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Abstract

The nonlinear free vibration and principal parametric resonance of rotating beams are investigated

taking into account the lagging-axial coupling motion due to Coriolis force. This work tackles

analytically the problem of parametric resonances induced by periodic modulation of the angular

speed. The nonlinear equations of motion are obtained via a direct Lagrangian formulation. The

method of multiple scales is employed to perform a perturbation analysis of the nondimensional

equations of motion to deliver the effective nonlinearity of the lagging and axial modes and the

critical conditions for the onset of parametric resonances. A comprehensive study on the effect of

the rotational speed and the damping ratio on the modes nonlinearity and on the instability regions

is presented. Comparisons in terms of effective nonlinearity coefficient and principal parametric

resonance response were carried out so as to illustrate the importance of the exact geometrical

formulation against ad hoc beam theories such as the Euler-Bernoulli beam model.

Keywords: Rotating beams, nonlinear free vibrations, Coriolis force, method of multiple scales,

effective nonlinearity coefficient, parametric resonance.

1. Introduction

The wide use of rotating blades in aerospace industries, wind, water and gas turbines requires a

very accurate design involving, necessarily, sophisticated mechanical modeling. Rotating blades can

suffer different instabilities due to their flexibility and light damping. When a blade is subjected to

certain critical angular speeds, several autoparametric resonances can be excited involving various

modes, among which axial, flapping and lagging modes. Besides energy transfers between modes

giving rise to multimode vibrations, single-mode parametric resonances can be excited when the

angular speed has a slight periodic modulation such that the modulation frequency is close to twice
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the frequency of the parametrically driven mode. This can happen due to rotor unbalances or as a

consequence of prescribed ramps of the angular speed. This work addresses this kind of parametric

resonance by discussing the instability regions for various modes obtained in semi-closed form.

More complex instability scenarios can involve multi-mode parametric resonances of sum or

difference type whereby the mode frequencies are combined with the angular speed modulation

frequency to generate resonant frequencies. These types of resonances are not covered in the present

work. In addition, nonlinear free vibrations of rotating beams, whose kinematics are described by

an exact geometrical formulation, are examined. A deep investigation of the effect of the rotating

speed and the damping ratio on the nonlinear interactions between the beam lagging and axial

normal modes and the parametric resonance excitations are unfolded both as critical and post-critical

conditions. The importance of accounting for large amplitude deformations in slender structural

elements is largely documented in the literature.

Among several studies performed in the past, a novel geometrically exact nonlinear model of

highly deformable wings coupled with aerodynamic models, including nonlinearities associated with

the presence of aerodynamic stall and flow separation, was proposed by Arena et al. [1] to study

the aeroelastic behavior of HALE wings for an improved understanding of the nonlinear phenomena

occurring when the unsteady aerodynamic effects and dynamic stall contribute more significantly to

the wing dynamic behavior.

Hodges and Dowell [2] developed a formulation for rotating asymmetric, slender blades with span-

wise variable pretwist angle and a small precone angle. The authors introduced important nonlinear

terms such as the flapping-lagging inertial coupling terms and the bending-torsional coupling terms

which they may destabilize the hingeless rotor. The Hamilton ’s principle was employed by Crespo

da Silva and Hodges [3] to obtain the nonlinear equations of motion of a rotating blade with a precone

angle and a variable pitch angle. These equations were adopted in a successive work [4] to investigate

the equilibrium and stability of a uniform cantilever untwisted rotor blade in hover. The authors

inferred that the most significant cubic nonlinear terms playing a crucial role in the instability of the

blade are the structural geometric nonlinearities in the torsional equation of motion. By considering

the warping displacements and the Rodrigues angles, Hodges developed in [5] a nonlinear intrinsic

formulation for the dynamic analysis of rotating pre-curved and pre-twisted anisotropic blades. The

governing equations of motion were obtained via a mixed approach, resorting to Newtonian and

variational procedures. In [6], Hodges clarified the special influences of the boundary conditions

and the effects of the centrifugal forces on the eigenvalue problem of rotating Timoshenko beams.

Pesheck et al. [7] employed the invariant manifolds to construct the nonlinear normal modes of

rotating beams. The equations of motion were derived by using the Hamilton’s principle based

on the von Karman strain-displacement relationship. The authors calculated the nonlinear normal

modes to obtain the reduced-order models for rotating beams.
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By resorting to Hamilton ’s principle, Avramov et al. [8] obtained the equations of motion for

a slender rotating beam with variable cross section. The eccentricity of the elastic center with

respect to the center of mass was considered and the interaction between the flexural and torsional

modes was examined. The authors employed the method of multiple scales (MMS) to study the

type of nonlinearity in rotating blades. Saravia et al. [9] implemented the principle of virtual work

to derive the governing equations of thin-walled composite rotating blades. The warping of the

cross section and the eccentricity between the elastic and the center of mass were considered and

the parametric resonance of the blade was investigated by using the finite element method. The

authors concluded that by increasing the blade rotating speed the instability regions shift to the

right. Turhan and Bulut [10] developed a formulation for inward and outward oriented rotating

beams regarding the geometric and inertial nonlinearities up to the cubic order. They applied the

Lindstedt-Poincaré method on the discretized equations of motion obtained by Galerkin projection

to define the frequency response curves. The authors showed that the type of nonlinearity can

suffer changes by variations of the rotating speed. Valverde and Garcia-Vallejo [11] implemented an

absolute nodal coordinate formulation (ANCF) as well as a geometrically exact nonlinear formulation

based on the Cosserat theory of rods to model the rotating beams. The found instability was

related to a nontrivial configuration at a certain speed. By comparing the results of the ANCF

with those obtained via exact formulation, the authors showed that the instability is artificially

related to the ANCF. Qin and Li [12] studied the natural frequencies of rotating composite beams

in hygrothermal environment. The outcomes reveal the unappreciable influence of the temperature

change and moisture concentration on the natural frequencies. Sabater and Rhoads [13] examined

the parametric system identification of a viscoelastic microbeam with large amplitude vibrations

by curve fitting the experimental data using the approximate solution obtained by the averaging

method. The outcomes clarify that the approximate solution can give rise to some issues in the

determination of the precise parameters. Tresser and Bucher [14] developed a new formulation to

defeat the inability of measuring deformation for parametrically excited low-speed spinning shafts

subjected to unbalance forces. The proposed method increases the sensitivity to the balancing

process for such unbalanced forces without needing to rotate the shaft in the high-speed region.

A geometrically exact formulation of rotating blades, based on the Cosserat theory of rods, was

developed by Lacarbonara et al. [15]. The formulation accounted for the pre-twist angle and the

eccentricity between the mass and elastic centers. The internal constraint of unshearability was

introduced in the mechanical formulation and the exact expressions of the flapping-torsional and

lagging-axial equations of motion were linearized about the prestressed configuration by employing

the Taylor expansion. The authors conducted parametric studies to investigate the influence of the

rotating speed and the Coriolis forces on the flapping, lagging, torsional and axial natural frequencies.

Arvin et al. [16] derived the third order flapping and axial equations of motion for rotating isotropic
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blades by applying the Taylor expansion on the exact formulation developed in [15]. The direct

MMS was applied to the third-order equations of motion so as to investigate the effects of the

rotating speed on the softening or hardening behaviour of isotropic rotating beams in the flapping

modes. Arvin and Lacarbonara [17] extended their previous work [15] to composite rotating blades.

They derived the exact constitutive relations for the composite rotating blades employing the 3-

dimensional continuum theory. The direct MMS was employed to study the flapping-axial motion of

the rotating composite blades. Arvin and Bakhtiari-Nejad [18] employed the Hamilton ’s principle

to derive the governing equations of a rotating composite Timoshenko beam. They applied the

direct MMS to calculate the nonlinear normal modes of the rotating composite Timoshenko beams

in the absence of the internal resonances. They investigated the effects of the rotation speed and

the number of layers on the natural frequencies and the flapping backbone curves.

Nonlinear vibrations of rotating cylindrical shells undergoing thermo-mechanical loading were

investigated by Liu et al. [19]. The outcomes reveal the important effect of the parametric excitation

rather than the external excitation in the nonlinear dynamic response of the structure. Arvin

[20] employed the first order direct MMS versus the Runge-Kutta method to study the instability

region of a rotating isotropic beam which undergoes principal parametric resonance due to the

rotating speed variation. The equations of motion were based on the von Karman strain-displacement

relation. The author examined the damping coefficient and the mode number influences on the

parametric resonance instability regions. Some differences between the instability regions predicted

by the two mentioned methods were observed. To improve the understanding of the observed

differences between the numerical analysis and the MMS, Arvin et al. [21] applied the second order

MMS vs. the differential quadrature method to the governing equations of the rotating beams.

The authors further demonstrated that the instability region computed via second order MMS was

very close to that obtained via numerical analysis. Heidari and Arvin [22] studied the nonlinear

free vibrations of rotating Timoshenko beams reinforced by carbon nanotubes (CNT) employing

the direct MMS. The outcomes revealed that the type of nonlinearity depends on the type of CNT

distribution profile and the rotation speed for thin beams while for thick beams just the CNT

distribution profile has the decisive role. Effects of the CNT weight fraction onto the flutter and

post-flutter condition of nanocomposite panels were recently studied in [23] by means of the multiple

scales perturbation analysis which was carried out to characterize the flutter boundaries and the

type of Hopf bifurcation at flutter.

To the best of the authors’ knowledge, the nonlinear response of rotating beams subject to para-

metric resonances was not investigated in the literature. Hence, in this paper nonlinear vibrations

of the lagging-axial motion of symmetric rotating beams are deeply examined and the influence of

the Coriolis forces on the onset of the parametric resonance is investigated. For symmetric beams,

the flapping-torsional motions are coupled to each other due to the Coriolis forces which also cause

4



the coupling in the lagging-axial motions. Starting from the nonlinear mechanical model developed

by these authors in [15], the direct MMS is applied to the coupled equations of motion to charac-

terize the effective nonlinearity coefficient and to describe the stability regions of the parametric

resonance of the lagging-axial motion. In particular, case-studies are proposed to show the effects of

the angular speed and the damping ratio on the aforementioned nonlinear features of the paramet-

ric response of the lowest three lagging modes and the first and second axial modes, respectively.

Finally, comparisons in terms of effective nonlinearity coefficient and principal parametric resonance

response were carried out so as to illustrate the importance of the exact geometrical formulation

against ad hoc beam theories such as the Euler-Bernoulli beam model.

2. Mechanical model of rotating beams

The parametric model proposed in this work to study the nonlinear dynamic response of rotating

beams is based on a geometrically exact semi-intrinsic theory which yields the equations of motion

obtained within the context of an Updated Lagrangian Formulation (ULF) and fully derived in a

recent work of the present authors [15]. In particular, to describe the motion of the rotating beam,

two configurations are considered, namely, the prestressed equilibrium configuration, induced by the

centrifugal forces, and the current dynamic configuration B. The latter, together with a close-up

view of the beam cross section, is schematically depicted in Fig. 1.
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Figure 1: Schematic of the top-view of the beam in the stress-free B0 and the current B configurations

rotating about the axis i1 and a close-up view of the cross section.

The kinematic description of the beam motion is provided in the Cartesian frame {C, e1, e2(t), e3(t)}

fixed to the beam reference, stress-free, configuration B0. This frame has its origin C in the cross-

section attached to the rotor (i.e., the beam root cross-section) center of mass and it is rotating

rigidly with angular speed ωR(t) about the vertical axis i1 of the fixed frame {O, i1, i2, i3} (see

Fig. 1). In particular, the e3-axis is collinear with the beam span, while e1 and e2 axes lay in the

root cross-section plane, being, in turn, e1 collinear with the vertical fixed direction i1. Finally,

the beam current configuration B is described through the orientation of the local inertial frame
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{CE , b1(t), b2(t), b3(t)} where, for symmetric beams, the mass center C and the elastic center CE

are coincident. Further details of the kinematic and mechanical modeling adopted in this work can

be found in [15].

The rotating beam model, is parameterized in the space coordinate s, collinear with the beam

reference center line and having its origin in the center of mass C of the root cross-section and its end

at the beam tip, while the motion of the beam is described at time t. The reference position vector

of the space coordinate read as ro = (d3 +s)e3, where d3 is the rotor radius. On the other hand, the

position vector in the current, dynamic configuration is r = ro + u, where u = u1e1 + u2e2 + u3e3

is the incremental, dynamic displacement of the beam centerline and u1, u2 and u3 are the flapping,

lagging, and axial displacements, respectively.

The orthogonal tensor R(s, t), whose expression is provided in [15], is then introduced to describe

the orientation in space and time of the local inertial frame as bk(s, t) = R(s, t) · ek(t). The

latter, differentiated with respect to the space coordinate s, delivers the expression of the total

curvature vector µ̆ (i.e., ∂sbk(s, t) = µ̆(s, t) × bk(s, t), where ∂ stands for partial differentiation),

while ∂tbk(s, t) = ω̆(s, t) × bk(s, t) gives the expression of the total angular velocity vector ω̆(s, t).

The component forms of the curvature and the angular velocity vectors are reported in [15].

By introducing the vector no(s, t) of the prestressed contact force and the vectors f(s, t) and

c(s, t) of the incremental external force and couple per unit reference, respectively, the balance of

linear and angular momentum provides the expressions of the beam equations of motion. The latter,

describe the change of configuration between the prestressed equilibrium and the current, dynamic

configuration in terms of incremental unknowns. Finally, the vectorial form of the equations of

motion reads:

∂sn(s, t) + f = ∂tl̆ − ∂tl̆
o
,

∂sm(s, t) + ν̆(s, t) × n(s, t) + ∂su(s, t) × no(s, t) + c = ∂th̆ − ∂th̆
o
,

(1)

In Eq. (1), n = Q1b1 +Q2b2 +Nb3 and m = M1b1 +M2b2 +Tb3 represent the incremental contact

forces and contact couples, respectively, where (Q1, Q2) are the shear forces, N is the axial force,

(M1,M2) are the bending moments, and T is the torque. Moreover, ν̆(s, t) is the total stretch vector

defined as ν̆(s, t) ≡ ∂sr = η̆1(s, t)b1(s, t) + η̆2(s, t)b2(s, t) + ν̆(s, t)b3(s, t), with η̆1, η̆2 being the total

shear strains in the b1(s, t) and b2(s, t) directions, respectively, while ν̆ is the total stretch. Finally,

∂tl̆
o
, ∂tl̆, ∂th̆

o
and ∂th̆ are the time rates of change of linear and angular momentum, respectively,

in the prestressed (i.e., the parameters indicated by the superscript o) and the current configuration.

To study the interaction between the lagging and the axial motions, the beam dynamics are

restrained into the {b2(s, t), b3(s, t)} plane. In this case, the rotation tensor reads as follow:

R =


1 0 0

0 cos(θ1) sin(θ1)

0 − sin(θ1) cos(θ1)

 . (2)
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By neglecting the flapping displacement u1(s, t), the bending moment along b2(s, t) and the torsional

motion, the component form of the equations of the lagging and axial motion in symmetric rotating

beams can be written as

∂sQ2(s, t) cos(θ1(s, t)) − ∂sN(s, t) sin(θ1(s, t)) − µ̆1Q2(s, t) sin(θ1(s, t)) − µ̆1N(s, t) cos(θ1(s, t))

= ρA∂ttu2(s, t) − 2ρAωR∂tu3(s, t) − ρAω2
Ru2(s, t) − ρAω̇Ru3(s, t),

∂sQ2(s, t) sin(θ1(s, t)) + ∂sN(s, t) cos(θ1(s, t)) + µ̆1Q2(s, t) cos(θ1(s, t)) − µ̆1N(s, t) sin(θ1(s, t))

= ρA∂ttu3(s, t) + 2ρAωR∂tu2(s, t) − ρAω2
Ru3(s, t) + ρAω̇Ru2(s, t),

∂sM1(s, t) − ν̆Q2(s, t) + ∂su2(s, t)N0(s) = ρJS
11∂tω̆1 − ρJS

11ω̇R,

(3)

where ρA is the beam mass per unit reference length and ρJS
11 is the mass moment of inertia of the

cross section about the elastic center with respect to b1(s, t). Finally, the boundary conditions at

the root and at the tip of the beam read

u2(0, t) = 0, u3(0, t) = 0, and θ1(0, t) = 0,

Q2(L, t) = 0, N(L, t) = 0, and M1(L, t) = 0.
(4)

The same procedure proposed in [15] is here adopted to provide the curvature and the angular

velocity vectors, respectively, as

µ̆1 = ∂sθ1, µ̆2 = 0, µ̆3 = 0, (5)

and

ω̆1 = ∂tθ1 + ωR(t), ω̆2 = 0, ω̆3 = 0, (6)

respectively.

For the case of symmetric beams, the equations describing the prestress state and the correspond-

ing boundary conditions reduce to N0′(s) + ρAω2
R(d3 + s+ u0

3(s)) = 0 and u0
3(0) = 0, N0(L) = 0

(see [15]), respectively, where N0(s) represents the prestress axial force, the ′ denotes differentiation

with respect to s.

By assuming an isotropic, linear elastic, constitutive behavior of the beam, the axial force and

the bending moment can be then expressed in terms of the corresponding deformation modes as

N = EA(ν − 1) and M1 = EJS
11µ1, respectively, where ν and µ1 are the incremental stretch and

curvature, respectively, while EA is the axial stiffness and EJS
11 is the lagging flexural stiffness. The

slenderness of typical beams employed in helicopters or wind turbines is such to allow the assumption

of unshearable beam. Therefore, the internal kinematic constraint η̆2 = 0 is introduced to neglect the

effect of the shear strain along b2 and, hence, to obtain the relation between the bending rotation

θ1(s, t) and the components of the gradient of u(s, t) as θ1 = − arctan[∂su2/(∂su3 + 1/ν0
inv(s))],

where ν0
inv(s) = 1/(1 + u′

3
0(s)) is the inverse of the prestress stretch. Furthermore, the total stretch

reads ν̆ = [(∂su3 + 1/ν0
inv(s))2 + ∂su

2
2]1/2, while the expression of the shear force Q2(s, t) can be
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obtained from Eqs. (3)3 and substituted in Eqs. (3)1-2 to finally deliver the equations governing

the lagging and the axial motions.

Nondimensionalization

By introducing the following nondimensional parameters: ŝ = s/L, t̂ = ω0 t, û2 = u2/L, û3 =

u3/L, where ω0 =
√

EJS
22

ρAL4 , the nondimensional form of the lagging and axial equations of motion,

together with the associated boundary conditions at s = 1, read

I · ü + G · u̇ + L · u + i(2)
1 (u̇, u̇) + i(2)

2 (u, ü) + i(3)
1 (u, u̇, u̇) + i(3)

2 (u,u, ü)

+ n(2)(u,u) + n(3)(u,u,u) = 0,
(7)

{IBC21(ü2) + LBC21(u2) + i
(2)
BC21,1(u̇, u̇) + i

(2)
BC21,2(u, ü) + i

(3)
BC21,1(u, u̇, u̇) + i

(3)
BC21,2(u, u, ü)

+ n
(2)
BC21(u, u) + n

(3)
BC21(u, u, u)} |s=1= 0,

{LBC22(u2) + n
(2)
BC22(u, u) + n

(3)
BC22(u, u, u)} |s=1= 0,

{LBC22(u3) + n
(2)
BC3(u, u) + n

(3)
BC3(u, u, u)} |s=1= 0,

(8)

where u represents the 2 by 1 operator including the axial and the lagging components of the beam

motion, i.e., u = [u2(s, t)u3(s, t)]⊤, while I, G and L are the linear inertia and the gyroscopic and

elastic stiffness operators, respectively, whose expressions are given in Appendix I. Moreover, i(2)
0 ,

i(2)
1 , i(2)

2 and i(3)
0 , i(3)

1 , i(3)
2 are the quadratic and the cubic inertial terms, respectively, and n(2),

and n(3) represent the quadratic and the cubic stiffness, respectively. The quadratic operators are

defined in Appendix II, while, for the sake of brevity, the third order operators are omitted.

Further nondimensional parameters adopted are: λ = ωR

ω0
, α12 = EAL2

EJS
11

, α22 = EAL2

EJS
22

, α32 = EAL2

EJS
33

and GJS
33 = EJS

33
2(1+ν̄) , where ν̄ is the Poisson coefficient. Accordingly, for the case of symmetric

beams the only relations which provide the prestressed configuration and the associated bound-

ary conditions, respectively, are simplified to α22u
0
3

′′(s) + λ2(r + s + u0
3(s)) = 0 and u0

3(0) =

0, N0(1) = 0. Thus, the prestressed axial configuration has the following expression: u0
3(s) =

sin(λas) (sin(λa))λr+√
α22

(cos(λa))λ + cos(λas)r − s− r, where λa = λ√
α22

and r = d3
L .

3. Nonlinear free vibrations of the rotating beam

The direct method of multiple scales is adopted to perform a perturbation analysis of the equa-

tions of motion Eqs. (7) and (8). The asymptotic expansion of the lagging and the axial displace-

ments is considered in the form [26]: u2(s, T0, T1, T2) = εu2,0(s, T0, T1, T2) + ε2u2,1(s, T0, T1, T2) +

ε3u2,2(s, T0, T1, T2) and u3(s, T0, T1, T2) = εu3,0(s, T0, T1, T2)+ε2u3,1(s, T0, T1, T2)+ε3u3,2(s, T0, T1, T2),

where ε is a non-physical parameter used for ordering the nonlinearity of the system, and T0 is the

nondimensional fast time scale, while and T1 and T2 are the nondimensional slow time scales [24]. By

substituting the third-order expansion of the solution into Eqs. (7) and (8), a hierarchy of problems
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of order ε, ε2, and ε3, respectively, is obtained by equating to zero coefficients of like powers of ε.

Therefore, the lowest three perturbation problems are given by

Order ε
− I22D

2
0[u2,0] +G23D0[u3,0] + L22[u2,0] = 0,

− I33D
2
0[u3,0] +G32D0[u2,0] + L33[u3,0] = 0,

(9)

− IBC21D
2
0[u2,0] + LBC21[u2,0] = 0,

LBC22[u2,0] = 0,

LBC3[u3,0] = 0,

(10)

Order ε2

− I22D
2
0[u2,1] +G23D0[u3,1] + L22[u2,1] = RHS(O(2)

Eq2),

− I33D
2
0[u3,1] +G32D0[u2,1] + L33[u3,1] = RHS(O(2)

Eq3),
(11)

− IBC21D
2
0[u2,1] + LBC21[u2,1] = RHS(O(2)

BC21),

LBC22[u2,1] = RHS(O(2)
BC22),

LBC3[u3,1] = RHS(O(2)
BC3),

(12)

Order ε3

− I22D
2
0[u2,2] +G23D0[u3,2] + L22[u2,2] = RHS(O(3)

Eq2),

− I33D
2
0[u3,2] +G32D0[u2,2] + L33[u3,2] = RHS(O(3)

Eq3),
(13)

− IBC21D
2
0[u2,2] + LBC21[u2,2] = RHS(O(3)

BC21),

LBC22[u2,2] = RHS(O(3)
BC22),

LBC3[u3,2] = RHS(O(3)
BC3),

(14)

where the expressions of the right-hand side terms are omitted for the sake of brevity and simply

named RHS.

The first order problem, i.e. Eqs. (9) and (10), provides the linear free vibrations of the beam

and its solution can be written in the form

u2,0 = ψ2,k(s)[Ak(T1, T2)eiω2,kT0 + cc],

u3,0 = ψ3,k(s)[Ak(T1, T2), eiω2,kT0 + cc]
(15)

where ψ2,k and ψ3,k are the kth lagging and axial mode shapes, respectively, which are determined by

employing the Galerkin discretization approach [25], while Ak(T1, T2) and ω2,k are the kth complex

amplitude and lagging-axial natural frequency, respectively. Finally, i is the imaginary unit and cc

stands for complex conjugate.

The first order solution is then substituted into the right-hand side of the ε2 problem, i.e. Eqs.

(11) and (12), to calculate the second order solution. To eliminate terms causing the appearance
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of secular terms, the following solvability condition is enforced according to Fredholm’s alternative

Theorem:∫ 1

0
[ψ2,k(s) · C1,2(s, T1, T2) + ψ3,k(s) · C1,3(s, T1, T2)]ds

− C1,BC12(T1, T2) · ψ2,k(1) + C1,BC22(T1, T2) · ψ′
2,k(1) − C1,BC3(T1, T2) · ψ3,k(1) = 0,

(16)

where C1,2(s, T1, T2), C1,3(s, T1, T2) are the coefficients of the terms proportional to eiω2,kT0 in the

RHS of Eq. (11), while C1,BC21(T1, T2), C1,BC22(T1, T2) and C1,BC3(T1, T2) refer to the RHS of Eq.

(12). Therefore, the modulation in T1 of the amplitude Ak(T1, T2) is provided by the equation[
2(iω2,kξ1α12 − 2iω2,kξ2 − λξ3α12)

α12
+ 2iω2,kξ4 + 2λξ3 − iC1

]
D1Ak(T1, T2) = 0 (17)

where C1 = −2(ψ′
2,k|s=1)ω2,kψ2,k|s=1/α12 and the ξi coefficients are reported in Appendix III.

As clear in the modulation equation, Eq. (17), the complex amplitude Ak does not depend on T1,

that is, Ak(T1, T2) = Ak(T2). Therefore, the particular solution of the second order problem can be

written as

u2,1(s, T0, T1, T2) = h21(s)Ak(T2)Āk(T2) + h22,R(s)e2iω2,kT0Ak(T2)2 + ih22,i(s)e2iω2,kT0Ak(T2)2 + cc

u3,1(s, T0, T1, T2) = h31(s)Ak(T2)Āk(T2) + h32,R(s)e2iω2,kT0Ak(T2)2 + ih32,i(s)e2iω2,kT0Ak(T2)2 + cc

(18)

where h22,R(s), h32,i(s), h32,R(s), h22,i(s), h21(s) and h31(s) are functions of the space coordinate s

and are calculated by solving, by means of the Galerkin approach, the following ordinary differential

equations

λ2h22,R − 3α22(ν0
inv

′′)ν0
invh

′′
22,R/α12 − α22(ν0

inv
′)(ν0

inv
′′)h′

22,R/α12 − 2α22(ν0
inv

′)2h′′
22,R/α12

− α22ν
0
inv

2h′′′′
22,R/α12 + 4h22,Rω

2
2,k + α22(N ′

0)ν0
invh

′
22,R + α22N0ν

0
invh

′′
22,R

+ α22N0(ν0
inv

′)h′
22,R − 8(ν0

inv
′)ν0

invh
′
22,Rω

2
2,k/α12 − 4α22(ν0

inv
′)ν0

invh
′′′
22,R/α12

− α22(ν0
inv

′′′)ν0
invh

′
22,R/α12 − 4ν0

inv
2h′′

22,Rω
2
2,k/α12 − 4λh32,iω2,k = f22R32i,

(19)

h32,iλ
2 − 4h22,Rλω2,k + 4h32,iω

2
2,k + h′′

32,iα22 = 0, (20)

λ2h22,i − 4α22(ν0
inv

′)ν0
invh

′′′
22,i/α12 − α22(ν0

inv
′)(ν0

inv
′′)h′

22,i/α12 − 2α22(ν0
inv

′)2h′′
22,i/α12

− α22ν
0
inv

2h′′′′
22,i/α12 − 4ν0

inv
2h′′

22,iω
2
2,k/α12 − α22(ν0

inv
′′′)ν0

invh
′
22,i/α12

+ 4h22,iω
2
2,k − 3α22(ν0

inv
′′)ν0

invh
′′
22,i/α12 − 8(ν0

inv
′)ν0

invh
′
22,iω

2
2,k/α12

+ α22N0ν
0
invh

′′
22,i + α22N0(ν0

inv
′)h′

22,i + α22(N ′
0)ν0

invh
′
22,i + 4λh32,Rω2,k = 0,

(21)

λ2h32,R + 4h22,iλω2,k + 4h32,Rω
2
2,k + h′′

32,Rα22 = f32R22i(s), (22)
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λ2h21 − α22ν
0
inv

2h′′′′
21 /α12 − 2α22(ν0

inv
′)2h′′

21/α12 − α22(ν0
inv

′′′)ν0
invh

′
21/α12

− 4α22(ν0
inv

′)ν0
invh

′′′
21/α12 − 3α22(ν0

inv
′′)ν0

invh
′′
21/α12 − α22(ν0

inv
′)(ν0

inv
′′)h′

21/α12

+ α22(N ′
0)ν0

invh
′
21 + α22N0ν

0
invh

′′
21 + α22N0(ν0

inv
′)h′

21 = f21(s),

(23)

λ2h31 + α22h
′′
31 = f31(s), (24)

where all the right-hand side is omitted for the sake of brevity.

By now substituting the expressions of the first- and second-order solutions into the third-order

problem (i.e., Eqs. (13) and (14)), eliminating terms causing the appearance of secular terms delivers

the following modulation equation in time T2

2iω2,kΓ1,kD2Ak(T2) + (iΓ2,k,i + Γ2,k,R)Āk(T2)Ak(T2)2 = 0, (25)

where the coefficients Γ are defined in Appendix IV. The time rate-of-change of the complex

amplitude Ak(T2) can be then written as

D2Ak(T2) = (iγk,i + γk,R)Āk(T2)Ak(T2)2, (26)

where the expressions of the coefficients γ are reported in Appendix IV.

By introducing the polar form of the kth amplitude as Ak(T2) = 1
2ak(T2)eiβk(T2), where ak(T2)

and βk(T2) are the real amplitude and the phase, respectively, and substituting it into the modulation

equation, separating real and imaginary parts yield

D2ak(T2) = 0,

ak(T2)D2βk(T2) = 1
4
ak(T2)3γk,i,

(27)

where γk,i ≡ γk is the so-called the effective nonlinearity coefficient which characterize the type of

nonlinearity of each mode. Therefore, the solution of Eqs. (27) reads ak(T2) = a0
k and βk(T2) =

1
4a

0
k

2γkT2 + β0
k, where a0

k and β0
k are defined through the initial conditions.

The solution, up to the second-order approximation, can be the written as

u2 = ψ2,k(s)a0
k cos(ωNL

2,k t+ β0
k) + 1

2
h21(s)a0

k
2 + 1

2
h22,R(s)a0

k
2 cos(2ωNL

2,k t+ 2β0
k)

− 1
2
h22,i(s)a0

k
2 sin(2ωNL

2,k t+ 2β0
k),

u3 = ψ3,k(s)a0
k cos(ωNL

2,k t+ β0
k) + 1

2
h31(s)a0

k
2 + 1

2
h32,R(s)a0

k
2 cos(2ωNL

2,k t+ 2β0
k)

− 1
2
h32,i(s)a0

k
2 sin(2ωNL

2,k t+ 2β0
k),

(28)

where ωNL
2,k = ω2,k + 1

4a
0
k

2γk is the kth lagging-axial nonlinear frequency and the parameter γk is

the nonlinearity coefficient.
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4. Principal parametric resonance

Principal parametric resonance may occur when the beam angular velocity is modulated in time

by a small, harmonic oscillation and the frequency of the oscillation is twice one of the natural

frequency of the beam [26]. Therefore, to study the above mentioned phenomenon, the rotational

speed λ is assumed to have the following expression: λ(t) = λ (1 + δ cos(Ωt)), where δ and Ω are

the amplitude and frequency, respectively, of the parametric excitation. Moreover, the frequency

of the oscillating part of λ is expressed as Ω = 2ω2,k + ε2σ, where σ is the detuning parameter.

The linear damping forces are introduced through the classical Rayleigh formulation in the form

−2ζ2ω2,k∂tu2(s, t) and −2ζ3ω2,k∂tu3(s, t). For the case of weak damping, the dissipative terms can

be then rescaled so as to be proportional to ε2, furthermore, also the effects due to the excitation

provided by the periodic part δ of the angular speed can be assumed to be of higher order and, then,

rescaled as δ = ε2δ.

The same asymptotic procedure discussed in section 3 is adopted to study the principal para-

metric resonance. Although, since the dissipative terms and the modulation of the angular speed

are assumed as proportional to ε2, their contribution appears only at the order ε3 of the asymptotic

expansion, therefore, it turns out that the solutions of the first and the second perturbation corre-

sponds to those found in section 3, i.e., Eq. (15) and Eq. (18). By substituting the latter into the

third-order problem of the parametric excitation case, eliminating terms causing the appearance of

secular terms delivers the following modulation equation in time T2

2iω2,kΓ1,kA
′
k(T2) + (iΓ2,k,i + Γ2,k,R)Āk(T2)Ak(T2)2 + 2λ2δΓ3,kĀk(T2)eiσT2 + 2iζ2,kω

2
2,kAk(T2) = 0,

(29)

where the prime, here and henceforth, will be adopted to indicate differentiation with respect to

time T2 and the expressions of parameters Γ are given in Appendix IV. The time rate-of-change

of the complex amplitude Ak(T2) can be then written as

A′
k(T2) = (iγk,i + γk,R)Āk(T2)Ak(T2)2 + iγ1,kĀk(T2)eiσT2 + γ2,kAk(T2), (30)

where coefficients γ are reported in Appendix IV.

By substituting the polar form of the kth amplitude Ak(T2) = (1/2)ak(T2)eiβk(T2), into the

modulation equation Eq. (30), separating real and imaginary parts yield and introducing the relative

phase θk(T2) = σT2 − 2βk(T2), the equations governing the time evolution of the real amplitude and

the relative phase can be written as

a′
k(T2) = 1

4
ak(T2)3γk,R − ak(T2) sin(θk(T2))γ1,k + γ2,kak(T2),

ak(T2)θ′
k(T2) = −1

2
ak(T2)3γk,i − 2ak(T2)γ1,k cos(θk(T2)) + ak(T2).

(31)
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4.1. Stability analysis

Modulation equations reported in Eq. (31) have both trivial and nontrivial solutions which must

be calculated separately. The stability of the nontrivial steady state solution of the amplitude and

phase modulation equations is studied through the eigenvalues of the Jacobian of Eq. (31) which

leads to the following characteristic equation:

λ2 + (−a2
kγk,R − 2γ2,k)λ− 1

2
a2

kγk,iσ + 1
4
a4

kγ
2
k,R + a2

kγ2,kγk,R + 1
4
a4

kγ
2
k,i = 0. (32)

Following the Routh-Hurwitz stability criterion, the subsequent relations must be satisfied to ensure

the stability of the steady state solution:

− a2
kγk,R − 2γ2,k > 0

− 1
2
a2

kγk,iσ + 1
4
a4

kγ
2
k,R + a2

kγ2,kγk,R + 1
4
a4

kγ
2
k,i > 0

(33)

To study the stability of the trivial solution, the Cartesian form of the amplitude, i.e. Ak(T2) =

(pk(T2) + iqk(T2))e 1
2 iσT2 , is substituted into Eq. (30), so as to obtain the following equations

p′
k(T2) = γk,Rp(T2)3−γk,ip(T2)2q(T2)+(γk,Rq(T2)2+γ2,k)p(T2)−γk,iq(T2)3+(1

2
σ+γ1,k)q(T2), (34)

q′
k(T2) = γk,ip(T2)3 +γk,Rp(T2)2q(T2)+(γk,iq(T2)2 − 1

2
σ+γ1,k)p(T2)+γk,Rq(T2)3 +γ2,kq(T2), (35)

and the characteristic equation derived from the Jacobian reads

λ2 − 2λγ2,k + 1
4
σ2 + γ2

2,k − γ2
1,k = 0. (36)

Finally, the Routh-Hurwitz stability criterion yields

− 2γ2,k > 0,
1
4
σ2 + γ2

2,k − γ2
1,k > 0.

(37)

By substituting the first- and second-order solutions provided by Eqs. (15) and (18) into the

asymptotic expansion of the beam displacements and by letting ε = 1, the second order form of the

lagging and axial displacements can be written as

u2 = ψ2,k(s)ak(t) cos(βk(t) + ω2,kt) + 1
2
h21(s)ak(t)2 + 1

2
h22,R(s)ak(t)2 cos(2ω2,kt+ 2βk(t))

− 1
2
h22,i(s)ak(t)2 sin(2ω2,kt+O(ε3),

u3 = ψ3,k(s)ak(t) cos(βk(t) + ω2,kt) + 1
2
h31(s)ak(t)2 + 1

2
h32,R(s)ak(t)2 cos(2ω2,kt+ 2βk(t))

− 1
2
h32,i(s)ak(t)2 sin(2ω2,kt+ 2βk(t)) +O(ε3).

(38)
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5. Numerical simulations via Newmark-β method

In this section, the Newmark-β method [27] is implemented so as to calculate the dynamic

response of the rotating beam undergoing principal parametric resonance via direct time integration

of the linearized form of the equations of motion discretized via Galerkin approach [25]. In particular,

this discretization procedure is applied to the lagging-axial equations so as to obtain the following

discrete form of the equations of motion

M2,2q̈2,k(t) + C2,3q̇3,k(t) +K2,2q2,k(t) +K2,3q3,k(t) = 0,

M3,3q̈3,k(t) + C3,2q̇2,k(t) +K3,3q3,k(t) +K3,2q2,k(t) = 0,
(39)

where, q2,k(t) and q3,k(t) are the kth lagging and axial generalized coordinates, respectively, while

M2,2 = (α12ξ1 − ξ5 − 2ξ6)/α12 C2,3 = C2,3,cons + C2,3,cos cos(Ωt)

K2,2 = K2,2,cons +K2,2,cos cos(Ωt) +K2,2,cos2 cos(Ωt)2 K2,3 = ξ3λδΩ sin(Ωt),
(40)

and
M3,3 = ξ4 C3,2 = C3,2,cons + C3,2,cos cos(Ωt) K3,2 = −ξ3λδΩ sin(Ωt)

K3,3 = K3,3,cons +K3,3,cos cos(Ωt) +K2,2,cos2 cos(Ωt)2,
(41)

where the expressions of coefficients Ci,j,cons, Ci,j,cos, Ki,j,cons, Ki,j,cos, Ki,j,cos2 and Ki,j,sin are

given in Appendix V. Hence, the lagging-axial equations can be reorganized in matrix form as:

Mq̈ + Cq̇ + Kq = 0 (42)

where the mass M, the Coriolis C and the stiffness K matrices are

M =

 M2,2 0

0 M3,3

 , C =

 0 C2,3

C3,2 0

 , K =

 K2,2 K2,3

K3,2 K3,3

 , (43)

respectively.

The Newmark-β method [27] is then applied to Eq. (42) to evaluate the acceleration, the velocity

and displacement vectors, respectively, at the n+ 1th calculation step as

q̈n+1 = −M̃−1(M̆q̈n + C̆q̇n + K̆qn)

q̇n+1 = q̇n + (1 − γ)hq̈n + γhq̈n+1

qn+1 = qn + hq̇n + (1/2 − β)h2q̈n + βh2q̈n+1

(44)

where

M̃ = M + Cγh+ Kβh2, M̆ = C(1 − γ)h+ K(1/2 − β)h2, C̆ = C + Kh, K̆ = K (45)

where β = 1/6, γ = 1/2 and h is the time step.

Once the solution of (42) is found, it is then possible to calculate the time history of the general-

ized coordinates. For a selected detuning parameter σ, the amplitude δ of the parametric excitation
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is varied continuously until the time history shifts its behaviour from stable to unstable. The value

of δ leading the system to the instability signals the boundary of the parametric resonance region

for the lagging/axial motions of the rotating beam.

6. Results and discussions

6.1. Nonlinear free vibrations analysis

In this section, numerical simulations aimed at determining the nonlinear free vibrations of

the rotating beam are presented. To this aim, an isotropic beam possessing the geometric al and

mechanical properties given in Tab. 1 is considered.

Table 1: Geometric al and mechanical properties from Refs. [7] and [16]

Mass per unit length Axial Stiffness Flexural Stiffness Length Rotor Radius Angular Speed

(kg/m) (N) (Nm2) (m) (m) (rad/s)

10 2.23 × 108 3.99 × 105 9 0.5 30

Moreover, further studies are carried out by comparing the results in terms of effective nonlin-

earity coefficient and principal parametric resonance response so as to illustrate the importance of

the exact geometrical formulation (EGF) against ad hoc beam theories such as the Euler-Bernoulli

beam model including von-Karman strain-displacement relation (EBVK).

As mentioned above, the mechanical parameters adopted for the case-study beam and reported

in Tab. 1 were taken from the literature, although, the mechanical model proposed in [7] and [16]

only accounted for the flapping motion of the blade while the lagging motion was neglected. The

lowest four lagging natural frequencies and the lowest two axial natural frequencies are compared in

Table 2 with those reported in [7].

Table 2: The lagging and axial frequencies (rad/s) in comparison with those reported in [7] at rotation

speed ωR = 0

Natural frequencies 1stLagging 2ndLagging 3rdLagging 4thLagging 1stAxial 2ndAxial

Ref. [7] results 8.672 54.35 152.2 298.2 824.7 2474.0

Current results 8.671 54.330 152.071 297.825 824.195 2472.584

The results of the asymptotic analysis in terms of effective nonlinearity coefficients for the lowest

three lagging modes are validated through a comparison, shown in Tab. (3), with the results reported

in [16] for the case of stationary beam. Because of the different nondimensionalization procedure

between the current paper and Ref. [16] and the different definition of the effective nonlinearity
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coefficient, to compare the analogous quantities the current results must be re-calculated as Γk,k =

4ω0γk.

After validation of the current results, a comprehensive study on the effects of the angular speed

on the effective nonlinearity coefficients is investigated next. The considered beam [15] is isotropic

and has a rectangular cross-section. The rotor radius, the beam width, the beam thickness and

the beam length are 0.2 m, 0.05 m, 0.005 m, and 2 m, respectively. The mechanical properties are

E = 70 GPa, G = 26 GPa, and the mass density is ρ = 2700 kg/m3. The variation with the of the

lowest natural frequency of the lagging and axial modes are depicted in Fig. 2. This figure shows

the 1 : 1 and 2 : 1 internal resonance possibilities between the lagging and axial modes.

0 1000 2000 3000 4000 5000

 ω
R
 (rpm)

0

500

1000

1500

2000

2500

3000

 ω

Figure 2: Frequency loci of the lagging and axial modes: first axial mode (thin line), first lagging mode

(thick line), second lagging mode (dashed-line), third lagging mode (dotted-line), and fifth lagging mode

(dotted-dashed-line). Filled circles indicate the modes having frequency twice the corresponding mode.

It is evident that a 1 : 1 internal resonance can exist at a rotational speed of 1940 rpm between

the first axial mode and the fifth lagging mode. On the other hand, two 2 : 1 internal resonances

between the second and third lagging modes at a rotational speed of 3016 rpm and between the

third lagging mode and the first axial mode at 3757 rpm also exist.

Table 3: The effective nonlinearity coefficient, Γk,k = 4ω0γk, for the first three lagging modes in comparison

with those of Ref. [16] at rotation speed ωR = 0

Γ1,1 Γ2,2 Γ3,3

Ref. [16] results -619690 18548339 63563664

Current results -630380 18218000 61543000

Difference error percent 1.72 1.78 3.18
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The corresponding effective nonlinearity coefficient γ1 for the first lagging mode is depicted in

Fig. 3-(a). In particular, solid lines refer to the results obtained using the EGF model, while

filled circles indicate the results of the EBVK models. It is clear that for a stationary beam, i.e.,

when ωR = 0, a softening behaviour is predicted for the first lagging mode. It is worth to note

that the results obtained by means of the EGF model show that the rotating beam starts with a

sharp softening nonlinearity and then it moves to a hardening nonlinearity, conversely, the EBVK

model predicts invariant softening nonlinearity. On the other hand, for higher rotational speed the

difference between the results obtained via EGF and EBVK models increases considerably.

The effective nonlinearity coefficient γ2 of the second lagging mode is shown in Fig. 3-(b).

A hardening nonlinearity is predicted for the second lagging mode of the stationary beam. As

mentioned before, 2 : 1 internal resonance occurs between the second and the third lagging modes

at 3016 rpm causing a singularity in the solution. It is obvious that the nonlinearity type does not

change around the singularity and, therefore, a hardening type of nonlinearity is predicted for this

mode all over the investigated range of angular speeds.

Finally, the effective nonlinearity coefficient γ3 of the third lagging mode is presented in Fig.

3-(c). The third lagging mode displays a hardening treatment for the stationary beams. The 2 : 1

internal resonances between the third lagging and first axial mode at 3757 rpm is evident. However,

a change in the nonlinearity type around the singularity point is predicted for this mode. Except this

change in the nonlinearity type around this speed, the beam shows a hardening type of nonlinearity

at whole of the rotation speed range.

The comparative analysis performed to highlight the difference between the results of the here

proposed EGF model and the EBVK model, showed that the two modeling approach deliver results

which differ drastically for higher rotational speeds. This discrepancy is more evident for the first

and the second lagging modes, see Tab. 4. Moreover, although the comparison was performed

for symmetric beams, the discrepancy found between the aforementioned theories is expected to

grow for non-symmetric beams since the lagging deformation arises in the prestressed configuration

and at moderate-to-high speeds, the chord-wise deformation gets larger. Within this context, the

Euler-Bernoulli beam model cannot predict the correct deformation. Consequently, the linear free

vibration features and the nonlinear properties suffer further discrepancies.

The nonlinear dynamic response of the lowest two axial modes is studied next. The effective

nonlinearity coefficient of the first axial mode, i.e., γ1, is shown in Fig. 4-(a). The figure shows that

stationary beams do not show any nonlinearity for the axial modes. As a result of 1 : 1 internal

resonances between the first axial mode and fifth lagging mode, a singularity occurs at 1940 rpm.

Although for stationary beams none nonlinear behavior is predicted, on the other hand, for rotating

beams a hardening type of nonlinearity is evident and the singularity does not change the type of

nonlinearity.
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Figure 3: The effective nonlinearity for (a)- the first, (b)- the second and (c)- the third lagging modes: On

the basis of the exact geometrical formulation (solid-lines) vs. those of Euler-Bernoulli beam theory (filled

circles).

The variation of the effective nonlinearity coefficient γ2 of the second axial mode is illustrated in

Fig. 4-(b). The same qualitative results get for the first axial mode are also obtained for the second.

However, no singularity arises for this mode.

Table 4: The prediction of the first three lagging effective nonlinearities based on the EGF model versus

the EBVK model

EGF EBVK Difference %

0 rpm 3000 rpm 5000 rpm 0 rpm 3000 rpm 5000 rpm 0 rpm 3000 rpm 5000 rpm

γ1 -266891.0 -12577.7 5493.0 -266724.2 -16464.7 -1069.7 0.1 30.9 119.5

γ2 8072985.7 5680813.0 3195947.1 8105767.6 5215420.7 3418463.5 0.4 8.2 7.0

γ3 30554094.5 39279895.7 6103294.1 30828726.8 40820985.2 7059566.5 0.9 3.9 15.7
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Figure 4: The effective nonlinearity for (a)- the first and (b)- the second axial modes.

6.2. Principal parametric resonance analysis

To show the validity of the proposed solution method in the prediction of the dynamic response

of the rotating beam undergoing principal parametric resonance, some numerical results are shown

and compared with those obtained in [21]. The parametric excitation frequency is assumed to be

twice the axial frequency, i.e., Ω = 2ω3,k + ε2σ. According to the data reported in [21], the beam

rotates at 1500 rpm, is made of Aluminium, and the geometric and mechanical parameters are:

E = 70(GPa), G = 26(GPa), ρ = 2700, d3 = 0.5(m), L = 5(m), b = 0.05(m) and h = 0.005(m).

The stability regions of the principal parametric resonance are calculated for the first and second

axial modes, respectively, and are shown in Fig. 5 where a comparison with the results obtained

in [21] is also proposed. It is worth noting that, although in [21] the coupling of the lagging-axial

motions was not considered, nevertheless, the results obtained in this work show the reliability of

the here proposed method.
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Figure 5: The principal parametric resonance stability region boundaries for (a)- the first and (b)- the

second, axial modes: Current MMS results (solid-lines) vs. those of Ref. [21] (dashed-lines).
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The MMS vs. the Newmark approach. Further validation of the semi-analytical results

obtained via MMS in the study of the parametric resonance of rotating beams is proposed by

implementing Newmark method to solve numerically the equations of motion. Henceforth, the

mechanical parameters presented in the previous section are considered. The beam rotational speed

is 1000rpm. In this case, the parametric excitation frequency is assumed to be Ω = 2ω2,1 + εσ and

the stability region is depicted in Fig. 6. The results demonstrated the validity of the current MMS.

The discrepancy between the results is due to the more precise results of numerical techniques.

Although the numerical outcome is more precise, for all points in this diagram numerous iterations

are required i.e. the time history obtained by the Newmark method for any specific value of detuning

parameter is analyzed by perturbing the parametric excitation amplitude δ until the time history

response becomes unstable and the value of δ is stored as the threshold value for the instability

region. The operation is then repeated in the selected range of detuning parameter σ.
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Figure 6: The principal parametric resonance stability region boundaries for the first lagging mode: Current

MMS results (solid-lines) vs. those of Newmark method (filled circles).

After validation of the MMS results, principal parametric resonance for the lagging-axial motions

is investigated next.

The effect of the structural damping for three different values of the damping ratio for the first

lagging mode and the first axial mode is shown in Fig. 7. In the simulations performed ζ2 = ζ3. The

results show that, as expected, by increasing the damping ratio the minimum value of the excitation

amplitude δ, necessary to activate the parametric resonance, increases with the damping.

The effect of the angular speed in the stability region of the principal parametric resonance for

the first lagging and axial modes is shown in Fig. 8. It can be seen that, by increasing the rotating

speed the instability region is broadening.
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Figure 7: The principal parametric resonance stability region boundaries for the (a)- first lagging modes:

ζ2 = 0 (solid-lines), ζ2 = 0.0316 (dashed-lines) and ζ2 = 0.0684 (dotted-lines) and (b)- first axial mode:

ζ2 = 0 (solid-lines), ζ2 = 1.6064 × 10−5 (dashed-lines) and ζ2 = 3.2128 × 10−5 (dotted-lines).
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Figure 8: The principal parametric resonance stability region boundaries for the first (a)-lagging and

(b)-axial modes: 1000rpm (solid-lines) vs. 3000rpm (dashed-lines).

The stability regions for the first and second lagging modes calculated by adopting the EGF

model and EBVK model, respectively, are depicted in Fig. 9 for two different rotational speeds. It

can be seen that, in agreement with Tab. 4, the role of the implemented model is more highlighted in

determining the first lagging mode instability region boundary rather than the second one especially

at high speeds. Moreover, the model based on the exact geometrical formulation determines a wider

instability region comparing with the Euler-Bernoulli beam model.

Sensitivity to rotational speed. The instability region boundary sensitivity to the rotation speed

is studied next. In this study, the rotational speed is varied from 0 to 5000 rpm and the parametric

excitation amplitude δ is set to 0.1. Beside the variation of the natural frequencies in each rotating

speed, the detuning parameter is also varying. The parametric excitation frequency is set to be
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Figure 9: The principal parametric resonance stability region boundaries for the (a)-first and (b)-second

lagging modes: 3000rpm (thin-lines) vs. 5000rpm (thick-lines).

Ω = 2ωk + σ for a selected rotational speed.

The boundaries of the instability region for the lowest three lagging modes is shown in Fig. 10 in

terms of the rotational speed. In the abscissa is reported the nondimensional parametric excitation

frequency Ω. The figure shows that, by increasing the rotational speed, the instability region of the

parametric resonance becomes wider. On the other hand, the instability region of the lowest modes

is broader than that of the higher modes.

50 100 150 200 250 300 350

Ω

0

1000

2000

3000

4000

5000

ω
R

0 500 1000 1500 2000 2500 3000

Ω

0

1000

2000

3000

4000

5000

(a) (b)

Figure 10: The principal parametric resonance stability region boundaries for the (a)- first and (b)- first

three lagging modes in terms of the rotating speed and the dimensionless parametric excitation frequency.

A similar analysis has been conducted for the lowest two axial modes and the results presented

in Fig. 11.

Post-critical response. The post-critical response of the lagging-axial modes undergoing para-

metric response is examined in this section for δ = 0.1. The influence of the structural damping on
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Figure 11: The principal parametric resonance stability region boundaries for the (a)- first and (b)- second

axial modes in terms of the rotating speed and the dimensionless parametric excitation frequency.

the parametric resonance of the first lagging mode and first axial mode, respectively, is shown in

Fig. 12 for a rotational speed of 1000rpm. By varying the detuning parameter from left to right a

subcritical pitchfork bifurcation occurs for the first lagging mode which the stable trivial solution

coexists with an unstable periodic solution (see Fig. 12 (a)). Thereafter, by increasing the detuning

parameter σ, the subcritical pitchfork bifurcation is followed by a supercritical pitchfork bifurcation

and so the stable trivial solution turns into an unstable solution while another periodic solution is

born which is stable and attracts the beam dynamics. On the other hand, Fig. 12 (b) shows an

hardening behaviour of the first axial mode. The softening and hardening behaviours of the studied

modes are in agreement with the presented results in the previous section.
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Figure 12: The parametric resonance response for the first (a)- lagging mode: ζ2 = 0 (thick-lines) and

ζ2 = 0.0684 (thin-lines) and (b)- axial mode: ζ2 = 0 (thick-lines) and ζ2 = 3.2128 × 10−5 (thin-lines).

The influence of the rotational speed in the parametric resonance of the lowest three lagging

modes and two axial modes, respectively, are depicted in Figs. 13 and 14. It is clear that the

instability region is wider for the higher rotational speeds. On the other hand, according to the

results in terms of the effective nonlinearity coefficients presented in the previous section, the type
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of nonlinearity is invariant for the lowest three lagging modes and two axial modes when the beam

rotates at 1000rpm and 3000rpm, respectively.
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Figure 13: Parametric resonance response for the (a)-first, (b)-second and (c)-third lagging modes: 1000rpm

(thin-lines) vs. 3000rpm (thick-lines).

The importance of the employed beam theory on the principal parametric resonance response

for the first and second lagging modes is shown in Fig. 15. It is to be noted that only the

right branch of the response is shown. The results highlight the importance of the implemented

theory with respect to rotation speed increments especially for the first lagging mode. Moreover, a

qualitative difference is also observed in the principal parametric resonance treatment of the first

lagging mode at 5000 rpm. In other words, although the result on the basis of the EGF predicts

a stable trivial solution with one stable and one unstable periodic solutions with the increase of

detuning parameter, considering the whole treatment including the left and the right branches in

mind, the EBVK predicts a softening nonlinearity. Accordingly, the latter anticipates one stable

trivial solution with the increase of detuning parameter.
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vs. 3000rpm (thick-lines).
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lines) and (d)-3000rpm (thin-lines) vs. 5000rpm (thick-lines). (EGF–based on the exact geometrical formu-

lation; EBVK–based on the Euler-Bernoulli beam assumption.)
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7. Conclusions

In this paper, lagging-axial nonlinear free vibrations and principal parametric resonances are

examined in the presence of Coriolis forces in the context of a geometrically exact rotating beam

formulation. The direct method of multiple scale was implemented to deliver the effective nonlin-

earity coefficients of various modes, the transition curves (i.e., the parametric instability regions

boundaries) and the parametric resonance motion treatment. Comparisons in terms of effective

nonlinearity coefficient and principal parametric resonance response were carried out so as to illus-

trate the importance of the exact geometrical formulation against ad hoc beam theories such as the

Euler-Bernoulli beam model. A comprehensive study was carried out to show the change in non-

linearity suffered by lagging-axial modes upon angular speed variations. In addition, the nonlinear

parametric resonance behaviour and the stability region boundaries were examined in terms of the

rotation speed and the damping ratio. In the context of nonlinear free vibrations, the results led to

the following highlights: first, the axial modes do not show any type of nonlinearity for the stationary

beams but, for the rotating beams due to the Coriolis forces induced coupling, a hardening nonlin-

earity is manifested. Second, 1 : 1 internal resonances between the lagging and axial modes and 2 : 1

internal resonances between the lagging modes do not change the type of nonlinearity around the

singularity caused in the effective nonlinearity coefficient. However, but 2 : 1 resonances between the

lagging and axial modes can shift the type of nonlinearity around it. Third, a softening-hardening

nonlinearity is predicted for the first lagging mode while a hardening nonlinearity is computed for

the second and third lagging modes (except in the vicinity of the singularity). Moreover, the Euler-

Bernoulli beam model fails to predict the precise effective nonlinearity especially for the first lagging

mode for moderate-to-high rotating speeds and for some rotation speeds the softening/hardening

type of nonlinearity was predicted erroneously.

On the other hand, in the context of the parametric resonances, the main findings can be summa-

rized as follows. (i) When the lagging and axial modes undergo parametric resonances, the range of

the associated instability regions, in terms of detuning parameter, decreases with the mode number.

(ii) The instability region when the lagging modes are excited is more flattened than that of the

axial modes. (iii) The study into the full onset of parametric resonance motions reveals that when

the lagging and axial modes are subject to a parametric resonance excitation the loss of stability

of the trivial solution gives rise to the onset of period doubled oscillations governed by a nonlinear

frequency response exhibiting the same type of nonlinearity of the involved mode. (iv) The differ-

ence between the results predicted in terms of the implemented beam theory is manifested by the

increment of the rotation speed and is higher for the first lagging mode. Also, the instability region

predicted resorting the Euler-Bernoulli beam assumption is narrower than the associated one de-

fined by the exact geometrical formulation. In addition, a qualitatively wrong parametric resonance

response is determined by the Euler-Bernoulli beam model.
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Appendix I: The linear inertia, gyroscopic and stiffness operators

I22 = −(•) + ν0
inv(s)2∂ss(•)/α12 + 2ν0

inv
′(s)∂s(•)ν0

inv(s)/α12, I23 = 0, G22 = 0, G23 = 2λ(•)

L22 = λ2(•) − α22∂s(•)ν0
inv

′′′(s)ν0
inv(s)/α12 + α22∂ss(•)N0(s)ν0

inv(s) − 2α22ν
0
inv

′(s)2∂ss(•)/α12

− 4α22ν
0
inv

′(s)∂sss(•)ν0
inv(s)/α12 + α22∂s(•)N0′(s)ν0

inv(s) + α22∂s(•)N0(s)ν0
inv

′(s)

− α22ν
0
inv

′(s)∂s(•)ν0
inv

′′(s)/α12 − 3α22∂ss(•)ν0
inv

′′(s)ν0
inv(s)/α12 − α22ν

0
inv(s)2∂ssss(•)/α12, L23 = λ̇(•)

(46)

I33 = −(•), I32 = 0, G32 = −2λ(•), G33 = 0, L32 = −λ̇(•), L33 = α22∂ss(•) + λ2(•) (47)

IBC21 = ∂s(•)/α12, LBC21 = −α22∂sss(•)/α12 − α22∂s(•)ν0
inv

′′/α12 − 2α22∂ss(•)ν0
inv

′/α12

LBC22 = −α22∂s(•)ν0
inv

′/α12 − α22∂ss(•)/α12

LBC3 = α22∂s(•) (48)

Appendix II: Quadratic inertia and stiffness operators

i
(2)
21 = − 2ν0

inv(s)3∂tsu2∂tssu3/α12 − 2ν0
inv(s)3∂tssu2∂tsu3/α12 − 6ν0

inv(s)2ν0
inv

′(s)∂tsu2∂tsu3/α12

(49)

i
(2)
22 = −2ν0

inv(s)3∂su3∂ttssu2/α12 − ν0
inv(s)3∂ssu2∂ttsu3/α12 − ν0

inv(s)3∂su2∂ttssu3/α12

− 2ν0
inv(s)3∂ssu3∂ttsu2/α12 − 6ν0

inv(s)2∂su3ν
0
inv

′(s)∂ttsu2/α12 − 3ν0
inv(s)2ν0

inv
′(s)∂su2∂ttsu3/α12

(50)

n
(2)
2 = 3α22ν

0
inv(s)2∂su3∂su2ν

0
inv

′′′(s)/α12 + 4α22ν
0
inv(s)3∂ssu3∂sssu2/α12

− α22ν
0
inv(s)2∂su2N

0(s)∂ssu3 + α22ν
0
inv(s)3∂su2∂ssssu3/α12 + α22ν

0
inv(s)∂su3∂ssu2

+ α22ν
0
inv(s)∂su2∂ssu3 + 2α22ν

0
inv(s)3∂su3∂ssssu2/α12 + α22∂su3∂su2ν

0
inv

′(s)

− α22ν
0
inv(s)2N0′(s)∂su3∂su2 + 2α22ν

0
inv

′(s)3∂su2∂su3/α12 + 3α22ν
0
inv(s)3∂ssu2∂sssu3/α12

+ 10α22ν
0
inv

′(s)∂su2∂su3ν
0
inv

′′(s)ν0
inv(s)/α12 + 7α22ν

0
inv(s)2∂ssu3∂su2ν

0
inv

′′(s)/α12

+ 7α22ν
0
inv(s)2ν0

inv
′(s)∂su2∂sssu3/α12 + 12α22ν

0
inv(s)2∂su3ν

0
inv

′(s)∂sssu2/α12

+ 10α22ν
0
inv

′(s)2∂su2∂ssu3ν
0
inv(s)/α12 + 16α22ν

0
inv(s)2∂ssu3∂ssu2ν

0
inv

′(s)/α12

+ 14α22ν
0
inv

′(s)2∂ssu2∂su3ν
0
inv(s)/α12 + 9α22ν

0
inv(s)2∂su3∂ssu2ν

0
inv

′′(s)/α12

− 2α22∂su2N
0(s)∂su3ν

0
inv

′(s)ν0
inv(s) − α22ν

0
inv(s)2∂ssu2N

0(s)∂su3 (51)
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i
(2)
31 = 0 (52)

i
(2)
32 = −ν0

inv(s)3∂ssu2∂ttsu2/α12 − ν0
inv(s)3∂su2∂ttssu2/α12 − 3ν0

inv(s)2∂su2∂ttsu2ν
0
inv

′(s)/α12 (53)

n
(2)
3 = −α22ν

0
inv(s)2∂su2∂ssu2 + α22ν

0
inv(s)3∂su2∂ssssu2/α12 + α22ν

0
inv(s)2∂su2

2ν0
inv

′′′(s)/α12

− 2α22ν
0
inv(s)2∂ssu2N

0(s)∂su2 + α22ν
0
inv(s)3∂sssu2∂ssu2/α12 + 2α22ν

0
inv(s)2∂ssu2

2ν0
inv

′(s)/α12

+ α22ν
0
inv

′(s)∂su2
2 + 2α22ν

0
inv(s)ν0

inv
′′(s)ν0

inv
′(s)∂su2

2/α12 + 4α22ν
0
inv(s)∂ssu2ν

0
inv

′(s)2∂su2/α12

+ 2α22ν
0
inv(s)∂su2∂ssu2 − α22ν

0
inv(s)∂su2

2ν0
inv

′(s) − α22ν
0
inv(s)2∂su2

2N0′(s)

+ 4α22ν
0
inv(s)2∂su2∂ssu2ν

0
inv

′′(s)/α12 + 5α22ν
0
inv(s)2∂su2∂sssu2ν

0
inv

′(s)/α12

− 2α22ν
0
inv(s)∂su2

2N0(s)ν0
inv

′(s) (54)

n
(2)
BC21 = 2α22∂su2ν

0
inv

′2∂su3/α12 + 4α22∂su2∂ssu3ν
0
inv

′/α12 + 2α22∂su2∂su3ν
0
inv

′′/α12

+ 4α22∂ssu2∂su3ν
0
inv

′/α12 + 2α22∂ssu2∂ssu3/α12 + α22∂su2∂sssu3/α12 + α22∂sssu2∂su3/α12

i
(2)
BC21,1 = −2∂tsu2∂tsu3/α12, i

(2)
BC21,2 = −∂su2∂ttsu3/α12 − ∂ttsu2∂su3/α12

n
(2)
BC22 = 2α22∂su2∂su3ν

0
inv

′/α12 + α22∂ssu2∂su3/α12 + α22∂su2∂ssu3/α12

n
(2)
BC3 = (1/2)α22∂su

2
2 (55)

Appendix III: Parameters employed in the secular terms and the Galerkin discretization

δk,k =
∫ 1

0
[ψ2,kψ2,k + ψ3,kψ3,k]ds, ξ1 =

∫ 1

0
[ψ2

2,k]ds,

ξ2 =
∫ 1

0
[ψ2,kν

0
inv(ν0

inv
′)(ψ′

2,k)]ds+ 1
2

(
∫ 1

0
[ψ2,kν

0
inv

2(ψ′′
2,k)]ds), ξ3 =

∫ 1

0
[ψ2,kψ3,k]ds,

ξ4 =
∫ 1

0
[ψ2

3,k]ds, ξ5 =
∫ 1

0
ψ2,kψ

′′
2,kν

0
inv

2ds, ξ6 =
∫ 1

0
ψ2,kν

0
inv

′ν0
invψ

′
2,kds, ξ7 =

∫ 1

0
ψ2,kν

0
inv

′ν0
inv

′′ψ′
2,kds,

ξ8 =
∫ 1

0
ψ2,kν

0
inv

′2ψ′′
2,kds, ξ9 =

∫ 1

0
ψ2,kν

0
inv

′ν0
invψ

′′′
2,kds, ξ10 =

∫ 1

0
ψ2,kν

0
invν

0
inv

′′′ψ′
2,kds,

ξ11 =
∫ 1

0
ψ2,kν

0
invν

0
inv

′′ψ′′
2,kds, ξ12 =

∫ 1

0
ψ2,kν

0
inv

2ψ
(IV )
2,k ds, ξ13 =

∫ 1

0
ψ2,kν

0
inv

′ψ′
2,kds,

ξ14 =
∫ 1

0
ψ2,kψ

′′
2,kds, ξ15 =

∫ 1

0
ψ2,kψ

′′
2,kν

0
invds, ξ16 =

∫ 1

0
ψ3,kψ

′′
3,kds. (56)
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Appendix IV: The parameters employed in the modulation equations of the kth mode

Γ1,k = ξ33 + ξ221 − 1
2
C2/α12 − 2ξ222/α12, Γ2,k,i = Γ2,k,i,ω2

2,k
ω2

2,k + Γ2,k,i,Cons

Γ2,k,i,ω2
2,k

= −C4,ω2
2,k
/α12 − 5χ2d53/α12 − 6χ2c39/α12 − 15χ2d46/α12 − 5χ2d45/α12 − 2χ2c55/α12

− 2χ2c56/α12 − 15χ3b56/α12 − 5χ3b31/α12 − 5χ3b27/α12 (57)

Γ2,k,R = Γ2,k,R,ω2
2,k
ω2

2,k + Γ2,k,R,Cons

Γ2,k,R,ω2
2,k

= −1
2

(4χ2c41 + 10χ2d50 + 4χ2d26 + 10χ2d28 + 8χ2c47 − 40χ3a27 + 8χ2c46 + 4χ3b71

+ 30χ3b33 + 4χ3b78 + 32χ2a3 − 80χ2b3 + 30χ2d7 + 10χ3b57 + 2C3,ω2
2,k

+ 24χ2c6

+ 12χ2b17 − 80χ3a7 + 10χ3b40 + 24χ2a5 + 12χ2d5 + 4χ2c59 − 20χ2b5 + 4χ2d12 − 20χ3a10)/α12 (58)

Γ3,k = −1
2
ξ33 − 1

2
ξ221, ζ2,k = ζ2ξ221 + ζ3ξ33 (59)

where,

C2 = −2(ψ′
2,k|s=1)ψ2,k|s=1, C4,ω2

2,k
= −[(ψ′

2,k|s=1)(h′
32,i|s=1) + (h′

22,i|s=1)(ψ′
3,k|s=1)]ψ2,k|s=1,

C3,ω2
2,k

= −[(ψ′
2,k|s=1)3 − 3(ψ′

2,k|s=1)(ψ′
3,k|s=1)2 + (ψ′

2,k|s=1)(h′
32,R|s=1) + 2(ψ′

2,k|s=1)(h′
31|s=1)

+ (h′
22,R|s=1)(ψ′

3,k|s=1) + 2(h′
21|s=1)(ψ′

3,k|s=1)]ψ2,k|s=1,

C4,ω2
2,k

= −[(ψ′
2,k|s=1)(h′

32,i|s=1) + (h′
22,i|s=1)(ψ′

3,k|s=1)]ψ2,k|s=1 (60)

Γ2,k,i,Cons, Γ2,k,R,Cons and χ’s are omitted due to the brevity.

γk,i = 1
2

Γ2,k,R/(ω2,kΓ1,k), γk,R = −1
2

Γ2,k,i/(ω2,kΓ1,k), γ1,k = λ2δΓ3,k/(ω2,kΓ1,k), γ2,k = −ζ2,kω2,k/Γ1,k

(61)

Appendix V: The employed parameters in the Galerkin discretization

C2,3,cons = −2λξ3 C2,3,cos = −2ξ3λδ K2,2,cos2 = −λ2δ2ξ1 K2,2,cos = −2λ2δξ1

K2,2,cons = −λ2ξ1 + α22ξ13 − α22ξ14 + α22ξ15 + α22ξ7/α12 + 2α22ξ8/α12 + 4α22ξ9/α12

+ α22ξ10/α12 + 3α22ξ11/α12 + α22ξ12/α12, C3,2,cons = 2λξ3 C3,2,cos = 2ξ3λδ,

K3,3,cons = −λ2ξ4 − α22ξ16 K3,3,cos2 = −λ2δ2ξ4,K3,3,cos = −2λ2δξ4, (62)
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