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Machine Learning-Based Classification of Vector Vortex Beams
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Structured light is attracting significant attention for its diverse applications in both classical and
quantum optics. The so-called vector vortex beams display peculiar properties in both contexts due to the
nontrivial correlations between optical polarization and orbital angular momentum. Here we demonstrate a
new, flexible experimental approach to the classification of vortex vector beams. We first describe a
platform for generating arbitrary complex vector vortex beams inspired to photonic quantum walks. We
then exploit recent machine learning methods—namely, convolutional neural networks and principal
component analysis—to recognize and classify specific polarization patterns. Our study demonstrates the
significant advantages resulting from the use of machine learning-based protocols for the construction and
characterization of high-dimensional resources for quantum protocols.
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Introduction.—Light is endowed with orbital angular
momentum (OAM) [1,2], a degree of freedom associated
with structured, nonplane wavefronts, and characterized by
an azimuthal phase dependence. When a nontrivial phase
dependence is coupled with a helicoidal transverse polari-
zation pattern, one talks of a vector vortex beam (VVB)
[2,3]. The interest in such states is motivated by the
applications in multiple fields of classical and quantum
optics [4,5]: from particle trapping to metrological appli-
cations in microscopy [6,7], and for OAM-based commu-
nications schemes in free-space and in fiber [8,9]. VVBs
are also often employed in quantum information protocols
due to the hyperentanglement between their polarization
and spatial degrees of freedom. Photonic platforms for
quantum sensing and metrology leveraging such encoding
have also been reported [10,11]. OAM-based schemes for
investigating quantum causal structures [12], quantum
communication and cryptography [13—-18], quantum walks
[19-21], quantum simulation [22,23], and quantum state
engineering [24,25], have been previously demonstrated.

Despite the potential of VVBs, many questions regard-
ing the decoding of information stored in OAM and
polarization remain unanswered. Various techniques of
OAM-demultiplexing envisage the need of additional
instruments—such as interferometry [26-28] or spatial
filtering [29-31]—to be efficiently implemented. These
introduce detrimental effects of loss and noise [32].
Moreover, the challenge of performing state tomography
in such a high-dimensional framework, a fundamental task
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in quantum information processing [33,34], can hardly be
overestimated. The design and demonstration of reliable
techniques for the generation and classification of VVBs is
thus highly desirable. Indeed, substantive efforts on finding
novel platforms are the subject of intense research activities
[6,7,35,36], including in integrated photonics [37-39] and
generation by plasmonic metasurfaces [40,41].

Recently, machine learning (ML) has emerged as a
versatile toolbox to tackle a variety of tasks arising in
experimental platforms. It has proven useful, in particular,
to ease the characterization of quantum protocols and
dynamics [42—52]. In the context of structured light, neural
networks (NNs) have been used to classify OAM states of
classical light for long distance free-space communication,
even in the presence of environmental turbulence [53-58].
In this Letter, we apply ML to characterize experimental
VVBs generated using a platform based on photonic
quantum walks (QWSs) in the OAM and polarization
degrees of freedom [24,25]. Our approach requires neither
additional interferometry stabilization nor spatial filtering,
thus providing a robust strategy to decode information
stored in VVBs, and is therefore a promising pathway
towards managing higher-dimensional quantum systems.

We leverage both supervised and unsupervised learning
techniques. We start by training a convolutional neural
network (CNN) to classify experimental images belonging
to predefined classes of states. This method gives good pre-
diction accuracy, while remaining fairly problem-agnostic
and thus useful for diverse applications. However, while
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providing high prediction accuracy, NN-based methods are
difficult to interpret. We thus also propose an alternative
technique based on the joint application of dimensionality
reduction (DR) and supervised learning. This method
provides a geometrical description of the underlying space
associated to the experimental data. While significantly
easier to use, such approach gives comparable results to
CNN, at the cost of being more tailored to the specifics of
the problem.

Our work makes significant steps forward with respect to
previous endeavors: while Refs. [53-58] leverage NNs to
process OAM states, our work is the first to tackle VVBs.
Moreover, owing to the variety of techniques we deploy, we
can address both classification and regression tasks, thus
enabling the reconstruction of the input states in relevant
cases of structured light beams. Our findings demonstrate
the reliability of a broader class of ML methods, providing
novel recognition methods to deal with VVB, which are a
building block for several information protocols with high-
dimensional systems.

Experimental generation of vector vortex beams.—
OAM-endowed states of light can be described using
Laguerre-Gauss (LG) modes. These are solutions of the
Helmholtz equation in the paraxial approximation, indexed
by two integer numbers (m, p), the former describing the
azimuthal phase structure of the beam, and the Ilatter
describing its radial intensity profile. Each LG mode carries
a set amount of angular momentum, which in the single-
photon regime equals Am [1]. VVBs can be obtained by
superposing orthogonal polarizations to LG modes [2].
More specifically, the electric field Em],nzp of a VVB
decomposes as the sum of two LG modes with the same
p and different azimuthal numbers m; > m, carried by
orthogonal polarizations: Emlmzp = ¢, cos(0/2)LG,, ,+
ére?sin(0/2)LG,, ,, where 6 €[0,x],¢ € [0,27] and
the unit vectors ¢, p stand for left and right circular
polarization, respectively. For the purpose of this work
we can ignore the radial number, setting p = 0. For any
given value of the parameters (m, m,, 0, ¢), the polarization
pattern of a VVB can be mapped onto a generalized Poincaré
sphere (cf. Fig. 1). In particular, we use the higher-order
Poincaré representation in which the poles represent eigen-
states of the total angular momentum but with opposite signs
[59]. These polarization patterns are reconstructed via the
Stokes parameters S; (j = 1, 2, 3), obtained by measuring
the output intensities ij,l,l b2 associated with a given
choice of polarization basis {b;} = {b; = (H,V), b, =
(D.A), by = (L.R)}as Sy, = (I 1 —1p2)/(Ip1 + I, 2).
Fora VVB, the values of S; depend on the coordinates in the
transverse propagation plane [60]. To visualize the polari-
zation patterns of VVBs, we use an RGB color encoding in
which the values of §; are interpreted as strengths of the
corresponding color. In Figs. 1(b) and 1(c) we report
an example of such a color map for radially polarized

Stokes Parameters VVBs Analysis

FIG. 1. (a) Higher-order Poincaré sphere representation for
|m; 5] = 1. Each point on the sphere surface corresponds to
specific polarization patterns. (b) A radially polarized VVB: at a
given point in the transverse plane the polarization vector has a
different orientation. The Stokes parameters vary accordingly in
the plane. (c) Color encoding of the polarization pattern. The
legend reports the correspondence between colors and the various
polarizations. On the right we have the resulting color pattern for
the VVB in panel (b). Gray color corresponds to unpolarized
light. (d) Experimental apparatus for the generation of VVBs. A
continuous-wave laser emits a Gaussian beam TEMj, at 808 nm.
Light undergoes a 5-step quantum walk realized through a
sequence of wave plates and g plates. A CCD camera-based
detection stage acquires information on the Stokes parameters
and the polarization pattern. Based on the intensity measured at
each pixel of the camera, Stokes parameters are evaluated and
converted into RGB-colored pictures.

VVBs. A natural way to generate VVBs is using g plates
[60,61], which are inhomogenous birefringent plates modi-
fying the OAM of the incoming light conditionally to its
polarization. In our scheme, VVBs are generated via a
sequence of polarization-controlling wave plates interspers-
ing 5 cascaded g plates [cf. Fig. 1(d)]. The apparatus
implements a discrete-time QW in the angular momentum,
where the order of LG modes takes the role of the walker and
it is changed according to the polarization state, which
embodies the coin degree of freedom [19-21,24,25]. This
allows us to generate several classes of VVBs with OAM
quantum numbers taking odd values in the interval
{-5,...,5}. We then collect images associated with differ-
ent VVBs and use them to train and benchmark our
ML-based approaches to classification, as discussed in
the next sections.

Classification via convolutional neural networks.—We
show here how to train a CNN to retrieve the parameters
(my, m,) characterizing a given VVB from experimentally
measured Stokes parameters. CNNs are translation-invari-
ant deep NNs well-suited for image classification [62], to
recognize off-center images and segmented handwritten
digits [63,64], and for facial recognition tasks [65]. In their
simplest form, CNNs work by first applying a convolu-
tional layer, which consists of a series of nonlinear trans-
formations applied to the input images, followed by a max-
pooling layer, which downsamples and filters the informa-
tion extracted by the previous layer. Finally, a fully
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FIG. 2. (a) Schematic representation of VVBs classification via
CNNs. (b) Classification scheme using linear PCA. After
reducing the dimensionality of the dataset via PCA, a linear
SVM is used to classify experimental images.

(b)

Experiment Reduced space representation

connected layer operates as a classifier, categorizing the
information extracted in the previous layers into one of
a small number of possible output categories (cf.
Refs. [66-70] and Fig. 2).

The network is first fed with a training set made out of
simulated images of VVBs achievable with a five-step QW.
The task is then to discern between 15 classes, corres-
ponding to the pairs (m;,m,) in Fig. 3(a). For each
class we generate states with 0 = z/2 and ¢ € [0, 2x].
The size of the training set is 400 images per class.
Additional 100 simulated images per class are used to
benchmark the performance during training. In these
conditions, the network achieves an accuracy of 100%.
The term accuracy is used here to refer to the fraction of
correctly classified images. We then collect 100 experi-
mental images per class, to use as a new validation set
[cf. Fig. 2(a)]. Figures 3(a)-3(b) show the average accuracy
per class against the fraction of experimental images added
to the training set. The addition of a small fraction of
experimental images to the training set improves the
capability of the network to take into account deviations
of the experimental states from ideal LG modes [71,72,
78-80] [cf. Fig. 3(b)]. An average accuracy of ~0.989 is
already obtained when 12.5% of the training set is
composed of experimental images. To further highlight
the performance of the network, we also trained a CNN
using exclusively experimental images, but using a small
number of images in the training phase. Using only 20
images per class, we already get an accuracy of 0.99 to
classify the rest of the experimental images (which are 1668
in total).

We use a similar approach to retrieve the position on the
Poincaré sphere corresponding to states generated with
fixed (my,m,). In particular, we test the performance of
CNN:s to retrieve the values (6, ¢p) of VVBs corresponding
to m, = —my = 1. The CNN is thus trained to discriminate
both rotations in the polarization patterns (corresponding to
changes of ¢), and variations in the color tone (correspond-
ing to changes of ). To frame this as a classification task,
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FIG. 3. (a) Simulated and experimental images of VVBs
corresponding to some of the values (m, m,) given in the table.
(b) Scaling of the average accuracy .4 when classifying states into
one of the 15 VVB classes, against the fraction of experimental
images added to the training set. The leftmost point refers to the
case in which only simulated images are used to train the
network. Inset: truth table reporting how the network classifies
images belonging to each class. Each row (column) corresponds
to a possible pair (m;,m,). The matrix elements have been
averaged over 100 experimental images per class.

we partition the sphere in 26 disjoint sectors. Working in
spherical coordinates, we partition € in 3 intervals
[k(/8), (k+2)(x/8)] with k=1, 3, 5, and ¢ in the 8
intervals [t(z/4), (14 1)(n/4)] with t € {0, ...,7}. This
leaves two classes, surrounding the two poles, correspond-
ing to 6 € [0, (z/8)] and 6 € [[x,z]. We train the CNN
with 500 simulated images per class in the training set, and
125 per class in the validation one. The maximum achieved
accuracy is ~0.90. The suboptimality of this result is likely
a consequence of framing the problem as a classification
task. Indeed, partitioning makes VVBs close to the border
of two sectors naturally hard to classify. Training a CNN for
the corresponding regression task will potentially improve
performance.

Dimensionality reduction.—We now present an alter-
native approach to classify VVBs from experimental data,
leveraging dimensionality reduction (DR). Such algorithms
are typically used to obtain efficient representations of large
datasets [73,74]. This has several advantages, from easing
data visualization, to improving the efficiency of classi-
fication and regression algorithms, which can be used on
the reduced representation of the data. In particular, we
employ a linear principal component analysis (PCA)
algorithm, which works by representing each datapoint
as a vector in some high-dimensional space R”, and finding
the directions in such space that capture the maximum
amount of information about the dataset [75,81]. The
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rationale for using PCA in this context is that, although
experimental images live in extremely high-dimensional
spaces (whose dimension is of the order of the number of
pixels in the CCD camera), the underlying dimension of the
generated VVBs is typically much lower. This means that,
although the experimental dataset will a priori seem like a
complicated bundle of high-dimensional vectors, the under-
lying data is actually characterizable by a small number of
parameters. Furthermore, the linearity of the mapping
preserves the convexity of the VVB space and thus its
geometrical structure. We then expect that the new
description for expressing the experimental images in the
reduced space provides a synthetic description for captur-
ing the features of VVBs encoded in the measurements (the
intensities in three polarization bases {b;}, cf. Ref. [66]).
This resembles a form of unsupervised learning, as we gain
useful information about the origin of the images without
feeding the algorithm with any knowledge of the under-
lying process.

As a notable example, we apply these observations to
VVBs with m, = —m; = 1, which can be represented on a
sphere in the higher-order Poincaré representation. Indeed,
applying PCA to the experimental dataset of Fig. 4(b)
reveals that three directions are sufficient to capture most of
the information content of the images. Projecting the
images along these three principal components, we find
that the data are arranged in the form of a three-dimensional
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FIG. 4. (a) Higher-order Poincaré sphere for VVBs with
|m; 5| = 1. Magenta-colored parallels (blue-colored meridians)
mark intervals between consecutive values of € (¢). Along a
meridian the colors of the pattern vary from the hottest to the
coldest one. Along a parallel, the patterns rotate. (b) Comparison
between experimental and simulated VVB images for different
angles (0, ¢). (c) Distribution of fidelities obtained comparing
each experimental VVB with its reduced 3D representations
given by PCA. (d) Average prediction accuracy A of a linear
SVM classifier, trained and tested after applying linear DR to the
data, against the number of reduced dimensions 7. For each of
the 15 classes (cf. Fig. 3a) in which the experimental dataset was
divided, we show in the inset the truth table.

sphere embedded in the experimental high-dimensional
space. We refer to the Supplemental Material [66] for the
distribution of radii of the three-dimensional representation
of the images that allows us to retrieve the state’s
position on the Poincaré sphere overcoming the border
problem characterizing the previous classification method.
Remarkably, this was not obvious from the experimental
dataset alone, but was easily revealed using DR. This result
highlights the potential of DR to reveal features of the
underlying states generating a given experimental dataset in
realistic experimental conditions (cf. Refs. [66,67]).
Interpreting this reduced three-dimensional representation
as a Bloch sphere, we can use PCA to retrieve a complete
description of the state generating a given experimental
image. To assess the accuracy of such reconstruction, we
compute the average fidelity F,, between the state
generating a given image and the one retrieved from said
image via PCA, averaging over many experimental images.
The fidelity between two states is here defined in the usual
way as F(p, ) = Tr|\/p\/o|. As shown in the histogram of
Fig. 4(c), this is found to be F,,, ~0.96, with standard
deviation ~0.01, thus showcasing the quality of the
reconstruction.

Classification via SVMs.—We now show how the
reduced representations provided by PCA can function
as a starting point to train a classifier with accuracy
comparable with the CNN, while requiring a significantly
reduced amount of computational resources. More pre-
cisely, we use as classifiers linear support vector machines
(SVMs) [76,77]. These supervised learning algorithms
categorize data by finding the hyperplane that optimally
separates the training dataset in accordance with the
corresponding labels.

As done for the CNN, we consider the task of classifying
the experimental dataset of VVB states, indexed by
(my, m,). We train the SVM on the reduced space obtained
via PCA, applied to the experimental dataset reported in
Fig. 3(a). This significantly improves the efficiency of the
classifier, which only has to operate on a compressed
representation of the images. This method gives an average
accuracy of ~98% when reducing the dimensionality of the
dataset to 40 [66,67]. The SVM was trained on half of the
experimental data, with the other half used to test the
resulting accuracy. A breakdown of the resulting classi-
fication performance is reported in the inset of Fig. 4(d), in
which we give the accuracy of the classifier for each class.
Finally, we highlight in Fig. 4(d) how the average overall
accuracy depends on the dimensionality of the reduced
representation. In particular, we find that ~25 dimensions
are already sufficient to get good average accuracies.

Discussion.—We presented a novel approach to classify
VVBs leveraging ML techniques. We demonstrated how
the use of inference strategies based on CNNs and PCA
(enhanced by SVMs) allows us to extract efficiently
properties of high-dimensional photonic VVB systems.
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In particular, DR was used to obtain a deeper understanding
of the underlying geometrical properties of the experimen-
tally generated states, without requiring prior knowledge
about the physics of the generation apparatus. By embed-
ding a variety of ML algorithms into our experimental
pipeline, the task of characterizing structured light is made
significantly broader in the methods, ranging from super-
vised to unsupervised learning, and more flexible in the
applications, classification and regression tasks. While
paving the way to further experimental validations—poten-
tially also in experimental settings that do not rely on
optical networks—we believe that numerous tasks of
relevance to modern photonics could benefit from intro-
ducing similar ML ideas into their characterization proto-
cols. These techniques can prove to be a useful add-on to
tasks ranging from the design of automatized approaches to
the characterization of experimental platforms and experi-
ments, to the provision of solutions to OAM demultiplex-
ing in the context of classical and quantum communication
and, more generally, for the use of structured light in
quantum technologies.

We acknowledge support from the ERC Advanced grant
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Grant Agreement No. 828978), the EU Collaborative
project TEQ (Grant No. 766900), Fondazione Angelo della
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1A/2864), COST Action CA15220, the Royal Society
Wolfson Research Fellowship (RSWF\R3\183013), the
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Note added.—Recently, the authors became aware of a
related work [82] that addresses the classification of scalar
fields with fractional topological charge.
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