
Enforcing Equilibria in Multi-Agent Systems
Giuseppe Perelli

University of Leicester
giuseppe.perelli@leicester.ac.uk

ABSTRACT

We introduce and investigate Normative Synthesis: a new class
of problems for the equilibrium verification that counters the ab-
sence of equilibria by purposely constraining multi-agent systems.
We show that norms are powerful enough to ensure a positive
answer to every instance of the equilibrium verification problem.
Subsequently, we focus on two optimization versions, that aim
at providing a solution in compliance with implementation costs.
We show that the complexities of our procedures range between
2exptime and 3exptime, thus that the problems are no harder than
the corresponding equilibrium verification ones.
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1 INTRODUCTION

Multi-Agent System Verification [50] has become one of the most
important topics in the areas of both Formal Methods and Artifi-

cial Intelligence [51]. The general framework is intended to be a
system constituted by more than one component, such as software,
robots, or entities of any kind. Every agent is assumed to behave
rationally, meaning that their action is strived to maximize a payoff
function, which is assigned to it and depends on the outcome of the
execution. This means that agents perform according to strategies:
high-level plans that select the best actions according to the evolu-
tion and current knowledge in the system. From the formal point
of view, a Multi-Agent System (MAS) is generally modelled by a
composition of agents, each of them provided with a specification
of its strategic ability and a temporal objective, whose interaction
produces an outcome, generally understood as an infinite sequence
of variable assignments – on top of which the temporal objectives
are interpreted.

Such strategic interaction setting can be profitably analysed as
a game, on which the classic game-theoretic questions are inves-
tigated. Recently, the formal methods and AI communities have
shown interests to the question whether there exist (and how to
synthesise) equilibria in such games [22, 24]. This gave rise to the
notions of equilibrium verification and rational synthesis, that have
become of particular importance. Equilibrium verification concerns
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the problem of checking whether some (E-Nash) or all (A-Nash)
the Nash equilibria in the game are compatible with a temporal spec-
ification that is desired from the designers perspective. In rational
verification, instead, the designers actively take part in the equi-
librium formation process by directly controlling a system agent,
aiming for an equilibrium among the remaining agents (usually de-
noted as environmental) that is compatible with the aforementioned
desired temporal specification.

The setting can be instantiated in a variety of ways, each of
them addressing different real-world scenarios, like automated ware-

houses, self-driving cars, computer networks, and the like, that are
of interest to many research communities. For example, Linear-
Temporal Logic (LTL [48]) is recognized as the canonical temporal
goal specification language. Regarding the agents capability de-
scription, Simple Reactive Module [6] is being widely adopted both
for theoretical [25] and practical purposes [7, 41].

So far, much work has been devoted to devise, improve, and
implement theory and tools for the synthesis of equilibria in MAS.
The problem has been addressed under a variety of contexts, by
restricting or extending the underlying system structure [9, 24, 25],
the information available to the agents [10, 13, 15, 30], their strategic
ability [11, 34], as well as objective specification language [14, 26,
29]. In addition to this, logics for the strategic reasoning have been
introduced and studied [5, 12, 16, 17, 43, 45, 46].

However, such equilibria are not always guaranteed to exist [4,
Thm 1] and all the literature mentioned above on verification and
synthesis of MAS is not capable of handling systems without equi-
libria, meaning that no efficient behaviour can be correctly syn-
thesized for the agents in absence of an equilibrium. This means
that many real-world scenarios resolving in MAS with no equilibria
cannot benefit from the standard (theoretical and practical) tools
developed for the analysis of equilibrium verification. In this paper,
we address this case for the first time by introducing a new class of
equilibrium verification problems, namely Normative Synthesis. We
aim at implementing norms [1, 2, 32] into reactive modules games
to manipulate agents’ behaviours, in order to, either generate an
equilibrium encompassing a the desired global behaviour of the
system (enforcing E-Nash) or rule out those equilibria that are not
compatible with such behaviour (enforcing A-Nash).

We prove that normative synthesis is a robust mechanism, that
is, all the admissible instances can be enforced with a compatible
equilibrium. This poses an optimization problem, that is solved
assuming implementation costs of two kind: single cost, applied
only once a norm restriction is employed; iterated cost, applied
every time such restriction occurs.

All the results are provided with their computational complex-
ity analysis. We prove that the E-Nash problems are 2exptime-
complete, while the A-Nash ones can be solved in 3exptime. Due
to the page limitations, some of the proof are omitted.



2 FORMAL FRAMEWORK

Linear-Temporal Logic (LTL [48]) extends propositional logic with
two operators, X (“next”) and U (“until”), that can be used to express
properties of paths. The syntax of LTL is defined with respect to a
set of variables Φ as follows:

φ ::= ⊤ | p | ¬φ | φ ∨ φ | Xφ | φUφ

where p ∈ Φ. We interpret formulae of LTL with respect to pairs
(π , t), where π ∈ (2Φ)ω is an infinite path of evaluations and t ∈ N
is a temporal index into π . The semantics of LTL formulae is as
follows:

• π , t |= p if p ∈ π [t];
• π , t |= ¬φ if it is not the case that π , t |= φ;
• π , t |= φ1 ∨ φ2 if either π , t |= φ1 or π , t |= φ2;
• π , t |= Xφ if π , t + 1 |= φ;
• π , t |= φ1Uφ2 if π , t ′ |= φ2 for some t ′ ≥ t and π , t ′′ |= φ1
for every t ≤ t ′′ < t ′.

If π , 0 |= φ, we write π |= φ and say that π satisfies φ.
A Mealy machine [44] is a tupleM = ⟨Q,q0, I ,O, δ , τ ⟩ where: Q

is a finite set of internal states; q0 is the initial internal state; I is
the input alphabet; O is the output alphabet; δ : Q × I → Q is the
transition function; τ : Q × I → O is the output function.

For a given sequence of input symbols ι ∈ Iω , there is a unique
sequence of internal states ρ ∈ Qω such that ρ0 = q0 and, ρk+1 =
δ (ρk , ιk ) for all k ∈ N. Moreover, this run ρ, together with the
input sequence ι, induce a unique sequence of output symbols
o ∈ Oω defined by ok = τ (ρk , ιk ), for all k ∈ N, sometimes denoted
o = τ (ρ, ι).

Simple Reactive Modules [49] is a model specification language
that is based on Reactive Modules [6] and has been used to describe
multi-player games with LTL goals [25, 28]. In a Reactive Modules
Game (RMG) one can specify constraints on the power that a player
has over the variables it controls. In addition, one can specify multi-
player games directly in a high-level description language (which
can then be used as the input of a verification tool – Reactive
Modules are used, e.g., in MOCHA [7] and PRISM [41]), which is
more convenient from a user point of view for modelling purposes.

The core elements of a reactive module are guarded commands,
that are expressions over the set of Boolean variables Φ of the form
φ -> x ′1 := ψ1; · · · ;x ′k := ψk where φ (the guard) is a propositional
logic formula over Φ, each xi is a controlled variable, and eachψi
is a propositional logic formula over Φ. For a guarded command д,
guard(д) and evl(д) denote the guard and the set of assignments of
д, respectively. Thus, in the above rule, guard(д) = φ and evl(д) =
x1 := ψ1; · · · ;xk := ψk If no guarded command of a module is
enabled, the values of all controlled variables, are left unchanged;
the symbol skip will refer to the evl part of such command.

Formally, a reactive module,m, is defined as a triplem = ⟨Φm, Im,
Um⟩, where: Φm ⊆ Φ is the (finite) set of variables controlled bym;
Im is a (finite) set of initialisation guarded commands, such that for
all д ∈ Im , we have ctr (д) ⊆ Φm ; andUm is a (finite) set of update
guarded commands, such that for all д ∈ Um , we have ctr (д) ⊆ Φm .

For every module m = (Φm, Im,Um ), by Gm = Im ∪ Um we
denote the set of its guarded commands, either initialisation or
update. Whenever a module is of the indexed formmi , we replace

the indexing of its elements by simply reusing the index i . For
example, the set of variables Φmi is simply denoted by Φi .

For a given modulem = (Φm, Im,Um ) and a valuation v ∈ 2Φ,
by enablem (v) = {д ∈ Gm : v |= guard(д)} we denote the set of
guards that are enabled in v . A module m is deterministic if, for
every valuation v ∈ 2Φ, it holds that |enablem (v)| = 1, i.e., at every
valuation, there is only one possible guarded command that can be
executed. For a setM of modules, by GM =

⋃
m∈M Gm we denote

the set of all the guarded commands of some module inM .
Modules can be composed in an intersection manner as fol-

lows. For two modulesm1 = (Φ1, I1,U1) andm2 = (Φ2, I2,U2) with
Φ1∩Φ2 = ∅, the product module ism1 ⊗m2 = (Φ1∪Φ2, I1 ⊗ I2,U1 ⊗
U2) where the ⊗-operator over sets of guards G1 and G2 takes ev-
ery two guards д1 ∈ G1 and д2 ∈ G2 of the form φ1 -> x1

1 :=
ψ 1

1 ; · · · ;x1
k := ψ 1

k1
and φ2 -> x2

1 := ψ 2
1 ; · · · ;x2

k := ψ 2
k1
, respec-

tively, and returns the guard д1 ⊗ д2 defined as φ1 ∧ φ2 -> x1
1 :=

ψ 1
1 ; · · · ;x1

k := ψ 1
k1

;x2
1 := ψ 2

1 ; · · · ;x2
k := ψ 2

k1
.

As an example, consider the modules my and copycatx de-
scribed in below.

modulemy controls {y}
init
[ ]⊤ -> y′ := ⊤;
[ ]⊤ -> y′ := ⊥;
update
[ ]⊤ -> y′ := ⊥;
[ ]⊤ -> y′ := ⊤;

module copycatx controls {x}
init
[ ]⊤ -> x ′ := ⊥

update
[ ]⊤ -> x ′ := y;

The modulemy does not put any constraint to the evaluation
of variable y. Module copycatx sets the value of x to false on the
first round, then it sets x to the same value of the variable y in the
previous step. Observe that copycatx is deterministic and so there
exists only one possible behaviour (later referred as strategy) for it.

The interaction of the two modules produces an execution in
which, except for the first round, the value of x is always the same
as the one of y taken in the previous iteration.

A Reactive Module game (RMG) is a tuple of the form G =

⟨Ag,Φ,m0, . . . ,m |M |,γ0, . . . ,γn⟩ where Ag = {0, . . . ,n} is a set
of agents, Φ is a set of Boolean variables,m0, . . .m |M | is a list of
modules such that Φ0, . . .Φ |M | forms a partition of Φ (so every vari-
able in Φ is controlled by some module, and no variable is controlled
by more than one module), n < |M |, modulemi is associated to
agent i , and every modulemh with h > n is deterministic. Finally
γi is an LTL formula associated to agent i .

RMGs can be seen as an extension of iBGs [24] in which the
strategic power of agents is not a-priori fixed but dynamically
allocated according to the evolution of the game. Reactive modules
can be used to enforce/prevent agents to adopt a desired/undesired
behaviour.

The game is played over an infinite number of iterations as fol-
lows. At the beginning, all the variables are assumed to be set up to
an initial evaluation hereafter understood as the empty evaluation
∅ ∈ 2Φ unless otherwise specified. Then, on the first step, every
player i selects an initialisation guarded command д0

i ∈ Ii , this
producing a transition from ∅ to the unique evaluation of variables
v0 that follows from executing the commands дi ’s. From this point
onward, at every step k of the execution, every agent selects an



update guarded command дi ∈ Ui , which induces a transition from
vk to vk+1.

For a given agent i , execi : Gi × 2Φ → 2Φi is the function that
determines the value of the Boolean variables at the right-hand side
of a guarded command when such a guarded command is enabled
by a valuation. Formally, execi is defined, for a guarded command
д = φ -> x ′1 := ψ1; · · · ; x ′k := ψk and a valuation v such that
v |= φ, as execi (д,v) = (v ∪ {xi : v |= ψi }) \ {xi : v¬ |= ψi }.

Example 2.1 (File sharing network). In a file sharing network,
two agents are exchanging data through the upload and download
of bits. Players 1 and 2 control a variables y1 and y2, respectively,
denoting that a bit of information from their local documents has
been uploaded to the server. They are left free to upload their file
in any moment of the execution, therefore they are paired with the
modulesmy1 andmy2 , respectively. The download phase, instead,
is automatically managed in the system by means of the modules
for copycatx1 and copycatx2 on variables x1 and x2, respectively.
This makes the download to happen with a fixed one-step delay
with respect to the upload.

Agent i in the network is interested in downloading the local
documents of the other one infinitely often. This can be encoded
into the LTL formula γi = GFx1−i , for i = 1, 2.

A strategy for player i , associated to a modulemi = (Φi , Ii ,Ui ) is
a Mealy machine σi = (Si , s

0
i , 2

Φ,Gi , δi , τi ), with 2Φ and Gi being
the input and output alphabets, respectively, such that, for all s ∈ Si
and v ∈ 2Φ, it holds that:

• δi (s,v) , s
0
i , i.e., the strategy never goes back to the initial

state;
• δi (s,v) ∈ Ii iff s = s0

i , i.e., the strategy selects an initialisation
command only when being on the initial state, and an update
guarded command, otherwise;

• τi (s,v) ∈ enablemi (v), i.e., the selected guarded command
must be enabled in the current valuation.

By Σi we denote the set of possible strategies for player i .
A strategy profile is a tuple ®σ = (σ0, . . . ,σn ) of strategies, one

for each player. We also consider partial strategy profiles. For a
given set of players A ⊆ Ag, we use the notation σA to denote a
tuple of strategies, one for each player in A. Moreover, we use the
notation σ−A to denote a tuple of strategies, one for each player in
Ag \ A. We also use σi instead of σ{i } and ®σ−i instead of ®σAg\{i } .
For two partial strategy profiles ®σA and ®σB , where A ∩ B = ∅, by
(®σA, ®σB ) we denote the strategy profile obtained from associating
the strategies in ®σA and ®σB to players in A and B, respectively.

Since Mealy machines are deterministic, each profile ®σ generates
a unique play, denoted π (®σ ), which consists of an infinite sequence
of valuations, one for each round of the game. Moreover, as it has
been observed in [23], such executions are ultimately periodic, i.e.,
of the form p · tω , with p, t ∈ (2Φ)∗. In this paper, we focus only
on executions that are generated by strategies profiles of this form.
Therefore, from now on, we will refer to the ultimately periodic
executions simply as executions.

To better understand strategies, consider the file-sharing case
described in Example 2.1. A very simple strategy for Player i would
be given by a Mealy machine σon

i with a single internal state q0
i

such that τi (q0
i ,v) = {yi } for every evaluation v , that sends the

upload signal at every iteration. Contrarily, the strategy σoff
i with

τi (q
0
i ,v) = ∅ makes the player adopting it to never upload. As

another example, the strategy σ copy
i with τi (q0

i ,v) = {yi } iff y1−i ∈
v sends the upload signal only if the other agents has sent the
upload signal as well in the previous iteration.

Each player i has a preference relation over plays π ∈ (2Φ)ω ,
which is determined by its goalγi . We say that π is preferred over π ′

by agent i , and write π ⪰i π
′, if and only if π ′ |= γi implies that π |=

γi . Using this notion of preference, one can introduce the concept
of Nash Equilibrium. We say that ®σ is a Nash Equilibrium strategy
profile if, for each agent i and a strategy σ ′

i ∈ Σi , it holds that
π (®σ ) ⪰i π (®σ−i ,σ

′
i ). In addition, byNE(G) ⊆ Σ0×. . .×Σn we denote

the set of Nash Equilibria of the game G and by NE-Sat(G,φ) we
denote the set of Nash Equilibria ®σ that satisfy φ, that is, such that
π (®σ ) |= φ. Moreover, for a strategy σ0 for player 0, we say that σ−0
is a σ0-fixed Nash Equilibrium if, for every agent i , 0 and strategy
σ ′
i , π (σ0, ®σ−0) ⪰i π (σ0, ®σ−i ,σ ′

i ). By NEσ0 (G) we denote the set of
σ0-fixed Nash Equilibria in G. By NE-Satσ0 (G,φ) we denote the
set of σ0-fixed Nash Equilibria that satisfy φ.

For example, in the file-sharing case depicted above, the profiles
(σon

1 ,σ
on
2 ) and (σoff

1 ,σ
off
2 ) are Nash equilibria, the first satisfies both

agents’ goals, the second satisfies none of them. On the other hand,
the strategy profile (σoff

1 ,σ
copy
2 ) is not a Nash Equilibrium, as agent

1 can deviate to σon
1 to get his goal achieved.

A number of questions related to the equilibrium analysis of
logic-based multi-player games have been investigated in the liter-
ature [25, 39, 51]. Here, we recall the Non-Emptiness, E-Nash and
A-Nash problems.

Definition 2.2 (Equilibrium checking). For a given game G, the
Non-Emptiness problem is to establish whether NE(G) , ∅. For a
given LTL formula φ, the E-Nash problem is to establish whether
NE-Sat(G,φ) , ∅. Moreover, the A-Nash problem is to establish
whether NE-Sat(G,φ) = NE(G).

In addition to this, we make use of the Rational Synthesis prob-
lems, defined as follows.

Definition 2.3 (Rational Synthesis). For a given game G, the weak
Rational Synthesis problem is to establish whether there exists a
strategy σ0 for Player 0 such that NEσ0 (G,γ0) , ∅. Moreover, the
strong Rational Synthesis problem is to establish whether there
exists a strategy σ0 for Player 0 such that NEσ0 (G,γ0) = NEσ0 (G).

In the following, w.l.o.g., we sometimes deal with games on a
number of agents ranging from 1 to n instead of 0 to n. In partic-
ular, we do this on games for which we investigate on the Non-
Emptiness, E-Nash, and A-Nash problems.

Regarding Example 2.1, note that the Non-Emptiness problem
has a positive answer, as the game admits a Nash Equilibrium. Now,
assume we are interested in the global property φ = G¬(x1 ∧ x2)
which prevents the system to be overloaded by downloading the
local documents at the same time. In this case, the E-Nash problem
also has a positive answer. Indeed, consider the strategy σ− copy

1
that behaves like σ copy

1 except for the fact that it starts by sending
the signal of not uploading and then toggles indefinitely. Clearly
the strategy profile (σ− copy

1 ,σ
copy
2 ) satisfies φ and is also a Nash

Equilibrium, as it also satisfies both agents goals. On the other hand



theA-Nash problem has a negative answer, as the Nash Equilibrium
(σon

1 ,σ
on
2 ) does not satisfy φ.

3 NORMATIVE SYNTHESIS

For a given game G withM being the set of modules, and D ⊆ GM
a set of deactivating commands, a (dynamic) D-norm is a Mealy
machine ND = ⟨Q,q0, 2Φ, 2D , δ ,η⟩ with 2Φ and 2D being the in-
put and output alphabets, respectively. For a D-norm, the output
function is sometimes called normative function.

When it is clear from the context, we avoid using the symbol D
and call a D-norm simply norm, and denote it as N .

Intuitively, a norm N over G restricts the strategic power of the
agents by preventing them to use some of the guarded commands
from their modules.

For a given game G and a D-norm ND over it, the Normative

Game, denotedG †ND , is a game in which the subset D of guarded
commands for the agents can be activated/deactivated along the
execution, meaning that agents can execute them only when they
are left active by the norm. In this case, the execution is an infinite
sequence π ∈ (2Φ)ω of evaluation of the variables on the game
paired with an infinite sequence ζ ∈ (2D )ω of the subset of guarded
commands that are currently deactivated by the norm. For this
reason, the agents strategies must comply with the norm.

A norm-compliant strategy for agent i is a Mealy machine of the
form σi = (Si , s

0
i , 2

Φ × 2GM ,Gi , δi , τi ) such that, for all s ∈ Si and
(v,C) ∈ 2Φ × 2GM , it holds that τi (s, (v,C)) ∈ Gi \C . By Σnorm

i we
denote the set of norm-compliant strategies for agent i .

In the case of a game with an implemented norm G † N , the ex-
ecution is generated not only by a norm-compliant strategy profile
®σ , but also by the norm itself. We denote by π (N, ®σ ) ∈ (2Φ)ω such
execution and ζ (N, ®σ ) ∈ (2D )ω the infinite sequence of the set of
commands that are deactivated at every iteration.

Accordingly, a Nash Equilibrium in G † N is a total strategy
profile ®σ ∈ Σnorm

1 × . . . × Σnorm
n such that, for every agent i and

a norm-compliant strategy σ ′
i ∈ Σnorm

i , it holds that π (N, ®σ ) ⪰i
π (N, ®σ−i ,σ

′
i ). In addition, by NE(G †N) ⊆ Σnorm

1 × . . .×Σnorm
n we

denote the set of Nash Equilibria of the game G † N . Equivalently,
NE-Sat(G † N,φ) denotes the set of Nash Equilibria in G †N that
satisfy φ.

We are now ready to state the Norm Synthesis problems.

Definition 3.1 (Norm Synthesis). For a given game G, a set of
deactivating commands D, and an LTL formula φ:
Norm-SynthesisNon-Emptiness (NSNE): is there aD-norm
N such that NE(G † N) , ∅?
Norm-Synthesis E-Nash (NSE-Nash): is there a norm N

such that NE-Sat(G † N,φ) , ∅?
Norm-Synthesis A-Nash (NSA-Nash): is there a norm N

such that NE-Sat(G † N) = NE(G † N)?

Before showing how to solve the norm synthesis problems, let us
consider again the file-sharing case described in Example 2.1. Recall
that the Non-Emptiness and E-Nash problems have a positive
answer. Therefore, we do not need any norm to find a solution
to these. However, regarding the A-Nash, we need to employ a
norm to enforce a solution. For example, consider the normN that
deactivates the guarded command [ ]⊤ -> y′1 := ⊤ on the odd

iterations and the guarded command [ ]⊤ -> y′2 := ⊤ on the even
ones. This clearly makes every execution to satisfy the formula
φ = G¬(x1 ∧ x2). In particular, every Nash Equilibrium in G † N

will satisfy φ, therefore the NSA-Nash has a positive answer.
Before solving the general norm synthesis problems, we focus on

two special cases. Let us consider the ∅-normN ∅ , hereafter referred
as the empty norm, producing an empty set of constraints at every
iteration. It is clear that, for every possible strategy profile ®σ in G,
the empty norm produces the infinite sequence ζ = ∅ω of command
deactivation, thus not providing any additional constraint to the
agent’s strategic power. We have the following.

Theorem 3.2. For a given game G, it holds that NE(G) = NE(G †

∅). Analogously, for a given game G and an LTL formula φ, it holds
that NE-Sat(G,φ) = NE-Sat(G † ∅,φ).

On the other hand, let us consider every command to be deacti-
vating, i.e., D = GM . Then, for every possible execution π , it is not
hard to define a norm N that enforces a single strategy profile ®σ
and such that π (®σ ) = π . We have the following

Lemma 3.3. For a given game G and execution π in the game, there

exists a GM -norm N such that there exists only a norm-compliant

strategy profile ®σ with π (®σ ) = π .

Proof sketch. Recall that π is ultimately periodic and that, at
every step πk of that and every agent i , there exists a guarded
command дik such that πk+1 = ∪i ∈Agexeci (дik , πk ). At this point,
it is not hard to define a GM -norm N that, at every time-step of
the execution, deactivates all the guarded commands but the ones
that have to be used to generate the next step of π . Furthermore, by
construction, for every agent i , only the strategy σi used to generate
π is available whenN is implemented and so π is the only possible
execution in G † N . □

Now, for a given LTL formula φ, let us assume that there exists a
strategy profile ®σ such that π (®σ ) |= φ. Then, we can use the norm
NGM that enforces ®σ to be the only possible strategy profile of the
game G † NGM . Clearly, ®σ is a Nash Equilibrium and it satisfies φ.
Therefore, we have that NE-Sat(G † NGM ) = NE(G † NGM ) , ∅.
This produces the following.

Lemma 3.4. For a given game G and an LTL formula φ, the NSE-
Nash problem when D = GM has a solution if and only if φ is

realizable over G.

Thanks to these Lemmas, we have the two following results.

Theorem 3.5. For every game G, there exists a norm NGM
such

that NE(G † NGM ) , ∅.

Theorem 3.6. The NSE-Nash and NSA-Nash problems with D =
GM are pspace-complete.

We now focus on the general case of an arbitrary D ⊆ 2GM . We
show that the problem can be suitably encoded in rational synthesis.

First, let us recall some useful definitions and notation. For π :
N0 → 2Φ a run, we say that π ′ : N0 → 2Φ

′

, with Φ ⊆ Φ′ is a
2-fold inflation of π if π ′[2t] = π [t] for every t ≥ 0. For a set Ψ
of propositional variables with Φ ⊆ Ψ, also say that a run π ′ :
N0 → 2Ψ a 2-fold inflation of π if π ′[2t] ∩Φ = π [t] for every t ≥ 0.
Moreover, for r ∈ Ψ \ Φ, we say that a 2-fold inflation π ′ of π is



r -labelled if for all t ≥ 0, r ∈ π ′[t] if and only if t is even, i.e. there
is some t ′ ∈ N with t = 2t ′. Thus, in a r -labelled, 2-fold inflation
π ′ of π we have that π ′[t] |= r if and only if t is even.

Clearly, from a run π ′ : N0 → 2Φ
′

, we can define the 2-fold
deflation π over Φ to be the run π : N0 → 2Φ which satisfies that
π [t] = π ′[2t] ∩ Φ for every t ≥ 0. Note that, for a given run π ′,
there is a unique 2-fold deflation π over Φ.

We now define a translation function tr2 which maps LTL for-
mulae φ over Φ to LTL formulae tr2(φ) over Φ ∪ {r }, where r < Φ
is a fresh variable.

• tr2(x) = x , for every x ∈ Φ;
• tr2(¬φ) = ¬tr2(φ);
• tr2(φTψ ) = tr2(φ)T tr2(ψ );
• tr2(Xφ) = XXtr2(φ);
• tr2(φUψ ) = (r → tr2(φ))U(r ∧ tr2(ψ )).

We have the following result.

Lemma 3.7 (Inflation [28]). Let Φ and Φ′
be two disjoint sets

of propositional variables with q ∈ Φ′
, π : N0 → 2Φ a run, and

π ′ : N0 → 2Φ∪Φ
′

a q-labelled, 2-fold inflation of π . Then, for all LTL
formulae φ over Φ, it holds that π |= φ if and only if π ′ |= tr2(φ).

The idea of the inflation lemma is that we can interleave the
game execution with the decision made by the norm on which
agents commands to deactivate.

module run controls {r }
init
[ ]⊤ -> r ′ := ⊥;
update
[ ]⊤ -> r ′ := ¬r ;

Figure 1: The module

run

Now, for a given game G

and set D of deactivating com-
mands, we define a game GD

norm
on which an extra agent, namely
the normative agent, has the
ability of activate/deactivate the
other agents guarded commands.
The set of strategies of the nor-
mative agent will correspond one-to-one to the set of possible D-
norm that are applicable to G. Thus, synthesizing a strategy for the
normative agent in GD

norm will correspond exactly to synthesizing
a D-norm in G.

We define GD
norm by starting from its modules. First, consider

the module in Figure 1. The module run starts by setting the value
of variable r to false at the beginning, and then it flips its value
at each step of its own execution. Note that the module run is
deterministic. Therefore, it will keep flipping the value of r on any
execution whatsoever.

Variable r is used to alternate the two phases of the executions.
In the first phase, when r is false, the normative agent selects the
set of guarded commands to be disabled for the rest of the agents.
In the next phase, when r is true, the agents in the original game G
execute a command that is enabled to update the truth-values of the
variables in the game. The resulting outcome is an infinite play that
interleaves the two phases, producing the execution of the norm
on the odd iterations and the collective execution of the agents
on the even iterations. Thanks to the results on 2-fold inflation of
Lemma 3.7, we are able to correctly interpret the satisfaction value
of the LTL goals in this interleaved execution.

To correctly encode this process, we need to define the modules
apparatus of the normative agent. For every deactivating guarded
command д ∈ D, define the modulemд as follows.

If д is an initial guard
modulemд controls {д}

init
[ ]⊤ -> д′ := ⊤;
[ ]⊤ -> д′ := ⊥;
update
[ ]⊤ -> д′ := ⊥;

If д is an update guard
modulemд controls {д}

init
[ ]⊤ -> д′ := ⊥;
update
[ ]¬r -> д′ := ⊤;
[ ]¬r -> д′ := ⊥;

Every modulemд controls a single variable д, named after the
corresponding command. Intuitively, if д is an initial command,
the corresponding module can decide whether to enable/disable
the execution of such command at the beginning of the play, and
it is forced to keep it disabled for the subsequent steps. On the
other hand, if д is an update command, the corresponding module
disables it on the first iteration of the play and then has full power on
enabling/disabling д for all the odd iterations, i.e., the one labelled
with ¬r denoting the norm phases of the execution.

We show later that the product modulemnorm =
⊗

д∈GM
mд

determines exactly the strategic power of norms, that is, the set of
norms for G corresponds to the set of strategies that are compatible
withmnorm.

modulem′
i controls Φi

init
skip

update
[ ]r ∧ дi1 ∧ guard(дi1) -> evl(дi1);
. . .

[ ]r ∧ дih ∧ guard(дih ) -> evl(дih );

Figure 2: The modulem′
i

Now, we amend ev-
ery modulemi of the
original game G ac-
counting the fact that
it has to comply with
possible deactivation
of its commands. We
define the modulem′

i
as reported in Fig-
ure 2. Since the execution starts with a norm phase, the module
associated to the agents in the game is forced to execute the skip
command at the beginning. At the second iteration, and all the even
ones, i.e., on the agents phase, the module is allowed to execute a
command д only if the corresponding variable (whose value has
been set up by the norm in the previous iteration) is true and also
guard(д) is satisfied.

The reader shall notice that, given the definition of the guard
modules, the initial guards can be enabled only on the second it-
eration, while the update guards can be enabled only from the
fourth iteration onwards. This complies with the fact that, thanks
to Lemma 3.7, the original formulas are evaluated on the subse-
quence of paths that are extracted from even positions. For every
guarded command д in a given module mi , by д′ we denote the
corresponding guarded command inm′

i . Moreover,G ′
i will denote

the set of guarded commands inm′
i .

We are now ready to define the encoding game. For a given game
G = ⟨Ag,Φ,m1, . . . ,mM ,γ1, . . . ,γn⟩ and a set D of deactivating
guarded commands, the D-normative game is defined as GD

norm =
⟨{norm}∪Ag,Φ′,mnorm,m′

1, . . . ,m |M ′ |, run,γnorm, tr2(γ1), . . . ,

tr2(γn )⟩, where Φ′ = Φ ∪ D ∪ {r } and γnorm is an LTL formula
provided for the normative agent. In addition, run is included in
the list of deterministic modules.

The idea of GD
norm is to encode the reasoning about the existence

of D-norms for G, in terms of the existence of a strategy in GD
norm

for the normative agent. In the following, we show how to bridge



D-norms for G and normative agents strategies, as well as strategies
for agents that corresponds in both games.

Regarding norms, consider a function Γ that transforms a D-
norm N = ⟨Q,q0, 2Φ, 2D , δ ,η⟩ into a strategy σnorm = Γ(N) =

⟨Q,q0, 2Φ
′

, 2D
′

, δ ′, τ ′⟩ for the normative agent norm inGD
norm, where

D ′ = {д′ : д ∈ D} and, for every state q and valuation v , we have
that δ ′(q,v) = q if r ∈ v and δ ′(q,v) = δ (q,v↾Φ), otherwise, and
τ ′(q,v) = skip, if r ∈ v , and τ ′(q,v) = D ′ \ η(q,v↾Φ) otherwise.

Intuitively, the strategy Γ(N) emulates the operation of the norm
N by setting to false all and only the variables related to the guards
that are deactivated byN in the corresponding iteration. In addition
to this, the strategy is forced to perform a skip operation whenever
the turn is assigned to the other agents in GD

norm.
Conversely, for a strategy σnorm = ⟨Q,q0, 2Φ

′

, 2D
′

, δ ′, τ ′⟩ for
player norm in GD

norm, consider the D-norm N = ∆(σnorm) = ⟨Q ×

2D , (q0, τ ′(q0, ∅)), 2Φ, 2D , δ ,η⟩ where δ ((q, c),v) = δ ′(q,v ∪ (D \c))
and η((q, c),v) = τ ′(q,v ∪ (D \ c)). In this case, starting from a
strategy for the normative agent in GD

norm, we have defined a D-
norm that emulates such strategy by deactivating those guards
whose corresponding variable is set to false by the strategy σnorm.

For a norm compliant strategy σi = ⟨Si , s0
i , 2

Φ × 2Gi ,Gi , δi , τi ⟩
for agent i in the game G, we apply a similar reasoning and define
the strategy σ ′

i = Γ(σi ) = ⟨Si , s
0
i , 2

Φ′

,G ′
i , δi , τi ⟩ where, for every

state s ∈ Si and valuation v , δ ′i (s,v) = s if r < v and δ ′i (s,v) =
δi (s,v↾Φ), otherwise, and τ ′i (s,v) = skip, if r < v and τ ′i (s,v) =
τi (s, (v↾Φ,v↾G′)), otherwise.

Conversely, for a strategy σ ′
i = ⟨Si , s

0
i , 2

Φ′

,G ′
i , δi , τi ⟩ for player

i in GD
norm, define the norm compliant strategy σi = ∆(σ ′

i ) =

⟨Si , s
0
i , 2

Φ × 2Gi ,Gi , δi , τi ⟩ where δi (s, (v, c)) = δ ′i (q,v ∪ c ∪ {r })
and τi (s, (v, c)) = τ ′i (q,v ∪ c ∪ {r }).

It is not hard to show that, for every norm N and normative
strategy σnorm, it holds that ∆(Γ(N)) = N and Γ(∆(σnorm)) =

σnorm. The same holds for every strategy σi and σ ′
i in G and GD

norm,
respectively. Therefore, Γ and ∆ are one the inverse of the other.

At this point, we have the following result.

Lemma 3.8. Let G be a game and GD
norm be the corresponding

D-normative game for some set D of deactivating guarded commands.

Then, the two following hold.

(1) For every D-norm N and norm-compliant strategy profile ®σ
in G † N , we have that π (N, ®σ ) = π (Γ(N, ®σ ))2;

(2) For every strategy profile ®σ ′ ∈ GD
norm, π (®σ ′) = π (∆(®σ ′)).

At this point, we can prove the following theorem.

Theorem 3.9. For a game G, a set of deactivating guarded com-

mands D, and a formula φ, the following hold:

(1) There exists a D-norm N such that NE(G † N) , ∅ if, and

only if NE
Γ(N)(GD

norm,⊤) , ∅;

(2) There exists a D-norm N such that NE-Sat(G † N,φ) , ∅ if,

and only if NE-Sat
Γ(N)(GD

norm, tr
2(φ)) , ∅;

(3) There exists a D-norm N such that NE-Sat(G † N,φ) = ∅ if,

and only if NE-Sat
Γ(N)(GD

norm,φ) = NE
Γ(N)(GD

norm, tr
2(φ));

Proof. We show the proof of Item (1) only, as the ones for items
(2) and (3) are similar.

Let us assume that there exists a D-normN for G and a strategy
profile ®σ such that ®σ ∈ NE(G † N). Then, it holds that Γ(N, ®σ ) ∈

NEΓ(N)(GD
norm,⊤). First, observe that ⊤ is satisfied no matter the

play. So, we have to prove only that Γ(®σ ) is a Γ(N)-fixed Nash Equi-
librium. For an agent i , assume by contradiction that there exists a
strategyσ ′

i such thatπ (Γ(N, ®σ )) ̸|= tr2(γi ) andπ ((Γ(N, ®σ ))−i ,σ ′
i ) |=

tr2(γi ). Thus, by means of Item (2) of Lemma 3.8, it holds that
π (∆(Γ(N, ®σ ))) = π (N, ®σ ) ̸|= γi and π (∆((Γ(N, ®σ ))−i ),∆(σ

′
i )) =

π (N, ®σ )−i ,∆(σ
′
i ) |= γi , and so ∆(σ ′

i ) is a beneficial deviation for
agent i from ®σ , contradicting the fact that the latter is a Nash Equi-
librium.

The other direction of the proof is symmetric and we omit it. □

The theorem proved above shows that we can solve the Norm
Synthesis problems by means of a reduction to Rational Synthesis
instances. In particular, the NSNE and NSE-Nash problems can be
solved by means of a weak Rational Synthesis instance, whereas the
NSA-Nash can be solved by means of a strong Rational Synthesis
instance. Therefore, we have the following.

Corollary 3.10. TheNSNE andNSE-Nash problems are 2exptime-

complete. The NSA-Nash problem can be solved in 3exptime.

4 THE OPTIMIZATION CASE

In the previous section, we provided three results that can be sum-
marized as follows. Theorem 3.2 shows that, in case no deactivating
commands are available, the problem of norm synthesis resolves
to the classic equilibrium verification. On the opposite side, The-
orems 3.5 and 3.6 show that, when given the full power of deac-
tivating any possible command, norms are powerful enough to
either an equilibrium or an equilibrium satisfying a desired tempo-
ral property, provided the latter is realizable in the system. Finally,
Theorem 3.9 solves the normative synthesis problem when the set
of deactivating commands is arbitrarily fixed.

In real world scenarios, deactivating a command can come with
a cost that is due to implementing the deactivation feature itself.
So, from a designer’s point of view, the question might be to mini-
mize the number of deactivating commands in order to enforce an
equilibrium in the game. Formally, we assume the game G being
equipped with a cost function c : GM → N, assigning a positive
integer to every guarded command in the game. With an abuse
of notation, by c(D) =

∑
д∈D c(д) we denote the cost of a sub-

set of commands. A game G equipped with a cost function c is
called cost game and denoted by (G, c). For a cost game (G, c) we
say that D ⊆ GM is Non-Emptiness optimal if there exists a D-
norm ND such that NE(G † ND ) , ∅ and NE(G † ND′

) = ∅ for
every D ′-norm ND′

, such that c(D ′) < c(D). Analogously, for a
cost game (G, c) and an LTL formula φ, we say that D ⊆ GM is
E-Nash optimal with respect to φ if there exists a D-norm ND

such that NE-Sat(G † ND ,φ) , ∅ and NE-Sat(G † ND′

,φ) = ∅

for every D ′-norm ND′

, with D ′ such that c(D ′) < c(D). Finally,
we say that D is A-Nash optimal with respect to φ if there exists a
D-norm ND such that NE-Sat(G † ND ,φ) = NE(G † ND ,φ) and
NE-Sat(G † ND′

,φ) , NE(G † ND′

,φ) for every D ′-norm ND′

,
with D ′ such that c(D ′) < c(D).
We can now define a new class of problems.

Definition 4.1 (Optimal Norm Synthesis). For a cost game (G, c)
and an LTL formula φ:



NSNE-Optimal: compute a set of deactivating guarded com-
mands that is Non-emptiness optimal.
NSE-Nash-Optimal: compute a set of deactivating guarded
commands that is E-Nash optimal with respect to φ.
NSA-Nash-Optimal: compute a set of deactivating guarded
commands that is A-Nash optimal with respect to φ.

It is not hard to say that the complexity of solving these problems
is the same as the corresponding decision versions analysed in the
previous section.

Theorem 4.2. The NSNE-Optimal and NSE-Nash-Optimal prob-
lems are 2exptime-complete. Moreover, the problem NSA-Nash-

Optimal can be solved in 3exptime.

Proof sketch. We show only the NSNE-Optimal problem, as
the others are similar. First, we order the set of deactivating subsets
according to their costs, that is, D ≤c D ′ if and only if c(D) ≤

c(D ′). At this point, starting from the less costly set D, we run the
NSNE problem with D being the deactivating set. If the answer
is negative, we proceed to the next set D ′ in terms of costs. If
the answer is positive, we return D and the relative synthesized
norm ND as a solution. Note that, in order to return D, every
less costly set D ′ must have been already analysed and labelled as
unsuitable. Therefore, D is necessarily a minimal cost deactivating
set. Moreover, note that Theorem 3.5 guarantees that at least one
set D and a norm ND will be returned.

To prove the lower bound, we reduce the Non-Emptiness prob-
lem introduced in [25]. For a game G, set up c(д) = 1 for every
guarded command inGM . Then, trivially, G has a Nash Equilibrium
if, and only if, the optimal deactivating set D is the empty set ∅. □

5 ENERGY NORMS

In this section we assume a norm to be always a GM -norm, that
is, a norm that is capable of deactivating any guarded command in
the related game G.

Let us now assume that deactivating a guarded command comes
with a cost in terms of electric energy, and let the energy function
e : GM → N mapping every guard to the energy cost required to
deactivate it.

A game G paired with an energy function e is called energy

game and denoted (G, e). In order to function in an energy game,
a norm is powered by an electric generator that produces c units
of energy at every iteration, whose storage capacity is a certain
value cmax . In an energy game, every step of the execution comes
with an energy reserve that can be used by the norm to deactivate
commands. The game starts at with an empty level of energy and,
at every iteration k in the game, the energy reserve level lk is
updated by adding c units of energy and deducting the costs of
deactivating the norms in the previous step, all capped at cmax .
More formally, starting from an energy level l , the next one l ′ is
given by l ′ = min{cmax , l + c − (

∑
д∈η(q,v) e(д))}, where q and v

are the normative state and evaluation used to determine the set of
deactivated guarded commands.

For a given energy game (G, e) and a maximum capacity cmax ,
an energy norm is a Mealy machine of the form N = ⟨Q,q0, 2Φ ×

{0, . . . , cmax }, 2GM , δ ,η⟩ such that, for all q ∈ Q and (v, c) ∈ 2Φ ×

{0, . . . , cmax }, it holds that e(η(q, (v, c))) < c . That is, the energy

required to deactivate all the guarded commands in η(q, (v, c)) is
strictly less than the current energy level c .

Observe that the implementation of an energy norm over an
energy game always produces a sequence l = l0, l1, . . ., starting
from l0 = 0, such that 0 < lk ≤ cmax for all k ∈ N, no matter which
strategy profile ®σ is executed by the agents in G.

We are now ready to define a set of energy game problems.

Definition 5.1 (Energy Norm Synthesis). For a given energy game
(G, e) and an LTL formula:
EnergyNorm-SynthesisNon-Emptiness (ENSNE): is there
any energy norm N such that NE(G † N) , ∅?
Energy Norm-Synthesis E-Nash (ENSE-Nash): is there
any energy norm N such that NE-Sat(G † N) , ∅?
Energy Norm-Synthesis A-Nash (ENSA-Nash): is there
any energy norm N such that NE-Sat(G † N) = NE(G † N)?

We now show the solution of the energy game problems. Simi-
larly to the case of Section 3, we do this by exploiting the versatility
of srml, that allow us to inject the energy reasoning into suitably
defined modules.

First, let us consider a set of k boolean variables d0, . . . ,dk−1. By
using the binary representation of natural numbers, we can pair
one-to-one every truth assignment vd of variables d0, . . . ,dk−1
with a number between 0 and 2k − 1, which is given by num(vd ) =∑

0≤j≤k−1 2j · vd (dj ) 1. Conversely, for every number 0 ≤ c ≤

2k−1, by bin(c) we denote the unique truth assignment of variables
d0, . . . ,dk−1 such that c = num(bin(c)).

module ener controls {d0, . . .dk−1}
init
[ ]skip
update
[ ]r ∧ χG′ -> l ′ := l + c −

∑
д∈χG′ e(д)

Figure 3: The module ener

The determin-
istic module rep-
resented in Fig-
ure 3 is in charge
of generating the
energy level se-
quence during the
execution of the game. It does it by waiting for which guarded com-
mands the norm deactivates (when the variable r is false) and then,
in the next iteration, updating the digits representing the energy
level accordingly. Notice that the update section in the definition of
the module is a list of guarded commands, one per each evaluation
of the form χG′ =

∧
д′∈G′ д′ ∧

∧
д′<G′ ¬д′, that updates the energy

level by following l ′ := l + c −
∑
д∈χG′ e(д).

We are now ready to define the encoding game. For a given game
G = ⟨Ag,Φ,m1, . . .mM ,γ1, . . . ,γn⟩, an energy function e and a
maximum capacity value cmax , consider the game Ge = ⟨{norm} ∪

Ag,Φ′,mnorm,m′
1, . . . ,m

′
M , run, ener,γnorm, tr2(γ1), . . . , tr2(γn )⟩,

where Φ′ = Φ ∪ D ∪ {r } ∪ {d0, . . . ,dk−1} and γnorm is an LTL for-
mula provided for the normative agent. In addition, the modules
run and ener are included in the list of deterministic modules.

Formally, the game Ge is identical to the game GGM
norm with the

addition of the variables d0,dk−1 and the module ener designated
to manage variables. Therefore, we can still use the maps Γ and ∆
and Lemma 3.8 to transfer the strategic reasoning from the energy
game (G, e) to the game Ge and vice versa. Moreover, being the
energy level explicitly represented in the game by means of the

1In order to represent all the natural numbers between 0 and cmax , we assume that
cmax ≤ 2k−1 .



variables d0, . . . ,dk−1, we can express constraints about the energy
via a suitable formula over these variables. In particular, we can
express the fact that the energy value is always (strictly) positive
along the execution with the LTL formula Epos = XG

∨k−1
i=0 di

2,
that forces at least one digit to be non-zero and so the represented
number to be non-zero as well.

We have the following theorem, whose proof is similar to the
one of Theorem 3.9.

Theorem 5.2. For an energy game (G, e), a maximum capacity

cmax , and a formula φ, the following hold:

(1) There exists an energy norm N such that NE(G † N) , ∅ if,

and only if NE
Γ(N)(Ge, Epos ) , ∅;

(2) There exists an energy normN such thatNE-Sat(G†N,φ) , ∅

if, and only if NE-Sat
Γ(N)(Ge, Epos ∧ tr2(φ)) , ∅;

(3) There exists an energy normN such that NE-Sat(G †N,φ) =

∅ if, and only if NE-Sat
Γ(N)(Ge,φ) = NE

Γ(N)(Ge, Epos ∧

tr2(φ));

The above theorem shows that the energy norm synthesis prob-
lem can be solved by means of a reduction to weak and strong
rational synthesis instances. Regarding the complexity, we need
to carefully analyse it. As a matter of fact, the size of the module
ener is exponential in the number of guarded commands in the
original game G. However, it has been shown in [25] that, for a
modulem = (Φm, Im,Um ), there exists a Kripke structure Km of
size at most exponential in the number |Φm | of variables whose
runs are exactly the ones compatible withm. Such Kripke structure
can be regarded as part of the underlying game structure, on top
of which the rational synthesis procedures can be solved in time
polynomial with respect to its size. Thus, regarding the ENSNE
and ENSE-Nash problems, the overall complexity is 2exptimewith
respect to the size of the formulas and exptime with respect to
the size of the underlying Kripke structure, which is, in turn, of
size at most exponential in the number of variables and produces
a second 2exptime factor in the overall complexity. Regarding the
ENSA-Nash, we have a 3exptime and a 2exptime factor on the
size of formulas and number of variables, resulting in an overall
3exptime complexity. We have the following.

Corollary 5.3. The problems of ENSNE and ENSE-Nash are

2exptime-complete. The problem of ENSA-Nash can be solved in

3exptime.

6 CONCLUSION

Spurred by the absence of (serviceable) Nash equilibria in a con-
siderable number of multi-agent system instances, we proposed a
synthesis mechanism for the equilibrium formation. To this aim, we
introduced a new class of synthesis problems, namely Normative

Synthesis, to generate equilibria by dynamically enabling/disabling
agents actions that might cause an equilibrium formation failure.
If given full access on the deactivation of actions, this synthesis
mechanism results to be powerful enough to always adjust the
system in order to enforce desired equilibria.

This positive result allowed us to continue in this direction. We
assumed that implementing norms comes with system redesigning
2Note that game starts with the energy level set to 0. Therefore, the formula requires
the non-zero condition from the second iteration onwards.

costs, and addressed two optimization cases. In the first, a one-off
cost for the deactivation of an action is applied and the requirement
is to minimize the overall cost for the implementation of the norm.
In the second, the deactivation demands for a continuous energy
consumption and the norm is constrained to keep fulfilling an
energy level requirement. For all these cases, the computational
complexity of the problems is between 2exptime and 3exptime,
thus not harder than the corresponding rational synthesis problems.

Starting from this, many future directions can be taken. First,
one might consider other types of optimization function. For ex-
ample, the overall cost of a norm implementation can be defined
as the mean-payoff value of the cost sequence [52]. A recent work
combining qualitative and mean-payoff objective might serve as the
starting point for this investigation [26]. Alternatively, designers
might be interested in synthesizing norms for either more involv-
ing game-theoretical solution concepts, like immune and resilient
equilibria [31] or not harming agents’ welfare, that is, minimizing
the prices of Stability and Anarchy in a game [8, 38, 47]. Work on
this direction recently appeared in [4]. We should also consider
Module Checking [40], a setting in which (contrarily to Normative
Synthesis) the constraints over system transitions are managed
by an adversarial entity. This has been investigated also for multi-
agent systems [35, 36] and a comparison could establish a direct
connection between these two notions. Last but not least, starting
from the already existing work in the area of multi-agent systems
verification [7, 18, 19, 27, 41, 42], an implementation of normative
synthesis solver should be considered.

Related work. The concept of repairing systems has been investi-
gated in the literature. In [3], the authors explore the possibility of
manipulating the agents objectives (expressed in terms of systems
executions) in order to obtain a Nash equilibrium or improving
the social welfare. Also in their case, manipulations come with a
cost and an optimization problem is analysed. In [37], the authors
consider the problem of fixing faults in a finite program as a game in
which every successful repairing corresponds to a winning strategy
in a suitably defined game.

The notion of energy constraint is also widely explored in the
contexts of model-checking and synthesis. In [20], Chatterjee and
Doyen introduce a variant of Parity games in which the even
player’s strategy has the additional requirement of keeping the
energy level positive along the whole execution. More recently,
ATL∗ with energy constraint has been introduced [21]. It is worth
noticing that ATL∗ is not capable of expressing the existence of
Nash equilbria in games and, more generally, rational synthesis
instances [33]. Therefore, it would not have been possible to encase
our reasoning in this formalism.
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