anomaly detection system that determines the 

process phase and its criticality level, independently and in real-time, in few seconds. 

7. Case study 

The case study is structured on a dataset from a pharmaceutical company. It performs a fluid bed 

granulation. Granulation is a very important process for pharmaceutical companies because it 

produces tablets and capsule dosage forms, increasing the uniformity of drug distribution in the 

product and its physical properties. Granulation methods can be divided into two major types: wet 

methods which utilize some form of liquid to bind the primary particles, and dry methods which 

do not utilize any liquid [68] The case study belongs to the wet method process. It is an excellent 

case study because granulation involves important problems with operators and plant safety: 

 

• The high temperatures, the possible introduction of nitrogen and the non-properly 

management of vacuum can generate explosions or the degradation of the product; 

• There is the possibility of pollution, due to the condensation of the evaporated liquid, with 

high-level risk for the operators; 

• The granule breakage entails the emission of powder, with high-level risk for the operators. 

 

In general, pharmaceutical plants every day should consider the risk of emission of toxic material.  
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Practically, the model gets the industrial process and the product parameters, to identify anomalies 

and criticalities in production. The dataset consists of 16 parameters, referred to the process or the 

product; these parameters are:  

 

• 𝑥1 = Date; 

• 𝑥2 = Spray Percentage; 

• 𝑥3 = Air IN Flow; 

• 𝑥4 = Spray Flow; 

• 𝑥5 = Air Pressure Spray; 

• 𝑥6 = Microclimate Pressure; 

• 𝑥7 = Cleaning Pressure; 

• 𝑥8 = Air IN Temperature;  

• 𝑥9 = Washing Air Temperature; 

• 𝑥10 = Air OUT Temperature; 

• 𝑥11 = Product Temperature; 

• 𝑥12 = Cooling Temperature; 

• 𝑥13 = Absolute Air IN Humidity; 

• 𝑥14 = Relative Air IN Humidity; 

• 𝑥15 = Product Humidity; 

• 𝑥16 = Mill Speed. 

 

Every data point 𝑣 = {𝑥1, … , 𝑥16} is a set of 16 measures at the same time. The time rate is 1 

minute, it means that the sensors take a data point every minute, for a time frame of 10 months 

with 3 shifts production.  

 

As explained before, the model considers two classifications: the first classification identifies the 

process phases, the second classification evaluates the phase performance and it shows anomalies.  

The analyzed process consists of 7 phases:  

 

• 𝑝1 = Initializing; 

• 𝑝2 = Conditioning; 

• 𝑝3 =1st Spray; 

• 𝑝4 = Heating; 

• 𝑝5 = 2nd Spray; 

• 𝑝6 = Drying; 

• 𝑝7 = Unloading. 

 

Beyond these phases, there is a new phase that indicates whether the measurement is not in a 

production cycle, named “not producing”, as 𝑝8, as stated. Experts of the process and its real-time 

analysis on field clarify that Air IN Flow >1 and Microclimate Pressure >1 characterize the 

production cycle. Figure 5 shows the typical trend of a production cycle, highlighting the most 

significant parameters. This phase considers a single criticality level, specific only for the situation 

of not producing, i.e. “not in production”. From Figure 5 to Figure 8 the presented data are 

normalized. 
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Figure 5. Run chart of 5 parameters in the granulation production cycle 

 

As explained in the methodology, the process parameters correlations to process phases are 

available from interviews with the process experts, as follows: 

 

• Conditioning is characterized by the microclimate pressure between a minimum value and 

a maximum value.  

• For 1st Spray and 2nd Spray, there is a limit spray duration, which is 25 s. After that, there 

was the initialization of a count that grows if spray percentage(t)>1 and spray 

percentage(t+1) ≥ 0. When the count, bigger than 0 for both phases, is minor than spray 

limit duration the process phase is 1st Spray, else it is 2nd Spray. 

• Unloading is characterized by mill speed with a constant value of 500 rpm. 

• For the other phases, there are not specific and univocal characteristics that determine the 

phase. These phases have been interlocked with the previous phase and the following 

phase. It means, for example, that the heating is inserted between 1st Spray and 2nd Spray. 

 

Thus, the process phases are not always trivially separable. Time series are inhomogeneous and 

the experts of the process refer that the analysis of data does not permit the identification of every 

process phase. This situation makes it necessary to use the first classification to understand the 

intrinsic and hidden correlations between the input parameters and the phases of the process. 

 

After that, the criticality labeling can start; the first part of this step is to associate every phase to 

one or more parameters that influence process phase performance. In the case study, once again 

analyzing the process and talking with process experts, the links between phases and parameters 

are the following: 

 

• Initializing → Air IN Flow 

• Conditioning → Air IN Flow and Air IN Temperature 

• Heating → Air IN Flow, Microclimate Pressure and Absolute Air IN Humidity 

• Drying → Air IN Flow and Absolute Air IN Humidity 
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• Unloading → Air IN Flow 

• 1stSpray and 2ndSpray → Absolute Air IN Humidity 

 

The following figures show some examples of correct and incorrect trends of relevant parameters 

for some specific phases. The chosen phases are the phases more relevant for plant safety and the 

quality of the product. Figure 6 and Figure 7 show the correct trend and the incorrect trend of 

Absolute Air IN Humidity in 1st Spray and 2nd Spray: in fact, the incorrect functioning of these 

phases involves throwing the whole product without the possibility of recovery. Moreover, these 

phases are correlated with the peristaltic pump and the air handling unit; the incorrect functioning 

of these phases involves dangerous situations for those nearby. Observing the parameters of these 

phases makes the detection easier if the valve of the air handling unit is not properly closed or if 

the rotor of the peristaltic pump is worn, ensuring the safety of the operators and the plant. Figure 

8 shows the correct and the incorrect trend of Air IN Flow for the Conditioning phase; this is an 

important phase because it guarantees that the environment is suitable for the operation of the 

machine and its functioning is correlated with the air handling unit, that involves, as explained 

before, important problems for plant safety. 

 

 

Figure 6. Incorrect trend (left) and correct trend (right) of Absolute Air IN Humidity (g of water/Kg of air)    

in 1st Spray 
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Figure 7. Incorrect trend (right) and correct trend (left) of Absolute Air IN Humidity (g of water/Kg of air)   

in 2nd  Spray 

 

 

 
 

Figure 8. Incorrect trend (right) and correct trend (left) of Air IN Flow in Conditioning 
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An important goal achieved is the correspondence between phases and specific maintenance 

interventions on some components of the granulator; the anomaly detection system is in real-time 

connection with the maintenance. 

 

Granulator components associated with phases are: 

 

• Windmill anemometer → All phases; 

• Chiller → 1st Spray and 2nd Spray; 

• Peristaltic pump → 1st Spray and 2nd Spray; 

• Sifter → Unloading; 

• Air handling unit → All phases; 

• Product temperature sensor → All phases. 

 

The following step of the methodology consists of criticality labeling. The focus is on the 

prediction of the criticality level for every phase, it means an indication of how much the behavior 

of every phase is consistent with the desired trend. There are two groups of phases: for “1st Spray” 

and “2nd Spray” there are three criticality levels, that are “Expected” if the phase behavior is 

desirable, “Warning” if the phase behavior is not very consistent with the desired trend and 

“Critical” if the phase behavior is strongly inconsistent with the desired trend; for the others, there 

are two criticality levels, with “Expected” if the phase behavior is desirable and “Warning” in all 

the other situations. This difference comes from a difference of relevance between the phases: the 

experts of the process consider “1st Spray” and “2nd Spray” the most problematic phases; in fact, 

anomalies in these two phases lead to the elimination of the whole product batch, without the 

possibility to recover it. Moreover, the product is in a more dangerous physical-chemical state, and 

the plant safety deals with important risks; for this reason, the maintenance manager and the 

production line manager ask for a more detailed analysis for these phases. Moreover, the process 

history shows the worst performances in these two phases. For all the other phases the recovery 

possibility is substantially 100%, therefore it is not necessary to consider the level “Critical”. 

Obviously, the identification of criticality should not consider the measurements that are not in a 

production cycle. The criticality identification should always consider editable thresholds; it is 

important to structure a model that is reusable, easily modifiable, adaptable, and dynamic. It means 

that there are not predefined thresholds, but thresholds are computed from the system or defined 

by the company.   

Percentiles help the automatic definition of thresholds, with a method adaptable to every type of 

dataset or production system; moreover, with percentiles the single company decides the tolerance 

level for every machine or process phase, based on, for example, the affordable risk level. Thus, 

the threshold is the m-th percentile of the collected values, which is the value that cuts off the first 

n percent of the data values when it is sorted in ascending order.  

In the case study, the company was involved in the percentiles definition as well as the thresholds 

choice, all expressed in -th percentile, are in Table 1. The percentiles definition relies on the 

historical data about maintenance interventions and accidents, as well as the meetings with the pre-

mentioned experts. They supplied the process requirements levels (e.g. from GMP, safety, and 

other compliances) and the maintenance requirements levels (e.g. from service continuity, 

historical costs of interventions). These requirements can be considered as thresholds, from which 

percentiles are calculated. Remarkably, thresholds permit the identification of the criticality only 
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if a historical dataset analysis is available; when the anomaly detector input is a single set of 

measures without previous data and generic contextualization of the data it is not possible to apply 

percentile analysis to identify the anomaly. Moreover, the machine learning algorithm helps in 

identifying further correlations and data patterns not already known by the experts. 

Referring to the notation in section 6: 

 

• 𝑐ℎ(𝑡) = “Warning” if 𝑥𝑘𝑗(𝑡) < WLL or 𝑥𝑘𝑗(𝑡) > WUL, where WLL is the warning 

lower level, WUL is the warning upper level, e.g. the warning thresholds; 

• 𝑐ℎ(𝑡) = “Critical” if 𝑥𝑘𝑗(𝑡) < CLL or 𝑥𝑘𝑗(𝑡) > CUL, where CLL is the critical lower 

level, WUL is the critical upper level, e.g. the critical thresholds. 

 

Please note spray phases only consider the “Critical” level.  

 
Phase Parameter CLL WLL WUL CUL 

Initializing Air IN Flow  4 90  
Conditioning Air IN Flow  5 97  

Air IN 
Temperature 

 5 97  

Heating Air IN Flow  3 97  
 Microclimate 

Pressure 
 1 98  

 Air IN Humidity 
Absolute 

 4 90  

1st Spray Absolute Air IN 
Humidity 

2 5 90 95 

Drying Air IN Flow  2 95  
 Air IN Humidity 

Absolute 
 2 95  

2nd Spray Absolute Air IN 
Humidity 

2 5 90 95 

Unloading Air IN Flow  3 98  

 

Table 1. Criticality thresholds 

 

The knowledge is now available on: 

 

• the process phases definition; 

• the relevant parameters for every process phase; 

• the criticality thresholds; 

• the correspondences between anomalies in process phases and the granulator components. 

 

Other popular data analysis techniques could provide thresholds, i.e. median absolute deviation 

and the inter-quartile-range-filtering. The first one is defined as the median of the absolute 

deviations from the data's median; the inter-quartile-range as the range between the first quartile 

(25th percentile) and third quartile (75th percentile) and the upper bound and the lower bound are 

computed by adding 1.5 times the inter-quartile-range to the third quartile or subtracting 1.5 times 

the inter-quartile-range from the first quartile. The multiplier 1.5 can be handled according to the 

necessity of the analysis. Those techniques rely only on the distribution of values, not considering 
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how the historical trend is related to the process requirement levels and maintenance requirement 

levels.  

Thresholds can not be used in a real-time approach where the system does not have access to 

historical data. Moreover, from the labeling step, the machine learning classification could identify 

a not evident pattern in data, and thus it identifies criticality even if thresholds are not passed. The 

main aim of the methodology is its applicability in real-time and not analyzing historical data. 

 

It is now possible to create the labeled dataset. Two Python scripts have been developed to support 

the labeling phases: the first adds to every line of the dataset the label of the process phase, and 

the second adds the label of the measurement criticality level. The labeled dataset is the input for 

the predictive model. 

The dataset for the identification of the process phases is in Table 2. 

 
Process Phase Instances 

Initializing 3434 

Conditioning  5366 

Heating  5219 

1st  Spray 3633 

Drying  13681 

2nd Spray  7969 

Unloading  7468 

Not producing 85371 

 
Table 2. Dataset for the identification of process phases 

 

The dataset for the evaluation of the performance is in Table 3. 

 
Performance Class Instances 

Expected 34855 

Warning 11107 

Critical 808 

Not in production 85371 

 
Table 3. Dataset for the evaluation of the performance 

 

The number of “Critical” is low because it is present only in two phases, i.e. 1st Spray and 2nd  

Spray, and it is rare. “Expected” and “Warning” are in every phase. 

For both the algorithms, RFA and DJA, the choice of parameters consider previous applications 

of these algorithms.  
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Specifically, the authors have considered previous approaches available in “Azure AI Gallery”, 

that is a gallery in which the community of developers and data scientists can share solutions 

implemented with Azure Machine Learning Studio, the platform used by authors for structured the 

predictive solutions. The authors have started with a setup confirmed with previous performance 

in different contexts.  

The impact of these setup parameters and the model sensitivity analysis will be the focus of further 

researches.  

 

The RFA parameters for this model are summarized in Table 4. 
 

 
Parameter Value 

Number of decision trees 8 

Maximum depth of decision trees 32 

Number of random splits per node 128 

Minimum number of samples per leaf node 1 

Allow unknown values for categorical features Yes 

 

Table 4. Parameters of RFA 

 

• Number of decision trees: it sets up the maximum number of decision trees; a bigger 

number of trees increases the coverage of parameters combinations, at the expense of the 

time training. The case study presents a big dataset, the necessity of real-time 

implementation, the thresholds of the model can be changed frequently, and training could 

often take place. 

• Maximum depth of decision trees: it sets up the maximum depth of every tree or the 

length of the longest path from the root to the leaves of the tree; increasing the depth of the 

trees means increasing the precision of the model, increasing, therefore, training time and 

overfitting risk.  

• Number of random splits per node: it sets up the number of splits for every node, which 

is the number of random values to test. 

• Minimum number of samples per leaf node: it denotes the minimum number of cases 

needed for the creation of a new leaf of the tree, or how many times an event must occur 

for this "rule" to have value. Working on anomaly detection, even the single occurrence of 

an event should be considered. 

• Allow unknown values for categorical features: it lets the algorithm consider an input 

unknown value associated with an output value. This option has been set to accept not only 

values that were present in the training data. 

 

Similarly to Table 4, the DJA parameters for this model are summarized in Table 5: 
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Parameter Value 

Number of decision DAGs 8 

Maximum depth of the decision DAGs 32 

Maximum width of the decision DAGs 128 

Number of optimization steps per decision 
DAGs layer 

2048 

Allow unknown values for categorical features Yes 

 

Table 5. Parameters of DJA 

 

• Number of decision DAGs: the maximum number of graphs that can be created in the 

ensemble.  

• Maximum depth of the decision DAGs: the maximum depth of each graph.  

• Maximum width of the decision DAGs: the maximum width of each graph. A smaller 

value of width improves accuracy, keeping memory constant, but must be trained longer.  

• Number of optimization steps per decision DAG layer: how many iterations over the 

data to perform, when building each DAG.  

• Allow unknown values for categorical features: allows the algorithm to consider an 

unknown input value associated with an output value. This option has been set to accept 

not only values in the training data. 

 

Both for RFA and DJA, 70% of the data went for the training, and 30% of the data for testing the 

model. The dataset is large enough for accurate training and for testing the model on an important 

data set. 

The models have reached important results; the general parameters of quality for the algorithms 

are Precision and Recall. The precision explains which is the correct percentage of positive 

predictions, and the recall measures the percentage of correctly predicted positive events.  

The formulas for these measures focus on the importance of retrieval of the positive cases (Table 

6).  
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Measure  Formula Evaluation focus 

Precision  𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

Agreement of predictions class-by-

class within the real data.  

E.g. correct predicted “Warning” 

versus all predicted “Warning” 

Recall 

 

  

 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

Coverage of real data class-by-class 

by the predictions.  

E.g. True predicted “Warning” 

versus all real data “Warning” 

F-Score  
2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Harmonic average of precision and 

recall 

 

 

Table 6. Measures of the classification 

 

Since the problem is a multi-class classification problem, with the prediction of one of the three 

levels of criticality (“Expected”, “Warning”, Critical”), true positives are the sum of the calculated 

true positive for every class (e.g. levels of criticality). 

The authors have decided to discard the “Overall Accuracy”, that is the ratio between the number 

of correctly predicted items and the total number of items to predict, because of the imbalanced 

dataset: the number of “Warning” and “Critical” situations is strongly lower than the number of 

“Expected” situations. In fact, in production systems that “Warning” and “Critical” are exceptional 

situations, but “Expected” represents the common situation. Moreover, a false negative prediction 

for “Warning” or “Critical” can involve accidents and not-timely maintenance, and recall is 

important to quantify these occurrences. Similarly, it is important having few false positives, to 

guarantee a lower number of non-necessary stop or downtime, and precision is the correct measure 

for this performance. About this contextualization, precision represents good predictions, focusing 

on false positives, and recall represents good predictions, focusing on false negatives. Moreover, 

based on [69], the authors have considered some invariance properties of measures, evaluating the 

most important for the analyzed case. Firstly, it is important to consider that precision and recall 

do not depend on True Negative (TN), but only on the correct labeling of positive examples (True 

Positives-TP) and the incorrect labeling of examples (False Positives-FP and False Negatives-FN). 

These characteristics accord the anomaly detection in a production process strongly prefers to be 

unbalanced toward positive prediction, in a precautionary principle approach: a false alarm is 

better than an unpredicted alarm. Precision and Recall are invariant under the change of TN, where 

a measure is invariant under a property if its value does not change when the confusion matrix 

suffers a specific change because the measure does not detect the change in the confusion matrix 

[69]. 

For both metrics, there are micro and macro averages. Macro-average means that the metric is 

computed for every class independently and then there is the average of these values; micro-

average instead computes the metric with all data and for every class. In multiclass classification, 
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micro-average is preferred when the dataset is imbalanced, so the authors have considered micro-

average precision and micro-average recall. In conclusion, both precision and recall have a very 

good performance if there is an uneven class distribution, as in the presented situations. They both 

focus on the performance of positives classification.  

The inputs of the methodology are the 16 inputs presented at the beginning of section 6. 

Methodology, i.e. from x1 to x16. Starting from these inputs, two of them are not considered in the 

methodology, i.e. x1 (Date) and 𝑥15(Product Humidity). x1 does not add useful information for 

the evaluation of the process and 𝑥15 assumes always the same value, becoming invariant for the 

analysis. So, at the end of this cleaning process, the inputs are 14. The inputs are getting raw, as 

shown in Figure 5, Figure 6, Figure 7, and Figure 8, but not normalized. Based on these inputs, the 

outputs are two: the process phase classification, with 8 possible classes, and the criticality level 

of the measurements, with 4 possible classes, which is the result of the anomaly detection process. 

The original dataset contains 132141 instances, has been split in 70% for the training data, and 

30% for the test data. In conclusion, the training dataset contains a 92498 x 16 table (because it is 

labeled, it means with the evidence of the process phase and the criticality level) and the test data 

contains a 39643 x 14 table (because it is unlabelled).  

For the cross-validation, the training dataset has been divided into 10 sub-datasets, named also 

“folds”. In every fold, a part of the data is used for the training process and the remaining part, 

also called holdout fold is used to test and validate what learned during the training step. 

The authors have carried out the comparison between criticality class classification, i.e. anomaly 

detection, with and without the proposed methodology, that is with and without the process phase 

identification step before the anomaly detection step. 

The anomaly detection process without the first step of the methodology, i.e. the process phase 

identification, cannot achieve satisfactory results. The results on the test dataset are shown in 

Figure 13. The authors have applied a well-known anomaly detector, the RFA. Moreover, authors 

have implemented the tune of the hyperparameters on the training dataset to find the best settings 

of the algorithm. A hyperparameter is a parameter whose value is set before the learning process 

begins. The other parameters are the ones obtained via training. The tune of the hyperparameters 

builds and tests multiple machine learning models, using different combinations of settings, and 

compares metrics over these models to get the combination of settings with the best performance. 

In particular, the authors have considered the F-Score as a metric of this tune of the 

hyperparameters. Especially, the authors have tested the hyperparameters using the randomized 

search method, it means randomly selected parameter values over a system-defined range, 

specified in the following list. Even in this case, the authors have applied the cross-validation to 

the training dataset, for ensuring the best choice of the hyperparameters. The tune of the 

hyperparameters on the training dataset for RFA ends with the best F-Score of 97,9%. These results 

may lead to erroneous considerations. Looking at  Figure 13 one can note that without the proposed 

methodology, the algorithm is not able to properly detect the critical and the warning class on the 

test dataset. The value of F-Score is affected by the higher number of the two classes correctly 

predicted by the algorithm. The tune of the hyperparameters tested 500 different settings 

combinations on the training dataset. The set thresholds for the tune of the hyperparameters of the 

algorithm are: 

 

• RANDOM FOREST ALGORITHM: 
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o Number of decision trees: 1-500.  

o Maximum depth of the decision trees: 1-500 

o Number of random split per node: 1-500 

o Minimum number of samples per leaf node: 1-100 

 

The best settings results:  

 

• RANDOM FOREST ALGORITHM: 

 

o Number of decision trees: 63 

o Maximum depth of the decision trees: 76 

o Number of random split per node: 3 

o Minimum number of samples per leaf node: 4 

 

Considering the obtained results, except for a setting that achieves an F-Score = 0.463, all the 

tested settings achieve an F-Score between 0.639 and 0.976.  

The results of the tune of the hyperparameters on the training dataset are presented in Figure 9, 

Figure 10, and Figure 11. 

Figure 9 represents the different F-Score obtained with 500 different settings of the maximum 

depth of the decision trees and the number of decision trees.  

 
Figure 9. F-Score without the proposed methodology based on different maximum depths of decision 

trees and number of decision trees on the training dataset  

 

As well as Figure 9, Figure 10 represents the different F-Scores obtained with 500 settings of the 

number of random splits per node and the minimum number of samples per leaf node. 
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Figure 10. F-Score without the proposed methodology based on different random splits per node and 

number of samples per leaf node on the training dataset 

 

Finally, Figure 11 offers a complete overview of the tune of the hyperparameters process and its 

results. Every line in the figure represents a tested setting, presenting all of them, with the evidence 

of the F-Score obtained by each of them. The black line represents the best setting. 

 

 

Figure 11. F-Score without the proposed methodology based on different 4 hyperparameters 

combinations on the training dataset 

 

The distribution of the F-Score during the tune of the hyperparameters on the training dataset is 

presented in Table 7 and graphically in Figure 12. 

Represented Value Numerical Value 

MAXIMUM  0.98 

QUARTILE 3 0.90 

MEDIAN 0.88 

AVERAGE 0.86 

QUARTILE 1 0.85 

MINIMUM  0.46 

 

Table 7. F-Score distribution without the proposed methodology for the tune of the hyperparameters on 

the training dataset 
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Figure 12. F-Score distribution without the proposed methodology for the tune of the hyperparameters on 

the training dataset 

 

In Figure 12 the black line represents the median of the F-Score distribution and the red dot the 

average. 

It is necessary to clarify that in Figure 13, Figure 16 and Figure 17 the expression “not” represent 

the criticality level “not in production”. In Figure 14 and Figure 15 “not” represents the process 

phase “not producing”.  

The results of the anomaly detection without the proposed methodology on the test dataset are 

presented in Figure 13. 

 
Figure 13.Percentages of right predictions for every criticality level using RFA on the test dataset, without 

the proposed methodology 



 

 

29 

 

For the proposed methodology, the resultant metrics of the cross-validation on the training dataset 

are presented in Table 8, Table 9, Table 10 and Table 11. 

The cross-validation has been applied to evaluate the goodness of the model parameters presented 

in Table 4 and Table 5 and to verify the presence of overfitting.  

 
Algorithm Mean  Standard 

deviation 

Precision  0,999373 0,00047 

Recall 1 0 

F-Score 0,999525 0,0003 

 

Table 8. Cross-validation results applying RFA on the training dataset for the process phase 

identification with the proposed methodology 

 

Algorithm Mean  Standard 

deviation 

Precision  0,999232 0,001016 

Recall 0,999531 0,000554 

F-Score 0,999382 0,00072 

 

Table 9. Cross-validation results applying DJA on the training dataset for the process phase 

identification with the proposed methodology 

 

Algorithm Mean  Standard 

deviation 

Precision  0,99612 0,00473443 

Recall 0,997055 0,00289489 

F-Score 0,996586 0,00375 

 

Table 10. Cross-validation results applying RFA on the training dataset for the prediction of the 

criticality level with the proposed methodology 

 

Algorithm Mean  Standard 

deviation 

Precision  0,9886615 0,0100771 

Recall 0,9725915 0,03524998 

F-Score 0,980273 0,017948 
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Table 11. Cross-validation results applying DJA on the training dataset for the prediction of the 

criticality level with the proposed methodology 

 

After the cross-validation of the training dataset, the following step is the application of the trained 

methodology on the test dataset, that has never been seen by the model. As explained before, the 

test dataset represents 30% of the original dataset. 

The results of the application of the proposed methodology in the test datasets are presented in 

Figure 14 and Figure 15 for the process phases identification and in Figure 16 and Figure 17 for 

the anomaly detection. As explained at the beginning of the papers, the authors have decided to 

test even the applicability of DJA with the proposed methodology. 

Comparing the confusion matrices in Figure 16, Figure 17 and Figure 13 can be strongly asserted 

that the proposed methodology achieves better anomaly detection performance in production 

processes, to monitor more than one phase.  

 

The results for the identification of process phases on the test dataset are, considering the precision, 

the recall, and the F-Score, in Table 12: 

 
Algorithm Precision Recall F-Score 

RFA 99.97% 99.97% 0,9997 

DJA 99.96% 99.96% 0,9996 

 

Table 12. Precision, Recall and F-Score for the identification of process phases on the test dataset, with 

the proposed methodology 

 

Figure 14 and Figure 15 show the percentage of right predictions on the test dataset for both 

algorithms, for every process phase.  

 

Figure 14. Percentage of right predictions for every phase using RFA on the test dataset, with the 

proposed methodology 
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Figure 15. Percentage of right predictions for every phase using DJA on the test dataset, with the 

proposed methodology 

 

The authors can assert that the risk of overfitting is passed. Firstly, the presented results refer to 

the test data and not the training data. Both cross-validation and different tests using different sub-

datasets of test verified the absence of overfitting.  

 

The results for the evaluation of the performance on the test dataset are, considering the precision, 

the recall, and the F-Score, in Table 13:  

 
 

 

 

 

 

 
Table 13. Precision, Recall and F-Score for the evaluation of the performance on the test dataset, with 

the proposed methodology  

 

Figure 16 and Figure 17 show the percentage of right predictions on the test dataset for both 

algorithms, for every criticality level.  

 

Algorithm Precision Recall F-Score 

RFA 99.90% 99.90% 0,9990 

DJA 99.21% 99.21% 0,9921 
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Figure 16. Percentages of right predictions for every criticality level using RFA on the test dataset, with 

the proposed methodology 

 

 

Figure 17. Percentages of right predictions for every criticality level using DJA on the test dataset, with 

the proposed methodology 

 

The authors used Azure Machine Learning Studio to develop the anomaly detection model. Azure 

Machine Learning Studio is an on-line platform by Microsoft for building, testing and deploying 

personalized predictive analytics solutions. This platform enables not only the development of 

predictive models but also their availability as web service, to interact with external digital 

environments. 

 

8. Discussions and conclusions 

A methodology to achieve anomaly detection with real-time data from a multiphase industrial 

process is presented. The non-detection of the process phase leads to low results in predicting 

anomalies. A situation is anomalous if contextualized in the specific production phase. The 

literature considers production processes in which the production phase is well known, or focuses 

on a specific production phase. The paper proposes a two steps methodology for anomaly detection 

in this kind of production process. The first step identifies the process phase in running and the 

second step, based on the information gained in the first step, implements the anomaly detection. 

The proposed methodology applies in both steps classification algorithms. The anomaly detection 

step considers some predefined criticality classes. The development of the proposed methodology 

involved three experts of the production process presented in the case study, i.e. maintenance 
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manager, production line manager, and IT area manager. Their early contribution enables the 

concrete definition of the objectives of the methodology as well as the total understanding of the 

production process and the production settings. A future reproduction of the proposed 

methodology cannot be implemented without their full involvement. It is possible to assert that the 

model validity has been proved with a case study with an adequate number and variety of 

anomalous cases.  

The results presented in the case study demonstrate the need to apply the proposed methodology. 

In fact, with the proposed methodology, the anomaly detection step can guarantee high-

performance results with a precision and a recall that exceed 99%. Without the proposed 

methodology, the anomaly detection step fails to detect warning and critical situations in the 

production phases. 

The first step of the methodology, i.e. the identification of the process phases, is essential in several 

real production processes, where often there is no evidence of the production phase nor an evident 

correlation between the monitored process parameters and the phases of production. In these 

situations, a machine learning model can understand intrinsic and hidden relationships between 

process parameters and production phases, allowing the identification of the latter in an effective 

way, as shown in the case study presented.  

The tested algorithms provide some additional outputs on their effectiveness and their differences. 

One can affirm that the anomaly detection model must prefer RFA to DJA for the anomaly 

detection process. Based on the economical and safety necessities of the company, the 8.4% of 

error between warning (actual class) and expected (predicted class) and the 2.7% of error between 

critical (actual class) and warning (predicted class) carries out by the DJA cannot be neglected. 

Both RFA and DJA have few false anomalies.  

The authors presented a typical situation with a single training and test, form a batch dataset; future 

researches will study the effect of the repetition of training and test while gathering new data. With 

this ongoing training, the real anomaly detection systems will update the algorithm parameters; 

this is necessary if the class profiles change over time. Moreover, future researches will focus on 

the ordinality of the criticality classes as well as their interdependency. Furthermore, it will be 

interesting to test the behavior of different algorithms with the proposed methodology. Finally, 

future research will test DJA in other industrial situations, e.g. different situations of anomaly 

detection and different production processes. 
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