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Abstract
We study the Dirichlet problem on a bounded convex domain ofRN , with zero bound-
ary data, for truncated Laplacians P±

k , which are degenerate elliptic operators, for
k < N , defined by the upper and respectively lower partial sum of k eigenvalues of
the Hessian matrix. We establish a necessary and sufficient condition (Theorem 1) in
terms of the “flatness” of domains for existence of a solution for general inhomoge-
neous term. This result, in particular, shows that the strict convexity of the domain is
sufficient for the solvability of the Dirichlet problem. The result and related ideas are
applied to the solvability of the Dirichlet problem for the operatorP+

k with lower order
term when the domain is strictly convex and the existence of principal eigenfunctions
for the operator P+

1 . An existence theorem is presented with regard to the principal
eigenvalue for the Dirichlet problem with zero-th order term for the operator P+

1 . A
nonexistence result is established for the operator P+

k with first order term when the
domain has a boundary portion which is nearly flat. Furthermore, when the domain
is a ball, we study the Dirichlet problem, with a constant inhomogeneous term and a
possibly sign-changing first order term, and the associated eigenvalue problem.
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910 I. Birindelli et al.

1 Introduction

For any N × N symmetric matrix X , let

λ1(X) ≤ λ2(X) ≤ · · · ≤ λN (X) (1.1)

be the ordered eigenvalues of X . For k ∈ [1, N ], k integer, let

P−
k (D2u) =

k∑

i=1

λi (D
2u) and P+

k (D2u) =
k∑

i=1

λN+1−i (D
2u). (1.2)

For k = N these operators coincide with the Laplacian, hence we will always consider
k < N .

In the whole paper � will be a bounded domain of RN . The scope of the paper is
to study existence of solutions for the following Dirichlet problem

{P+
k (D2u) + H(x, Du) = f (x) in �

u = 0 on ∂�.
(1.3)

Throughout this paper, the Dirichlet boundary condition is understood in the classical
pointwise sense. Before describing the results of this paper, let us mention that the
operators P+

k and P−
k come out naturally in geometrical problems in particular when

considering manifolds of partially positive curvature, see [19,20], or mean curvature
flow in arbitrary codimension, see [2]. Lately the interest has been from a pure PDE
theoretical point of view, starting from the works of Harvey and Lawson [15,16] and
Caffarelli, Li and Nirenberg [10] continuing with [18] by Oberman and L. Silvestre
on convex envelope. See also [1,6,9,13,14] for further contributions.

Some analogies can be found in the work of Blanc and Rossi [7] but we will be
more explicit about their work at the end of the introduction.

In [4], when� is uniformly convex, i.e. when there exists R > 0 and Y ⊆ R
N such

that
� =

⋂

y∈Y
BR(y) (1.4)

we called these domains hula hoop domains and, in these domains we proved existence
of solutions for any bounded f as long as |H(x, p)−H(x, q)| ≤ b|p−q| and bR < k.

On the other hand, in [5], if � is only convex, i.e. an intersection of half spaces or
cubes, k = 1 and H ≡ 0, existence was established under some sign condition on f
near the boundary of �.

In a general sense we wish to understand up to which point these conditions are
optimal. We will see how these degenerate elliptic operators are extremely sensitive
to the “convexity” of the domain and are strongly influenced by the presence of the
first order term.

In fact, in order to concentrate on the domain, we shall treat first the case where
H(x, Du) ≡ 0.
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Existence through convexity 911

In a first step we shall see that convexity alone, does not allow to prove existence
of supersolutions for any f . In order to solve the Dirichlet problem with general right
hand side f we should impose that ∂� has at least N −k directions of strict convexity.
We are now going to be more precise.

We can introduce a sort of “classification” of strict convexity.
Consider for j = 1, . . . , N

C j =
{
C ⊂ R

N : C = ω × R
N− j , ω ⊂ R

j bounded and strictly convex
}

.

(1.5)

Henceforth we denote by C j the class of all convex and bounded domains � ⊂ R
N

which are intersection (up to rotations) of cylinders belonging to C j . More precisely
� ∈ C j if, and only if, for each x ∈ ∂�, there exist O ∈ ON , withON being the class
of orthogonal N × N matrices, and C ∈ C j such that

� ⊂ OC and x ∈ ∂(OC). (1.6)

We denote by S j = S j (�) the set of all (O,C) ∈ ON ×C j such that for some x ∈ ∂�,
(1.6) is satisfied. One has

� =
⋂

(O,C)∈S j
OC if � ∈ C j , (1.7)

and

C1 ⊃ C2 ⊃ · · · ⊃ CN .

Note that C1 and CN correspond respectively to the class of bounded convex and strictly
convex domains. It may be useful to note that if ω ⊂ R

j , C ⊂ R
N , and O ∈ ON ,

then

∂(ω × R
N− j ) = ∂ω × R

N− j and ∂(OC) = O∂C .

It might be remarked at this point that, when � is given by (1.4), one can find y ∈ Y
for each x ∈ ∂� such that

� ⊂ BR(y) and x ∈ ∂BR(y).

(To check this, one may choose a sequence z j ∈ R
N \� converging to x , then choose

a sequence y j ∈ Y so that z j /∈ BR(y j ), and send j → ∞ along a subsequence so
that the subsequence converges to a point y ∈ Y . It is clear that � ⊂ BR(y) and
x ∈ ∂BR(y).)

This is the relationship between existence of solutions and “strict convexity” of the
domain.
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912 I. Birindelli et al.

Theorem 1 Let � be a convex domain. The Dirichlet problem

{P+
k (D2u) = f (x) in �

u = 0 on ∂�
(1.8)

has a unique solution for any bounded f ∈ C(�) if and only if � ∈ CN−k+1.

Hencewe have a sort of optimal condition for existence. In fact we have better, in the
sense that we prove nonexistence of supersolutionswhen the domain is not in CN−k+1.
For the part concerning existence, the construction of supersolutions is given in a
constructive and elegant way.When k = 1, i.e. when the domain is strictly convex, this
result will lead to the construction of the so called eigenfunction corresponding to the
principal demi-eigenvalue, so generalizing the existence of eigenfunctions provided
in [4] under the uniform convexity assumption.

As mentioned above if the forcing term f is positive or at least not too negative
near the boundary, a solution of (1.8) exists as soon as � is convex, strict convexity
is needed in order to allow f to be negative at the boundary. So the real question is to
obtain existence e.g. for f ≡ −1.

Interestingly, the presence of the first order term changes dramatically the depen-
dence of the existence of solutions on the convexity of the domain. In fact it worsens
the situation in the sense that “strict convexity” in general is not enough for existence
in the presence of the first order term. The problem can be of “local” type, i.e. if there is
a point P of the boundary where the principal curvatures are zero, even if the domain
is strictly convex, then, for b > 0 there are no positive supersolutions of

P+
k (D2u) + b|Du| = −1 (1.9)

which are zero at that point P , see Theorem 14.
Or the problem can be of a global nature, i.e. if � is too large, independently of

its shape, there are no solutions. More precisely, if BR ⊂ � and bR ≥ k there are no
supersolutions of (1.9). Other cases with nonconstant b are also considered in Sect. 4.

Due to the relevance of the condition C j , we now give a characterization in term of
flatness of the boundary, which will play a role in the proof of Theorem 1.

Given a bounded convex domain � and x ∈ ∂�, we consider the maximal dimen-
sion dx (�) of linear subspaces V of the tangent space of ∂� at x such that (x+V )∩∂�

is a neighborhood of x in the relative topology of x+V . That is, dx (�) is themaximum
of m ∈ {0, 1, . . . , N − 1} such that there exist an m-dimensional linear subspace V
in RN and δ > 0 such that x + V ∩ Bδ ⊂ ∂�. We set d(�) = maxx∈∂� dx (�).

Theorem 2 Let � be a bounded convex domain. We have � ∈ C j if and only if
d(�) ≤ N − j .

Finally we wish to somehow compare our results with some results of Blanc and
Rossi. In [7] they consider the problem

{
λ j (D2u) = 0 in �

u = g on ∂�
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Existence through convexity 913

and they prove that if � ∈ G j ∩ GN− j then the above Dirichlet problem is solvable
for any g while, if � is not in G j ∩ GN− j then there should be some g for which the
problem is not solvable. The precise definition of G j is recalled in the last section.
Let us mention that these operators, as well as the truncated Laplacians treated here,
are fully nonlinear operators and hence it is not possible to pass immediately from
a Dirichlet problem with homogeneous boundary data to a Dirichlet problem with
homogeneous forcing term. Nonetheless it is clear that both problems are related.

The definition of these G j domains is different from the way we describe the “strict
convexity” of our domains. In the sense that we use domains that are intersection of
rotations and translations of “(N − j + 1)-dimensional cylinders” in CN− j+1.

In fact these notions are, in general, different since G j ∩ GN− j contains domain
that may not even be convex. On the other hand, if the domain is convex then the
two notions are equivalent as it is proved in the last section together with the proof of
Theorem 2.

2 Dirichlet problem

2.1 Nonexistence

We begin by proving that convexity alone is not enough to solve Dirichlet problems
for P+

k even for very regular forcing term.

Proposition 3 Let � ⊂ R
N be a convex domain and assume that up to a rigid motion

there exists δ > 0 such that the k-dimensional ball

Bk,δ =
{
x = (x1, . . . , xk, 0, . . . , 0) ∈ R

N : |x | < δ
}

⊂ ∂�. (2.1)

Then there are no supersolutions u ∈ LSC(�) of

{P+
k (D2u) = −1 in �

u = 0 on ∂�
(2.2)

such that
lim
x→0

u(x) = 0. (2.3)

We note that condition (2.1) implies that d0(�) ≥ k. We recall that, for x ∈ ∂�,
dx (�) is defined by

dx (�) = max
{
m ∈ {1, . . . , N − 1} : ∃V m − dimensional linear subspace on R

N

and δ > 0 s.t. x + V ∩ Bδ ⊂ ∂�} .

(2.4)

Proof of Proposition 3 Let us suppose by contradiction that there exists a supersolution
u of (2.2) satisfying (2.3). It cannot achieve the minimum at an interior point x , since
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914 I. Birindelli et al.

otherwise we would haveP+
k (D2u(x)) ≥ 0. Hence u is positive in�. In view of (2.3),

there exists a positive number r smaller than δ such that

u(x) <
δ2

16k
for any x ∈ Br ∩ �. (2.5)

Claim: There exists a point z ∈ � and ε < δ
2 such that z ∈ {0} × R

N−k ⊂ R
N ,

|z| < r and the cylinder

C =
{
x ∈ R

N :
k∑

i=1

x2i <
δ2

4
,

N∑

i=k+1

(xi − zi )
2 < ε2

}
⊂ �.

We suppose that the claim is proved and we go on with the rest of the proof.
Since z ∈ Br , (2.5) yields

u(z) <
δ2

16k
. (2.6)

Let

ϕ(x) = −α

k∑

i=1

x2i − β

[
N∑

i=k+1

(xi − zi )
2 − ε2

]
, (2.7)

where

α = 8u(z)

δ2
, β = 2u(z)

ε2
. (2.8)

We claim that min
C

(u − ϕ) is attained at some point ξ ∈ C .

Let x ∈ ∂C . If
∑k

i=1 x
2
i = δ2

4 then

u(x) − ϕ(x) ≥ −ϕ(x) ≥ α
δ2

4
− βε2 = 0

in view of (2.8).
Otherwise

∑N
i=k+1(xi − zi )2 = ε2 and

u(x) − ϕ(x) ≥ −ϕ(x) = α

k∑

i=1

x2i ≥ 0.

Since

u(z) − ϕ(z) = u(z) − βε2 < 0,

then necessarily u − ϕ has a minimum at an interior point, say ξ ∈ C , and

P+
k (D2ϕ(ξ)) ≤ −1. (2.9)
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Existence through convexity 915

On the other hand

D2ϕ = diag(−2β, . . . ,−2β︸ ︷︷ ︸
N−k times

,−2α, . . . ,−2α︸ ︷︷ ︸
k times

)

with α < β. Then using (2.6) and (2.8) one has

P+
k (D2ϕ(ξ)) = −2αk > −1

in contradiction to (2.9).
We now give the proof of the claim. Since the origin is on ∂�, we may choose a

y ∈ � so that |y| < r . Set

y(1) = (y1, . . . , yk, 0, . . . , 0), y(2) = (0, . . . , 0, yk+1, . . . , yN ) ∈ R
N .

By assumption (2.1) −y(1) ∈ Bk,δ and using the convexity of �

1

2
y(2) = 1

2
y − 1

2
y(1) ∈ 1

2
� + 1

2
∂� ⊂ �.

Set 2z = 1
2 y

(2) and note that 2z ∈ {0} × R
N−k ⊂ R

N . Select a positive constant
ε < δ

2 so that B2ε(2z) ⊂ � and note that

Bk, δ
2

+ Bε(z) = 1

2
Bk,δ + 1

2
B2ε(2z) ⊂ �.

Then we have the inclusion for the cylinder

C =
{
x ∈ R

N :
k∑

i=1

x2i <
δ2

4
,

N∑

i=k+1

(xi − zi )
2 < ε2

}
⊂ �.

2.2 Existence

In order to solve the Dirichlet problem with general right hand side f we should
impose that ∂� has at least N − k directions of strict convexity, as anticipated in the
Introduction, see (1.5)–(1.6).

Theorem 4 Let � ∈ CN−k+1 and let f ∈ C(�) be bounded. Then the Dirichlet
problem {P+

k (D2u) = f (x) in �

u = 0 on ∂�
(2.10)

has a unique solution.

123



916 I. Birindelli et al.

Before discussing the Dirichlet problem (2.10), for a basis of our discussion, we
state a proposition concerning the comparison principle.

Proposition 5 Let � ⊂ R
N be a bounded domain and b, f ∈ C(�). Let F denote

either P+
k of P−

k . Let v ∈ USC(�) and w ∈ LSC(�) be a sub and supersolution of

F(D2u) + b(x)|Du| = f (x) in � (2.11)

and satisfy v ≤ w on ∂�. Moreover, assume that either of b, v orw is locally Lipschitz
in �. Then, under one of the following conditions, we have v ≤ w in �.

(i) There exists a ball BR such that � ⊂ BR and that ‖b‖∞R ≤ k.
(ii) f > 0 in � or f < 0 in �.

A comparison theorem under the condition (i) above (without equality) can be
found in [14, Proposition 4.1], where it is also shown by a counterexample that the
assumption ‖b‖∞R ≤ k cannot be improved in general.

It should be noted that USC(X) (resp., LSC(X)) denotes here the set of real-valued
upper (resp., lower ) semicontinuous functions on X .

Outline of proof of Proposition 5 We consider only the case F = P+
k . Fix a small

ε > 0 and consider the function vε = v − ε, which is still a subsolution of (2.11).
Since vε < w on ∂� and vε − w ∈ USC(�), there exists δ ∈ (0, ε) so that for
�δ = {x ∈ � : dist(x, ∂�) > δ}, we have vε < w on ∂�δ . Note that either b, vε or
w is Lipschitz continuous in �δ .

The next step is to replace either vε or w by its small modification, which is,
respectively, a strict subsolution or strict supersolution of (2.11) in �δ .

Let 0 < γ < 1 and first consider the case (i). By translation, we may assume that
�δ ⊂ Br for some 0 < r < R and consider the function vε,γ (x) := vε(x) + γ |x |2/2
with γ > 0. This function vε,γ is a subsolution of

P+
k (D2u − γ I ) + b(x)|Du − γ x | = f (x) in �,

where I denotes the N×N unit matrix. From this, it is easily seen vε,γ is a subsolution
of

P+
k (D2u) + b(x)|Du| = f (x) + γ (k − ‖b‖∞|x |) in �.

Note that, since γ (k − ‖b‖∞|x |) > 0, vε,γ is a strict subsolution of (2.11) in �δ and
that vε,γ < w on ∂�δ for γ sufficiently small.

Next, consider the case (ii). If f > 0 in�, then, by the homogeneity of the operator
F(D2·) + b|∇ · |, the function vε,γ = (1 + γ )vε is a subsolution of

P+
k (D2u) + b|Du| = (1 + γ ) f in �δ,

which means that vε,γ is a strict subsolution of (2.11) in �δ . Similarly, if f < 0, the
function vε,γ = (1− γ )vε is a strict subsolution of (2.11) in �δ . We may take γ > 0
small enough so that vε,γ ≤ w on ∂�δ
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Existence through convexity 917

Wemay nowapply [12, Theorem3.3 and Sects. 5.A, 5.C], to conclude that vε,γ ≤ w

in �δ . Sending γ → 0 first and then ε → 0 completes the proof.
Here are two remarks. For use of [12, Sect. 5.A], we observe that, if we set

G(x, p, X) = −P+
k (X) − b(x)|p| and two N × N matrices satisfy

(
X 0
0 −Y

)
≤ 3α

(
I −I

−I I

)
for some α > 0, (2.12)

then we have X ≤ Y and therefore

G(y, α(x − y),Y ) − G(x, α(x − y), X) ≤ G(y, α(x − y),Y ) − G(x, α(x − y),Y )

≤ α|b(x) − b(y)||x − y| for x, y ∈ �δ.

This shows that, taking limit under the condition that X and Y satisfy (2.12) and
α|x − y| ≤ C for a fixed constant C > 0, we have

lim sup
|x−y|→0

[G(y, α(x − y),Y ) − G(x, α(x − y), X)] ≤ 0.

This observation is not enough for a direct application of [12, Sect. 5.A], but, in fact,
a slight modification of the argument in [12, Sect. 5.A] yields vε ≤ w in �δ when
either v and w is in Lip(�δ).

Secondly, it is not trivial to see in the case of (ii) that if γ > 0 is small enough, then
vε,γ ≤ w on ∂�δ . In fact, since vε,−w ∈ USC(�δ), we infer that max∂�δ (vε −w) <

0. Also, by the semicontinuity, there is a constant M > 0 such that vε,−w ≤ M on
∂�δ . For x ∈ ∂�δ and γ > 0 sufficiently small, if vε(x) ≤ −2M , then

vε,γ (x) = (1 ± γ )vε(x) ≤ −2(1 ± γ )M ≤ −M ≤ w(x),

and otherwise, we have −2M < vε(x) ≤ M and

vε,γ (x) ≤ vε(x) + γ |vε(x)| < vε(x) + 2γ M ≤ w(x).

This way, one gets vε,γ ≤ w on ∂�δ for small γ > 0.

The proof of Theorem 4 is carried out by means of Perron method. It is worth
pointing out that the standard procedure to construct subsolutions which are null on
∂� (see e.g. [11, Sect. 9]) works for P+

k which is in fact a sup operator. On the other
hand it fails for supersolutions owing to the strong degeneracy of P+

k with respect to
inf-type operations. The geometry of � plays here a crucial role.

Hence we will start by recalling a property concerning strict convex domains. Let
� be a convex domain of RN and z ∈ ∂�. The set N (z) = N�(z) of outward normal
unit vectors at z is defined by

N (z) = {p ∈ R
N : |p| = 1, (x − z) · p ≤ 0 for all x ∈ �}.
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918 I. Birindelli et al.

It is well-known (a consequence of the Hahn-Banach theorem) that N (z) �= ∅ for
every z ∈ ∂�.

Definition 6 A domain � ⊂ R
N is strictly convex if

(1 − t)x + t y ∈ � for all x, y ∈ �, with x �= y, 0 < t < 1.

Lemma 7 If a domain � is strictly convex, then

N (x) ∩ N (y) = ∅ for all x, y ∈ ∂�, with x �= y.

For the convenience of the reader, we give a proof.

Proof of Lemma 7 Let x, y ∈ ∂�, x �= y. Suppose that there is p ∈ N (x) ∩ N (y). It
follows that

(z − x) · p ≤ 0, (z − y) · p ≤ 0 ∀z ∈ �.

Adding these two yields

(
z − x + y

2

)
· p ≤ 0 ∀z ∈ �. (2.13)

Since � is strictly convex, we have

x + y

2
∈ �,

and, therefore, there exists δ > 0 such that

Bδ

( x + y

2

)
⊂ �,

and, in particular,

z := x + y

2
+ δ p ∈ �,

which shows that
(
z − x + y

2

)
· p = δ|p|2 = δ > 0,

contradicting (2.13).

Let ω be a bounded strictly convex domain in R
j . Let F be the collection of

functions

f (x) = 1

2
(R2 − |x − x0|2),
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Existence through convexity 919

where R > 0, x, x0 ∈ R
j , and, moreover,

f (x) > 0 on ω.

It is clear that F �= ∅. We set

ψ(x) = inf
f ∈F

f (x) for x ∈ ω. (2.14)

It is clear that ψ is concave, since it is infimum of concave functions. Hence ψ ∈
Liploc(ω) and one has P+

1 (D2ψ) ≤ −1 in ω. Moreover

ψ ∈ USC(ω), ψ ≥ 0 on ω.

Theorem 8 ψ(x) = 0 for all x ∈ ∂ω. In particular, ψ ∈ C(ω).

Proof. Fix z0 ∈ ∂ω and p ∈ N (z0). By rotation and translation, we may assume that
z0 = 0 and p = (0, . . . , 0, 1). For generic z ∈ R

j , we write

z = (x, y), x ∈ R
j−1, y ∈ R.

We choose R0 > 0 so that

ω ⊂
{
z = (x, y) ∈ R

j : |x |2 + y2 < R2
0

}
.

For any R ≥ R0, set

ρ ≡ ρ(R) := sup

{
h ≥ 0 : ω ⊂ {(x, y) : |x |2 + (y + h)2 < R2}

}
.

It is clear by simple geometry that 0 < ρ < ∞, R �→ ρ(R) is increasing and

lim
R→∞ ρ(R) = ∞.

Indeed, since, for R ≥ R0,

BR
(
(0,−(R − R0))

) ⊃ BR0((0, 0)) ⊃ ω,

we see that

ρ(R) ≥ R − R0,

which shows that

lim
R→∞ ρ(R) = ∞.
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920 I. Birindelli et al.

Note also that

ω ⊂ {(x, y) : |x |2 + (y + ρ(R))2 ≤ R2},

which implies that the function

fR(x, y) := 1

2

(
R2 − |x |2 − (y + ρ(R))2

)

is positive in ω, that is, fR ∈ F .
Observe that, if r > R, then

(0, 0) /∈ BR((0,−r)),

which implies that

ω �⊂ BR((0,−r)),

and hence

ρ(R) ≤ r , and, consequently, ρ(R) ≤ R.

We need only to show that

lim
R→∞ fR(0) = 0.

(Notice that this implies that ψ(0) ≤ 0 and, moreover, that lim supω�x→0 ψ(x) ≤
ψ(0) ≤ 0 while lim infω�x→0 ψ(x) ≥ 0 since ψ ≥ 0 in ω.)

By the definition of ρ(R) and the compactness of ω, there exists a point zR =
(xR, yR) ∈ ∂ω such that fR(zR) = 0. That is,

|xR |2 + (yR + ρ(R))2 = R2.

By simple geometry again, we see that

pR ≡ (αR, βR) := 1√|xR |2 + |yR + ρ(R)|2 (xR, yR + ρ(R)) ∈ N (zR).

By the compactness of ∂ω, there is a sequence R j → ∞ such that

zR j → z∞ ∈ ∂ω.

Observe that, since limR→∞ ρ(R) = ∞,

pR j → (0, 1).
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Existence through convexity 921

Passing to the limit in the inequality (x − zR j ) · pR j ≤ 0 for all x ∈ ω, we see that

(0, 1) ∈ N (z∞).

However, since (0, 1) ∈ N (0) = N ((0, 0)), by the strict convexity of ω (Lemma 7),
we must have

z∞ = 0.

The above argument implies that

lim
R→∞ zR = 0.

Observe that, since R − R0 ≤ ρ(R) ≤ R,

∣∣∣∣
RαR · xR

βR

∣∣∣∣ =
∣∣∣∣
RxR · xR
yR + ρ(R)

∣∣∣∣ =
∣∣∣∣

R

yR + ρ(R)

∣∣∣∣ |xR |2 → 0 as R → ∞. (2.15)

Noting that pR is an outward normal vector to BR((0,−ρ(R)) at zR and that (0, R −
ρ(R)) ∈ ∂BR((0,−ρ(R)), we have

0 ≥ pR · ((0, R − ρ(R)) − zR) = βR(R − ρ(R)) − αR · xR − βR yR,

and, if βR > 0, then

R − ρ(R) ≤ αR · xR
βR

+ yR .

Since (0, 1) ∈ N ((0, 0)), we have

0 ≥ (0, 1) · ((xR, yR) − (0, 0)) = yR .

Thus, if βR > 0, then

R − ρ(R) ≤ αR · xR
βR

.

Combining this with (2.15), we see that, as R → ∞,

0 ≤ R(R − ρ(R)) ≤ R
αR · xR

βR
→ 0,

and, moreover,

lim
R→∞(R + ρ(R))(R − ρ(R)) = 0.
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922 I. Birindelli et al.

Hence,

lim
R→∞ fR(0, 0) = 1

2
lim
R→∞(R2 − ρ(R)2) = 0.

Lemma 9 Letψ be the function defined by (2.14) and ω ⊂ R
j be as in (2.14). Assume

that j ≤ N and set C = ω × R
N− j . Define the function � on C = ω × R

N− j by
�(x) = ψ(x1, . . . , x j ). Let k ∈ N be such that N − j < k. Then, � is continuous on
C and P+

k (D2�) ≤ −1 in ω × R
N− j .

By definition, a setC ⊂ R
N is inC j if and only ifC = ω×R

N− j for some bounded
strictly convexω ⊂ R

j . The functionψ depends only onω and ifC = ω×R
N− j ∈ C j ,

then the function �, defined in the lemma above, is considered to depend only on C .
Thus, for later reference, we write �C for this �.

Proof of Lemma 9 The continuity of � is obvious, since ψ ∈ C(ω). Recalling (2.14),
the function � is given as the infimum of a family of functions f on Rn of the form

f (x) = 1

2

⎛

⎝R2 −
j∑

i=1

(xi − x0,i )
2

⎞

⎠ ,

for some R > 0 and x0 ∈ R
N . Observe that

D2 f = diag(−1, . . . ,−1︸ ︷︷ ︸
j times

, 0, . . . , 0︸ ︷︷ ︸
N− j times

),

and, since k > N − j , P+
k (D2 f ) ≤ −1 in ω × R

N− j . By the stability of the
supersolution property under inf-operation, we conclude that P+

k (D2�) ≤ −1.

Proof of Theorem 4 Since � is a convex set, the uniform exterior sphere condition
is satisfied. Then for r = |x | let us consider the function G(r) = r−α − 1 where
α = max {k − 1, 1}. Observe that for r > 1

G(r) < 0, G ′(r) = −αr−(α+1) < 0, G ′′(r) = α(α + 1)r−(α+2) > 0.

Let �(x) = supxb∈∂� G(|x − zb|), where zb is such that |xb − zb| = 1 and for any
x ∈ � one has |x − zb| > 1. Then � ∈ C(�) and � = 0 on ∂�. Moreover

P+
k (D2�(x)) ≥ 1

(1 + diam(�))α+2 .

Then u = M1�, with M1 = M1(�, α, ‖ f ‖∞) sufficiently large, is a continuous
subsolution of (2.10) which vanishes on ∂�.
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Existence through convexity 923

Now we provide a continuous supersolution u such that u = 0 on ∂�. By the
definition of CN−k+1, since � ∈ CN−k+1, the set SN−k+1 is given associated with �.
In view of (1.5), define for x ∈ �

w(x) = inf
(O,C)∈SN−k+1

�C

(
OT x

)
,

where �C is the function on C defined in Lemma 9 (see also a comment after the
lemma). From the properties of the function ψ defined by (2.14) it follows that �C is
concave and nonnegative inC . Theorem8 ensures that�C = 0 on ∂C and�C ∈ C(C).
It is now obvious that w is nonnegative, concave and upper semicontinuous on � and
that �C (OT x) = 0 for x ∈ O(∂C) = ∂(OC). It follows from (1.6) that

∂� ⊂
⋃

(O,C)∈SN−k+1

∂(OC),

which implies that w ≤ 0 on ∂�. These properties of w guarantee that w ∈ C(�) and
w = 0 on ∂�.

Noting that if we set j = N − k + 1, then N − j < k, we see by Lemma 9 that for
any (O,C) ∈ SN−k+1,P+

k (D2�C ) ≤ −1 inC and moreover, by the invariance of the
operator P+

k under orthogonal transformation, that the function v(x) := �C (OT x)
satisfies P+

k (D2v) ≤ −1 in OC . The stability of the subsolution property under
inf-operation implies that P+

k (D2v) ≤ −1 in �. We set u = ‖ f ‖∞w and note that
u ∈ C(�), u = 0 on ∂� and P+

k (D2u) ≤ f in �.
Now, the Perronmethod yields a function u on� such that the upper semicontinuous

envelope u∗ of u is a subsolution of P+
k (D2u) = f in �, the lower semicontinuous

envelope u∗ of u is a supersolution ofP+
k (D2u) = f in�, and u ≤ u∗ ≤ u ≤ u∗ ≤ u

on �. The standard argument including comparison between u∗ and u∗ assures that
u ∈ C(�) and u is a solution of (2.10).

Proof of Theorem 1 Sufficiency of the CN−k+1 property of� has been proved in Theo-
rem 4. Its necessity follows from Proposition 3. Indeed, if� is not in CN−k+1, then, by
Theorem 2, d(�) ≥ k, which means after translation and orthogonal transformation
that 0 ∈ ∂�, d0(�) ≥ k, and, moreover, condition (2.1) holds. Thus, Proposition 3
implies that problem (1.8), with f = −1, does not have a solution continuous up to
the boundary ∂�.

2.3 Application: eigenfunctions forP+
1 in strictly convex domains

Following the Berestycki-Nirenberg-Varadhan approach concerning the validity of
the Maximum Principle, see [3], we have defined in [4] as candidate for the principal
eigenvalue the values

μ+
k = sup

{
μ ∈ R : ∃ ϕ ∈ LSC(�), ϕ > 0, P+

k (D2ϕ) + μϕ ≤ 0 in �
}

,
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924 I. Birindelli et al.

μ−
k = sup

{
μ ∈ R : ∃ ϕ ∈ USC(�), ϕ < 0, P+

k (D2ϕ) + μϕ ≥ 0 in �
}

.

For the convenience of the reader it is worth pointing out the change of notation: here
μ+
k corresponds to what in [4] was calledμ−

k and vice versa, since in the present paper
we deal with the maximal operatorP+

k , whereas in [4] we considered the minimal one
P−
k . In particular we proved that μ−

k = +∞ while μ+
k < ∞, so we will concentrate

on the latter.
Even in the degenerate framework of the operators P+

k , we showed that if � is
uniformly convex, then μ+

k gives threshold for the Maximum Principle (see [4, The-
orems 4.1, 4.4]), this is true also for more general equations depending on gradient
terms. Moreover, when k = 1, there exists a positive principal eigenfunction.

One of the question raised in [4] concerned the necessity of the uniform convexity
of the domain. In the next theorem we show that the strict convexity assumption of �

is sufficient for the existence of a principal eigenfunction, at least when there are no
first order terms.

Theorem 10 Let � be a bounded strictly convex domain and let f be a continuous
and bounded function in �. Then there exists a solution u ∈ C(�) of

{P+
1 (D2u) + μu = f in �

u = 0 on ∂�
(2.16)

in the following two cases:

• for μ < μ+
1 ;• for any μ if f ≥ 0.

Moreover in the case μ < μ+
1 the solution is unique.

The uniqueness part of Theorem 10 is an obvious consequence of the following
lemma.

Lemma 11 Under the hypothesis of Theorem 10, let μ < μ+
1 , let u ∈ USC(�) and

v ∈ LSC(�) be sub and supersolution of

P+
1 (D2u) + μu = f in �,

respectively, and assume that

lim
��x→∂�

(u(x) − v(x)) ≤ 0.

Then, u ≤ v in �.

Proof Set w = u − v and observe (see [14, Lemma 3.1] and also [8, Theorem 5.8],
[17, Proposition 4.1]) that w is a subsolution of

P+
1 (D2w) + μw = 0 in �. (2.17)
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Existence through convexity 925

The maximum principle ([4, Theorem 4.1 and Remark 4.8]) yieldsw ≤ 0 in�, which
concludes the proof.

For the reader’s convenience, we recall here [4, Proposition 3.2] stated for P+
1 .

Lemma 12 Let u ∈ LSC(�) be a supersolution of

{P+
1 (D2u) = f (x) in �

u = 0 on ∂�
(2.18)

Then for each ε > 0 there exists a positive constant Lε = Lε(‖u‖∞, ‖ f ‖∞) such
that

|u(x) − u(y)| ≤ Lε|x − y| for x, y ∈ �ε,

where �ε := {x ∈ � : dist(x, ∂�) > ε}. Furthermore, if for some constant C > 0

u(x) ≤ C dist(x, ∂�) for x ∈ �,

then there exists a positive constant L = L(C, ‖u‖∞, ‖ f ‖∞) such that

|u(x) − u(y)| ≤ L|x − y| for x, y ∈ �.

Proof of Theorem 10 We need only to prove the existence part of the theorem.
The Dirichlet problem (2.18) is uniquely solvable by means of Theorem 4. We

henceforth assume that μ > 0. We shall first prove Theorem 10 for f := h ≤ 0 then
for f := g ≥ 0 and any μ, and, finally, for the general case.

Let h = − f − ≤ 0. Let (wn)n∈N ⊂ C(�) be the sequence defined in the following
way:
set w1 = 0 and, given wn , define wn+1 as the unique solution of

{P+
1 (D2wn+1) = h − μwn in �

wn+1 = 0 on ∂�.
(2.19)

Note that (wn)n∈N is nondecreasing, in particular wn ≥ 0 in � for any n ∈ N. At each
step the existence is done by using zero as a subsolution and (‖h‖∞ + μ‖wn‖∞)ψ

as a supersolution, where ψ is the function defined by (2.14) in the case ω = �, see
Theorem 8. We need to prove that the sequence (‖wn‖∞)n∈N is bounded.

Suppose that it is not, hence up to some subsequence limn→+∞ ‖wn‖∞ = +∞.
Then consider vn = wn‖wn‖∞ . Then ‖vn‖∞ = 1 and vn satisfies

P+
1 (D2vn+1) = h

‖wn+1‖∞
− μvn

‖wn‖∞
‖wn+1‖∞

.
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926 I. Birindelli et al.

By construction vn is a sequence of bounded functions. We want to prove that they
are equicontinuous. Observe that,

h

‖wn+1‖∞
− μvn

‖wn‖∞
‖wn+1‖∞

≥ −‖h‖∞ − μ.

Hence 0 ≤ vn ≤ (‖h‖∞ + μ)ψ for any n ∈ N.
For any δ > 0, in �δ := {x ∈ � : dist(x, ∂�) > δ}, the functions vn are

uniformly Lipschitz continuous by Lemma 12. For any ε > 0, choose δ > 0 such that
(‖h‖∞ + μ)ψ ≤ ε

2 for any x ∈ � \ �δ . Hence for any x , y in � \ �δ:

|vn(x) − vn(y)| ≤ vn(x) + vn(y) ≤ (‖h‖∞ + μ)(ψ(x) + ψ(y)) ≤ ε.

Hence the sequence (vn)n∈N is equicontinuous in � and up to a subsequence, for
some k ≤ 1, vn converges to v∞ solution of

P+
1 (D2v∞) + kμv∞ = 0, in �, v∞ = 0 on ∂�.

By maximum principle, since kμ < μ+
1 this implies that v∞ = 0. This is a contradic-

tion since ‖v∞‖∞ = 1.
We have just proved that there exists some constant K such that ‖wn‖∞ ≤ K and

clearly
0 ≤ wn ≤ (‖h‖∞ + Kμ)ψ. (2.20)

Hence, reasoning as above the sequence is also equicontinuous in � and then, up to a
subsequence it converges to a solution w of (2.16) with f replaced by h = − f −.

Let us consider now the case f = f +. As above let us define the sequence (wn)n∈N
by setting w1 = 0 and, once wn is given, solving (2.19) with f + in place of h. In
particularwn+1 ≤ wn ≤ 0. Arguing by contradiction as above and applying the global
Lipschitz regularity result (Lemma 12) to negative functions vn := wn/‖wn‖∞, we
observe that the sequence (wn)n∈N is bounded in C(�). Using again the same global
Lipschitz estimates to wn , we infer that the sequence (wn)n∈N is equi-Lipschitz. Then
there is a subsequence converging to a solution w of

{P+
1 (D2w) + μw = f + in �

w = 0 on ∂�.

Now we assume μ < μ+
1 and consider general f . The above functions w and

w are respectively sub and supersolution of (2.16). To apply the Perron method, we
introduce

W = {w ∈ C(�) : w ≤ w ≤ w and w supersolution of (2.16)
}
.

and, arguing as in proving the equi-continuity of (wn) in the case h = − f −, observe
by the local estimates of Lemma 12 that W is equi-continuous on �.
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Existence through convexity 927

Setting

u(x) = inf{w(x) : w ∈ W},

we get a continuous function on �, which solves (2.16) due to the Perron method.

Theorem 13 Let� be a strictly convex domain. Then there exists a functionψ1 ∈ C(�)

such that {P+
1 (D2ψ1) + μ+

1 ψ1 = 0, ψ1 > 0 in �

ψ1 = 0 on ∂�.
(2.21)

Proof Let μn ↗ μ+
1 and use Theorem 10 to build un ∈ C(�) the solution of

{P+
1 (D2un) + μnun = −1 in �

un = 0 on ∂�.
(2.22)

We claim that, up to some subsequence, limn→+∞ ‖un‖∞ = +∞. Assume by con-
tradiction that supn∈N ‖un‖∞ < +∞. Reasoning as in the proof of Theorem 10 the
sequence (un)n∈N is bounded and equicontinuous. Hence, up to a subsequence, it
converges to a nonnegative solution u of

{P+
1 (D2u) + μ+

1 u = −1 in �

u = 0 on ∂�.

The function u is positive in �, otherwise if minx∈� u = u(x0) = 0 and x0 ∈ �, then
ϕ(x) = 0 should be a test function touching u from below in x0 and therefore should
satisfy 0 ≤ −1, a contradiction.
Hence, for small positive ε, we have

P+
1 (D2u) + (μ+

1 + ε)u ≤ 0 in �

contradicting the maximality of μ+
1 .

For n ∈ N the functions vn = un‖un‖∞ satisfy

{P+
1 (D2vn) + μnvn = −1

‖un‖∞ in �

vn = 0 on ∂�
(2.23)

and supn∈N ‖vn‖∞ = 1. Again by equicontinuity, extracting a subsequence if neces-
sary, (vn)n∈N converges uniformly to a nonnegative functionψ1 such that ‖ψ1‖∞ = 1.
Taking the limit as n → ∞ in (2.23) we have

{P+
1 (D2ψ1) + μ+

1 ψ1 = 0 in �

ψ1 = 0 on ∂�.

By the strong minimum principle ([4, Remark 2.6]), we conclude ψ1 > 0 in � as we
wanted to show.
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928 I. Birindelli et al.

3 Influence of the first order term

We shall see that, in the presence of the first order term H(Du) = b|Du| with b > 0,
strict convexity may not be enough to have existence. And even in the uniformly
convex case, if the coefficient b is “too large” with respect the principal curvatures
of ∂� there may not be existence of solutions. This phenomenon is a striking feature
connected with the highly degeneracy of the operators P±

k . Roughly speaking, this
can be viewed as a consequence that the first order term competes with the principal
part.

3.1 Nonexistence results for strictly convex domain

Let � be a bounded convex domain in R
N and k < N . Assume that

� ⊂ {z = (x, y) ∈ R
N−1 × R : y > 0}, 0 = (0, 0) ∈ ∂�,

and, as (x, y) ∈ ∂� and x → 0,
y = o(|x |2). (3.1)

Theorem 14 Under the hypotheses above, there are no positive supersolutions u ∈
LSC(�) of

P+
k (D2u) + b|Du| ≤ 0 in �,

where b is a positive constant, with the property lim��z→0u(z) = 0.

Remark 15 It is worth to point out, as a consequence of Theorem 14, that there are no
positive eigenfunctions (with Dirichlet boundary) associated to P+

k (D2·) + b|D · | if
b > 0. This striking feature is further emphasized by the positivity of the so called
“generalized principal eigenvalue” μ+

k , at least if � ⊆ BR and bR < k. In fact

μ+
k ≥ 2(k−bR)

R2 . This inequality can be easily deduced by considering v(x) = R2−|x |2
in the definition of μ+

k .

Proof of Theorem 14 By contradiction we suppose that there is a supersolution u ∈
LSC(�) of

P+
k (D2u) + b|Du| ≤ 0 in �,

with b > 0, such that lim
z→0

u(z) = 0 and

u > 0 in �. (3.2)

We may choose, in view of (3.1), a constant R > 0 and a function g ∈ C2(RN−1)

such that

g(0) = 0, Dg(0) = 0, D2g(0) = 0,
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Existence through convexity 929

and
{(x, y) ∈ BR((0, 0))\{(0, 0)} : y ≥ g(x)} ⊂ �. (3.3)

We may moreover assume that

k|D2g(x)| < b for all x ∈ R
N−1, with|x | < R, (3.4)

where |D2g(x)| = maxi |λi (D2g(x))|.
By (3.2) and (3.3), we have

ρ := min{u(x, y) : (x, y) ∈ ∂BR((0, 0)), y ≥ g(x)} > 0.

Set

�R = {(x, y) ∈ BR((0, 0)) : y > g(x)},

and note that

�R = {(x, y) ∈ BR((0, 0)) : y ≥ g(x)} ⊂ �,

�R\{(0, 0)} ⊂ �,

∂�R = {(x, y) ∈ ∂BR((0, 0)) : y ≥ g(x)} ∪ {(x, y) ∈ BR((0, 0)) : y = g(x)}.

Using limz→0u(z) = 0, we may select a point z0 = (x0, y0) ∈ �R (close to the
origin) so that

u(z0) < ρ.

We may as well choose a function θ ∈ C2(R) so that

θ(0) = 0, θ ′(r) > 0 ∀r ∈ R, and lim
r→+∞ θ(r) = ρ.

Let ε > 0 and set

θε(r) = θ(r/ε) for r ∈ R,

and

φε(x, y) = θε(y − g(x)) for (x, y) ∈ R
N .

Consider the function

�R � z �→ u(z) − φε(z),

123



930 I. Birindelli et al.

and note that, for z = (x, y) ∈ ∂�R ,

u(z) − φε(z) ≥
{
u(z) − θε(0) ≥ 0 − 0 = 0 if y = g(x),

ρ − φε(z) > ρ − ρ = 0 otherwise,

and, as ε → 0,

u(z0) − φε(z0) = u(z0) − θ

(
y0 − g(x0)

ε

)
→ u(z0) − ρ < 0.

We fix ε > 0 so that

u(z0) − φε(z0) < 0,

choose aminimumpoint zε = (xε, yε) ∈ �R of u−φε and note that u(zε)−φε(zε) < 0
and, hence, zε ∈ �R . Thus, by the viscosity property of u, we have

P+
k (D2φε(zε)) + b|Dφε(zε)| ≤ 0,

where

Dφε(x, y) = θ ′
ε(y − g(x))(−Dg(x), 1),

and

D2φε(x, y) = θ ′
ε(y − g(x))

(−D2g(x) 0
0 0

)

+ θ ′′
ε (y − g(x))(−Dg(x), 1) ⊗ (−Dg(x), 1).

Let ξ ∈ R
N−1 and η ∈ R, and compute that

〈D2φε(x, y)(ξ, η), (ξ, η)〉 = −θ ′
ε(y − g(x))〈D2g(x)ξ, ξ 〉

+ θ ′′
ε (y − g(x))(−Dg(x) · ξ + η)2.

If Dg(x) = 0, then

P+
k (D2φε(x, y)) = sup

{
k∑

i=1

(
−θ ′

ε(y − g(x))〈D2g(x)ξi , ξi 〉 + θ ′′
ε (y − g(x))η2i

)

such that (ξi , ηi ) · (ξ j , η j ) = δi j

}
.

Taking ηi = 0 and ξi ∈ R
N−1 such that ξi · ξ j = δi j for any i, j = 1, . . . , k we get

P+
k (D2φε(x, y)) ≥

k∑

i=1

(
−θ ′

ε(y − g(x))〈D2g(x)ξi , ξi 〉
)

≥ −kθ ′
ε(y − g(x))|D2g(x)|.
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Otherwise if Dg(x) �= 0, choosing (ξ1, η1) = (Dg(x), |Dg(x)|2)
/
√|Dg(x)|2+|Dg(x)|4 and (ξ2, 0), . . . , (ξk, 0) in such a way ξi · ξ j = δi j for all
i, j = 1, . . . , k, we get

P+
k (D2φε(x, y)) ≥

k∑

i=1

(
−θ ′

ε(y − g(x))〈D2g(x)ξi , ξi 〉
)

≥ −kθ ′
ε(y − g(x))|D2g(x)|.

Since |Dφε(x, y)| = θ ′
ε(y−g(x))

√|Dg(x)|2 + 1 ≥ θ ′
ε(y−g(x)) and k|D2g(xε)| < b

by (3.4), we obtain the following contradiction:

0 ≥ P+
k (D2φε(zε)) + b|Dφε(zε)| ≥ θ ′

ε(yε − g(xε))(b − k|D2g(xε)|) > 0.

Remark 16 The above nonexistence result can be generalized to the nonconstant coef-
ficient case b = b(x, y) and b(0, 0) = 0 by assuming

b(x, y) > k|D2g(x)|

in a neighbourhood of (0, 0).
Even in the casewhere b is constant,we can replace condition (3.1) by the condition

b > k|D2g(x)|

in a neighbourhood of (0, 0).

3.2 Uniformly convex domain with large Hamiltonian

Look at {
P+
k (D2u) + b |Du| = −1 in BR

u = 0 on ∂BR .
(3.5)

Proposition 17 If 0 ≤ bR < k, then the problem (3.5) has a unique solution which is
radial, while if bR ≥ k there are no supersolutions.

The case bR > k is included in Remark 16. In the radial setting the proof is in fact
much easier and it includes the case bR = k. For the convenience of the reader we
report the proof.

Proof of Proposition 17 First, thanks to Proposition 5 (ii), since the right hand side (3.5)
is negative, the comparison principle always holds and solutions of (3.5) are unique.

We consider the case b > 0 and bR < k. For r ∈ [0, R] let

g(r) = r − R

b
+ k

b2
log

k − br

k − bR
. (3.6)
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By a straightforward computation one has

k
g′(r)
r

+ b|g′(r)| = −1

g′(r)
r

≥ g′′(r)

g′(0) = g(R) = 0.

Hence u(x) = g(|x |) is the solution of
{
P+
k (D2u) + b |Du| = −1 in BR

u = 0 on ∂BR .
(3.7)

Let us assume now that u is a supersolution of (3.5) and bR ≥ k. In particular
u > 0 in BR and it is a supersolution too in any ball Bk−ε

b
⊂ BR for ε ∈ (0, k). Let

ε ∈ (0, k) and set

gε(|x |) := |x | − k−ε
b

b
+ k

b2
log

k − b|x |
ε

,

which, as we have seen above, is the solution of (3.7) in Bk−ε
b
. Since

u ≥ gε on ∂Bk−ε
b

and b
k − ε

b
< k

the comparison principle yields

u(x) ≥ gε(|x |) for x ∈ Bk−ε
b

.

This leads to a contradiction after letting ε → 0, i.e.

u(x) = ∞ for all x ∈ B k
R
.

The function u(x) = R2−|x |2
2k is the solution of (3.5), with b = 0. By a direct compu-

tation, one can see that the solution g(|x |) of (3.5) with b > 0, where g is defined in

(3.6), converges to u(x) = R2−|x |2
2k as b → 0.

Corollary 18 Let � be a domain such that BR ⊂ �. Then

• if bR ≥ k there are no positive supersolutions of

P+
k (D2u) + b |Du| ≤ −1 in �;
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• if bR > k there are no (μ,ψ(x)) ∈ R+ × LSC(�) such that

P+
k (D2ψ) + b|Dψ | + μψ ≤ 0, ψ > 0 in �,

i.e. μ+
k = μ+

k = 0, where

μ+
k = sup

{
μ ∈ R : ∃ϕ ∈ LSC(�), ϕ > 0, P+

k (D2ϕ) + b|Du|
+μϕ ≤ 0 in �

}

μ̄+
k = sup

{
μ ∈ R : ∃ϕ ∈ LSC(�), ϕ > 0 in �, P+

k (D2ϕ) + b|Du|
+μϕ ≤ 0 in �

}
.

Proof The first part directly follows from Proposition 17.
Assume now by contradiction that there exist μ > 0, ψ(x) > 0 in � such that

P+
k (D2ψ) + b|Dψ | + μψ ≤ 0 in �.

Let ρ = k
b < R. Then Bρ � � and min

Bρ

ψ > 0. Taking M sufficiently large we can

guarantee that u = Mψ satisfies

P+
k (D2u) + b|Du| ≤ −1 in Bρ

which is not possible since bρ = k.

Now we consider the equation

P+
k (D2u) − b|Du| = −1 in BR (3.8)

with any b > 0.

Proposition 19 There exists a unique solution u ∈ C(BR) of the Dirichlet problem
for (3.8), with boundary condition u = 0 on ∂BR. The solution u is radial.

Proof The uniqueness is a consequence of the comparison principle (Proposition 5
(ii)).

The presence of the sign minus in front of b leads us to look for radial solutions
u(x) = g(|x |) of (3.8) with g = g(r) solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g′′(r) + (k − 1) g
′(r)
r + bg′(r) = −1 for r ∈ (0, R]

g′ ≤ 0 for r ∈ [0, R]
g′′(r) ≥ g′(r)

r for r ∈ (0, R]
g′(0) = g(R) = 0.

(3.9)
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934 I. Birindelli et al.

For solving this, consider the first order problem

{
h′(r) + (k − 1) h(r)

r + bh(r) = −1 for r ∈ (0, R]
h(0) = 0

(3.10)

whose solution is

h(r) = −e−br

rk−1

∫ r

0
ebssk−1 ds.

It is clear that
h(r) < 0 for r ∈ (0, R] and lim

r→0
h(r) = 0. (3.11)

Moreover by (3.10) one has

h′(r) ≥ h(r)

r
⇐⇒ a(r) := (k + br)

∫ r

0
ebssk−1 ds−rkebr ≥ 0 for r ∈ (0, R].

(3.12)
Since a′(r) = b

∫ r
0 ebssk−1 ds ≥ 0 and a(0) = 0, then the inequality on the left hand

side of (3.12) holds true. Using now (3.10)–(3.12) we deduce that

g(r) =
∫ R

r

e−bs

sk−1

(∫ s

0
ebt tk−1 dt

)
ds

is a solution of (3.9), and u(x) = g(|x |) is in turn a solution of (3.8) such u = 0 on
∂�.

3.3 Case bR = kwithÄ = BR

For μ > 0 consider

{
P+
k (D2u) + k

R |Du| + μu = 0, u > 0 in BR

u = 0 on ∂BR .
(3.13)

Consider moreover the ODE

{
k
( 1
r − 1

R

)
ϕ′(r) + μϕ(r) = 0 for r ∈ (0, R)

ϕ(0) = a > 0, ϕ(R) = 0,
(3.14)

where a is a constant. By computations, the solution ϕ = ϕμ,a is given by

ϕμ,a(r) = a
(
1 − r

R

)μR2

k
exp

(
μR

k
r

)
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and
ϕ′

μ,a(r) < 0 for any r ∈ (0, R). (3.15)

If in addition

μ ≤ k

R2

then
ϕ′

μ,a(r)

r
≥ ϕ′′

μ,a(r) for all r ∈ (0, R). (3.16)

Combining (3.15)–(3.16)we deduce that uμ,a(x) = ϕμ,a(|x |) satisfies for anyμ ≤ k
R2

P+
k (D2uμ,a) + k

R

∣∣Duμ,a
∣∣+ μuμ,a = 0 for 0 < |x | < R.

Moreover by direct computation

Duμ,a(0) = 0, D2uμ,a(0) = −μ

k
uμ,a(0)I ,

hence
{
P+
k (D2uμ,a(x)) + k

R

∣∣Duμ,a(x)
∣∣+ μuμ,a(x) = 0, uμ,a > 0 in BR

uμ,a = 0 on ∂BR .

In particular

μ+
k ≥ k

R2 ,

while, since the maximum principle is violated, we deduce by [4, Theorem 4.1] that

μ+
k = 0.

This shows that the equality μ+
k = μ+

k , which holds when bR < k, see [4, Theo-
rem 4.4], may fail as soon as bR = k.

Remark 20 Note that μ+
k is finite since it is bounded from above by the principal

eigenvalue of the operator � · + k
R |D · |.

4 More on the weight of the first order problem

Let us consider the problem

{
P+
k (D2u) + b(r) |Du| = −1 in BR

u = 0 on ∂BR
(4.1)
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936 I. Birindelli et al.

where b ∈ C([0, R])∩C1(0, R) is a radial function.We aim to generalize the existence
results of Sect. 3.2 to this setting and, at least in amodel case, see (4.2), we shall analyze
how the solutions of (4.1) are affected by the monotonicity changes of b(r). Having in
mind the case b constant, roughly speaking a transition from b negative to b positive
force the solutions u to solve a second order initial value problem near the origin, then
a first order boundary value problem.

Concerning b(r) we assume that there exists r0 ∈ [0, R] such that

(r − r0)(rb(r))
′ ≥ 0 for r ∈ (0, R). (4.2)

Note that if r0 = 0 or r0 = R then (4.2) reduces respectively to the cases (rb(r))′ ≥
0 or (rb(r))′ ≤ 0 in (0, R), i.e. the constant sign case of b(r).

Definition of R0. We define R0 ∈ (0, R] as follows.
If rb(r) < k for any r < R then R0 := R.
If there exists r ∈ (0, R) such that rb(r) = k then R0 := inf {r < R : rb(r) = k}.

The above definition of R0 makes sense for any b ∈ C([0, R]) since rb(r) < k
holds for r = 0.

Remark 21 If b is a positive constant then R0 = min
{ k
b , R

}
.

Proposition 22 Assume condition (4.2). If

∫ R0 r

k − rb(r)
dr < +∞ (4.3)

then R0 = R and problem (4.1) has a unique solution, which is radial. On the other
hand, if ∫ R0 r

k − rb(r)
dr = +∞ (4.4)

then no supersolutions of (4.1) exist in BR0 .

Proof First we assume condition (4.3). By contradiction let us assume that R0 < R.
Since rb(r) ∈ C1 then there exists positive M such that

k + M(r − R0) ≤ rb(r) in [R0/2, R0].

This would imply

∫ R0 r

k − rb(r)
dr ≥

∫ R0 r

M(R0 − r)
dr = +∞,

contradiction. Hence R0 = R.
As usual, the uniqueness follows from the comparison principle.
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Case r0 ∈ (0, R).
We start by looking for a radial solution u(x) = g1(|x |) with g1 = g1(r) solution of

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g′′
1 (r) + (k − 1)

g′
1(r)
r − bg′

1(r) = −1

g′
1 ≤ 0

g′′
1 (r) ≥ g′

1(r)
r

g′
1(0) = 0

(4.5)

in a neighbourhood of zero. This leads us to consider the following first order problem,
h1 = g′

1, ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h′
1(r) + (k − 1) h1(r)r − bh1(r) = −1

h′
1(r) ≥ h1(r)

r

h1(r) ≤ 0

h1(0) = 0.

(4.6)

As in the proof of Proposition 19, the function

h1(r) = −eB(r)

rk−1

∫ r

0
e−B(s)sk−1 ds (4.7)

where B ′ = b, satisfies (4.6) and h′
1 ≥ h1

r in an interval [0, c] provided

a(r) := (k − rb(r))
∫ r

0
e−B(s)sk−1 ds − e−B(r)rk ≥ 0 in [0, c]. (4.8)

Since a(0) = 0 and

a′(r) = −(rb(r))′
∫ r

0
e−B(s)sk−1 ds ≥ 0 in [0, r0],

then (4.8) holds for any r ∈ [0, r0].
Now if a(r) ≥ 0 in [0, R], then h1 is a global solution of (4.6) and

g1(r) = −
∫ R

r
h1(s) ds (4.9)

is the solution (4.5) in [0, R] satisfying g1(R) = 0.
If otherwise there exists r̄ ∈ [r0, R) such that

a(r̄) = 0 and a(r) < 0 in [r̄ , R] (4.10)

then the function

g2(r) =
∫ R

r

s

k − sb(s)
ds (4.11)
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938 I. Birindelli et al.

is well defined by (4.3) and it is a solution of

⎧
⎪⎨

⎪⎩

k
g′
2(r)
r − b(r)g′

2(r) = −1 for r ∈ (r̄ , R)

g′
2(r) ≤ 0 for r ∈ (r̄ , R)

g2(R) = 0.

(4.12)

Moreover, using (4.2), one has

g′′
2 (r) = g′

2(r)

r
− r

(k − rb(r))2
(rb(r))′ ≤ g′

2(r)

r
for r ∈ (r̄ , R). (4.13)

Let us define

g(r) =
{
g1(r) for r ∈ [0, r̄ ]
g2(r) for r ∈ (r̄ , R], (4.14)

where g1(r) = − ∫ r̄r h1(s) ds + g2(r̄) and h1 is defined by (4.7). By (4.10) g(r) ∈
C1([0, R])∩C2([0, R]\ {r̄}). We claim that u(x) = g(|x |) is solution of (4.1). Clearly
it is a classical solution for any x ∈ BR such that |x | �= r̄ . Moreover note that if
(rb(r))′

∣∣
r=r̄ = 0 then u(x) is in fact C2(BR). So we may assume that (rb(r))′

∣∣
r=r̄ >

0, hence by construction the only points x that we need to consider are those for which
|x | = r̄ . Fix such x0 ∈ BR and let ϕ ∈ C2(BR) touching u from above at x . First
we note that, since the function g1(r) and g2(r) are both twice differentiable in a
neighbourhood of r̄ , using (4.13) one has

(g1 − g2)
′′(r̄) = − 1

k − r̄b(r̄)
− g′′

2 (r̄) > − 1

k − r̄b(r̄)
− g′

2(r̄)

r̄
= 0

hence g1 ≥ g2 around r̄ . In this way ϕ touches from above g2(|x |) at x0 and

Dϕ(x0) = Dg2(r̄), D2ϕ(x0) ≥ D2g2(r̄).

Then using (4.12)

P+
k (D2ϕ(x0)) ≥ P+

k (D2g2(r̄)) = k
g′
2(r̄)

r̄
= 1 − b(r̄)|Dϕ(x0)|,

which shows that u is a viscosity subsolution. The supersolution property of u can be
proved in a similar way, using in particular that if ϕ touches u from below at x0, then
ϕ is in fact a test function for g1(|x |).
Cases r0 = 0 or r0 = R.

The solution is given by u(x) = g2(|x |) if r̄ = 0 where g2 is defined in (4.11),
while if r̄ = R then u(x) = g1(|x |) with g1 defined by (4.9).

This ends the proof of the first part of the proposition.
Nowwe assume (4.4). By contradiction we assume that there exists a supersolution

of (4.1).By the definition of R0 one has infr∈[0,R0−ε] k−rb(r) > 0 for any ε ∈ (0, R0).
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Consider the function

uε(x) := (1 − ε)gε(|x |) := (1 − ε)

∫ R0−ε

|x |
r

k − rb(r)
dr .

It is a classical strict subsolution of (4.1), since

P+
k (D2uε(x)) + b(|x |)|Duε(x)| ≥

(
k
g′
ε(|x |)
|x | − b(|x |)g′

ε(|x |)
)

= −(1 − ε).

By comparison u(x) ≥ uε(x) in BR0−ε which leads to u = +∞ in BR0 by letting
ε → 0.

Remark 23 We briefly discuss the effects of reversing the inequality (4.2) in Proposi-
tion 22. Assume

(r − r0)(rb(r))
′ ≤ 0 ∀r ∈ (0, R). (4.15)

Without loss of generality we may assume r0 ∈ (0, R).
In [0, r0] the function

g1(r) = −
∫ r

0

s

k − sb(s)
ds + c1

is a solution of {
k
g′
1(r)
r − b(r)g′

1(r) = −1 in (0, r0]
g′
1(0) = 0

for any choice of the constant c1. Moreover g′
1(r) ≤ 0 and g′′

1 (r) ≤ g′
1(r)
r for any

r ∈ (0, r0].
In [r0, R] where g′′

1 (r) ≥ g′
1(r)
r we look at the second order problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g′′
2 (r) + k−1

r g′
2(r) − b(r)g′

2(r) = −1 in [r0, R]
g′′
2 (r) ≥ g′

2(r)
r , g′

2(r) ≤ 0 in [r0, R]
g2(R) = 0.

By computations

g2(r) =
∫ R

r

eB(s)

sk−1

(∫ s

r0
e−B(τ )τ k−1 dτ + c2

)
ds

where B ′ = b and any c2 ≥ rk0 e
−B(r0)

k−r0b(r0)
. If we fix

c2 = rk0e
−B(r0)

k − r0b(r0)
and c1 =

∫ r0

0

s

k − sb(s)
ds + g2(r0)
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then the function

g(r) :=
{
g1(r) r ∈ [0, r0]
g2(r) r ∈ (r0, R]

is in fact of class C2. Then u(x) = g(|x |) is a classical solution of (4.1). This is the
main difference with respect to Proposition 22, where the solution was not in general
C2 in the set ∂Br̄ , see (4.8)–(4.10) for the definition of r̄ . This is due to the fact that
here we switch from a first order to a second order problem exactly at r0, the point
where the derivative of rb(r) vanishes and so g′′

1 = g′′
2 , while in Proposition 22 this

happens at r̄ > r0 where g′′
1 (r̄) ≥ g′′

2 (r̄).
The uniqueness of solutions of (4.1) with (4.15) is due to the comparison principle,

as usual.
The nonexistence of supersolutions under the assumption (4.4), can be obtained as

in the proof Proposition 22.

Corollary 24 Let � be a domain such that BR ⊂ � and assume (4.2). Then

• if
∫ R0 r

k−rb(r) dr = +∞ there are no positive supersolutions of

P+
k (D2u) + b(r) |Du| ≤ −1 in �;

• if R0 < R there are no (μ,ψ) ∈ R+ × LSC(�) such that

P+
k (D2ψ) + b(r)|Dψ | + μψ ≤ 0, ψ > 0 in �,

i.e. μ+
k = μ+

k = 0.

Proof First part is a direct consequence of Proposition 22. Let us assume now that
R0 < R and that ψ is a positive supersolution of

P+
k (D2ψ) + b(r)|Dψ | + μψ = 0 in �,

with μ > 0. Then the function u = ψ

μmin
BR0

ψ
satisfies

P+
k (D2u) + b(r)|Du| = −1 in BR0 ,

so, by (4.4),
∫ R0 r

k−rb(r) dr < +∞. Hence (4.3) implies R0 = R, a contradiction.

4.1 Case R = R0 andÄ = BR

In Sect. 3.3 we showed that the two notions of generalized principal eigenvalues, μ̄+
k

and μ+
k , does not coincide in the case bR = k. This fact still holds in the nonconstant

case b = b(r) under some additional assumptions.
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First the condition bR = k now reads as Rb(R) = k. Then we assume

l := inf
r∈(0,R)

(rb(r))′

r
> 0, (4.16)

which obviously holds if b is a positive constant. Note that (4.16) implies (4.2) with
r0 = 0.

For μ > 0 let us consider the problem

{
P+
k (D2u) + b(r)|Du| + μu = 0, u > 0 in BR

u = 0 on ∂BR .
(4.17)

By straightforward computation the functions

ϕ(r) = ϕ(0) exp

{
−μ

∫ r

0

s

k − sb(s)
ds

}

is a solution of the ODE

{( k
r − b(r)

)
ϕ′(r) + μϕ(r) = 0 r ∈ (0, R)

ϕ′(0) = 0, ϕ(0) > 0.

Using (4.16) it is easily seen that

ϕ′(r)
r

≥ ϕ′′(r) ∀r ∈ (0, R)

for any μ ≤ l. Hence u(x) = ϕ(|x |) are positive radial solution of the equation in
(4.17). If in addition

∫ R

0

s

k − sb(s)
ds = +∞

then u = 0 on ∂BR , leading to

μ+
k = 0 < l ≤ μ+

k .

5 Convex domains

In order to prove Theorem 2 we need the following lemmas.

Lemma 25 Let K be a compact subset of Rm. Assume that

0 ∈ K and K\{0} ⊂ {x = (x1, . . . , xm) ∈ R
m : xm < 0}.
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Then there exists a bounded, open, strictly convex set ω ⊂ R
m such that

K ⊂ ω and ω ⊂ {x ∈ R
m : xm < 0}.

Lemma 26 Let A be a compact convex subset of RN such that 0 ∈ A. Let V be the
linear span of A and set m = dim V . Then there exist a basis {a1, . . . , am} of V such
that ai ∈ A for all i ∈ {1, . . . ,m}.

Assuming the lemmas above, we first present the proof of Theorem 2. Henceforth
e1, . . . , eN will denote the standard basis of RN .

Proof of Theorem 2 Assume that � ∈ C j . Fix any x ∈ ∂� and prove that dx (�) ≤
N − j . There is a (O,C) ∈ S j (�), with C = ω × R

N− j , such that x ∈ ∂(OC) and
� ⊂ OC . Suppose by contradiction that dx (�) > N − j and set m = dx (�). There
exist anm-dimensional linear subspace V inRN and δ > 0 such that x+V ∩Bδ ⊂ ∂�.
Observe that

x + V ∩ Bδ ⊂ ∂� ⊂ OC = OC,

and hence
OT x + OT V ∩ Bδ ⊂ OT OC = C = ω × R

N− j . (5.1)

Since x ∈ ∂(OC) = O∂C = O(∂ω × R
N− j ), we have OT x ∈ ∂ω × R

N− j . Set
y = OT x and W = OT V and note that y ∈ ∂ω × R

N− j and W is m-dimensional.
Sincem > N − j , them-dimensional ballW ∩ Bδ is not contained in {0 j }×R

N− j ,
where 0 j := (0, . . . , 0) ∈ R

j . Hence, there exists w ∈ W ∩ Bδ \ {0 j }×R
N− j , which

alsomeans that−w ∈ W∩Bδ\{0 j }×R
N− j .We setw( j) = (w1, . . . , w j , 0, . . . , 0) ∈

R
N and note that w( j) �= 0 since w /∈ {0 j } × R

N− j . Moreover, we observe by (5.1)
that

y ± w ∈ y + W ∩ Bδ ⊂ ω × R
N− j ,

and hence, y( j) ±w( j) ∈ ω. Since ω is strictly convex andw( j) �= 0, it is obvious that

y = 1

2
(y + w j + y − w j ) ∈ ω × R

N− j .

This contradicts that y ∈ ∂ω × R
N− j . Thus, we have shown that d(�) ≤ N − j .

Next,we assume that d(�) ≤ N− j . Fix any z ∈ ∂� and ν ∈ N�(z). By translation,
we may assume that z = 0. Set

A = � ∩ {x ∈ R
N : ν · x ≥ 0},

and note that 0 ∈ A ⊂ ∂� and A is a compact convex set. Consider the linear span V0
of A. It follows that dim V0 ≤ d(�). Indeed, by Lemma 26, there exists a linear basis
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{a1, . . . , am} ⊂ A of V0. Set a = (a1 + · · · + am)/m and observe that a ∈ A ⊂ ∂�

and, for δ > 0 small enough,

a + Bδ ∩ V0 = Bδ(a) ∩ V0 ⊂
{

m∑

i=1

ti ai : ti ≥ 0,
m∑

i=1

ti ≤ 1

}
⊂ A ⊂ ∂�,

which ensures that dim V0 ≤ d(�).
Since A is included in the supporting plane {x ∈ R

N : ν · x = 0} of � at 0,
which is (N − 1)-dimensional, we may choose a (N − j)-dimensional subspace V of
{x ∈ R

N : ν · x = 0} such that A ⊂ V0 ⊂ V .
Now, we observe that

ν · x < 0 for all x ∈ � \ V . (5.2)

Indeed, if x ∈ � \ V , then x ∈ � \ A and, by the definition of A, ν · x < 0.
By orthogonal transformation, we may assume that

ν = e j and V = {0 j } × R
N− j .

Set

K = {(x1, . . . , x j ) ∈ R
j : (x1, . . . , xN ) ∈ � for some (x j+1, . . . , xN ) ∈ R

N− j }.

This K is the projection of� ontoR j and is compact and convex. Clearly, we have 0 ∈
K . Moreover, if x ∈ K \{0 j }, then, by the definition of K , there is y = (y1, . . . , yN ) ∈
� such that x = (y1, . . . , y j ) and we have y /∈ V = {0 j } ×R

N− j since x �= 0 j , and,
by (5.2), ν · y < 0, which reads y j < 0. We may apply Lemma 25, to conclude that
there is a bounded strictly convex domain ω ⊂ R

j such that

K ⊂ ω and ω ⊂ {x = (x1, . . . , x j ) ∈ R
j : x j < 0}. (5.3)

Hence, by the definition of K , we see that

� ⊂ ω × R
N− j ,

which implies, since � and ω are nonempty convex sets that

� ⊂ ω × R
N− j .

It is obvious from (5.3) that for the boundary point 0 of �, 0 ∈ ∂ω × R
N− j =

∂(ω × R
N− j ).

We need the following lemma for the proof of Lemma 25.
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Lemma 27 Let BR(z) be the open ball of RN with radius R > 0 and center z. For
any x, y ∈ BR(z), with x �= y, and 0 < t < 1, there exists a positive constant
δ = δ(R, t, |x − y|) such that

Bδ(t x + (1 − t)y) ⊂ BR(z).

Moreover, δ(R, t, |x − y|) can be chosen depending only on R, t , and |x − y| and
decreasingly on R.

Proof Combine

|t x + (1 − t)y − z|2 = t2|x − z|2 + (1 − t)2|y − z|2 + 2t(1 − t)(x − z) · (y − z),

and

|x − y|2 = |x − z − (y − z)|2 = |x − z|2 + |y − z|2 − 2(x − z) · (y − z),

to get

|t x + (1 − t)y − z|2 = t2|x − z|2 + (1 − t)2|y − z|2 + t(1 − t)(|x − z|2
+ |y − z|2 − |x − y|2)

= t |x − z|2 + (1 − t)|y − z|2 − t(1 − t)|x − y|2
≤ R2 − t(1 − t)|x − y|2.

Hence, if we set

δ := 1

2

(
R −

√
R2 − t(1 − t)|x − y|2

)
= t(1 − t)|x − y|2

2(R +√R2 − t(1 − t)|x − y|2) ,

then we have Bδ(t x + (1 − t)y) ⊂ BR(z). The choice δ above has the required
dependence on R, z and so on.

Proof of Lemma 25 Fix an R0 > 0 so that K ⊂ BR0 and for R ≥ R0, set

ρ(R) = sup{h ≥ 0 : K ⊂ BR(−hem)},

where em is the unit vector in R
m , with unity as the last (m-th) entry. Since 0 ∈ K ,

we see that ρ(R) ≤ R. Also, since K ⊂ BR0 ⊂ BR(−(R − R0)em), we have
ρ(R) ≥ R − R0. It is now clear that ρ(R) is achieved. In particular, if S > R ≥ R0,
then K ⊂ BR(−ρ(R)em) ⊂ BS(−ρ(R)em) and hence, ρ(S) ≥ ρ(R). Thus, ρ(R)

depends on R nondecreasingly (in fact, increasingly).
We claim that

lim
R→∞(R2 − ρ(R)2) = 0. (5.4)
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To prove this, fix first any r > 0. Since K\Br is compact and K\Br ⊂ {x ∈ R
m :

xm < 0}, we may choose 0 < γ1 < R1 so that

K\Br ⊂
{
x ∈ R

m : x21 + · · · + x2m−1 < R2
1, −R1 < xm < −γ1

}
.

One can always replace R1 and γ1, without violating the above inclusion, by larger
and smaller ones, respectively. In what follows, we may fix R1 so that R1 > r and
consider 0 < γ < γ1.

We next choose 0 < h < R such that

BR(−hem) ∩ {x ∈ R
m : xm = 0

}

=
{
x ∈ R

m : x21 + · · · + x2m−1 ≤ r2, xm = 0
}

and

BR(−hem) ∩ {x ∈ R
m : xm = −γ

}

=
{
x ∈ R

m : x21 + · · · + x2m−1 ≤ R2
1, xm = −γ

}

i.e. we choose

h = R2
1 + γ 2 − r2

2γ
and R =

√
h2 + r2 =

√
(h − γ )2 + R2

1 .

Reducing γ1 if necessary, we can suppose that the function g(γ ) = R2
1+γ 2−r2

2γ is

decreasing in (0, γ1]. Leth1 = g(γ1). Fix any R >

√
h21 + r2 and leth = √

R2 − r2 >

h1. Since g(γ ) is continuous and limγ→0+g(γ ) = +∞, there exists γ ∈ (0, γ1] such
that

R2
1 + γ 2 − r2

2γ
= h. (5.5)

Simple geometry tells us that

K ⊂ Br∩{x ∈ R
m : xm ≤ 0} ∪ {x ∈ R

m : x21 + · · · + x2m−1 < R2
1,

− R1 < xm < −γ } ⊂ BR(−hem).

This inclusion ensures that ρ(R) ≥ h and hence R2 −ρ(R)2 ≤ R2 −h2 = r2. Hence,

we have R2 − ρ(R)2 ≤ r2 for any R >

√
h21 + r2. Since r > 0 is arbitrary, we

conclude (5.4).
In case when ρ(R) = R for some R ≥ R0, we fix such an R ≥ R0 and set

ω := BR(−ρ(R)em) = BR(−Rem).
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It is clear that ω is a bounded, open, strictly convex subset of Rm and that K ⊂ ω and
ω ⊂ {x ∈ R

m : xm < 0}.
Now, we consider the general case. We set

� =
⋂

R≥R0

BR(−ρ(R)em).

It is obvious that � is compact and convex and that K ⊂ �. Since K ⊂ BR0 ,
K \ {0} ⊂ {x ∈ R

m : xm < 0} and K is compact, it is easily seen that ρ(R0) > 0.
Moreover, since 0 ∈ BR(−ρ(R)em) for all R ≥ R0 and R �→ ρ(R) is nondecreasing,
we find that −ρ(R0)em ∈ �.

We define ω as the interior int� of �. We need only to show that ω �= ∅, which
implies by the convexity of � that ω = �, and also that ω is strictly convex and
contained in {x ∈ R

m : xm < 0}.
For this, we first check that ω ⊂ {x ∈ R

m : xm < 0}. It is enough to show that

� ∩ {x ∈ R
m : xm ≥ 0} = {0}. (5.6)

Fix any x ∈ �, with xm ≥ 0 and note that for R ≥ R0,

R2 ≥ |x + ρ(R)em |2 = |x |2 + 2ρ(R)xm + ρ(R)2 ≥ |x |2 + ρ(R)2,

and, accordingly,

R2 − ρ(R)2 ≥ |x |2.

Hence, (5.4) implies that x = 0.
Next, fix any ε > 0 and set

Rε = R0 + R2
0 − ρ(R0)

2 + 2ερ(R0)

2ε
(5.7)

and

�ε =
⋂

R0≤R≤Rε

BR(−ρ(R)em).

We observe that for any x ∈ �ε ∩ {y ∈ R
m : ym < −ε}, if R > Rε, then we have

|x + ρ(R)em |2 = |x + ρ(R0)em + (ρ(R) − ρ(R0))em |2
≤ R2

0 + (ρ(R) − ρ(R0))
2 + 2(ρ(R) − ρ(R0))(x + ρ(R0)em) · em

≤ R2
0 + (ρ(R) − ρ(R0))

2 + 2(ρ(R) − ρ(R0))(−ε + ρ(R0))

= R2
0 + ρ(R)2 − ρ(R0)

2 − 2ε(ρ(R) − ρ(R0)),
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and, since

ρ(R) ≥ R − R0 > Rε − R0 = R2
0 − ρ(R0)

2 + 2ερ(R0)

2ε
,

|x + ρ(R)em |2 ≤ R2
0 + ρ(R)2 − ρ(R0)

2 − (R2
0 − ρ(R0)

2) = ρ(R)2 ≤ R2.

Hence, we find that

�ε ∩ {x ∈ R
m : xm < −ε} ⊂ � ∩ {x ∈ R

m : xm < −ε}.

The reverse inclusion is trivial and thus we have

�ε ∩ {x ∈ R
m : xm < −ε} = � ∩ {x ∈ R

m : xm < −ε}. (5.8)

Let x, y ∈ �\{0}, with x �= y and 0 < t < 1. By (5.6), we may select ε > 0 so
that xm, ym < −2ε. It follows that t xm + (1− t)ym < −2ε. Define Rε > R0 by (5.7).
Since

x, y ∈
⋂

R0≤R≤Rε

BR(−ρ(R)em),

thanks to Lemma 27, we can choose δ ∈ (0, ε/2) such that

Bδ(t x + (1 − t)y) ⊂
⋂

R0≤R≤Rε

BR(−ρ(R)em),

which readily yields

Bδ(t x + (1 − t)y) ⊂
⋂

R0≤R≤Rε

BR(−ρ(R)em) ∩ {z ∈ R
m : zm < −ε}.

Using identity (5.8), we find that

Bδ(t x + (1 − t)y) ⊂ �. (5.9)

In particular, this, with x = −ρ(R0)em and y = −(ρ(R0)/2)em , ensures that ω �= ∅.
Inclusion (5.9) implies the strict convexity of ω. Indeed, let x, y ∈ �, with x �= y,

and 0 < t < 1. If x, y are both not zero, then (5.9) shows that t x + (1 − t)y ∈ ω.
Otherwise, we may assume that y = 0. Note that z := (t/2)x ∈ �, z �= 0 and

t x = t

2 − t
x +

(
1 − t

2 − t

)
z

and apply (5.9), to conclude that t x ∈ ω. Thus, we find that ω is strict convex and
completes the proof.
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Proof of Lemma 26 If A = {0}, then the conclusion of the lemma is obvious since
V = {0} and dim V = 0. (As usual, we agree that the linear span of ∅ is
{0}.) Assume that A �= {0}. Consider all the collections {b1, . . . , b j } of linearly
independent vectors bi ∈ A. Obviously, we have 1 ≤ j ≤ N for any such col-
lection {b1, . . . , b j }. Select such a collection {a1, . . . , ak}, with maximum number
of elements k. Since {a1, . . . , ak} ⊂ A, it follows that {a1, . . . , ak} ⊂ V , and
Span{a1, . . . , ak} ⊂ V . Suppose for the moment that Span{a1, . . . , ak} �= V , which
implies that A\Span{a1, . . . , ak} �= ∅. Then there exists ak+1 ∈ A\Span{a1, . . . , ak},
which means that {a1, . . . , ak+1} ⊂ A is a collection of linearly independent vectors.
This contradicts the choice of {a1, . . . , ak} and proves that Span{a1, . . . , ak} = V (as
well as k = m).

In a recent article [7], Blanc and Rossi have introduced the following notion. Here,
unlike [7], we are only concerned with convex domains.

Definition 28 (G j condition) Let j ∈ {1, . . . , N } and let � ⊂ R
N be a bounded

convex domain. We say that � ∈ G j if for any y ∈ ∂� and any r > 0 there exists
δ > 0 such that for every x ∈ Bδ(y) ∩ � and S ⊂ R

N subspace with dim S = j , then
there exists a unit vector v ∈ S such that

{x + tv}t∈R ∩ Br (y) ∩ ∂� �= ∅. (5.10)

In [7] they consider the problem

{
λ j (D2u) = 0 in �

u = g on ∂�

and they prove that if � ∈ G j ∩GN− j then the above Dirichlet problem is solvable for
any g while, if � is not in G j ∩GN− j then there may be some g for which the problem
is not solvable. This problem is very much related with the results in the present article
hence we prove the following equivalence.

Proposition 29 When � is bounded, open and convex, � ∈ G j if and only if � ∈
CN− j+1.

Proof The property that � /∈ G j can be stated as follows: there exist y ∈ ∂� and
r > 0 such that for any δ > 0, there exist x ∈ Bδ(y) ∩ � and a linear subspace S of
R

N , with dim SV = j , for which

{x + tv}t∈R ∩ Br (y) ∩ ∂� = ∅ for any v ∈ S, with |v| = 1.

This equality reads

(x + S) ∩ Br (y) ∩ ∂� = ∅,

and moreover, since x ∈ �,

(x + S) ∩ Br (y) ⊂ �. (5.11)
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Now, we assume that� /∈ G j and prove that d(�) ≥ j . By the above consideration,
there exist y ∈ ∂� and r > 0 such that for each k ∈ N, there exist x ∈ B1/k(y) ∩ �

and a linear subspace Sk ⊂ R
N , with dim Sk = j , such that (5.11) holds with x = xk

and S = Sk .
Noting that limk→∞ xk = y and taking limit as k → ∞ along an appropriate

subsequence, we can find a linear subspace S ⊂ R
N , with dim S = j , such that

(y + S) ∩ Br (y) ⊂ �. (5.12)

(Here, regarding the convergenceof Sk , onemayfixanorthonormal basis {vk,1, . . . , vk, j }
of Sk for each k and look for a subsequence of the k for which {vk,1, . . . , vk, j } converge
in R

N× j .) Since (y + S) ∩ Br (y) is a j-dimensional ball, with center y ∈ ∂� and �

is convex, it is easily seen by (5.12) that

(y + S) ∩ Br (y) ⊂ ∂�,

which shows that d(�) ≥ j .
Next, we assume that d(�) ≥ j and prove that � /∈ G j . This assumption implies

that there exist y ∈ ∂� and a linear subspace S ⊂ R
N , with dim S ≥ j , such that

y + S ∩ Br ⊂ ∂�.

Wemay assume by replacing S, by a subspace of S if necessary, that dim S = j . Since
∂� �= ∅, there exists a point z ∈ �. By the convexity of �, with nonempty interior,
we see that

t z + (1 − t)y + S ∩ B(1−t)r = t z + (1 − t)(y + S ∩ Br ) ⊂ � for t ∈ (0, 1).

Hence, for t ∈ (0, 1/2), if we set xt = t z + (1 − t)y, then

(xt + S) ∩ Br/2(xt ) = xt + S ∩ Br/2 ⊂ xt + S ∩ B(1−t)r ⊂ �,

and, also, limt→0 xt = y. This shows that � /∈ G j . Thus, we see that � ∈ G j if and
only if d(�) ≤ j − 1. This observation and Theorem 2 assure that � ∈ G j if and only
if � ∈ CN− j+1.
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