
Bagging the DL-Lite Family Further

Gianluca Cima1, Charalampos Nikolaou2,3, Egor V. Kostylev2, Mark
Kaminski2, Bernardo Cuenca Grau2, and Ian Horrocks2

1 Sapienza Università di Roma, Italy
2 University of Oxford, UK

3 Infor, UK

Abstract. Ontology-based data access (OBDA) is a popular approach
for integrating and querying multiple data sources by means of an on-
tology, which is usually expressed in a description logic (DL) of DL-Lite
family. The conventional semantics of OBDA and DLs is set-based—that
is, duplicates are disregarded. This disagrees with the standard database
bag (multiset) semantics, which is especially important for the correct
evaluation of aggregate queries. In this article, we study two variants of
the bag semantics for query answering over DL-LiteF , extending basic
DL-Litecore with functional roles. For our first semantics, which follows
the semantics of primary keys in SQL, conjunctive query (CQ) answer-
ing is coNP-hard in data complexity in general, but it is in TC0 for the
restricted class of rooted CQs; such CQs are also rewritable to the bag
relational algebra. For our second semantics, the results are the same ex-
cept that TC0 membership and rewritability hold only for the restricted
class of ontologies identified by a new notion of functional weak acyclicity.

1 Introduction

Ontology-based data access (OBDA) is an increasingly popular approach for en-
abling uniform access to multiple data sources with diverging schemas [5,15,22].
In OBDA, an ontology provides a unifying conceptual model for the data sources,
which is linked to each source by mappings assigning views over the data to on-
tology predicates. Users access the data by means of queries formulated using the
vocabulary of the ontology; query answering amounts to computing the certain
answers to the query over the union of ontology and the materialisation of the
views defined by the mappings. The formalism of choice for representing ontolo-
gies in OBDA is usually the lightweight description logic DL-LiteR [6], which
underpins OWL 2 QL [19]. DL-LiteR was designed to ensure that conjunctive
queries (CQs) against the ontology are first-order rewritable—that is, they can
be reformulated as relational database queries over the sources [6].

There is, however, an important mismatch between standard database query
languages, such as SQL, and OBDA: the former work under bag semantics, but
the latter is usually set-based. This becomes apparent when evaluating queries
with aggregate functions, where the multiplicities of tuples are important [1].
Motivated by the need to support database-style aggregate queries in OBDA

2 G. Cima et al.

systems and inspired by the semantics of aggregates over DL-LiteR of [14], a
bag version of DL-LiteR was recently proposed by Nikolaou et al. [20,21], where
duplicates in the views defined by the mappings are retained. The most com-
mon reasoning tasks of ontology satisfiability and query answering in this new
DL, called DL-LitebR, generalise the counterpart problems defined under the tra-
ditional set semantics. This generalisation does not come for free though as it
raises the data complexity of query answering from AC0 to coNP-hard, and
this holds already for the core fragment DL-Litebcore of DL-LitebR. To regain
tractability, Nikolaou et al. [20,21] studied restrictions on CQs and showed that
query answering for the class of so-called rooted CQs [4] becomes again tractable
in data complexity. This result was obtained by showing that rooted CQs are
rewritable to BCALC, a logical counterpart of the relational algebra for bags
BALG1 [10, 17], whose evaluation problem is in TC0 in data complexity [16].

Building on the work of Nikolaou et al. [20,21], in this paper we consider the
logic DL-LitebF—that is, the extension of DL-Litebcore with functionality axioms.
Such axioms comprise a desirable feature in description logics and OBDA since
they are able to deliver various modelling scenarios encountered in information
systems that require the expression of key and identification constraints [7,8,18,
23]. We propose two alternative semantics for DL-LitebF , both of which generalise
the standard set-based semantics, and which differ from each other in the way
they handle functionality axioms. Our first semantics, called SQL semantics,
interprets functionality axioms following the semantics of primary keys in SQL;
in particular, for each first component in the interpretation of a functional role
there exists exactly one second component, and, moreover, the multiplicity of
this relation between the components is exactly one. By contrast, our second
semantics, called multiplicity-respectful (MR) semantics, enforces only the first
requirement, while the multiplicity may be arbitrary.

We study how the two semantics relate to the set-based semantics of DL-LiteF
and to each other in terms of the standard reasoning tasks of satisfiability check-
ing and query answering. On the one hand, we show that under the MR semantics
both problems generalise the corresponding ones under set semantics. Under the
SQL semantics, on the other hand, the notion of satisfiability becomes stronger
than under set semantics, while query answering for satisfiable ontologies again
generalises set semantics. We further investigate whether the class of rooted CQs
is rewritable to BCALC under our two semantics. For the SQL semantics, we
obtain positive results, which imply that query answering is feasible in TC0. For
the MR semantics, however, we obtain negative results (LogSpace-hardness in
data complexity) even for the class of instance queries, which are the simplest
queries encountered in OBDA. To address this, we identify a class of TBoxes,
called functionally weakly acyclic, for which rooted CQs become rewritable to
BCALC, and thus query answering is feasible in TC0.

The rest of the paper is organised as follows. Section 2 introduces the rel-
evant background. Section 3 defines the SQL and MR semantics as extensions
of the bag semantics proposed in [20, 21] accounting for functionality axioms,
and relates the new semantics to the set semantics and to each other. Section 4

Bagging the DL-Lite Family Further 3

then studies the query answering problem for the bag semantics, establishing
the rewritability results. Last, Section 5 concludes the paper.

Acknowledgements Research supported by the SIRIUS Centre for Scalable
Data Access and the EPSRC projects DBOnto, MaSI3, and ED3.

2 Preliminaries

We start by defining DL-LiteF ontologies as well as the notions of query an-
swering and rewriting over such ontologies, all over the usual set semantics [2,6],
after which we summarise the bag semantics of queries in databases [10,17,21].

Syntax of DL-LiteF . We fix a vocabulary consisting of countably infinite and
pairwise disjoint sets of individuals I (i.e., constants), atomic concepts C (i.e.,
unary predicates) and atomic roles R (i.e., binary predicates). A role is an
atomic role P ∈ R or its inverse P−. A concept is an atomic concept in C or
an expression ∃R with R a role. Expressions C1 v C2 and Disj(C1, C2) with C1,
C2 concepts are inclusion and disjointness axioms, respectively. An expression
(funct R) with R a role is a functionality axiom. A DL-LiteF TBox is a finite set
of inclusion, disjointness, and functionality axioms. A concept assertion is A(a)
with a ∈ I and A ∈ C, and a role assertion is P (a, b) with a, b ∈ I and P ∈ R. A
(set) ABox is a finite set of concept and role assertions. A DL-LiteF ontology is
a pair (T ,A) with T a DL-LiteF TBox and A an ABox. A DL-Litecore ontology
is the same except that functionality axioms are disallowed.

Semantics of DL-LiteF . A (set) interpretation I is a pair (∆I , ·I), where the
domain ∆I is a non-empty set, and the interpretation function ·I maps each
a ∈ I to aI ∈ ∆I such that aI 6= bI for all a, b ∈ I (i.e., as usual for DL-Lite
we adopt the UNA—that is, the unique name assumption), each A ∈ C to
AI ⊆ ∆I , and each P ∈ R to P I ⊆ ∆I×∆I . Interpretation function ·I extends
to non-atomic concepts and roles as follows:

(P−)I = {(u, u′) | (u′, u) ∈ P I}, (∃R)I = {u ∈ ∆I | ∃u′ ∈ ∆I : (u, u′) ∈ RI}.

An interpretation I satisfies a DL-LiteF TBox T if CI1 ⊆ CI2 for each inclusion
axiom C1 v C2 in T , CI1 ∩CI2 = ∅ for each Disj(C1, C2) in T , and v1 = v2 for each
(u, v1), (u, v2) in RI with (funct R) in T . Interpretation I satisfies an ABox A if
aI ∈ AI for all A(a) ∈ A and (aI , bI) ∈ P I for all P (a, b) ∈ A. An interpretation
I is a model of an ontology (T ,A) if it satisfies T andA. An ontology is satisfiable
if it has a model. Checking satisfiability of a DL-LiteF ontology is NLogSpace-
complete in general and in AC0 if the TBox is fixed [2, 6].

Queries over DL-LiteF . A conjunctive query (CQ) q(x) with answer variables
x is a formula ∃y. φ(x,y), where x, y are (possibly empty) repetition-free tuples
of variables from a set X disjoint from I, C and R, and φ(x,y) is a conjunction
of atoms of the form A(t), P (t1, t2) or (z = t), where A ∈ C, P ∈ R, z ∈ x ∪ y,
and t, t1, t2 ∈ x ∪ y ∪ I. If x is inessential, then we write q instead of q(x).
The equality atoms (z = t) in φ(x,y) yield an equivalence relation ∼ on terms
x∪y∪I, and we write t̃ for the equivalence class of a term t. The Gaifman graph

4 G. Cima et al.

of q(x) has a node t̃ for each t ∈ x∪y∪I in φ, and an edge {t̃1, t̃2} for each atom
in φ over t1 and t2. We assume that all CQs are safe—that is, for each z ∈ x∪y,
z̃ contains a term mentioned in an atom of φ(x,y) that is not equality. A CQ
q(x) is rooted if each connected component of its Gaifman graph has a node with
a term in x ∪ I [4]. A union of CQs (UCQ) is a disjunction of CQs with the
same answer variables. The certain answers qK to a (U)CQ q(x) over a DL-LiteF
ontology K are the set of all tuples a of individuals such that q(a) holds in every
model of K. Checking whether a tuple of individuals is in the certain answers to
a (U)CQ over a DL-LiteF ontology is an NP-complete problem with AC0 data
complexity (i.e., when the CQ and TBox are fixed) [2,6]. The latter follows from
the rewritability of the class of UCQs to itself over DL-LiteF—that is, from the
fact that for every UCQ q and DL-LiteF TBox T we can find a UCQ q1 such

that q(T ,A) = q
(∅,A)
1 for every ABox A [6].

Bags. A bag over a set M is a function Ω : M → N∞0 , where N∞0 is the set N0

of non-negative integers extended with the (positive) infinity∞. The value Ω(c)
is the multiplicity of element c in Ω. A bag Ω is finite if there are finitely many
c ∈M with Ω(c) > 0 and there is no c with Ω(c) =∞. The empty bag ∅ over M
is the bag such that ∅(c) = 0 for each c ∈M . A bag Ω1 over M is a subbag of a
bag Ω2 over M , in symbols Ω1 ⊆ Ω2, if Ω1(c) ≤ Ω2(c) for each c ∈M . Often we
will use an alternative syntax for bags: for instance, we will write {| c : 5, d : 3 |}
for the bag that assigns 5 to c, 3 to d, and 0 to all other elements. We use the
following common operators on bags [10,17]: the intersection ∩, maximal union
∪, arithmetic union], and difference − are the binary operators defined, for
bags Ω1 and Ω2 over a set M , and for every c ∈M , as

(Ω1 ∩Ω2)(c) = min{Ω1(c), Ω2(c)}, (Ω1 ∪Ω2)(c) = max{Ω1(c), Ω2(c)},
(Ω1]Ω2)(c) = Ω1(c) +Ω2(c), (Ω1 −Ω2)(c) = max{0, Ω1(c)−Ω2(c)}.

Note that bag difference is well-defined only if Ω2(c) is a finite number for each
c ∈ M . The unary duplicate elimination operator ε is defined for a bag Ω over
M and for each c ∈M as (ε(Ω))(c) = 1 if Ω(c) > 0 and (ε(Ω))(c) = 0 otherwise.

Queries over Bags. Following [21], a BCALC query Φ(x) with (a tuple of)
answer variables x is any of the following, for Ψ , Ψ1, and Ψ2 BCALC queries:

– S(t), where S ∈ C ∪R and t is a tuple over x ∪ I mentioning all x;
– Ψ1(x1) ∧ Ψ2(x2), where x = x1 ∪ x2;
– Ψ(x0) ∧ (x = t), where x ∈ x0, t ∈ X ∪ I, and x = x0 ∪ ({t} \ I);
– ∃y. Ψ(x,y), where y is a tuple of distinct variables from X that are not in x;
– Ψ1(x) opΨ2(x), where op ∈ {∨,∨. , \}; or
– δ Ψ(x).

In particular, all UCQs are syntactically BCALC queries.
BCALC queries are evaluated over bag database instances, which are, in the

context of this paper, bag ABoxes—that is, finite bags over the set of concept
and role assertions. The bag answers ΦA to a BCALC query Φ(x) over a bag
ABox A is the finite bag over I|x| defined inductively by the following equations,
for every tuple a over I with |a| = |x|, where ν : x ∪ I → I is the function such
that ν(x) = a and ν(a) = a for all a ∈ I:

Bagging the DL-Lite Family Further 5

– ΦA(a) = A(S(ν(t))), if Φ(x) = S(t);
– ΦA(a) = ΨA1 (ν(x1))× ΨA2 (ν(x2)), if Φ(x) = Ψ1(x1) ∧ Ψ2(x2);
– ΦA(a) = ΨA(ν(x0)), if Φ(x) = Ψ(x0) ∧ (x = t) and ν(x) = ν(t);
– ΦA(a) = 0, if Φ(x) = Ψ(x0) ∧ (x = t) and ν(x) 6= ν(t);
– ΦA(a) =

∑
ν′:y→I Ψ

A(a, ν′(y)), if Φ(x) = ∃y. Ψ(x,y);

– ΦA(a) = (ΨA1 opΨA2)(a), if Φ(x) = Ψ1(x) op′ Ψ2(x), where op is ∪,], or −,
and op′ is ∨, ∨. , or \, respectively;

– ΦA(a) =
(
ε(ΨA)

)
(a), if Φ(x) = δ Ψ(x).

As shown in [21], BCALC is a logical counterpart of the bag relational algebra
BALG1 of [10], with the same expressive power. Evaluation of a fixed BALG1

(and hence BCALC) query is in TC0 [16] (i.e., between AC0 and LogSpace).

3 DL-LiteF under Bag Semantics

In this section we introduce the bag version DL-LitebF of the ontology language
DL-LiteF with two semantics and study their properties and relationships. Both
semantics extend the bag semantics of DL-Litebcore studied in [21] but differ in
their interpretation of functionality axioms.

3.1 Syntax and Semantics of DL-LitebF

Syntactically, DL-LitebF is the same as DL-LiteF except that assertions in ABoxes
may have arbitrary finite multiplicities—that is, bag ABoxes are considered in-
stead of set ABoxes. Note that syntactically DL-LitebF is a conservative extension
of DL-LiteF , since each set ABox can be seen as a bag ABox with assertion mul-
tiplicities 0 and 1.

Definition 1. A DL-LitebF ontology is a pair (T ,A) of a DL-LiteF TBox T and
a bag ABox A. A DL-Litebcore ontology is the same except that T is DL-Litecore.

The semantics of DL-LitebF ontologies is based on bag interpretations, which
are the same as set interpretations except that concepts and roles are interpreted
as bags rather than sets. Note that the extension of the interpretation function
to non-atomic concepts and roles is defined in a way that respects the multiplic-
ities: for example, the concept ∃P for an atomic role P is interpreted by a bag
interpretation I as the bag projection of P I to its first component, where each
occurrence of a pair (u, v) in P I contributes separately to the multiplicity of u
in (∃P)I .

Definition 2. A bag interpretation I is a pair (∆I , ·I) where the domain ∆I

is a non-empty set, and the interpretation function ·I maps each a ∈ I to an
element aI ∈ ∆I such that aI 6= bI for all a, b ∈ I, each A ∈ C to a bag AI

over ∆I , and each P ∈ R to a bag P I over ∆I × ∆I . Interpretation function
·I extends to non-atomic concepts and roles as follows, for all P ∈ R, R a role,
and u, u′ ∈ ∆I :

(P−)I(u, u′) = P I(u′, u) and (∃R)I(u) =
∑

u′∈∆I
RI(u, u′).

6 G. Cima et al.

A bag interpretation I is finite if so are ∆I and SI for each S ∈ C ∪R.

Note that, same as in the set case, we adopt the UNA by requiring different
individuals be interpreted by different domain elements.

We are now ready to present our two semantics of DL-LitebF . Both semantics
extend the semantics of DL-Litebcore considered in [21], but handle the functional
axioms differently. Our first SQL semantics follows the semantics of primary keys
in SQL: if R is a functional role then for every domain element u of a model there
exists at most one element u′ related to u by R; moreover, the multiplicity of the
tuple (u, u′) in R cannot be more than one. Our second MR semantics allows
more freedom for functional roles: same as before, only one u′ may be related to
u by a functional role R, but the multiplicity of (u, u′) may be arbitrary.

Definition 3. A bag interpretation I satisfies an inclusion axiom C1 v C2 if
CI1 ⊆ CI2 . It satisfies a disjointness axiom Disj(C1, C2) if CI1 ∩ CI2 = ∅. It
satisfies a functionality axiom (funct R) under SQL semantics (or SQL-satisfies,
for short) if u′ = u′′ and RI(u, u′) = RI(u, u′′) = 1 for every u, u′, and u′′

in ∆I such that RI(u, u′) > 0 and RI(u, u′′) > 0; it satisfies (funct R) under
MR semantics (or MR-satisfies) if the same holds except that the restriction
RI(u, u′) = RI(u, u′′) = 1 is not imposed.

For X being SQL or MR, a bag interpretation I X-satisfies a DL-LiteF
TBox T , written I |=X T , if it (X-)satisfies every axiom in T . A bag interpre-
tation I = (∆I , ·I) satisfies a bag ABox A, written I |= A, if A(A(a)) ≤ AI(aI)
and A(P (a, b)) ≤ P I(aI , bI) for each concept assertion A(a) and role assertion
P (a, b), respectively. A bag interpretation I is an X-model of a DL-LitebF ontol-
ogy (T ,A), written I |=X (T ,A), if I |=X T and I |= A. A DL-LitebF ontology
is X-satisfiable if it has an X-model.

Since MR-satisfaction is a relaxation of SQL-satisfaction, every SQL-model
of a DL-LitebF ontology is also an MR-model of this ontology. However, as illus-
trated by the following example, the opposite does not hold.

Example 1. Consider an online store that employs atomic roles hasItem
and placedBy for recording the items ordered by customers in a
purchase. Then, a sample DL-LitebF ontology recording an order is
Kex = (Tex,Aex) with TBox Tex = {∃hasItem v ∃placedBy, (funct placedBy)}
and ABox Aex = {| hasItem(o, i1) : 1, hasItem(o, i2) : 1, placedBy(o, c) : 1 |}. Let
Iex be the bag interpretation interpreting individuals by themselves and roles as
hasItemIex = {| (o, i1) : 1, (o, i2) : 1 |}, placedByIex = {| (o, c) : 2 |}. It is immediate
to see that Iex is an MR-model of Kex but not a SQL-model.

To conclude this section, we note that each semantics has its advantages and
drawbacks. Indeed, on the one hand, SQL semantics is compatible with primary
keys in SQL, so a large fragment of DL-LitebF under this semantics can be easily
simulated by a SQL engine. On the other hand, one can show that entailment of
axioms under set and bag semantics coincides only for the case of MR models;
this means that the adoption of MR semantics does not affect the standard TBox
reasoning services implemented in ontology development tools. So neither of the
two semantics is clearly preferable to the other.

Bagging the DL-Lite Family Further 7

3.2 Queries over DL-LitebF

We next define the answers qI to a CQ q(x) over a bag interpretation I as
the bag of tuples of individuals such that each valid embedding λ of the atoms
in q into I contributes separately to the multiplicity of the tuple λ(x) in qI ,
and where the contribution of each specific λ is the product of the multiplicities
of the images of the query atoms under λ in I. This may be seen as usual CQ
answering under bag semantics over relational databases when the interpretation
is seen as a bag database instance [9]. In fact, it can be easily observed that q
as a BCALC query evaluated over this bag database instance gives exactly qI .

Definition 4. Let q(x) = ∃y. φ(x,y) be a CQ and I = (∆I , ·I) be a bag inter-
pretation. The bag answers qI to q over I are the bag over tuples of individuals
from I of size |x| such that, for every such tuple a,

qI(a) =
∑

λ∈Λ

∏
S(t) in φ(x,y)

SI(λ(t)),

where Λ is the set of all valuations λ : x ∪ y ∪ I → ∆I such that λ(x) = aI ,
λ(a) = aI for each a ∈ I, and λ(z) = λ(t) for each z = t in φ(x,y).

Note that conjunction φ(x,y) in a CQ may contain repeated atoms, and
hence can be seen as a bag of atoms; while repeated atoms are redundant in the
set case, they are essential in the bag setting [9,12], and thus in the definition of
qI(a) each occurrence of a query atom S(t) is treated separately in the product.

The following definition of certain answers, which captures open-world query
answering [14], is a natural extension of certain answers for DL-LiteF to bags.
For DL-Litebcore, this definition coincides with the one in [21] for both semantics.

Definition 5. For X being SQL or MR, the X-bag certain answers qKX to a
CQ q over a DL-LitebF ontology K are the bag

⋂
I |=X K q

I .

Note that in this definition we assume that the intersection of zero bags
(which is relevant when K is not X-satisfiable) assigns ∞ to all tuples over I.

The (data complexity version of the) decision problem corresponding to com-
puting the X-bag certain answers to a CQ q over an ontology with a DL-LiteF
TBox T , for X being SQL or MR, is defined as follows, assuming that all num-
bers in the input are represented in unary.

BagCertX [q, T]
Input: ABox A, tuple a of individuals from I, and k ∈ N∞0 .

Question: Is q
(T ,A)
X (a) ≥ k?

Besides the complexity of query answering, an important related property of
any description logic is query rewritability: since TBoxes are much more stable
than ABoxes in practice, it is desirable to be able to rewrite a query and a TBox
into another query so that the answers to the original query over each satisfiable
ontology with this TBox are the same as the answers to the rewriting over the

8 G. Cima et al.

ABox alone. The rewriting may be in a richer query language than the language
of the original query, provided we have an efficient query engine for the target
language; it is important, however, that the rewriting does not depend on the
ABox. In our setting, the source language is CQs and the target language is
BCALC, which can be easily translated to SQL.

Definition 6. For X being SQL or MR, a BCALC query Φ is an X-rewriting

of a CQ q with respect to a DL-LiteF TBox T if q
(T ,A)
X = ΦA for every bag ABox

A with (T ,A) X-satisfiable. A class Q of CQs is X-rewritable to a class Q′ of
BCALC queries over a sublanguage L of DL-LiteF if, for every CQ in Q and
TBox in L, there is an X-rewriting of the CQ with respect to the TBox in Q′.

Since evaluation of fixed BCALC queries is in TC0 [16], rewritability to
BCALC implies TC0 data complexity of query answering, provided rewritings
are effectively constructible. BagCertX [q, T] is coNP-hard even for DL-Litebcore
ontologies (for both X) [21], which precludes efficient query answering and
BCALC rewritability (under the usual complexity-theoretic assumptions). How-
ever, rewritability and TC0 data complexity of query answering are regained for
the class of rooted CQs, which are common in practice. The main goal of this
paper is to understand to what extent these positive results transfer to DL-LitebF .

We next establish some basic properties of the proposed bag semantics and
relate them to the standard set semantics. The following theorem states that
satisfiability and query answering under the set semantics and MR semantics
are essentially equivalent when multiplicities are ignored, while SQL semantics
is in a sense stronger as only one direction of the statements holds.

Theorem 1. The following statements hold for every DL-LiteF TBox T and
every bag ABox A (recall that ε is the duplicate elimination operator):

1. if (T ,A) is SQL-satisfiable then (T , ε(A)) is satisfiable; and

2. for every tuple a over I, if a ∈ q(T ,ε(A)) then q
(T ,A)
SQL (a) ≥ 1, and the converse

holds whenever (T ,A) is SQL-satisfiable.

The same holds when MR semantics is considered instead of SQL; moreover, in
this case the converses of both statements hold unconditionally.

In fact, the converse direction of statement 1 does not hold for SQL semantics;
indeed, the DL-LitebF ontology Kex of Example 1 is not SQL-satisfiable but
(Tex, ε(Aex)) is satisfiable.

Statement 1 for MR semantics implies that we can check MR-satisfiability
of DL-LitebF ontologies using standard techniques for DL-LiteF under the set
semantics; in particular, we can do it in AC0 for fixed TBoxes. The following
proposition says that for SQL semantics the problem is not much more difficult.

Proposition 1. The problem of checking whether a DL-LitebF ontology is SQL-
satisfiable is in TC0 when the TBox is fixed.

Finally, note that, since every SQL-model of a DL-LitebF ontology is also its
MR-model, qKMR ⊆ qKSQL for every CQ q and DL-LitebF ontology K; it is not
difficult to see that the inclusion may be strict even if K is SQL-satisfiable.

Bagging the DL-Lite Family Further 9

4 Rewriting and Query Answering in DL-LitebF

We next study rewritability of rooted CQs to BCALC over DL-LitebF under
our two semantics (recall that the class of all CQs are not rewritable even over
DL-Litebcore [21]). We first show that for SQL semantics and satisfiable ontologies
we can apply the same rewriting as for DL-Litebcore [21], which implies TC0

data complexity of query answering. However, MR semantics is more complex,
because, as we show, even simple rooted CQs (in particular, instance queries)
have LogSpace-hard query answering, which precludes rewritability (assuming
TC0 (LogSpace). To overcome this, we introduce a new acyclicity condition
on TBoxes, for which we show that rewritability is regained.

4.1 SQL Semantics

The key ingredient for rewritability and tractability of query answering in many
description logics is the existence of a universal model.

Definition 7. For X being SQL or MR, an X-model I of a DL-LitebF ontology
K is X-universal for a class of CQs Q if qKX = qI for every q ∈ Q.

In the set case, it is well-known that if the ontology is satisfiable, then the so-
called canonical interpretation, which can be constructed by the chase procedure,
is always a universal model for all CQs [2, 6]. Nikolaou et al. generalised this
idea to DL-Litebcore and rooted CQs [21], and it turns out that their canonical
interpretation is a universal model not only for DL-Litebcore but also for DL-LitebF
(under SQL semantics).

Proposition 2. Every SQL-satisfiable DL-LitebF ontology has a SQL-universal
model for rooted CQs.

Having this result at hand, we can reuse the rewriting of rooted CQs over
DL-Litebcore introduced in [21] for the SQL semantics of DL-LitebF .

Corollary 1. Rooted CQs are SQL-rewritable to BCALC over DL-LitebF .

Since the proof of rewritability in [21] is constructive, SQL-satisfiability is in
AC0, and BCALC evaluation is in TC0, rooted CQ answering is also in TC0.

Corollary 2. Problem BagCertSQL[q, T] is in TC0 for every rooted CQ q and
DL-LiteF TBox T .

4.2 MR Semantics

Since evaluation of BCALC queries is in TC0, the following theorem says that
even very simple rooted CQs (in particular, instance queries) are unlikely to be
MR-rewritable to BCALC.

10 G. Cima et al.

Theorem 2. There is a CQ of the form A(a) with A ∈ C and a ∈ I, and a
DL-LiteF TBox T such that problem BagCertMR[A(a), T] is LogSpace-hard.

Next we introduce a restriction on TBoxes which guarantees MR-rewritability.

Definition 8. The functional dependency graph GT of a DL-LiteF T is the
directed graph that has all the concepts appearing in T as nodes, a usual edge
(C1, C2) for each C1 v C2 in T , and a special edge (C1,∃R−)∗ for each C1 v ∃R
with (funct R) in T , where, for P ∈ R, R− is P if R is P−. TBox T is func-
tionally weakly acyclic if GT has no cycle with a special edge. The f-depth dT
of such a TBox T is the maximum number of special edges along a path in GT .

We will need the following technical notions. As in [21], the concept closure
cclT [u, I] of an element u ∈ ∆I in a bag interpretation I = (∆I , ·I) over a TBox
T is the bag of concepts such that, for any concept C,

cclT [u, I](C) = max{CI0 (u) | T |= C0 v C}.

The union I ∪ J of two bag interpretations I = (∆I , ·I) and J = (∆J , ·J)
such that aI = aJ for all a ∈ I is the bag interpretation (∆I ∪∆J , ·I∪J) with
aI∪J = aI for all a ∈ I and SI∪J = SI∪SJ for all S ∈ C∪R. Given a bag ABox
A, we denote by IA the standard interpretation of A that is defined as follows:
∆IA = I, aIA = a for each a ∈ I, and SIA(a) = A(S(a)) for each S ∈ C∪R and
tuple of individuals a. The closure L(K) of a DL-LitebF ontology K = (T ,A)

is the union
⋃
i≥0 Li(K) of bag interpretations Li(K) = (∆L

i(K), ·Li(K)) with

∆L
i(K) = I such that L0(K) = IA and, for each i ≥ 1, Li(K) extends Li−1(K)

so that aL
i(K) = a for all a ∈ I, and, for all A ∈ C, P ∈ R and a, b, c, c′ ∈ I,

AL
i(K)(a) = cclT [a,Li−1(K)](A),

PL
i(K)(a, b) =

{
0, if PL

i−1(K)(a, b) = 0,

max{`P (a, b), `P−(b, a)}, otherwise, where

`R(c, c′) =

{
cclT [c,Li−1(K)](∃R), if (funct R) is in T ,
RL

i−1(K)(c, c′), otherwise.

In fact, if TBox is functionally weakly acyclic then the closure can be computed
in a finite number of steps that does not depend on the ABox.

Proposition 3. For every DL-LitebF ontology K = (T ,A) with a functionally

weakly acyclic TBox T we have L(K) =
⋃dT +1
i=0 Li(K).

We use the closure in the following definition of MR-canonical interpretations.
Note the difference in handling functional and non-functional roles when creating
anonymous elements, resulting in a most general possible interpretation.

Definition 9. The MR-canonical bag interpretation CMR(K) of a DL-LitebF on-
tology K = (T ,A) is the union

⋃
i≥0 CiMR(K) of bag interpretations CiMR(K) with

C0MR(K) = L(K) and, for each i ≥ 1, CiMR(K) obtained from Ci−1MR(K) as follows:

Bagging the DL-Lite Family Further 11

– ∆C
i
MR(K) extends ∆C

i−1
MR (K) by

- a fresh anonymous element wu,R for each u ∈ ∆C
i−1
MR (K) and each role R

with (funct R) ∈ T , cclT [u, Ci−1MR(K)](∃R) > 0, and (∃R)C
i−1
MR (K)(u) = 0,

- fresh anonymous elements w1
u,R, . . . , w

δ
u,R for each u ∈ ∆C

i−1
MR (K) and each

role R with (funct R) 6∈ T and δ = cclT [u, Ci−1MR(K)](∃R)− (∃R)C
i−1
MR (K)(u);

– aC
i
MR(K) = a for all a ∈ I, and, for all A ∈ C, P ∈ R, and u, v in ∆C

i
MR(K),

AC
i
MR(K)(u) =

{
cclT [u, Ci−1MR(K)](A), if u ∈ ∆C

i−1
MR (K),

0, otherwise,

P C
i
MR(K)(u, v) =



P C
i−1
MR (K)(u, v), if u, v ∈ ∆C

i−1
MR (K),

cclT [u, Ci−1MR(K)](∃P), if u ∈ ∆C
i−1
MR (K) and v = wu,P ,

cclT [v, Ci−1MR(K)](∃P−), if v ∈ ∆C
i−1
MR (K) and u = wv,P− ,

1, if v = wju,P or u = wjv,P− ,

0, otherwise.

As the following theorem says, the MR-canonical bag interpretation is an
MR-universal model, as desired.

Theorem 3. The MR-canonical bag interpretation CMR(K) of an MR-satis-
fiable DL-LitebF ontology K = (T ,A) with T functionally weakly acyclic is an
MR-universal model for the class of rooted CQs.

By adapting and extending the techniques in [21], we establish that rooted
CQs are MR-rewritable to BCALC over the restricted ontology language.

Theorem 4. Rooted CQs are MR-rewritable to BCALC over DL-LitebF with
functionally weakly acyclic TBoxes.

Hence, under the restrictions, query answering is indeed feasible in TC0.

Corollary 3. Problem BagCertMR[q, T] is in TC0 for every rooted CQ q and
functionally weakly acyclic DL-LiteF TBox T .

5 Conclusions

In this paper, we studied two bag semantics for functionality axioms: our first
SQL semantics follows the bag semantics of SQL for primary keys, while the
second MR semantics is more general and gives more modelling freedom. Com-
bining the semantics with the bag semantics of DL-Litecore of [20,21], we studied
the problems of satisfiability, query answering, and rewritability for the result-
ing logic DL-LitebF . To the best of our knowledge, this is the first work studying
the interaction of functionality and inclusion axioms under a bag semantics. A
bag semantics for functional dependencies, which generalises our SQL semantics
for functionality axioms, has been studied before in [13]. It would be interesting
to see how our work generalises to the case of n-ary predicates. This case has
been studied only very recently in the context of data exchange settings [11] and
language Datalog± [3], which, however, do not consider functional dependencies.

12 G. Cima et al.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley
(1995)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. 36, 1–69 (2009)

3. Bertossi, L.E., Gottlob, G., Pichler, R.: Datalog: Bag semantics via set semantics.
In: Proc. of ICDT. pp. 16:1–16:19 (2019)

4. Bienvenu, M., Lutz, C., Wolter, F.: Query containment in description logics recon-
sidered. In: Proc. of KR. pp. 221–231 (2012)

5. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M.,
Rodriguez-Muro, M., Xiao, G.: Ontop: Answering SPARQL queries over relational
databases. Semant. Web 8(3), 471–487 (2017)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Path-based
identification constraints in description logics. In: Proc. of KR. pp. 231–241 (2008)

8. Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification constraints and func-
tional dependencies in description logics. In: Proc. of IJCAI. pp. 155–160 (2001)

9. Chaudhuri, S., Vardi, M.Y.: Optimization of Real conjunctive queries. In: Proc. of
PODS. pp. 59–70 (1993)

10. Grumbach, S., Milo, T.: Towards tractable algebras for bags. J. Comput. Syst. Sci.
52(3), 570–588 (1996)

11. Hernich, A., Kolaitis, P.G.: Foundations of information integration under bag se-
mantics. In: Proc. of LICS. pp. 1–12 (2017)

12. Ioannidis, Y.E., Ramakrishnan, R.: Containment of conjunctive queries: Beyond
relations as sets. ACM Trans. Database Syst. 20(3), 288–324 (1995)

13. Köhler, H., Link, S.: Armstrong axioms and Boyce-Codd-Heath normal form under
bag semantics. Inf. Process. Lett. 110(16), 717–724 (2010)

14. Kostylev, E.V., Reutter, J.L.: Complexity of answering counting aggregate queries
over DL-Lite. Web Semant. 33, 94–111 (2015)

15. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS. pp.
233–246 (2002)

16. Libkin, L.: Expressive power of SQL. Theor. Comput. Sci. 296(3), 379–404 (2003)
17. Libkin, L., Wong, L.: Query languages for bags and aggregate functions. J. Comput.

Syst. Sci. 55(2), 241–272 (1997)
18. Lutz, C., Areces, C., Horrocks, I., Sattler, U.: Keys, nominals, and concrete do-

mains. J. Artif. Intell. Res. 23, 667–726 (2005)
19. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2

Web Ontology Language Profiles (Second Edition). W3C recommendation, W3C
(2012), http://www.w3.org/TR/owl2-profiles/

20. Nikolaou, C., Kostylev, E.V., Konstantinidis, G., Kaminski, M., Cuenca Grau, B.,
Horrocks, I.: The bag semantics of ontology-based data access. In: Proc. of IJCAI.
pp. 1224–1230 (2017)

21. Nikolaou, C., Kostylev, E.V., Konstantinidis, G., Kaminski, M., Cuenca Grau, B.,
Horrocks, I.: Foundations of ontology-based data access under bag semantics. Artif.
Intell. 274, 91–132 (2019)

22. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)

http://www.w3.org/TR/owl2-profiles/

Bagging the DL-Lite Family Further 13

23. Toman, D., Weddell, G.E.: On keys and functional dependencies as first-class cit-
izens in description logics. J. Autom. Reason. 40(2-3), 117–132 (2008)

	Bagging the DL-Lite Family Further
	Introduction
	Preliminaries
	DL-LiteF under Bag Semantics
	Syntax and Semantics of DL-LiteFb
	Queries over DL-LiteFb

	Rewriting and Query Answering in DL-LiteFb
	SQL Semantics
	MR Semantics

	Conclusions

