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Abstract: In this work we develop analytical techniques to investigate a broad class of associative

neural networks set in the high-storage regime. These techniques translate the original statistical-

mechanical problem into an analytical-mechanical one which implies solving a set of partial dif-

ferential equations, rather than tackling the canonical probabilistic route. We test the method on

the classical Hop�eld model � where the cost function includes only two-body interactions (i.e.,

quadratic terms) � and on the �relativistic� Hop�eld model � where the (expansion of the) cost

function includes p-body (i.e., of degree p) contributions. Under the replica symmetric assumption,

we paint the phase diagrams of these models by obtaining the explicit expression of their free energy

as a function of the model parameters (i.e., noise level and memory storage). Further, since for

non-pairwise models ergodicity breaking is non necessarily a critical phenomenon, we develop a

�uctuation analysis and �nd that criticality is preserved in the relativistic model.
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1 Introduction

In the last few years, the introduction of a new-generation of computational devices [1, 2], the

development of better performing learning schemes [3, 4] and the implementation of massive data

repositories allowing e�cient training [5, 6] naturally raised the quest for appropriate mathemat-

ical tools and frameworks able to describe, address and possibly explain the related information

processing capabilities [4].

Since the 80s', the statistical mechanics of spin glasses [7] has been playing a primary role in the

investigation of neural networks, as for both their learning skills [8, 9] and their retrieval properties

[10, 11]. Along the past decades, beyond the bulk of results achieved via heuristic approaches like

the replica trick [7, 10], a considerable amount of rigorous results exploiting alternative routes was

also developed (see e.g. [12�26]).

This paper goes in the last direction and aims bridging between a statistical-mechanics approach and

a mechanical approach, the latter possibly more familiar to a wider community. In particular, we

shall focus on the Hop�eld model (as a reference framework) and its �relativistic� generalization [27].

The latter, exhibiting a cost function that is an (in�nite and convergent) series of monomials in the

microscopic variables (i.e., the neural activities) o�ers not only a perfect �playground� where testing

our methods, but also an interesting example of dense architectures [28, 29]. The translation of the

statistical-mechanics problem into a mechanical framework is based on the analogy between the

variational principles in statistical mechanics (e.g., maximum entropy and minimal energy) and the

least-action principle in analytical mechanics: this route was already paved for ferromagnetic models

[30�32], for spin glasses [33�35] and for (simpler) neural networks [12, 27]. A main advantage is

that it allows painting the phase diagrams of the model under study by relying upon tools originally

developed in the analytical counterpart (i.e. mainly di�erential equation techniques) almost without

any knowledge of the statistical mechanics of complex systems.

We stress that in this work we deal with models in the high-storage regime, namely, we set the

number P of stored patterns to be retrieved scaling linearly with the number N of neurons making
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up the network, i.e., the load α := limN→∞ P/N is non vanishing. This regime is notoriously di�cult

to handle rigorously, given the emergence of glassy phenomena impairing the retrieval capabilities of

the system (see e.g., [10, 11]). In fact, the �relativistic� Hop�eld model has already been addressed

in the low-storage regime, namely when α = 0, while when α > 0 the control of the model was still

unsatisfactory [27]. Here we overcome that limit by generalizing Guerra's interpolation technique

in order to be able to work with a broad class of Hamiltonians, that are expressable as a smooth

function F of the squared Mattis magnetization m, that is, H = F(m2) = F(
∑
µm

2
µ), where mµ

measures the retrieval of the µ-th stored pattern (µ = 1, ..., P ). Remarkably, this general model

also includes a subset of �dense� networks, where �dense� refers to the presence of p-wise (p > 2)

interactions among neurons.

This paper is structured as follows: as a preamble, in Sec. 2, we solve the classical Hop�eld model in

the high-storage regime via the mechanical analogy and, by solving a set of di�erential equations,

we recover the standard Amit-Gutfreund-Sompolinsky (AGS) quenched free-energy and related

self-consistencies for the order parameters [10]; while in the original statistical mechanical setting

this result emerges through a rather tricky and lengthy procedure, here it is just an almost trivial

exercise. In Sec. 3 the �relativistic� Hop�eld model in the high-storage regime is introduced and

embedded in its statistical mechanical framework. In Sec. 4, by relying upon a generalization of the

mechanical analogy, we calculate explicitly its quenched free energy (at the replica symmetric level,

as standard) and we provide a �rst picture of the phase diagram of the model. Next, in Sec. 5,

we study the �uctuations of the order parameters to inspect ergodicity breaking and its possible

critical nature. By combining results from Secs. 4 and 5 a consistent picture of the phase diagram

of the relativistic model is �nally obtained. Then, Sec. 6 is left for conclusions and speculations on

the broad applicability of these new mathematical techniques. Finally, in Appendix A we present

the solution of the �relativistic� Hop�eld model via replica trick.

2 The classical Hop�eld network via the mechanical analogy

The Hop�eld model is the prototype model for neural networks performing pattern recognition; soon

after the seminal paper by J.J. Hop�eld [36], the statistical-mechanics analysis by Amit, Gutfreund

and Sompolinsky [37, 38] highlighted a very rich phenomenology which prompted an upsurge of

interest among physicists and mathematicians. Admittedly, the statistical-mechanics approach is

strongly grounded on frustrated systems with quenched disorder (i.e., spin-glasses), typically studied

just in some �elds of Theoretical Physics and Applied Mathematics. Alternative investigation

routes, possibly based on more widespread frameworks, may allow for a deeper comprehension and

may facilitate interdisciplinarity with a new wave of ideas and inspirations. Hereafter we solve the

Hop�eld model by exploiting di�erential equation theory, standard in many transport problems.

In the next de�nitions we introduce the fundamental quantities we will deal with.

De�nition 1. Set α ∈ R+ and let σ ∈ {−1,+1}N be a con�guration of N binary neurons. Given

P = αN random patterns {ξµ}µ=1,...,P , each made of N digital entries identically and independently

drawn with probability P (ξµi = +1) = P (ξµi = −1) = 1/2, for i = 1, ..., N , the classical Hop�eld

cost-function (or �Hamiltonian� to preserve a physical jargon) is

HN (σ|ξ) := − 1

2N

P∑

µ=1

N,N∑

i,j=1

ξµi ξ
µ
j σiσj . (2.1)
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De�nition 2. The partition function related to the cost-function (1) is given by

ZN (β, ξ) :=
∑

{σ}
exp [−βHN (σ|ξ)] =

∑

{σ}
exp


 β

2N

P∑

µ=1

N,N∑

i,j=1

ξµi ξ
µ
j σiσj


 , (2.2)

where β ≥ 0 is a real number accounting for the fast noise (or �inverse temperature�) in the network

and such that for β → 0 the probability distribution for the neural con�guration is uniformly spread

while for β →∞ it is sharply peaked at the minima of the cost function (1).

De�nition 3. The Boltzmann average induced by the partition function (2) is denoted with ωξ and,

for an arbitrary observable O(σ), is de�ned as

ωξ(O) :=

∑
σ O(σ)e−βHN (σ|ξ)

ZN (β, ξ)
. (2.3)

This can be further averaged over the realization of the ξ's, also referred to as quenched average

and denoted as E, to get

〈O〉 := Eωξ(O). (2.4)

Further, we introduce the product state Ωs,ξ = ω
(1)
ξ × ω

(2)
ξ × ...× ω

(s)
ξ over s replicas of the system,

characterized by the same realization ξ of disorder. In the following, we shall use the product state

over two replicas only, hence we shall neglect the index s without ambiguity; also, to lighten the

notation, we shall also omit the subscript ξ in ωξ and in Ωξ. Thus, for an arbitrary observable

O(σ(1),σ(2))

〈O〉 := EΩ(O) = E
∑
σ O(σ(1),σ(2))e−β[HN (σ(1)|ξ)+HN (σ(2)|ξ)]

Z2
N (β, ξ)

, (2.5)

where σ(1,2) is the con�guration pertaining to the replica labelled as 1, 2.

De�nition 4. The intensive quenched pressure of the classical Hop�eld model (1) is de�ned as

AN (α, β) :=
1

N
E logZN (β, ξ), (2.6)

and its thermodynamic limit is referred to as

A(α, β) := lim
N→∞

AN (α, β). (2.7)

Remark 1. The quenched pressure AN (α, β) is related to the quenched free-energy FN (α, β) as

AN (α, β) = −βFN (α, β) and here it is chosen for mathematical convenience.

Before proceeding it is worth recalling the universality property of the quenched noise in spin-glasses:

when dealing with mean-�eld spin-glasses [39] and mean-�led bipartite spin-glasses [40], the coupling

distribution is proved not to a�ect the resulting pressure, provided that it is centered, symmetrical

and with �nite variance. This property was extended to the Hop�eld model in [12], where it was

shown that the quenched noise contribution appearing in the expression for the pressure (which

stems from the P − 1 non-retrieved patterns and which tends to inhibit retrieval), exhibits the very

same shape, regardless of the nature of the pattern entries (that is, digital � e.g., Boolean � or

analog � e.g., Gaussian).

Focusing on pure retrieval states, we will assume without loss of generality that the candidate

pattern to be retrieved ξ1 is a Boolean vector of N entries, while ξµ, µ = 2, ..., P are real vectors

whose N entries are i.i.d. standard Gaussian. Accordingly, the average E acts as a Boolean average

over ξ1 and as a Gaussian average over ξ2 · · · ξP .
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De�nition 5. The order parameters used to describe the macroscopic behavior of the model are the

standard ones [10, 11], namely, the Mattis magnetization

m(σ) := m(σ|ξ) :=
1

N

N∑

i=1

ξ1
1σi (2.8)

to quantify the retrieval capabilities of the network, and the two-replica overlap in the σ's variables

q12(σ) :=
1

N

N∑

i=1

σ
(1)
i σ

(2)
i (2.9)

to quantify the level of slow noise the network must cope with when performing pattern recognition.

Further, as an additional set of variables {τµ}µ=1,...,P shall be introduced (vide infra), we accordingly

de�ne the related two-replica overlap

p11(τ ) :=
1

P

P∑

µ=1

τ (1)
µ τ (1)

µ , p12(τ ) :=
1

P

P∑

µ=1

τ (1)
µ τ (2)

µ (2.10)

which as well captures the level of the noise due to pattern inference.

De�nition 6. Given �ve real interpolating parameters (t, x, y, z, w) to be set a posteriori and N +

P auxiliary quenched i.i.d. random variables Ji ∼ N [0, 1], i ∈ (1, ..., N) and J̃µ ∼ N [0, 1], µ ∈
(1, ..., P ), the interpolating pressure � also known as Guerra's action � for the classical Hop�eld

model (1) in the high-storage regime is de�ned as

AN (t, x, y, z, w) :=
1

N
E log

∑

{σ}

∫
Dτ exp

[ √t√
N

N,P∑

i,µ>1

ξµi σiτµ +
tN

2
m2(σ) +

√
x

N∑

i=1

Jiσi+

+
√
y

P∑

µ=1

J̃µτµ + z
P∑

µ=1

τ2
µ

2
+ wNm(σ)

]
,

(2.11)

where Dτ :=
∏P
µ=1

e
−τ2µ/2√

2π
is the standard Gaussian measure over the P real auxiliary variables

τµ, µ ∈ (1, ..., P ), and the expectation E is now meant over ξ, J , and J̃ .

Remark 2. We interpret r = (x, y, z, w) as the spatial coordinate in a four-dimensional Euclidean

space and t as the temporal variable. According to the mechanical analogy, we will consider the

spatial coordinates as functions of t (we will specify their form in the next theorem) and we require

that r(t = β)
!
= 0, in such a way that, when the temporal coordinate t is equal to β, we recover the

original pressure (2.6), namely AN (t = β, r = 0) = AN (α, β).

De�nition 7. Since the variables x, y, z, w are functions of t, we will refer to the Boltzmann average

stemming from the interpolating system as ωt(·), that is,

ωt(·) =

∑
σ

∫
Dτ (·) Bt,r(σ, τ )

Zt,r
, (2.12)

where Bt,r is the generalized Boltzmann factor

Bt,r(σ, τ ) := exp
[ √t√

N

N,P∑

i,µ>1

ξµi σiτµ +
tN

2
m2(σ) +

√
x
∑

i

Jiσi +
√
y
∑

µ

J̃µτµ + z
∑

µ

τ2
µ

2
+ wNm(σ)

]
,

and

Zt,r =
∑

σ

∫
DτBt,r(σ, τ ). (2.13)
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In analogy with the non-deformed average, we also pose

〈·〉t := Eωt(·), (2.14)

where now E means also the average over the J and J̃ variables.

Lemma 1. The partial derivatives of the Guerra Action (2.11) w.r.t. t, x, y, z, w can be expressed

in terms of the generalized expectations of the order parameters as

∂AN
∂t

=
α

2

[
〈p11〉t − 〈p12q12〉t

]
+

1

2
〈m2〉t (2.15)

∂AN
∂x

=
1

2

[
1− 〈q12〉t

]
, (2.16)

∂AN
∂y

=
α

2

[
〈p11〉t − 〈p12〉t

]
, (2.17)

∂AN
∂z

=
α

2
〈p11〉t, (2.18)

∂AN
∂w

= 〈m〉t, (2.19)

Proof. The previous equations can be obtained by straightforward computations. We provide details

for (2.15) only, the other derivations work analogously. Deriving AN (t, r) with respect to t we get

∂AN
∂t

=
1

N
E

∑
σ

∫
Dτ
[

1
2
√
tN

∑N,P
i,µ>1 ξ

µ
i σiτµ + N

2 m
2(σ)

]
Bt,r(σ, τ )

Zt,r
=

=
1

2N
√
tN

E
∑
σ

∫
Dτ∑N,P

i,µ>1 ξ
µ
i σiτµBt,r(σ, τ )

Zt,r
+

1

2
〈m2〉t. (2.20)

Now, we still need to handle the �rst term in the right-hand-side of eq. (2.20); by applying Wick's

theorem E[ξµi f(ξ)] = E∂ξµi f(ξ) to that term, we get

∂AN
∂t

=
1

2N2

N,P∑

i,µ>1

(
〈τ2
µ〉t − 〈σiτµ〉2t

)
+

1

2
〈m2〉t =

=
α

2

(
〈p11〉t − 〈p12q12〉t

)
+

1

2
〈m2〉t (2.21)

where we used the de�nitions (2.9) and (2.10) and replaced P − 1 with αN (which is valid in the

thermodynamic limit).

De�nition 8. Under the replica-symmetry (RS) assumption, in the thermodynamic limit, the dis-

tribution of the generic order parameter X is centered at its expectation value X̄(t) with vanishing

�uctuations for all t, that is, it converges to a Dirac delta: limN→∞ Pt(X) = δ(X−X̄(t)). Otherwise

stated, being

∆X := X − X̄(t), (2.22)

for all t ∈ R+ we have 〈∆X(t)〉t N→∞−→ 0 and 〈∆X∆Y 〉t = 0 for any generic pair of order parameters

X,Y . We therefore de�ne the following expectation values

m̄(t) = lim
N→∞

〈m〉t, (2.23)

q̄(t) = lim
N→∞

〈q12〉t, (2.24)

p̄(t) = lim
N→∞

〈p12〉t. (2.25)
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Proposition 1. The Guerra Action (2.11) obeys the following di�erential equation:

∂AN

∂t
−αp̄(t)∂AN

∂x
− q̄(t)∂AN

∂y
−
(

1− q̄(t)
)∂AN

∂z
−m̄(t)

∂AN

∂w
= −α

2
p̄(t)

(
1− q̄(t)

)
− 1

2
m̄2(t)+VN (t), (2.26)

where

VN (t) =
1

2
〈(∆m)2〉t −

1

2
〈∆p12∆q12〉t, (2.27)

and, in the thermodynamic limit, under the RS assumption, one has

∂A
∂t
− αp̄(t)∂A

∂x
− q̄(t)∂A

∂y
−
(

1− q̄(t)
)∂A
∂z
− m̄(t)

∂A
∂w

= −α
2
p̄(t)

(
1− q̄(t)

)
− 1

2
m̄2(t). (2.28)

Proof. First, we write the generalized averages 〈·〉t appearing in (2.15) in terms of the ∆ operator

(2.22) as

〈m2〉t = −m̄2(t) + 2m̄〈m〉t + 〈(∆m)2〉t, (2.29)

〈p12q12〉t = −p̄(t)q̄(t) + p̄(t)〈q12〉t + q̄(t)〈p12〉t + 〈∆p12∆q12〉t, (2.30)

and, by plugging these espressions into (2.15), we get

∂AN
∂t

=
α

2
〈p11〉t −

α

2

(
− p̄(t)q̄(t) + p̄(t)〈q12〉t + q̄(t)〈p12〉t

)
+

1

2

(
m̄2(t) + 2m̄〈m〉t

)
+ VN (t). (2.31)

Then, the generalized averages appearing in the previous expression can be recast in terms of the

spatial derivatives of the Guerra Action AN using the relations (2.16)-(2.19); after some trivial

computations we get (2.26).

Now, under the RS assumption, the averages 〈∆X〉t and 〈∆X∆Y 〉t for any generic pair of order

parameters X,Y and all t ∈ R+ vanish in the thermodynamic limit. As a consequence, we have

limN→∞ VN (t) = 0, and (2.26) reduces to (2.28).

Proposition 2. The unique solution to the di�erential equation (2.28) is given by the functional

A(t,r)
[m̄,p̄,q̄] = log 2 + EJ log cosh

[
w +

∫ t

0

m̄(t̃) dt̃+ J

√
x+ α

∫ t

0

p̄(t̃) dt̃
]
+

+
α

2

y +
∫ t

0
q̄(t̃) dt̃

1− z −
∫ t

0
[1− q̄(t̃)] dt̃

− α

2
log
(

1− z −
∫ t

0

[1− q̄(t̃)] dt̃
)

+

− 1

2

∫ t

0

dt̃ [αp̄(t̃)
(
1− q̄(t̃)

)
+ m̄2(t̃)],

(2.32)

which is a function of the parameters t, x, y, z, w and a functional of the expectactions of the order

parameters (m̄, p̄, q̄)(t).

Proof. The di�erential equation in (2.28) can be solved with di�erent methods. The simplest is

perhaps the method of characteristics, whose key step is to �nd the �characteristic curves� of the

PDE along which the PDE turns into an ODE. In this case, the characteristic curves are expressed

� 6 �

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



in terms of the expectaction values of the order parameters as

x(t) = x0 − α
∫ t

t0

p̄(t̃)dt̃, (2.33)

y(t) = y0 −
∫ t

t0

q̄(t̃)dt̃, (2.34)

z(t) = z0 −
∫ t

t0

[1− q̄(t̃)]dt̃, (2.35)

w(t) = w0 −
∫ t

t0

m̄(t̃)dt̃, (2.36)

where (x0, y0, z0, w0) = r(t = t0) = r0. We can easily verify that, along these curves, d
dtA(t, r(t))

gives us exactly the l.h.s. of (2.28). Therefore, we can write

d

dt
A(t, r(t)) = −α

2
p̄(t)

(
1− q̄(t)

)
− 1

2
m̄2(t). (2.37)

By integrating between t0 and t the previous equation we get

A(t, r(t)) = A(t0, r0)− 1

2

∫ t

t0

dt̃
[
αp̄(t̃)

(
1− q̄(t̃)

)
+ m̄2(t̃)

]
. (2.38)

Here, the parameter t0 is free and can be chosen in order to simplify the computations. By inspecting

(2.11), we see that the most convenient choice is t0 = 0, leaving us with the evaluation of a 1-body

problem which can be directly solved:

A(t0 = 0, r0) = log 2 + EJ log cosh
[
w0 + J

√
x0

]
+
α

2

y0

1− z0
− α

2
log
(

1− z0

)
. (2.39)

Now, from (2.33)-(2.36) we get x0 = x(t)+α
∫ t

0
p̄(t̃)dt̃, and similarly for y0, w0, z0. These expressions

can then be plugged in (2.39) and the resulting formula can be used in (2.38), �nally obtaining

(2.32).

Theorem 1. The replica-symmetry quenched pressure of the Hop�eld model (2.6) in the in�nite

volume limit is given by

ARS(α, β) = log 2 + EJ log cosh
[ ∫ β

0

m̄(t) dt+ J

√
α

∫ β

0

p̄(t) dt
]

+
α

2

∫ β
0
q̄(t) dt

1−
∫ β

0
[1− q̄(t)] dt

−α
2

log
(

1−
∫ β

0

[1− q̄(t)] dt
)
− 1

2

∫ β

0

dt [αp̄(t)
(
1− q̄(t)

)
+ m̄2(t)].

(2.40)

The self-consistency equations obtained from the quenched pressure (2.40) for t′ ∈ [0, β] are:

m̄(t′) = EJ tanh
[ ∫ β

0

m̄(t) dt+ J

√
α

∫ β

0

p̄(t) dt
]
,

q̄(t′) = EJ tanh2
[ ∫ β

0

m̄(t) dt+ J

√
α

∫ β

0

p̄(t) dt
]
,

p̄(t′) =

∫ β
0
q̄(t) dt

(
1−

∫ β
0

[1− q̄(t)] dt
)2 .

(2.41)
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Proof. As anticipated, by setting the interpolating parameters as t = β and x, y, z, w = 0, we

recover the Hop�eld picture, thus we get (2.40) by evaluating (2.32) in that point. The derivation

of the self-consistency equations is based on the extremization of the functional (2.40) with respect to

functional variations of the trajectoriesm(t), q(t), p(t). Therefore, we must set to zero the functional

derivatives of (2.40) w.r.t. all the order parameters appearing as functions of the temporal variable

t. The self-consistency equation for m̄(t) can be found in the following way:

δARS

δm̄(t′)
= EJ tanh

[ ∫ β

0

m̄(t)dt+ J

√
α

∫ β

0

p̄(t) dt
] ∫ β

0

δm̄(t)

δm̄(t′)
dt−

∫ β

0

m̄(t)
δm̄(t)

δm̄(t′)
dt =

= EJ tanh
[ ∫ β

0

m̄(t) dt+ J

√
α

∫ β

0

p̄(t) dt
] ∫ β

0

δ(t− t′) dt−
∫ β

0

m̄(t)δ(t− t′) dt =

= EJ tanh
[ ∫ β

0

m̄(t)dt+ J

√
α

∫ β

0

p̄(t) dt
]
− m̄(t′) = 0,

(2.42)

thus we have

m̄(t′) = EJ tanh
[ ∫ β

0

m̄(t) dt+ J

√
α

∫ β

0

p̄(t)dt
]
. (2.43)

The remaining self-consistency equations can be obtained by following the same lines and are

uniquely determined. On the other hand, as well known, the self-consistent equations can display

multiple solutions corresponding to neural con�gurations which are not necessarily stable as they

may possibly be minima for the pressure.

Corollary 1. The replica-symmetry quenched pressure (2.40) returns the standard AGS theory:

ARS(m̄, p̄, q̄) = log 2 + EJ log cosh
[
βm̄+ J

√
αβp̄

]
− β

2
[αp̄
(
1− q̄

)
+ m̄2]+

+
α

2

βq̄

1− β[1− q̄] −
α

2
log
(

1− β[1− q̄]
)
.

(2.44)

As a consequence, the self-consistency equations (2.41) recovers the standard AGS result:

p̄ =
βq̄

(
1− β(1− q̄)

)2 ,

m̄ = EJ tanh
[
βm̄+ J

√
αβp̄

]
,

q̄ = EJ tanh2
[
βm̄+ J

√
αβp̄

]
.

(2.45)

Proof. By inspecting (2.41), we can see that the r.h.s.'s do not depend on the temporal coordinate

t′. Thus, (2.41) actually predict constant functional order parameters, i.e.

m̄(t) = m̄, q̄(t) = q̄, p̄(t) = p̄ ∀t ∈ R+. (2.46)

Thus, by replacing these values in (2.40) and in (2.41) we recover the standard AGS picture.

3 The relativistic Hop�eld network

The �relativistic� Hop�eld model has been introduced in [27], where its investigation was restricted

to the low storage (see also [41, 42]). The appellation �relativistic� can be understood via the
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mechanical analogy: the Hamiltonian of the classical Hop�eld model (1) in terms of the Mattis

magnetizations reads as HN (σ|ξ) = −N∑P
µ=1m

2
µ/2 and its statistical mechanical picture can be

mapped into the dynamics of a �ctitious particle of unitary mass living in a (P + 1)-dimension

Minkowsky space [27]; in this analogy the Mattis magnetization plays the role of the momentum,

and the Hop�eld Hamiltonian (1) reads as the (classical) kinetic energy for this particle. As the

underlying metric of the space-time is Minkowskian, it is quite natural to generalize the classical

expression of the kinetic energy into its relativistic counterpart.

Here, our interest in the �relativistic� Hop�eld model is two-fold: on the one hand it provides

an extension of the classical model which includes also p-body interactions and, in this sense, it

constitutes an example of dense networks, on the other hand, it allows us to test our generalized

mathematical techniques.

De�nition 9. Set α, λ ∈ R+ and let σ ∈ {−1,+1}N be a con�guration of N binary neurons. Given

P = αN random patterns {ξµ}µ=1,...,P , each made of N digital entries identically and independently

drawn with probability P (ξµi = +1) = P (ξµi = −1) = 1/2, for i = 1, ..., N , the �relativistic� Hop�eld

cost-function (or �Hamiltonian� to preserve a physical jargon) is

Hrel

N (σ|ξ, λ) := HN (σ|ξ, λ) = −N
λ

√√√√1 + λ
P∑

µ=1

( N∑

i=1

ξµi σi
N

)2

. (3.1)

The additional parameter λ is such that for λ = 1 we recover the pure relativistic scenario, while

for λ 6= 1 we get a neural network with enriched computational skills with respect to the classical

one (1); this point has been extensively addressed in [27], while here we focus on the mathematical

backbone of the theory.

Remark 3. By expanding the relativistic model (3.1) we obtain

HN (σ|ξ, λ)

N
∼ − 1

λ
− 1

2N2

N,N∑

i,j

(
P∑

µ=1

ξµi ξ
µ
j )σiσj+

λ

8N4

N,N,N,N∑

i,j,k,l

(
P∑

µ=1

ξµi ξ
µ
j )(

P∑

ν=1

ξνkξ
ν
l )σiσjσkσl+... (3.2)

namely a series of (denser and denser) associative networks. Note also the alternate signs of the

terms making up the series: the attractive ones contribute to memory storage, while the repulsive

ones contribute to memory erasure [18, 27, 43].

Remark 4. In order to get more intuition on the model, we can look at the internal �eld hi acting

on neuron i and which, in a dynamical picture, can be used to ascertain whether the neuronal state

σi is likely to be updated or not (see e.g., [11, 44]). By de�nition, HN = −∑i hiσi, in such a way

that the internal �eld reads as

hi =

(
P∑

ν=1

ξνimν

) ∞∑

k=0

B
(

1

2
, k

)
λk−1

(
P∑

µ=1

m2
µ

)k−1

= −HN (σ|ξ, λ)

N

(
P∑

ν=1

ξνimν

)(
P∑

µ=1

m2
µ

)−1

,

where mµ = 1
N

∑
i ξ
µ
i σi is the Mattis magnetization associated to the pattern ξµ, while B(n, k) is

the general binomial coe�cient, namely B(n, k) = Γ(n+ 1)/[Γ(k + 1)Γ(1− k + n)], n, k ∈ R. One

can see that con�gurations corresponding to simultaneously large magnitudes of the magnetization

entries (i.e.,
∑P
µ=1m

2
µ large) yield to weaker �elds; also, by increasing λ the internal �eld decreases

and the system gets more susceptible to the e�ects of external noise sources.
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De�nition 10. The in�nite volume limit of the quenched pressure of the �relativistic� Hop�eld

network, Arel(α, β, λ), can be written in terms of the partition function of the model Zrel

N (ξ, β, λ) as

Arel(α, β, λ) := A(α, β, λ) = lim
N→∞

AN (α, β, λ) = lim
N→∞

1

N
E lnZN (ξ, β, λ), (3.3)

Zrel

N (ξ, β, λ) := ZN (ξ, β, λ) :=
∑

{σ}
exp (−βHN (σ|ξ, λ)) . (3.4)

As in the previous section, we use the subscript N to stress that we are working at �nite size, while

when we omit it we mean that we are evaluating quantities in the thermodynamic limit.

De�nition 11. Given O(σ) as a generic function of the neuron con�guration, we de�ne the Boltz-

mann average ωξ(O), its replicated product state over s replicas Ω and its quenched expectation 〈O〉
respectively as

ωξ(O) :=

∑
{σ}O(σ)e−βHN (σ|ξ,λ)

ZN (ξ, β, λ)
, (3.5)

Ω(O) := ω
(1)
ξ (O)× ω(2)

ξ (O)× ...× ω(s)
ξ (O), (3.6)

〈O〉 := EΩ(O). (3.7)

In the next section, we will exploit a novel interpolation strategy to obtain an explicit expression

for the quenched pressure of this model, then, in Sec. 5, preserving the same interpolation (but

focusing on the variances of the order parameters instead of the pressure), we will provide a detailed

picture of its (possible) critical behavior.

4 The mechanical generalization of Guerra's interpolation scheme

In this Section we achieve the RS expression for the quenched pressure of the relativistic Hop�eld

model again exploiting a di�erential-equation-based approach. The main problem consists in the

fact that, unlike the classical counterpart, here the cost function (3.2) is not monomial in its degrees

of freedom {σi}i=1,...,N , but it is a (convergent) in�nite series. In order to deal with this, we take

advantage of the integral representation of the Dirac delta directly on the cost function (3.1), rather

than on the order parameters as usual [11]. This is represented by the following

Proposition 3. The partition function of the �relativistic� Hop�eld model (3.1) displays the fol-

lowing integral representation

ZN (ξ, β, λ) ∝
∑

{σ}

∫
dX dK Dτ exp

[
βN

λ

√
1 + λX − KXβN

2
+

+
βN

2

(√K
N

N∑

i=1

ξ1
i σi

)2

+

√
βK

N

P∑

µ=2

N∑

i=1

ξµi σiτµ

]
.

(4.1)

Proof. The proof works by direct construction. In fact, by de�nition, the partition function for the

Hamiltonian (3.1) is

ZN (ξ, β, λ) =
∑

{σ}
exp


βN
λ

√√√√1 +
λ

N2

P∑

µ=1

( N∑

i=1

ξµi σi

)2


 , (4.2)
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and, expanding the square and exploiting the integral representation of the Dirac delta, we get

ZN (ξ, β, λ) =
∑

{σ}

∫
dXδ

(
X − 1

N2

P,N,N∑

µ,i,j=1

ξµi ξ
µ
j σiσj

)
exp

(βN
λ

√
1 + λX

)

∝
∑

{σ}

∫
dX dK exp

(βN
λ

√
1 + λX + iKX − i K

N2

P,N,N∑

µ,i,j=1

ξµi ξ
µ
j σiσj

)
.

(4.3)

Notice that the auxiliary variable X allows us to move the sum out of the square root and the aux-

iliary variable K allows us to recast the δ function in a mathematically more convenient expression.

Now, we rescale K → iβN2 K as standard [11] and we apply a Hubbard-Stratonovich transformation,

in such a way that eq. (4.3) can be recast as1

ZN (ξ, β, λ) ∝
∑

{σ}

∫
dX dK exp

(βN
λ

√
1 + λX − KXβN

2
+
Kβ

2N

P,N,N∑

µ,i,j=1

ξµi ξ
µ
j σiσj

)

=
∑

{σ}

∫
dX dK Dτ exp

[
βN

λ

√
1 + λX − KXβN

2
+

+
βN

2

(√K
N

N∑

i=1

ξ1
i σi

)2

+

√
βK

N

P∑

µ=2

N∑

i=1

ξµi σiτµ

]
,

(4.4)

where, we recall, Dτ :=
∏P
µ=1

e
−τ2µ/2√

2π
. Here, under the assumption that a single pattern (say ξ1) is

candidate for retrieval, we split the signal term from the (quenched) noise stemming from all the

remaining patterns (µ > 1). We also disregarded pre-factors (due to the integral form of Dirac's

delta and to rescaling) linear in N and whose contribution in the intensive pressure is vanishing in

the thermodynamic limit.

Remark 5. Here, X and K play the role of auxiliary order parameters. In particular, by construc-

tion (notice the delta function), the parameter X is �xed to the value

X ≡ 1

N2

P,N,N∑

µ,i,j=1

ξµi ξ
µ
j σiσj =

( 1

N

N∑

i=1

ξ1
i σi

)2

+
1

N2

P∑

µ≥2

N,N∑

i,j=1

ξµi ξ
µ
j σiσj , (4.5)

where the signal and the noise terms are highlighted. The fact that these display the same form as

in the Hop�eld model suggests that even in the �relativistic� model the number of storable patterns

is P ∼ αN .

De�nition 12. Besides the auxiliary order parameters X and K, the order parameters needed to

handle the model (3.1) are the natural relativistic extension of the standard ones, namely the Mattis

magnetization and the two-replica overlaps introduced in De�nition 5, de�ned as follows:

m̃1(σ) := m1(σ|ξ) :=
1

N

N∑

i=1

ξ1
i σi, (4.6)

q̃12(σ) :=
1

N

N∑

i=1

σ
(1)
i σ

(2)
i , (4.7)

p12(τ ) :=
1

P − 1

P∑

µ>1

τ (1)
µ τ (2)

µ , p11(τ ) :=
1

P − 1

P∑

µ>1

(τ (1)
µ )2. (4.8)

1Notice that the complex shift for the variable K formally converts �uctuating functions in exponential functions.

However, this does not lead to divergences of the whole partition function, since also integration bounds change: the

K variable is therefore integrated along the imaginary axis, so functions in K are still �uctuating.
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Remark 6. The reason for the tilde notation is that, in the following, we will introduce a trans-

formation (by a multiplicative factor) on parameters m̃ and q̃ and the transformed variables shall

be denoted as m and q, respectively. Also notice that, unlike the previous approach for the classical

Hop�eld model, here we need also the diagonal term p11, hence we will not drop the indices.

De�nition 13. Assuming that the order parameters display well de�ned, replica-symmetric expec-

tations in the thermodynamic limit, we de�ne

¯̃m := lim
N→∞

〈m1〉, (4.9)

¯̃q12 := lim
N→∞

〈q12〉, (4.10)

p̄12 := lim
N→∞

〈p12〉, (4.11)

p̄11 := lim
N→∞

〈p11〉. (4.12)

Analogously, for the auxiliary order paramaters,

X̄ := lim
N→∞

〈X〉, (4.13)

K̄ := lim
N→∞

〈K〉. (4.14)

We can now discuss our strategy to solve the �relativistic� Hop�eld model. We anticipate that the

main idea is to introduce an interpolating pressure AN (t) that recovers the original model for t = 1,

while for t = 0 it corresponds to the pressure of a simpler model analytically addressable; then, the

expression for AN (t) is obtained by exploiting the fundamental theorem of calculus

AN (t = 1) = AN (t = 0) +

∫ 1

0

ȦN (t̃)dt̃.

The expression for AN (t) can be �gured out recalling that it can display a number of additional

variables (e�ective only for t 6= 1), which can be set a posteriori; with a suitable choice of these

variables, the derivative of AN (t) could be written in terms of the correlation functions of the order

parameters of the original model in such a way that, at least under some assumptions (e.g., replica

symmetry), the integral of the derivative of the interpolating pressure can be solved.

The preliminary steps in this path are therefore the introduction of an interpolating pressure (De�ni-

tion 14), the evaluation of its streaming (Lemma 2) and of the Cauchy condition (Lemma 3).

De�nition 14. Given a scalar interpolating parameter t ∈ [0, 1], N + P auxiliary quenched i.i.d.

random variables Ji ∼ N [0, 1], i ∈ (1, ..., N) and J̃µ ∼ N [0, 1], µ ∈ (1, ..., P ), and �ve real constants

Cm, Cσ, Cz, Vσ, Vτ to be set a posteriori, we de�ne the Guerra Generalized Action AN (t) as

AN (t) :=
1

N
E log

∑

{σ}

∫
dX dK Dτ exp

[βN
λ

√
1 + λX − KXβN

2
+ t

βN

2
m2

1+

+ (1− t)CmNm1 +
√
t

√
β

N

P,N∑

µ,i=1

ξµi
√
Kσiτµ +

√
1− t

(
Cσ

N∑

i=1

Ji
√
Kσi+

+ Cτ

P∑

µ=1

J̃µτµ
)

+ (1− t)Vτ
P∑

µ=1

τ2
µ

2
+

(1− t)
2

VσNK
]
,

(4.15)

where now E averages over all the quenched random variables involved in the above expression.

Remark 7. In the following, instead of working with t-dependent expectations for the order pa-

rameters and to check a posteriori that they do not depend on the interpolation parameter t, for

the generic observable X we will directly assume that limN→∞ Pt(X) = δ(X − X̄) for all t ∈ [0, 1].

However, in the Appendix, we check that the results of our interpolation procedure are consistent

with the replica trick computations, which do not make use of any interpolation scheme.
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To simplify calculations it is convenient to introduce a new set of order parameters, as stated in

the following

De�nition 15. The Mattis magnetization and the two-replica overlap de�ned, respectively, in (4.6)

and (4.7), are transformed as

m(σ) :=
√
Km̃(σ), (4.16)

q12(σ) :=
√
K(1)K(2)q̃12(σ), (4.17)

where K(a) means that the variable K is evaluated in the a-th replica of the system. The corre-

sponding RS expectations are denoted with the upper bar, i.e., m̄ and q̄12. Conversely, the variables

X, K, p11 and p12 are left unchanged.

As in the previous section dealing with the classical Hop�eld model, we exploit the universality

property of the quenched noise in the thermodynamic limit and retain the signal as Boolean while

the remaining the contribution from the remaining P − 1 patterns is treated as a Gaussian variable

[12, 39, 40].

Lemma 2. In the in�nite volume limit, the t-derivative of the Guerra Generalized Action, under

the replica symmetric ansatz, reads as

dARS(t)

dt
=− β

2
m̄2 − βα

2
(p̄11K̄ − p̄12q̄12). (4.18)

Proof. We evaluate directly the t-derivative of AN (t) and get

dAN (t)

dt
=

1

N

[
βN

2
〈m2

1〉t +
β

2N

P,N∑

µ,i

(
〈Kτ2

µ〉t − 〈
√
Kσiτµ〉2t

)
− CmN〈m1〉t −

Vτ
2

P∑

µ

〈τ2
µ〉t+

− C2
σ

2

∑

i

(
〈K〉t − 〈

√
Kσi〉2t

)
− VσN

2
〈K〉t −

C2
τ

2

P∑

u

(
〈τ2
µ〉t − 〈τµ〉2t

)
]
,

(4.19)

where 〈·〉t generalizes (3.7) to the interpolating framework (4.15) and 〈·〉t=1 = 〈·〉. Using the

de�nitions (4.6)-(4.8) and (4.16)-(4.17) for the order parameters, the streaming becomes

dAN (t)

dt
=
[β

2
〈m2

1〉t +
βα

2
〈Kp11〉t −

βα

2
〈q12p12〉t − Cm〈m1〉t −

Vτα

2
〈p11〉t+

− C2
σ

2
〈K〉t +

C2
σ

2
〈q12〉t −

Vσ
2
〈K〉t −

αC2
τ

2
〈p11〉t +

αC2
τ

2
〈p12〉t

]
.

(4.20)

Recalling that m1 = m̄+ ∆m (see 2.22), and similarly for the other order parameters, we can write

〈m2
1〉t = 〈(m̄+ ∆m)2〉t = −m̄2 + 2m̄〈m1〉t + 〈(∆m)2〉t,

〈q12p12〉t = 〈(q̄12 + ∆q12)(p̄12 + ∆p12)〉t = −q̄12p̄12 + p̄12〈q12〉t + q̄12〈p12〉t + 〈∆q12∆p12〉t,
〈Kp11〉t = 〈(K̄ + ∆K)(p̄11 + ∆p11)〉t = −K̄p̄11 + p̄11〈K〉t + K̄〈p11〉t + 〈∆K∆p11〉t.

Now, under the assumption 〈∆X〉t → 0 and 〈∆X∆Y 〉t → 0 for all the observables involved, the

t-streaming of the Guerra Generalized Action reads as

dARS(t)

dt
=− β

2
m̄2 − βα

2
(p̄11K̄ − p̄12q̄12) +

[
βm̄〈m1〉t +

βα

2
K̄〈p11〉t +

βα

2
p̄11〈K〉t

− βα

2
q̄12〈p12〉t +−βα

2
p̄12〈q12〉t − Cm〈m1〉t −

Vτα

2
〈p11〉t −

C2
σ

2
〈K〉t +

C2
σ

2
〈q12〉t

− Vσ
2
〈K〉t +−αC

2
τ

2
〈p11〉t +

αC2
τ

2
〈p12〉t

]
,

(4.21)
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and, by choosing

Cm = βm̄, Cσ =
√
αβp̄12, Cτ =

√
βq̄12, Vτ = β(K̄ − q̄12), Vσ = βα(p̄11 − p̄12), (4.22)

we can simplify further the streaming by putting to zero the terms in square brackets, therefore

obtaining the statement of the lemma.

Lemma 3. In the in�nite volume limit, the Cauchy condition ARS(t = 0) of the Guerra Generalized

Action, under the replica symmetric ansatz reads as

ARS(t = 0) = log 2− βK̄X̄

2
+
βα

2
K̄(p̄11 − p̄12) +

β

λ

√
1 + λX̄ + EJ log cosh

[
βm̄
√
K̄ + J

√
βαp̄12K̄

]

− α

2
log
[
1− β(K̄ − q̄12)

]
+
α

2

βq̄12

1− β(K̄ − q̄12)
. (4.23)

Proof. The 1-body term we need to evaluate is

ARS(t = 0) := lim
N→∞

1

N
E log

∑

{σ}

∫
dX dK Dτ exp

[βN
λ

√
1 + λX − KXβN

2
+

1

2
VσNK

+ CmNm1 +
(
Cσ

N∑

i=1

Ji
√
Kσi + Cτ

P∑

µ=1

J̃µτµ
)

+ Vτ

P∑

µ=1

τ2
µ

2

]
,

(4.24)

where we recall that the values of the constants Cm, Cσ, Cz, Vσ, Vτ are �xed by the condition

(4.22). By inspecting this quantity, we can see that the σ-dependent terms are linear in the spins,

while the integral over the variables τ is of Gaussian type. Therefore, the (σ, τ )-dependent part

can be easily evaluated, with the result being a non-trivial function of X, K and the other order

parameters. However, the remaining integral (over the variables K and X) is of Laplace form, so

the leading behaviour in the thermodynamic limit can be computed by applying the saddle point

method. By following this route, with straightforward computations, we reach the thesis (4.23).

Theorem 2. The in�nite volume limit of the replica symmetric expression of the quenched pressure

of the �relativistic� Hop�eld model in the high-storage regime reads as

ARS(α, β, λ) = log 2− βK

2
m2 − βαK

2
p(1− q)− βKX

2
+
β

λ

√
1 + λX +

α

2

βKq

1− βK(1− q)+

+ EJ log cosh
[
βmK + J

√
βαpK

]
− α

2
log
[
1− βK(1− q)

]
,

(4.25)

whose extremization returns the following self-consistencies for the order parameters

K =
1√

1 + λX
, (4.26)

X = m2 + αp(1− q) +
α

1−Kβ(1− q) , (4.27)

q = EJ tanh2
(
Kβm+ J

√
Kαβp

)
, (4.28)

p =
Kβq

[1−Kβ(1− q)]2 , (4.29)

m = EJ tanh
(
Kβm+ J

√
Kαβp

)
. (4.30)

Proof. The explicit expression of the in�nite volume limit of the quenched pressure of the �relativis-

tic� Hop�eld network, in terms of the natural order parameters of the theory, can be obtained via

the fundamental theorem of Calculus as

A(α, β, λ) = lim
N→∞

AN (t = 1) = lim
N→∞

(
AN (t = 0) +

∫ 1

0

dAN
dt

∣∣∣∣
t=t′

dt′
)
. (4.31)
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By using the sum rule (4.31) and taking into account Proposition 2 and Proposition 3, in the

thermodynamic limit we can write

A(α, β, λ) = log 2− β

2
m̄2 − βα

2
p̄12(K − q̄12)− βK̄X̄

2
+
β

λ

√
1 + λX̄ − α

2
log
[
1− β(K̄ − q̄12)

]

+ EJ log cosh
[
βm̄
√
K̄ + J

√
βαp̄12K̄

]
+
α

2

βq̄12

1− β(K̄ − q̄12)
.

(4.32)

Finally, to restore the original order parameters (4.6), we perform a rescaling q̄12 = K̄ ¯̃q, m̄ =
√
K̄ ¯̃m,

therefore obtaining Eq. 4.25 (notice that we are omitting the upper bar and tilde to lighten the

notation). The self-consistency equations follow by extremization of the pressure over the order

parameters as standard.

Remark 8. By forcing α = 0 in the eq. (4.32) we recover the low-storage scenario of the relativistic

Hop�eld network [27, 41], as expected.

Remark 9. As it happens in Mechanics when performing the classical limit of a relativistic theory,

here the classical limit of the quenched free energy of the relativistic Hop�eld model collapses as well

to the classical Hop�eld model addressed in Sec. 2.

5 Fluctuation theory, criticality and ergodicity breaking

A main contribution of the statistical-mechanics approach to neural networks is the synthesis of

their rich phenomenology, as parameters are varied, in terms of a phase diagram. In particular, the

Hop�eld model is known to exhibit an ergodic (E) phase where fast noise prevails and the neuron

state is random, a spin-glass (SG) phase where the slow noise due to pattern interference prevails

and the neuron state gets stuck in spurious states, and a retrieval phase where the system can work

as an associative memory and perform pattern recognition; the retrieval phase can be further split

into a sub-region (R) where the retrieval state corresponds to a global minimum of the free energy

and another sub-region (MR) where the retrieval state corresponds to a local minimum of the free

energy (see Fig. 1). These regions can be distinguished by looking at the expectation value of the

order parameters: in the ergodic region the expectation of all the order parameters is zero, in the

spin-glass region the expectation of the Mattis magnetization is zero while the expectation of the

overlap is non-null, and in the retrieval region the expectation of the Mattis magnetization and of

the overlap is non null. The transition between the retrieval and the spin-glass phase is �rst-order,

as evidenced by the abrupt drop of the Mattis magnetization, while the transition between the

spin-glass phase and the ergodic phase is second-order (or critical), as evidenced by the continuous

drop of the overlap and by the divergence of their �uctuations. In fact, in pairwise models the onset

of ergodicity is typically signalled by a critical behavior whose analytical investigation is feasible by

a �uctuation analysis. On the other hand, in pure p-spin models (e.g., a p = 4 spin glass) the onset

of ergodicity is �rst-order and the study of this kind of transition is much more challenging.

The relativistic model we are addressing in this paper is neither a pure pairwise model nor a pure

p-spin model, whence the quest for a deep analysis of ergodicity breaking, which will be addressed

hereafter. In order to accomplish this task, we focus on the two-replica overlaps and, once centered

them around their expectations, we study the evolution of their variances (suitably ampli�ed by

their volumes, see Def. 16) in the space of the tunable parameters {α, β, λ} to inspect if and where

these diverge, eventually marking the onset of criticality. To this goal we retain the interpolation

de�ned by the Guerra Generalized Action (4.15) and we use it to evaluate the expectations of the

� 15 �

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



order parameters �uctuations and correlations at t = 1. As before, to achieve this result, we start the

evaluation at t = 0 (where a �ctitious, but mathematically treatable, environment is experienced by

the neurons) and then propagate this solution up to t = 1 (where the real surrounding is perceived

by the neurons).

De�nition 16. Using (l,m) to label replicas, the centered and rescaled overlap �uctuations θlm and

ρlm are introduced as

θlm :=
√
N
[
qlm − δlmQ− (1− δlm)q

]
,

ρlm :=
√
P
[
plm − δlmP ′ − (1− δlm)p

]
,

(5.1)

where, Q and q are the expectation values of, respectively, q11 and q12, and, analogously, P
′ and p

are the expectation values of, respectively, p11 and p12.

Proposition 4. Given O as a smooth function of overlaps {qlm, plm}l,m=1,...,s involving s distinct

replicas, the following streaming equation holds

dT 〈O〉 =
1

2

s∑

a,b

〈O · ga,b〉 − s
s∑

a=1

〈O · ga,s+1〉+
s(s+ 1)

2
〈O · gs+1,s+2〉 −

s

2
〈O · gs+1,s+1〉, (5.2)

where we posed

ga,b = θabρab

and

dT :=
1

β
√
α

d

dt

to simplify notation.

We will not report the proof of this proposition as passages are quite lengthy but rather standard

(see [19, 47]), rather, to understand the physics underlying this streaming, it is enough to show how

the core of these rules can be obtained in general. The simplest (already s-replicated) interpolating

structure reads as

Zs(t) =
∑

{σ(a)}

∫
dπ(K(a)) e−β

∑s
a=1H(

√
K(a),σ(a))e

√
t
N

∑s,N
a,i=1 Ji

√
K(a)σ

(a)
i (5.3)

where dπ(K(a)) denotes a generic continuous distribution forK(a), for instance, in (4.1) the measure

is the complex exponential. Then, the streaming of the generalized expectaction for a generic smooth

function O of the overlaps among s replicas is

∂t〈O〉 = ∂tE
∑
σ(a)

∫
dπ(K(a))Oe−β

∑s
a=1H(

√
K(a),σ(a))e

√
t
N

∑s,N
a,i=1 Ji

√
K(a)σ

(a)
i

∑
σ(a)

∫
dπ(K(a))e−β

∑s
aH(

√
K(a),σ(a))e

√
t
N

∑s,N
a,i Ji

√
K(a)σ

(a)
i

=
1

2
√
tN

E
N∑

i=1

Ji

s∑

a=1

[
Ωt(O

√
K(a)σ

(a)
i )− Ωt(O)Ωt(

√
K(a)σ

(b)
i )
]

=
1

2
√
tN

E
N∑

i=1

∂Ji

s∑

a=1

[
Ωt(O

√
K(a)σ

(a)
i )− Ωt(O)Ωt(

√
K(a)σ

(a)
i )
]

=
1

2N
E

N∑

i=1

s,s∑

a,b=1

[
Ωt(O

√
K(a)K(b)σ

(a)
i σ

(b)
i )− 2Ωt(O

√
K(a)σ

(a)
i )Ωt(

√
K(b)σ

(b)
i )+

+ 2Ωt(O)Ωt(
√
K(a)σ

(a)
i )Ωt(

√
K(b)σ

(b)
i )− Ωt(O)Ωt(

√
K(a)K(b)σ

(a)
i σ

(b)
i )
]
.

(5.4)
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The factorized Boltzmann averages can now be represented as averages over distinct replicas,

e.g. Ωt(O)Ωt(
√
K(a)K(b)σ

(a)
i σ

(b)
i ) = Ωt(

√
K(s+1)K(s+2)Oσ

(s+1)
i σ

(s+2)
i ) for a 6= b and the aver-

age N−1
∑
i then produces overlaps like gs+1,s+2.

We are interested in �nding, in the (α, β, λ) space, the critical surface for ergodicity breaking from

the high noise limit (where no correlations persist) we can treat θab, ρab as Gaussian variables with

zero mean (this allows us to apply Wick theorem inside the averages) and we also treat both
√
Kσi

and zµ as zero mean random variables (thus all averages involving uncoupled �elds are vanishing):

this considerably simpli�es the evaluation of the critical surface in the (α, β, λ) space.

We can thus reduce the analysis of the rescaled overlap �uctuations to

〈θ2
12〉t = C(t), 〈θ12ρ12〉t = D(t), 〈ρ2

12〉t = G(t),

〈θ2
11〉t = H(t), 〈θ11ρ11〉t = I(t), 〈ρ2

11〉t = L(t),

〈θ11ρ22〉t = Q(t), 〈θ11θ22〉t = R(t), 〈ρ11ρ22〉t = S(t).

(5.5)

As stated, the strategy is to evaluate 〈θ2
12〉t=1 as well as 〈θ12ρ12〉t=1 and 〈ρ2

12〉t=1 by calculating

their values at t = 0 (the Cauchy condition) and then propagating the solution up to t = 1 again via

the Fundamental Theorem of Calculus: the surface, in the (α, β, λ) space, where these quantities

diverge marks the onset of criticality and it is depicted by the next

Theorem 3. The ergodic region of the relativistic Hop�eld model in the high-storage is delimited

by the following critical surface in the (α, β, λ) space of the tunable parameters

βc =

√
1 +
√
αλ+ αλ

1 +
√
α

. (5.6)

Proof. According to Proposition (4), by inspecting the t−evolution of C(t) = 〈θ2
12〉t, D(t) =

〈θ12ρ12〉t and G(t) = 〈ρ2
12〉t, we can write down the following system of coupled ODE

dTC = 2CD,

dTD = D2 + CG,

dTG = 2GD.

(5.7)

Suitably combining C and G in (5.7) we can write

dT ln
C

G
= 0 =⇒ C(T ) = r2G(T ), r2 =

C(0)

G(0)
. (5.8)

Now we are left with

dTD = D2 + r2G2,

dTG = 2GD.
(5.9)

The trick here is to complete the square by summing dTD + rdTG, thus obtaining

dTY = Y 2,

Y = D + rG,

dTG = 2G(Y − rG).

(5.10)

The solution of the above system of coupled ODE is trivial and it is given by

Y (T ) =
Y0

1− TY0
, Y0 = D(0) +

√
C(0)G(0). (5.11)
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Hence we are left with the evaluation of the correlations at t = 0: namely the Cauchy condition

related to the solution coded by eq. (5.11). To this task we introduce, inside the A(t = 0) term, a

one-body generating function of the momenta of τ,
√
Kσ as follows

A(t = 0) = log
∑

{σ}

∫
Dz exp

[
βK

∑

µ

τ2
µ/2 +

∑

i

ji
√
Kσi +

∑

µ

Jµτµ

]
. (5.12)

More precisely, the source �elds ji and Jµ provide a mathematical tool to generate the average

values 〈(
√
Kσ)P 〉 and 〈zmuP 〉 by suitable derivatives of A(t = 0); for instance, we can generate

〈τµ〉 as ∂JµA(t = 0) and �nally setting J, j = 0. We stress that this trick is particularly useful

because it allows calculating the various mean values necessary to get eq (5.12) by means of simple

derivatives of A(t = 0). For the sake of clearness, we highlight that the relevant terms in j, J are

A(t = 0) ∝
∑

i

log cosh(ji
√
K) +

1

2(1− βK)

∑

µ

J2
µ. (5.13)

All the averages needed at t = 0 can now be calculated simply as its derivatives and after performing

the derivatives by setting (j = 0, J = 0). This operation leads to

D(t = 0) =
√
NP

(
∂jA

)2(
∂JA

)2∣∣∣
j,J=0

= 0,

C(t = 0) =
(
∂2
jA
)2∣∣∣

j,J=0
= K2,

G(t = 0) =
(
∂2
JA
)2∣∣∣

j,J=0
= (1− βK)−2.

(5.14)

Inserting this result in (5.11), we get

Y (T ) =

K
1−βK

1− T K
1−βK

. (5.15)

Upon evaluating Y (T ) for T = β
√
αt at t = 1 we obtain

Y (t = 1) =

K
1−βK

1− β√α K
1−βK

=
K

1− βK(1 +
√
α)
. (5.16)

Since we are interested in obtaining the critical surface where ergodicity breaks down, namely where

�uctuations (i.e. Y (t = 1)) grow arbitrarily large, we can check where the denominator at the r.h.s.

of eq. (5.16) vanishes. This leads to

βc =
1

K(1 +
√
α)
, (5.17)

K =
1√

1 + λX
, (5.18)

X =
α

1−Kβc
. (5.19)

The system above can be rearranged explicitly in order to get the critical surface βc(α, λ), as stated

in the theorem.

Remark 10. The above expression, for λ = 1 (i.e. in the true relativistic framework), generalizes

the standard AGS critical line [10] and collapses to the latter in the classical limit as it should.
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Remark 11. In the standard Hop�eld model the critical noise diverges as Tc := 1/βc ∼
√
α, as

the load α is made larger and larger. Conversely, in the relativistic setup, the critical temperature

settles on the constant value Tc := 1/λ for large values of the load α. Also notice that, for λ < 2,

the critical temperature for ergodicity breaking is a non-monotonous function of α: Tc increases as

long as α < (λ − 2)2/2, then, at α = (λ − 2)2/2 it exhibits a maximum, after which the critical

temperature slowly decreases towards its asymptotic limit. For λ = 2, the maximum is placed at

α = 0.

Using the �uctuation theory, we were able to highlight a critical behavior and to provide an explicit

equation for the critical surface (see eq. 5.6). Now, we try to get the same result by Taylor-

expanding the self-consistency (4.25) near q = 0 and m = 0, in fact, this is a standard procedure

in models displaying criticality and here it is used as a consistency check. By keeping only leading

order terms for every order parameter we write

K =
1√

1 + λX
, (5.20)

X = αp̄(1− q̄) +
α

1−Kβ(1− q̄) =
α

1− βK +O(q̄2), (5.21)

q̄ = Ey tanh2
(
y
√
Kαβp̄

)
= Kαβp̄+O(p̄2), (5.22)

p̄ =
Kβq̄

[1−Kβ(1− q̄)]2 =
βKq̄

(1− βK)2
+O(q̄2). (5.23)

After some rearrangements we get

K2 =
1− βK

1− βK + αλ
(5.24)

βK =
1

1 +
√
α

(5.25)

whose solution recovers the previous expression for the critical surface, see eq. (5.6). In Fig. 1, we

reported the phase diagrams of the �relativistic� Hop�eld model for various values of λ(=1, 2 and

5). As a �rst comment, we see that increasing the parameter λ, the critical line for the transition

to the ergodic region changes convexity, and the ergodic region gets wider towards smaller values

of the noise (this features is in common with [47]). While the critical storage capacity remains

αc(λ, β → ∞) ∼ 0.14, we see that the corresponding critical line (i.e. the transition to the spin-

glass phase) is stretched toward the α axis, meaning that the relativistic model is less stable w.r.t.

thermal noise. This can be understood with the fact that the relativistic cost-function presents

shallower potential wells w.r.t to the standard Hop�eld model, and this feature is ampli�ed for

higher and higher values of λ. This means that less thermal noise is needed for the system to

escape from these wells, thus reducing the associative power of the relativistic network.

6 Conclusions

In this paper we developed mathematical techniques to deal with dense neural networks, possibly

without extensively relying upon the statistical mechanics of spin glasses, but rather by exploiting

di�erential-equation theory.

We �rst addressed the classical Hop�eld network, whose solution was recovered by relying on a

mechanical analogy. The knowledge of statistical mechanics of complex system is rather marginal

in this setting and this may trigger further research by applied mathematicians that are more

familiar with di�erential-equation theory but possibly less acquainted with spin glasses.
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Figure 1. Phase diagram for the relativistic model for di�erent values of λ, namely λ = 1 (panel a), λ = 2

(panel b) and λ = 5 (panel c). The phase diagrams are obtained by numerically solving the self-consistency

Eqs. (4.26)-(4.26): the retrieval region (R+MR) is characterized by both non-vanishing m and q. The

spin-glass phase (SG) is instead given by m = 0 but non vanishing Edward-Anderson parameter q. The

distinction between the pure retrieval (R) and mixed retrieval (MR) stands for the fact that, respectively,

retrieval and spin-glass states correspond to maxima in the pressure. Finally, in the ergodic region (E)

m = q = 0. Notice that the transition line corresponding to the boundary between the retrieval region

(R+MR) and the spin-glass phase (SG) as well as the transition line corresponding to the boundary between

the pure retrieval region (R) and the mixed retrieval phase (MR) are close to those found for the classical

Hop�eld model (black dashed lines) and, as λ increases, the retrieval regions shrinks. On the other hand,

the critical line signalling the emergence of ergodicity is qualitatively di�erent: the ergodic region engulfs

part of the SG region. Notice the, in the λ = 1 phase diagram, we only see the increasing branch of the

ergodicity-breaking critical temperature (we decided not to include this behavior in the plot since the critical

temperature start to decrease only at α = 1 for λ = 1, and the retrieval regions would not be transparent by

inspecting also the region). Finally, panel d shows a comparison between the transition lines to ergodicity

found with numerical solutions of self-consistency Eqs. (4.26)-(4.26) (symbols) and the analytical prediction

Eq. 5.17 for di�erent values of λ as explained by the legend: the agreement is excellent.

In the rest of the paper, we considered the �relativistic� Hop�eld network as an example of dense

network allowing for p-body interactions; still by preserving a mechanical setting we got an explicit

expression of its quenched free energy in the high-load regime. We stress that the cost-function of

this model is no longer a simple monomial expression of the neurons and the patterns, and handling

this cost-function required a non-trivial generalization of the above di�erential-equation approach.
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At the end of this journey we can �nally consider very broad classes of cost functions

H = F
[ P∑

µ=1

m2
µ

]
, (6.1)

where F is a generic smooth function, and obtain their related pressure (at least under the replica

symmetry assumption) and thus all the properties of the model under consideration (e.g., the phase

diagram) by following the scheme pursued here. In fact, for the generic cost function (6.1), the

quenched pressure in the in�nite volume limit reads as

A(α, β, λ) = log 2− βK

2
m̄2 − βαK

2
p(1− q)− βKX

2
+
β

2
F [X] +

α

2

βKq

1− βK(1− q)+

+ Ey log cosh
[
βmK + y

√
βαpK

]
− α

2
log
[
1− βK(1− q)

]
,

(6.2)

whose extremization returns the following self-consistencies for the order parameters

K = ∂XF [X], (6.3)

X = m̄2 + αp̄(1− q̄) +
α

1−Kβ(1− q̄) , (6.4)

q̄ = Ey tanh2
(
Kβm̄+ y

√
Kαβp̄

)
, (6.5)

p̄ =
Kβq̄

(1−Kβ(1− q̄))2
, (6.6)

m̄ = Ey tanh
(
Kβm̄+ y

√
Kαβp̄

)
. (6.7)

Furthermore, if the leading contribution in (6.1) is provided by pairwise interactions, an ergodic

surface is expected and its expression is given by

β =
1

(
√
α+ 1) ∂XF (α+

√
α)
. (6.8)

If F(x) = −Nx/2 we recover the classical Hop�eld scenario, while, if F [x] = −N
√

1 + x we recover

the relativistic Hop�eld scenario, but the method itself can be applied in full generality to various

cost function and can be particularly useful to address dense networks.
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A Relativistic Hop�eld solution via replica trick route

In this Appendix, we re-derive the quenched pressure in the thermodynamic limit for the �rela-

tivistic� Hop�eld model by using standard replica trick computations. To do this, we start with

representation of the partition function (4.4), which we recall here:

ZN (ξ, β, λ) =
∑

{σ}

∫
dXdK exp

(βN
λ

√
1 + λX − KXβN

2
+
Kβ

2N

P∑

µ=1

N∑

i,j=1

ξµi ξ
µ
j σiσj

)
. (A.1)
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In the hypotesis of retrieval of a single pattern (say ξ1), we can separate the signal contribution

from the noise generated by all the others patterns. Then, the partition function can be rewritten

in the form

ZN (ξ, β, λ) =
∑

{σ}

∫
dXdK exp

(βN
λ

√
1 + λX − KXβN

2
+
Kβ

2N

N∑

i,j=1

ξ1
i ξ

1
jσiσj+

+
Kβ

2N

P∑

µ>1

N∑

i,j=1

ξµi ξ
µ
j σiσj

)
.

(A.2)

We can now linearize the quadratic terms in the σ variables by introducing a set of auxiliary

(Gaussian) variables zµ, so that

ZN (ξ, β, λ) =
∑

{σ}

∫
dXdKDτ1 exp

(βN
λ

√
1 + λX − KXβN

2
+

√
Kβ

N

N∑

i=1

ξ1
i τ1σi

)
×

×
∫

(
∏

µ>1

Dτµ) exp
(√Kβ

2N

P∑

µ>1

N∑

i=1

ξµi τµσi

)
.

(A.3)

The replica trick approach implies the computation of the quantity E′ZnN , where n is the number

of replicas and E′ is the average over non-recalled patterns, that is

E′ZnN = E′
∑

σ(1)

· · ·
∑

σ(n)

∫
(
n∏

a=1

dX(a)dK(a)Dτ (a)
1 ) exp

(βN
λ

∑

a

√
1 + λX(a) − βN

2

∑

a

K(a)X(a)

+

√
β

N

∑

a

√
K(a)

N∑

i=1

ξ1
i τ

(a)
1 σ

(a)
i

)
×
∫

(
∏

µ>1

n∏

a=1

Dτ (a)
µ ) exp

(√ β

N

∑

a

√
K(a)

P∑

µ>1

N∑

i=1

ξµi τ
(a)
µ σ

(a)
i

)
,

where Dτ is the usual Gaussian measure. The only term depending on the non-retrieved patterns

is the last integral, so we can directly compute the average E′. Then,

∫
(
∏

µ>1

n∏

a=1

Dτ (a)
µ )E′ exp

(√ β

N

∑

a

√
K(a)

P∑

µ>1

N∑

i=1

ξµi τ
(a)
µ σ

(a)
i

)

=

∫
(
∏

µ>1

n∏

a=1

Dτ (a)
µ ) exp

(∑

µ>1

N∑

i=1

log cosh(

√
β

N

∑

a

√
K(a)ξµi τ

(a)
µ σ

(a)
i )
)

'
∫

(
∏

µ>1

n∏

a=1

Dτ (a)
µ ) exp

( β

2N

∑

µ>1

N∑

i=1

n∑

a,b=1

√
K(a)K(b)τ (a)

µ τ bµσ
(a)
i σ

(b)
i

)
,

(A.4)

where in the last line we used the fact that log coshx = x2

2 +O(x3), which is a reasonable approxi-

mation since we want to evaluate the thermodynamic limit of the partition function. At this point,
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we can introduce the overlap order parameters by inserting a Dirac delta in the integral:

∫
(
∏

µ>1

n∏

a=1

Dτ (a)
µ ) exp

( β

2N

∑

µ>1

N∑

i=1

n∑

a,b=1

√
K(a)K(b)τ (a)

µ τ (b)
µ σ

(a)
i σ

(b)
i

)

=

∫
(
∏

µ>1

n∏

a=1

Dτ (a)
µ )

( n∏

a,b=1

dqabδ(qab − 1
N

√
K(a)K(b)

∑

i

σ
(a)
i σ

(b)
i )
)

exp
( β

2N

∑

µ>1

N∑

i=1

n∑

a,b=1

τ (a)
µ τ (b)

µ qab

)

=

∫
(
∏

µ>1

n∏

a=1

Dτ (a)
µ )

( n∏

a,b=1

dqab
Ndpab

2π

)
exp

[
iN
∑

a,b

pabqab

− i
∑

a,b,i

pab
√
K(a)K(b)σ

(a)
i σ

(b)
i +

β

2N

∑

µ>1

N∑

i=1

n∑

a,b=1

τ (a)
µ τ (b)

µ qab

]
,

where in the last line we used the Fourier representation of the Dirac delta by introducing the

q-conjugated order parameters pab. At this point, we can directly compute the Gaussian integral

over the z variables, whose result is

∫
(
∏

µ>1

n∏

a=1

Dτ (a)
µ ) exp

( β

2N

∑

µ>1

N∑

i=1

n∑

a,b=1

τ (a)
µ τ (b)

µ qab

)
= exp

(
− αN

2
log det(1− βq)

)
, (A.5)

where 1 is the n× n identity matrix and q is the overlap matrix and we replaced P − 1 with αN ,

which is possible since we are analyzing the thermodynamic limit. Then, after rescaling pab → αβ
2 pab

and τ
(a)
1 → √βNτ (a)

1 , we have

E′ZnN =
∑

σ(1)

· · ·
∑

σ(n)

∫
(
n∏

a=1

dX(a)dK(a)

√
βN

2π
dτ

(a)
1 )

( n∏

a,b=1

dqab
iαβNdpab

4π

)
exp

(
− βN

2

∑

a

(τ
(a)
1 )2

+
βN

λ

∑

a

√
1 + λX(a) − βN

2

∑

a

K(a)X(a) + β
∑

a

√
K(a)

N∑

i=1

ξ1
i τ

(a)
1 σ

(a)
i −

αβN

2

∑

a,b

pabqab

+
αβ

2

∑

a,b,i

pab
√
K(a)K(b)σ

(a)
i σ

(b)
i −

αN

2
log det(1− βq)

)
.

From now on, we will denote the integration measure over the order parameters simply with dµ

(we stress that the contribution of the prefactors in the integration measures is negligible in the

thermodynamic limit). With straightforward computation, it is easy to prove that

∑

σ(1)

· · ·
∑

σ(n)

exp
(
β
∑

a

√
K(a)

N∑

i=1

ξ1
i τ

(a)
1 σ

(a)
i +

αβ

2

∑

a,b,i

pab
√
K(a)K(b)σ

(a)
i σ

(b)
i

)
=

exp
(
NE log

∑

σ

exp
(
β
∑

a

√
K(a)ξ1τ

(a)
1 σ(a) +

αβ

2

∑

a,b

pab
√
K(a)K(b)σ(a)σ(b)

))
,

(A.6)

where we used the fact that, in the thermodynamic limit, limN→∞ 1
N f(ξi) = Ef(ξ). Then, we have

the �nal form

E′ZnN =

∫
dµ exp

(
− βN

2

∑

a

(τa1 )2 +
βN

λ

∑

a

√
1 + λX(a) − βN

2

∑

a

K(a)X(a) − αβN

2

∑

ab

pabqab

− αN

2
log det(1− βq) +NE log

∑

σ

exp
(
β
∑

a

√
K(a)ξ1τa1 σ

(a) +
αβ

2

∑

a,b

pab
√
K(a)K(b)σ(b)σ(b)

))
.
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To go forward, we must assume the replica symmetry, which in our case turns out to be

K(b) = K, (A.7)

X(a) = X, (A.8)

τ
(a)
1 =

√
Km, (A.9)

qab = Kδab +Kq(1− δab), (A.10)

pab = Pδab + p(1− δab). (A.11)

With this ansatz, we get

E′ZnN =

∫
dµ exp

[
− βNn

2
Km2 +

βNn

λ

√
1 + λX − βNn

2
KX − αβNn

2
Kp(1− q)

− αNn

2

(
log[1− βK(1− q)]− βKq

1− βK(1− q)
)

+ nN

∫
Dy log 2 cosh(βKm+ y

√
αβKp)

]
.

Then, we can apply the basic replica trick formula A = limN→∞,n→0(E′ZnN − 1)/nN . To do this,

we �rst compute the leading contribution of the partition function in the N → ∞ limit by means

of Laplace method, then we expand the exponential up to the order O(n). With simple algebra,

we arrive to the result

ARS(α, β, λ) = −β
2
Km2 +

β

λ

√
1 + λX − βKX

2
− αβ

2
Kp(1− q)− α

2
log[1− βK(1− q)]

+
α

2

βKq

1− βK(1− q) + Ey log 2 cosh(βKm+ y
√
αβKp),

(A.12)

which is precisely the quenched pressure reported in (4.25).
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