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Abstract

We estimate a dynamic network technology where new knowledge in the form of publications in STEM
(science, technology, engineering, and mathematics) is an intermediate product. Knowledge is produced
in the first stage of production and is used in the second stage of production to produce a final output
of real consumption, which equals gross domestic product minus investment spending on physical capital
minus research and development expenditures. Knowledge also spills over between producers as it becomes
disseminated. The two stages of production are linked between periods as investments in research capital and
physical capital enhance future production possibilities. Our model combines several theories of production:
dynamic data envelopment analysis (DEA) and two-stage network DEA. Using pooled data on 53 countries
during 1999–2012, the model estimates indicate that dynamic efficiency averages about 70%. Countries could
increase final consumption by about 25% via greater technical efficiency in production and by another 5%
via an optimal intertemporal reallocation of investment spending.

Keywords: dynamic network; intermediate products; knowledge

1. Introduction

Since the work of Solow (1956), there has been much research on the optimal path of investment
spending and its relation to productivity growth. Productivity growth contributes to economic
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well-being as more outputs are produced using fewer inputs. Such growth occurs when producers
become more efficient at using a known technology or when technical change occurs. Here we
model the sources and role of knowledge in productivity growth, focusing specifically on knowledge
production by researchers in STEM (science, technology, engineering, and math). The National
Science Foundation (NSF) was started in 1945 by President Roosevelt to promote research and
education in STEM fields (Rothwell, 2013). Research and development (R&D) in STEM fields has
been shown to be an important driver of productivity growth, with estimates that R&D growth
contributes between 30% and 70% of productivity growth (Adams, 1990; Jones, 2002; Peri et al.,
2015).

Research is undertaken by public sector organizations such as public universities and various
government agencies and in the private sector by private universities, nonprofit organizations, and
for-profit firms. When published, this new knowledge takes on characteristics of a public good,
being both nonrival and nonexcludable. Adams (1990) found knowledge in science, engineering,
and mathematics, and knowledge spillovers contributed over half the productivity growth in U.S.
manufacturing industries from 1953 to 1980. Jones (2002) attributed 50–70% of labor productivity
growth during 1950–1993 to greater research intensity as measured by the number of scientists
and engineers engaged in R&D in G-5 countries. Peri et al. (2015) found that employment growth
among foreign STEM researchers residing in the United States explained between 30% and 50% of
productivity growth in the 100 largest U.S. cities.

In this paper, we seek to better understand how advances in the STEM disciplines contribute to
economic growth and determine the optimal allocation of resources devoted to these areas. To do
this, we develop a dynamic network model that incorporates STEM knowledge production as an
intermediate product in the macroeconomy, allowing for knowledge spillovers across disciplines.
New knowledge is used to produce final output, and this knowledge spills over and can be used
by other producers. The optimization problem we develop and estimate seeks the maximum ex-
pansion in final outputs that can be achieved via greater production efficiency due to an optimal
intertemporal reallocation of resources. Our model is related to the work of Romer (1990) who
assumed that technological change occurs because of “intentional actions taken by people who
respond to market incentives” (Romer, 1990, p. S72). Furthermore, we assume that the publica-
tions that are produced at a given point in time are initially excludable, but then become nonrival
and nonexcludable in later periods. An important result of Romer (1990) is that capital will be
underallocated to a research sector for two reasons: first, because private producers are unable to
capture all of the benefits of research, and second, because of monopoly pricing of the private good.
In addition to determining the degree to which an intertemporal reallocation of resources can ex-
pand final output, we also empirically investigate Romer’s theory that resources are underallocated
to R&D.

As researchers produce knowledge, not only does their own ability to produce knowledge expand,
that knowledge also spills over to researchers at other universities and private organizations as it
becomes more widely known. These knowledge spillovers, across disciplines (see Daraio et al., 2018),
countries, and time increase the knowledge base and link research to private sector productivity.
We consider these linkages as a form of network technology where knowledge is an intermediate
product used to produce other goods and services. This dynamic network framework allows us
to consider reallocations of knowledge resources through time in order to better capitalize on
knowledge spillovers and enhance economic growth.
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From a methodological point of view, we develop an efficiency analysis approach based on
the estimation of efficient frontiers. This literature is constantly growing as it is witnessed by the
increasing number of reviews published in the literature (for recent surveys, see, e.g., Narbón-Perpiñá
and De Witte, 2018; Catalano et al., 2019; Daraio et al., 2020). Our model combines several theories
of production: dynamic data envelopment analysis (DEA) and two-stage network DEA. Dynamic
network analyses based on DEA can be found in Tran and Villano (2018), Moreno and Lozano
(2018), Hsiao et al. (2019), and Chen et al. (2020).

We combine bibliometric data (e.g., publications, citations, authors) with aggregate data on
public and private research investment, as well as other macroeconomic variables (e.g., real gross
domestic product [GDP], employment), to construct an international panel for 53 countries and 18
STEM disciplines for the years 1996–2012. We use this panel to consider the potential reallocation
of investment between research and industry, through the lens of our dynamic network model
of linked research and industry production technologies. Consistent with the theoretical result
of Romer (1990), we find that the optimal ratio of research investment to industrial investment
generally exceeds that ratio in practice. Reallocations of investment spending across periods along
with changes in the mix of investments in physical capital versus research capital offer the potential
to expand GDP by an average of 5%.

We provide several contributions to the literature by building a two-stage network model with
knowledge as an intermediate product; by accounting for knowledge spillovers between countries;
by extending the network model to a dynamic model that allows two types of trade-offs between
final consumption and investment spending, and between investment spending on physical capital
and investment spending on research capital where the objective is to maximize the sum of final
consumption across all periods; and finally, by offering some empirical evidence of Romer’s theory
that resources are underallocated to R&D.

In the next section, we overview the related literature on knowledge spillovers in more detail. We
then provide some background on network production models in this context, before introducing
our own dynamic network model of knowledge production in Section 3. We detail the application
and results in Section 4 and conclude with a final discussion in Section 5.

2. Related literature

We develop a dynamic network model of production that accounts for international spillovers of
knowledge. Knowledge transfers from the R&D sector to the industrial sector and back again are
captured within our model. Even as knowledge is incorporated into new techniques by its user,
that knowledge also spills over and affects other producers. Measuring knowledge is fraught with
difficulties and this section also reviews research on the difficulties and limitations of designing
meaningful knowledge indicators.

To measure knowledge spillovers requires consistent and widely available indicators of knowl-
edge produced. One point to emerge from the literature concerns the measurement and quantifica-
tion of knowledge itself. Bibliometric data on publications and citations have been recognized as
knowledge outputs, but international comparisons of productivity in R&D are limited by a paucity
of comparable data (Aksnes et al., 2017). This presents several challenges for cross-country analy-
sis. First, one must correctly count publications/citations when co-authors reside in more than one
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country. Second, although citation indexes such as the Web of Science and Scopus provide fairly
wide coverage of some fields such as the natural sciences, these indexes are more limited in their
coverage of papers in the humanities, social sciences, and engineering. To the extent that countries
realize a comparative advantage in these thinly covered fields, their performance estimates will be
biased downward. Third, inquiries into the presence or absence of statistical power and bias in eco-
nomics (Ioannidis et al., 2017) and other scientific research (Ioannidis, 2005) has found that many
published results are a reflection of the prevailing bias and are likely false. Fourth, even if the above
challenges are met, new research findings are necessarily heterogeneous, so that publication counts
might not be an accurate measure of knowledge production (Foray, 2004). Finally, research grants
received might be a more accurate measure of research quantity and quality since grants imply a
willingness to pay for the research conducted (Johnes and Johnes, 1993; Agasisti and Haelermans,
2016).

Recent research on the scientific impact of nations identified the United States and United
Kingdom as the top two leaders in highly cited publications from 1997 to 2001 (King, 2004),
Iran and Saudi Arabia as scientific leaders in the Gulf states (Moed, 2016), and China as the
fifth leading country in scientific publications with 6.5% of the world’s total publications in 2004
compared to the 8.3% publications in the United Kingdom and 30.5% publications in the United
States (Zhou and Leydesdorff, 2006). Moed and Galevi (2014) found that Iran and China had high
growth rates in publications relative to other countries with similar levels of publications and that
regional collaboration between countries in Asia acts as a stepping stone to greater international
scientific collaborations.

Gralka et al. (2018) control for teaching and estimate the research efficiency of 72 German
public universities using grants, publications, and highly cited publications as alternative mea-
sures of research output. They find a high positive correlation between the measures of effi-
ciency, which they take “as a sign that universities which are good in acquiring third party
funds are the ones which are equally good in publishing high-quality research” (Gralka et al.,
2018, p. 6).

Another important point to emerge concerns the flow of knowledge between academic research
and the private sector, commonly termed as “university–industry knowledge transfer.” Our dynamic
network model described in the next section can be specified to capture these linkages. One form
of knowledge transfer occurs when university researchers collaborate with industry researchers.
Tartari et al. (2014) find evidence that this collaboration is more likely when the departmental
peers of a researcher also collaborate with industry and support this finding by arguing that re-
searchers compare themselves and compete with their fellow departmental researchers. Perkmann
et al. (2013) examine various aspects of academic engagement between universities and indus-
try including collaborative research, contract research, consulting, and informal engagement and
write that “academic engagement often precedes commercialization in time and can hence be
regarded as an input factor to the latter. Academic engagement may also accompany commercial-
ization, for instance when spin-off companies work collaboratively with the university labs they
originated from” (Perkmann et al., 2013, p. 424). In a network model, such engagement would
typically comprise a two-way flow where universities produce and receive intermediate products
from industry. Jaffe (1989) provides evidence that university research causes industrial R&D, but
not vice versa. Our aggregated country data do not allow us to distinguish between university
publications and industry publications. However, if such data were available our network model
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can be easily adapted to represent the two-way flow between academic research and industry
production.

In 1980, university–industry transfers in the United States received a boost from passage of the
Bayh–Dole Act, which allowed universities to patent and license inventions from research that
had received Federal funding. One purpose of the Act was to provide incentives for universities
to engage in more research, with an intended outcome of increased patenting. However, Mowery
and Sampat (2005) report that university–industry transfers had already increased in the pre-Bayh–
Dole period and that lobbying by U.S. research universities contributed to passage of the Act.
Thus, passage of Bayh–Dole might have been “as much an effect as a cause of expanded patent-
ing and licensing by US universities” (Mowery and Sampat, 2005, p. 237). In the early 2000s,
Germany, Austria, Denmark, Finland, and Norway ended the “professor’s privilege” where univer-
sity researchers enjoyed full rights to their inventions and intellectual property and moved toward
patenting and licensing policies similar to Bayh–Dole. Hvide and Jones (2018) find a 50% decline
in entrepreneurship and patenting among professors in Norway after the end of the “professor’s
privilege.”

Since research dollars and time can be used to produce a mix of basic research and applied
research, there was some concern that Bayh–Dole would tip the scale too far away from nonex-
cludable basic research toward applied research, which is more easily excludable. Weber and Xia
(2011) and Fukuyama et al. (2016) review research on the applied/basic research trade-off. Some
research supports the idea that universities gain monopoly power from licensing inventions and
that monopoly power favors resources going into industrial applications (Boldrin and Levin, 2009;
Just and Huffman, 2009; Weber and Xia, 2011). Other research finds that applied research and
basic research are complements rather than substitutes (Thursby and Thursby, 2002; Fabrizio and
DeMinin, 2008; Azoulay et al., 2009).

In a broader context than Bayh–Dole, Kealey (1996) even argues that many inventors experi-
enced applied and economic success before scientists knew why their invention worked. Although
our model incorporates only a money flow as the intermediate product, our dynamic model can
also incorporate nonmonetary flows. For instance, even though patent holders get exclusive use
of various types of applied research, scientists who cooperate with industry can learn more about
whether their theories are validated (Perkmann et al., 2013). See also the classic paper by Comanor
and Scherer (1969, p. 398) and their conclusion that “patent statistics may be a better index of
research input than output.” This further highlights the connections between academic and in-
dustry research. The next section outlines our use of network production theory to model these
connections.

3. Network models

In practice, the production of final goods and services often occurs in stages, where output from
one stage becomes an input in subsequent stages. As a simple example, the stages of production
for a wooden chair might include harvesting the timber, milling the lumber, and then crafting the
furniture. This linkage of production, via intermediate products (i.e., the timber and milled wood),
constitutes a network production technology. Here, we draw on network production methods to
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model the formation of new knowledge, and in turn, its contribution to the production of other
goods and services in the economy.

Before turning to our dynamic network model, we first introduce a static network model where
knowledge is produced in the first stage of production and then subsequently used as an input in
the second goods’ producing stage using what are called distance functions to represent technology
and assess performance. Distance functions are a generalization of production functions and have
been used to represent multiproduct knowledge technologies, accommodating specification of many
outputs and inputs.

These functions, along with duality theory, have been used to estimate shadow prices for knowl-
edge spillovers between universities (Weber, 2019), to estimate elasticities of transformation between
knowledge outputs of patents, Ph.D. students, and publications (Weber and Yin, 2011), and to sim-
ulate a reallocation of NSF funds given to enhance knowledge outputs at various U.S. institutions
of higher education (Fukuyama et al., 2016). Distance functions can be estimated parametrically
(Weber and Xia, 2011; Weber, 2019) or using nonparametric DEA (Fukuyama et al., 2016). We
extend these models and use a dynamic network distance function to model the role that knowledge
plays in a dynamic network technology.

3.1. Overview of previous network production models

Distance functions have been widely used to estimate producer performance. Early models were
static black box representations of a production technology. More recent work has extended these
models to account for network production where intermediate products are first produced and then
used to produce final outputs. Intermediate products are a key feature of network models (Färe
and Grosskopf, 1996a, 1996b, 2000; Prieto and Zofı́o, 2007; Bogetoft et al., 2009). Such products
tend to be outputs of one division or production stage and inputs to another division or production
stage. Kao (2014, 2017) lays out the theoretical foundation and reviews and extends the many forms
that network models take. Bostian et al. (2018) examine interdisciplinary knowledge productivity
spillovers among 16 STEM fields in a statistical network setting. They find higher interactions
between some fields such as physics and materials science and between chemistry and chemical
engineering, but low or zero interactions among other fields, such as biochemistry and computer
science and between medicine and mathematics.

When the network technology extends over several periods, we call it a dynamic network tech-
nology. Färe et al. (2018) provide an overview of various types of dynamic network models. Fallah-
Fini et al. (2014) identify five factors that lead to an intertemporal dependence between inputs
and outputs: production delays, inventories, quasi-fixed factors such as capital, adjustment costs,
and learning models. A decision-making unit (DMU) exhibits dynamic efficiency when it “can-
not shift production from one period to another and generate a larger present value of the firm’s
utility” (Fallah-Fini et al., 2014, p. 53). See also the review of dynamic models by Mariz et al.
(2018).

In education, a network might consist of a school district with primary and secondary school
types where administrators seek to allocate their budget across school types and between schools
of the same type so as to maximize some preferred educational outcome. Grosskopf et al. (2017)
use a static network DEA model to simulate the effects of weighted-student funding on primary

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies



M. Bostian et al. / Intl. Trans. in Op. Res. 27 (2020) 1821–1844 1827

and secondary Texas’ school districts. Shen et al. (2016) use an input/output network model to
prioritize and determine which subfields of physics act as support or are supported by a given field.
Using citations as the intermediate product, they find that there can be strong links between subfields
(such as quantum mechanics and mechanic control) even when there are few direct citations between
them. They also find that statistical physics supports many other subfields, but relativity has a much
weaker influence on other subfields.

Our interest lies in two linked processes: the formation of new knowledge from existing knowledge
and the subsequent role that new knowledge plays in the production of final goods and services in
the economy. This first process can be considered the research stage, where we measure knowledge
in terms of research publications and citation counts. In the research process, knowledge builds
on the work of others, so that existing publications lead to new publications, with the latter citing
the former. The second process can be considered the product development stage, where producers
harness new knowledge flowing from the initial research stage to produce final goods and services
in the economy. We consider these linked processes in a dynamic sense, the key distinction being the
potential to reallocate resources in the economy between the two stages of production. Important
resources include capital, decomposed into knowledge capital (e.g., lab space and equipment) and
physical production capital (e.g., factories and machinery), and labor employed at each stage (e.g.,
research authors, manufacturing workers).

The dynamic aspect of the model allows producers to choose intermediate production at dif-
ferent points in time in order to maximize the weighted sum of final outputs over time. Thus,
when technical progress is expected, producers might find it optimal to forgo final consump-
tion in t and instead, produce the two intermediate products in order to expand future final
consumption. Furthermore, standard microeconomic theory requires investments to be made to
equalize the marginal products of physical capital and knowledge capital to future final output
across time. Comparing the actual versus the optimal timing and quantities of the two inter-
mediate products allows us to infer whether dynamic efficiency is increasing or decreasing. In
addition, comparing the actual mix of the two intermediate products with the optimal mix can
help inform policy makers about the relative marginal products of physical capital and knowledge
capital.

Here we mention only a small subset of research that uses DEA in a dynamic framework. Build-
ing on the work of Ramsey (1928), Färe and Grosskopf (1996a, 1996b, 1998) and Sengupta (1996)
develop dynamic models where current decisions on capital investment impact future production
possibilities (see also Nemoto and Goto 2003; Silva and Stefanou, 2003; Ouellette and Yan, 2008;
Serra et al., 2011; Sacoto et al., 2015). In an infinite horizon model, Lansink et al. (2015) and
Silva et al. (2015) choose investment spending to minimize the present value of all future costs of
production. Färe et al. (2012) and Fukuyama and Weber (2015) examine dynamic efficiency and
productivity when undesirable outputs, such as pollution or nonperforming loans, are part of the
technology. Fukuyama et al. (2016) use DEA to simulate the dynamic reallocation of NSF funds
for nanobiotechnology across universities so as to maximize knowledge outputs of publications,
patents, and Ph.D. students. In general, these studies found that efficiency gains could be realized by
an intertemporal reallocation of resources. In the context of knowledge production, this intertem-
poral reallocation might be stymied by producers who are unable to capture all of the benefits
of their own actions, such as occurs when knowledge is a public good or has positive spillover
effects.
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Table 1
Model notation

Static Dynamic

y Real GDP f y Final consumption
L Employment iy1 Research investments
A Authors iy2 Physical capital investments
c1 Knowledge capital γ Depreciation of research capital
c2 Real physical capital δ Depreciation of physical capital
z1 Own publications
z2 Own publication quality
z̃ Spillover publications of others

z

y

A , z   , z   , c1

L, c2
t

tt

t t

t

t-1t-1

P2

~

P1

Fig. 1. Static technology.

3.2. The static network model

Before turning to the model, we introduce the associated notation (both static and dynamic) for
reference in Table 1.

We begin with the static version of our aggregated network model before extending it to the
dynamic case. Figure 1 illustrates a static network with two stages of production. In the first stage,
country k produces new research knowledge, zt

k, using authors, At
k, research capital, c1t

k, and past
research knowledge, where t = 1, . . . , T represents the time period that we take to be one year.
Past research knowledge enters stage 1 in two ways: first, k draws on its own stock of knowledge
from t − 1 to produce new research in t. Second, the researchers in k also gain access to the
research produced by researchers in other countries. This spillover effect input is z̃t−1

k = ∑K
j �=k zt−1

j .
We distinguish between own past publications (zt−1

k ) and past external publications (z̃t−1
k ) because
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there are various geographic constraints that differentially affect the transmission of knowledge. For
instance, a common language within a country provides easier communication of ideas within that
country. Researchers within a country might also have access to a library consortium that shares
materials. Dropping the k subscript, we write stage 1 production technology as

P1t = {zt : (At, c1t, zt−1, z̃t−1) can produce zt}. (1)

In stage 2, real GDP, yt, is produced using labor, Lt, real physical capital, c2t, and the research
knowledge produced in P1. Stage 2 output set is

P2t = {yt : (zt, Lt, c2t ) can produce yt}. (2)

Combining (1) and (2) gives the network technology for t:

Nt = {(At, c1t, zt−1, z̃t−1, zt, Lt, c2t, yt ) : zt ∈ P1t and yt ∈ P2t}. (3)

The Shephard (1970) output distance function is used as a functional representation of the net-
work technology set, Nt. The reciprocal of this function gives the maximum proportional expansion
in outputs that would be feasible if the DMU were to become efficient and produce on the frontier
of the network technology given by (3). This distance function is

Dt
o(A

t, c1t, zt−1, z̃t−1, c2t, Lt, yt ) = min
{
φ :

yt

φ
∈ Nt

}
(4)

and is bounded between 0 and 1. Efficient DMUs have Dt
o(·) = 1 and inefficient DMUs have

Dt
o(·) < 1.
We use DEA to represent the network technology. DEA constructs a best-practice frontier from

the observed inputs and outputs of the k = 1, . . . , K DMUs. The DEA method chooses intensity
variables for the two stages, λt

1k and λt
2k, k = 1, . . . , K, to make the largest convex set of feasible

outputs and inputs such that the feasible inputs are no less than a linear combination of observed
inputs and the feasible outputs are no greater than a linear combination of observed outputs. The
DEA network technology set is

Nt = {(At, c1t, zt−1, z̃t−1, zt, Lt, c2t, yt ) :

At ≥
K∑

k=1

λt
1kAt

k, c1t ≥
K∑

k=1

λt
1kc1t

k, zt−1 ≥
K∑

k=1

λt
1kzt−1

k ,

z̃t−1 ≥
K∑

k=1

λt
1kz̃t−1

k , zt ≤
K∑

k=1

λt
1kzt

k, λt
1k ≥ 0, k = 1, . . . , K, t = 1, . . . , T,

zt ≥
K∑

k=1

λt
2kzt

k, Lt ≥
K∑

k=1

λt
2kLt

k, c2t ≥
K∑

k=1

λt
2kc2t

k,

yt ≤
K∑

k=1

λt
2kyt

k, λt
2k ≥ 0, k = 1, . . . , K, t = 1, . . . , T. (5)
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The two stages of production are linked through the intermediate product of research knowledge.
In stage 1, the research output constraint is zt ≤ ∑K

k=1 λt
1kzt

k and in stage 2 the research input
constraint is zt ≥ ∑K

k=1 λt
2kzt

k. Together these two constraints imply that

K∑
k=1

λt
1kzt

k ≥ zt ≥
K∑

k=1

λt
2kzt

k, t = 1, . . . , T, (6)

meaning that the intensity variables must be chosen so that stage 2 cannot use more of the input zt

than was produced in stage 1.
Using (5), the reciprocal of the output distance function is estimated as

Dt
o(A

t, c1t, zt−1, z̃t−1, zt, Lt, c2t, yt )−1 = max
φ,λ1,λ2

φ−1 subject to ytφ−1 ∈ Nt, (7)

where the choice variables in (7) are the expansion factor φ−1 and the intensity variables for the two
stages of production, λt

1k and λt
2k, k = 1, . . . , K.

3.3. Dynamic network model

We extend the static network model to a dynamic model by decomposing real GDP into final
consumption and two types of investment spending. Real GDP equals the sum of final consumption,
f yt, and the two types of investment: yt = f yt + iy1t + iy2t, where iy1t are research investments
that flow to stage 1 in t + 1 and iy2t are physical capital investments that flow to stage 2 in t + 1.1

Investments made in t expand production possibilities in period t + 1. Thus, the producer has
several decisions to make. First, should resources be used to produce current final output or future
outputs? Second, the two types of investment alter subsequent production in different ways. Research
investments, iy1t, are an input to stage 1 in t + 1 while physical capital investments, iy2t, are an
input to stage 2 in t + 1. Thus, what is the relative optimal mix of the two intermediate products?

We assume that research capital (c1) depreciates at rate (1 − γ ). Therefore, the available research
capital available in t + 1 equals the depreciated value of research capital from t plus iy1t:

c1t+1 = γ c1t + iy1t. (8)

Similarly, real physical capital (c2) depreciates at rate (1 − δ) so that available real physical capital
in t + 1 equals the depreciated the amount of real physical from t plus iy2t:

c2t+1 = δc2t + iy2t. (9)

The dynamic network technology is

DN = {(zt, yt ) : (zt, yt ) ∈ Nt, t = 1, . . . , T } (10)

and is illustrated in Fig. 2.

1Our method can be extended to cases in which there are multiple final outputs.
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Fig. 2. Dynamic network technology.

Our dynamic optimization problem maximizes the sum of weighted final outputs across all
periods by choosing the amounts of the two intermediate products:

maximize
T∑

t=1

�tφ−1,t subject to

(zt, φ−1,tyt ), t = 1, . . . , T ∈ DN, (11)

where �t, t = 1 . . . , T are predetermined weights that account for the DMU’s rate of time pref-
erence. For instance, if the opportunity cost of capital is r, the weights might be chosen as
�t = 1/(1 + r)t−1.

We impose initial and terminal conditions for research capital and real physical capital. For DMU
o in t = 1, we take research capital and physical capital as given by their observed values, c11

o and
c21

o. In the terminal period, T , we take the investments in research capital and physical capital for
DMU o as given by their observed values: iy1T

o and iy2T
o . The optimization problem chooses two

types of investment in t = 1, . . . , T − 1. Let these optimal intermediate products be iy1t∗ and iy2t∗,
t = 1, . . . , T − 1. Thus, in t = 2, . . . , T , the amounts of research capital and physical capital equal
the depreciated value of the capital stock from the previous period plus investment. For instance, in
t = 2 research capital equals c12

o = γ c11
o + iy11∗ and physical capital equals c22

o = δc21
o + iy21∗. In

t = 3, the two types of capital are c13
o = γ 2c11

o + γ iy11∗ + iy12∗ and c23
o = δ2c21

o + δiy21∗ + iy22∗.
We write these two optimal capital stocks as

c1t∗
o = γ t−1c11

o +
∑
τ<t

δt−τ−1iy1τ∗, t = 2, . . . , T,

c2t∗
o = δt−1c21

o +
∑
τ<t

γ t−τ−1iy2τ∗, t = 2, . . . , T. (12)
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Note that the superscripts on γ and δ are raising those variables to a power to account for depreci-
ation, whereas the t superscripts on the other variables, At, c1t, c2t, zt, z̃t, Lt, yt, and f yt represent
the time period.

In the static model, the output constraint for stage 2 is yt ≤ ∑K
k=1 λt

2kyt
k. Our dynamic network

program modifies stage 2 output constraint by decomposing total output, yt, into its additive
components of final consumption output and the two intermediate products. The dynamic stage 2
output constraint for t is f yt + iy1t + iy2t ≤ ∑K

k=1 λt
2kyt

k.
The DEA optimization problem for DMU o is

maximize
φ,λ1,λ2,iy1,iy2

T∑
t=1

�tφ−1,t subject to

in t = 1

A1
o ≥

K∑
k=1

λ1
1kA1

k, c11
o ≥

K∑
k=1

λ1
1kc11

k, z0
o ≥

K∑
k=1

λ1
1kz0

k, z̃0
o ≥

K∑
k=1

λ1
1kz̃0

k,

z1
o ≤

K∑
k=1

λ1
1kz1

k, z1
o ≥

K∑
k=1

λ1
2kz1

k, L1
o ≥

K∑
k=1

λ1
2kL1

k, c21
o ≥

K∑
k=1

λ1
2kc21

k,

φ−1,1 f y1
o + iy11 + iy21 ≤

K∑
k=1

λ1
2ky1

k, λ1
1k ≥ 0, λ2k ≥ 0, k = 1, . . . , K (13)

in t = 2, . . . , T − 1

At
o ≥

K∑
k=1

λt
1kAt

k, γ t−1c11
o +

∑
τ<t

γ t−τ−1iy1τ ≥
K∑

k=1

λt
1kc1t

k, zt−1
o ≥

K∑
k=1

λt
1kzt−1

k ,

z̃t−1
o ≥

K∑
k=1

λt
1kz̃t−1

k , zt
o ≤

K∑
k=1

λt
1kzt

k, zt
o ≥

K∑
k=1

λt
2kzt

k, Lt
o ≥

K∑
k=1

λt
2kLt

k,

δt−1c21
o +

∑
τ<t

δt−τ−1iy2τ ≥
K∑

k=1

λt
2kc2t

k, φ−1,t f yt
o + iy1t + iy2t ≤

K∑
k=1

λt
2kyt

k,

λt
1k ≥ 0, λt

2k ≥ 0, k = 1, . . . , K, t = 2, . . . , T − 1, (14)

and in T

AT
o ≥

K∑
k=1

λ1kAT
k , γ T−1c11

o +
∑
τ<T

γ T−τ−1iy1τ ≥
K∑

k=1

λT
1kc1T

k , zT−1
o ≥

K∑
k=1

λT
1kzT−1

k ,

z̃T−1
o ≥

K∑
k=1

λT
1kz̃T−1

k , zT
o ≤

K∑
k=1

λT
1kzT

k , zT
o ≥

K∑
k=1

λT
2kzT

k , LT
o ≥

K∑
k=1

λT
2kLT

k ,
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δT−1c21
o +

∑
τ<T

γ T−τ−1iy2τ ≥
K∑

k=1

λT
2kc2T

k , φ−1,T f yT
o + iy1T

o + iy2T
o ≤

K∑
k=1

λ2kyT
k ,

λT
1k ≥ 0, λT

2k ≥ 0, k = 1, . . . , K. (15)

The choice variables for the dynamic optimization problem are the expansion factors, φ−1,t, t =
1, . . . , T , the intensity variables for the two stages of production, λt

1k and λt
2k, k = 1, . . . , K and t =

1, . . . , T , and the investments in research capital and physical capital, iy1t and iy2t, t = 1, . . . , T − 1.
New knowledge incorporated into publications is an intermediate product. Publications are

produced in stage 1 and then used in stage 2 where they are combined with labor and physical capital
to produce real GDP. Real GDP equals the sum of final consumption, investment in physical capital,
and investment in R&D capital. The goal is to maximize the sum of the expansion factors to final
consumption. Investment in physical capital and investment in R&D capital are also intermediate
products; they are produced in stage 2 in t and then used in t + 1. Physical capital investment in t
adds to the depreciated stock of physical capital available to stage 2 in t + 1. Investments in R&D
add to the depreciated R&D capital stock of stage 1 in t + 1. Therefore, it can be possible that
increasing one or both types of investment in an early period can lead to expansions in subsequent
periods’ final consumption that more than offsets the decline from the earlier period. It can also be
possible that R&D investment has a higher marginal contribution to final consumption than does
physical capital investment. Or vice versa. The goal of our model is to find out and see if it coincides
with Romer’s theory.

4. Data and model estimates

To estimate the dynamic network model, we use pooled aggregate data on 53 countries for the years
1996–2012. The process of creating new knowledge generally occurs over more than one year as
ideas are first discussed and refined, then experiments are performed and analyzed, with results
presented at conferences, and finally, formalized as publications. We follow Weber and Xia (2011)
and Fukuyama et al. (2016) and take a three-year moving average of authors, publications, and
citations. The three-year averages along with lagged investments in physical capital and knowledge
capital allow the model to be estimated for 1999–2012. Most of the input and intermediate product
data for the first stage come from Bostian et al. (2018) and include counts of authors, publications,
and highly cited publications for each of 18 STEM disciplines aggregated to the country level for
the years 1996–2012.2 The knowledge spillover received by country j equals the sum of publications
across all countries minus country j’s publications.

Research capital is derived from the World Bank, which reports the percentage of real GDP
allocated to R&D. We multiply this percentage by real GDP at purchasing power parity in constant
(2015) dollars. Since research capital investments are not reported for some countries in some years,
we interpolate missing values. Then, we take the three-year moving average of R&D expenditures
as the measure of research capital.

2The STEM disciplines from the Scopus ASJC main discipline codes are AGRI, BIOC, CENG, CHEM, COMP, DECI,
EART, ECON, ENER, ENGI, ENVI, IMMU, MATE, MATH, MEDI, NEUR, PHAR, PHYS.
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Fig. 3. Trend in knowledge inputs and outputs in 18 STEM disciplines.

The intermediate products from stage 1 (publications—z1 and citations—z2) enter stage 2 tech-
nology as inputs that are combined with labor and real physical capital to produce real GDP. These
stage 2 inputs and outputs come from the Penn World Tables (see Feenstra et al., 2015). New
publications from t spill over to other countries in t + 1. Our one-period lag on spillover publica-
tions is consistent with Luintal and Khan’s (2017) review that international knowledge spillovers
occur quickly.

Table 2 reports descriptive statistics for the pooled data and for the beginning and ending sample
years, 1999 and 2012. The USA has the maximum real GDP and China the maximum employment.
Average real physical capital (c2) exceeds the three-year average of R&D expenditures (c1) by a
factor of 42. The average percentage of real GDP allocated to R&D expenditures was 1.32%. On
average, authors exceed the number of publications. We measure publication quality by the number
of citations in the four years after the publications occur.3 Our choice to measure citations in
the four years after publication is near the midpoint of recent work by Parolo et al. (2015) who
found that citations in physics, medicine, chemistry, and biology peak between two and seven years
after publication. From 1999 to 2012, average real physical capital doubles and knowledge capital
increases by 90%. Average employment increases 15% and real final consumption increases 68%.

Figure 3 graphs the trend in average publications, authors, and citations. The variables are
normalized to 1 in 1999. From 1999 to 2012 average R&D expenditures increase by a factor of
1.9, authors increase by a factor of 2.9, and publications increase by a factor of 2.5. However,
citations increased only 1.5 times and peaked in 2010 and then declined in 2011 and 2012. This
decline in citations is due to an incomplete updating and assessment of citations, that is, citations to

3For every additional period used to measure citations, like five years instead of four, the available sample years to run
the model is reduced by 1.
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Table 2
Descriptive statistics, pooled data, 742 observations

Variables Model Description Mean SD Min. Max.

Pooled data, 742 observations = 53 countries × 14 years
y S,D Real GDP 1,218,000 2,395,000 40,000 15,900,000
L S,D Employment 40 120 1 790
c2 S,D Real physical capital 3,844,000 7,550,000 66,000 54,610,000
c1 S,D Knowledge capital 61,000 168,000 400 1,280,000
z1 S,D Publications 42,700 89,100 860 707,000
z2 S,D Citations 275,000 675,000 2100 6,300,000
z̃t−1 S,D Spillover publications 1,918,000 651,000 537,000 3,280,000
zt−1

1 S,D Past own publications 40,000 84,000 770 701,000
A S,D Authors 88,000 190,000 1600 1,530,000
f y = y − iy1 − iy2 D Real final consumption 880,000 1,660,000 27,000 12,160,000
iy1 D R&D investment 22,000 58,100 200 400,000
iy2 D Physical capital investment 320,000 730,000 5000 6,940,000

1999
y S,D Real GDP 90,9000 1,890,000 40,000 12,510,000
L S,D Employment 40 110 1 700
c2 S,D Real physical capital 2,600,000 5,140,000 66,000 34,400,000
c1 S,D Knowlecdge capital 44,000 132,000 400 899,000
z1 S,D Publications 27,000 61,000 860 413,000
z2 S,D Citations 154,000 430,000 2100 3,000,000
z̃t−1 S,D Spillover publications 930,000 63,000 537,000 960,000
zt−1

1 S,D Past own publications 27,000 63,000 770 424,000
A S,D Authors 50,000 110,000 1600 720,000
f y = y − iy1 − iy2 D Real final consumption 675,000 1,350,000 27,000 8,910,000
iy1 D R&D investment 15,000 47,000 200 318,000
iy2 D Physical capital investment 219,000 496,000 5000 3,290,000

2012
y S,D Real GDP 1,590,000 3,019,442 54,200 15,900,000
L S,D Employment 44 126 1 790
c2 S,D Real physical capital 5,650,000 10,360,000 297,000 54,610,000
c1 S,D Knowledge capital 83,000 207,000 1900 1,280,000
z1 S,D Publications 68,000 128,000 5000 707,000
z2 S,D Citations 238,000 484,000 8800 3,200,000
z̃t−1 S,D Spillover publications 3,220,000 120,000 2,580,000 3,280,000
zt−1

1 S,D Past own publications 66,000 125,000 4670 701,000
A S,D Authors 150,000 290,000 8000 1,530,000
f y = y − iy1 − iy2 D Real final consumption 1,130,000 2,020,000 39,800 12,160,000
iy1 D R&D investment 29,000 712,000 666 400,000
iy2 D Physical capital investment 434,000 1,050,000 13,000 6,950,000

Real GDP means real physical capital and knowledge capital are millions of constant 2015 dollars. Employment is millions
of workers.
S, D means variable is in static and dynamic model; D means variable is in dynamic model.
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Table 3
Static estimates of stage 1 and network efficiency

With citations Without citations

Year Stage 1 Stage 1 Network

1999 0.975 0.974 0.823
2000 0.982 0.979 0.800
2001 0.974 0.967 0.794
2002 0.979 0.971 0.783
2003 0.975 0.972 0.769
2004 0.973 0.971 0.766
2005 0.969 0.967 0.750
2006 0.972 0.970 0.727
2007 0.971 0.967 0.739
2008 0.973 0.969 0.682
2009 0.965 0.961 0.753
2010 0.968 0.963 0.732
2011 0.961 0.958 0.694
2012 0.964 0.958 0.695

publications that occurred in 2011 and 2012 were not updated in the last years of our sample, 2015
and 2016.

We estimate static efficiency by country and year for stage 1 two ways: with two intermediate
products of publications and citations and with a single intermediate product of publications. The
efficiency estimates are in Table 3. By construction, average efficiency is always greater when con-
trolling for citations than when citations are not included. Nonetheless, output technical efficiency
ranges between 0.96 and 0.98 and the estimates with and without citations are close in value. In
2001, the two efficiency estimates have a Spearman rank correlation coefficient of 0.85. In the other
years, the Spearman rank correlation coefficients are greater than 0.93. Furthermore, the citations
to published work from 2011 and 2012 were not completely updated and assessed in 2015 and 2016.
Therefore, given the potential for bias in citations, and the significantly high correlation between
the two models, we opt for a more parsimonious model and do not include citations as a quality
control in the dynamic model estimates presented below.

Average static network efficiency is 0.82 in 1999, but then trends down to 0.68 in 2008. Average
efficiency rebounds to 0.75 in 2009, but declines to 0.69 in 2011 and 2012.

We estimate the dynamic model for a three-year horizon assuming equal weights for each period:
�t = 1.4 We experimented with several rates of depreciation for knowledge capital and physical
capital with qualitatively similar results. We settled on a depreciation rate for knowledge capital of
1 − γ = 0.33 and a depreciation rate for physical capital of 1 − δ = 0.10. Dynamic efficiency, EF F ,
equals the average sum of the reciprocals of the expansion factors, that is, EF F = 1

3 ( 1
φt + 1

φt+1 +
1

φt+2 ). The dynamic estimates are presented in Table 4.
Table 4 compares the dynamic capital (DC) estimates from (13), (14), and (15) with the static

network estimates presented in Table 3. Since the status quo amounts of research capital to stage 1

4We also estimated the model using discount rates of r = 0.05 and r = 0.10 and obtained similar estimates.
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Table 4
Efficiency estimates

Years Dynamic capital (DC) Dynamic investment (DI) Capital preservation (CP)

1999–2001 0.673 0.687 0.702
2000–2002 0.670 0.666 0.718
2001–2003 0.687 0.633 0.739
2002–2004 0.692 0.622 0.776
2003–2005 0.711 0.633 0.799
2004–2006 0.729 0.642 0.792
2005–2007 0.721 0.594 0.777
2006–2008 0.691 0.604 0.708
2007–2009 0.679 0.645 0.730
2008–2010 0.677 0.676 0.749
2009–2011 0.708 0.705 0.769
2010–2012 0.701 0.642 0.746
All years 0.695 0.646 0.751

and physical capital to stage 2 are feasible, but not necessarily optimal in the dynamic model, average
efficiency in the dynamic model should be no greater than the three-year average efficiency for the
static model. For example, average dynamic efficiency is 0.673 during 1999–2001, while average
static efficiency for those same three years is (0.823 + 0.800 + 0.794)/3 = 0.806. Thus, an optimal
reallocation of research capital and physical capital across three years expands the technology set
allowing greater potential output. Average efficiency for the DC model ranges from 0.67 during
2000–2002 to 0.729 during 2004–2006.

In a precursor to this paper, two alternative specifications of research capital and physical capital
were considered. The “dynamic investment” (DI) model follows Färe et al. (2018). In this specifica-
tion, we drop the constraints for the stocks of research capital and physical capital and replace them
with their respective flows of research investments and physical capital investments. Our “capital
preservation” (CP) model follows Nemoto and Goto (2003), Emrouznejad and Thanassoulis (2005),
and Ouellette and Yan (2008). In this specification, we take the stocks of research capital and phys-
ical capital as values to be preserved for future use.5 Dynamic efficiencies for these two alternative
specifications are reported in Table 4. Efficiency averages 0.751 for the CP model, versus 0.695 for
the DC model and 0.646 for the DI model. The CP model has the highest average efficiency in every
three-year period. In contrast, the DI model estimates the lowest average efficiency in every three-
year period except 1999–2001. The DC and CP models show greater average efficiency in 2010–2012
than in 1999–2001. In contrast, the DI model shows a downward trend in average efficiency. The
efficiency estimates for the three models exhibit positive significant correlation coefficients between
the three models in every year: between 0.78 and 0.91 for the DC and CP models; between 0.55 and
0.77 for the DC and DI models; and between 0.70 and 0.87 for the DI and CP models.

We are further interested in examining Romer’s theory that there will be underinvestment in
R&D capital relative to physical capital because of the public good characteristics of knowledge. By
construction, the CP model ensures that the optimal investments in physical capital and research
capital are great enough to preserve the two capital stocks to be at least as great as their actual levels

5Details of the DI model and the CP model are found in Bostian et al. (2018).
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Table 5
Terminal values of actual and optimal research capital and physical capital

Actual Optimal

Years c1T c2T c1T∗ c2T∗ c1T

c2T
c1T∗
c2T∗

1999–2001 49,100 2,740,000 39,700 1,240,000 0.012 0.020
2000–2002 51,200 2,790,000 40,600 1,200,000 0.013 0.020
2001–2003 52,800 2,930,000 43,900 1,240,000 0.013 0.021
2002–2004 54400 3,180,000 43,200 1,360,000 0.012 0.020
2003–2005 57,300 3,500,000 44,400 1,490,000 0.012 0.018
2004–2006 60,700 3,900,000 47,100 1,650,000 0.011 0.018
2005–2007 65,000 4,250,000 49,700 1,820,000 0.011 0.016
2006–2008 69,200 4,540,000 52,200 2,120,000 0.011 0.017
2007–2009 72,600 4,730,000 55,400 2,400,000 0.011 0.017
2008–2010 75,600 4,980,000 58,000 2,460,000 0.011 0.018
2009–2011 79000 5,350,000 60,300 1,970,000 0.011 0.020
2010–2012 83,100 5,650,000 62,400 2,100,000 0.011 0.019
All years 64,200 4,040,000 49,000 1,750,000 0.012 0.018

in the terminal period, so this model does not shed any light on Romer’s theory. In turn, the two
stocks of capital are omitted from the DI model, as this model includes only the flows of investment
in R&D and physical capital. Given the high correlations between these models, we focus on the
DC model for the rest of this paper.

The optimal amounts of research capital and physical capital in T = 3 (the terminal period) are
calculated as

c13∗
k = γ 2c11

k + γ iy11∗ + iy12∗

and c2∗3
k = δ2c21 + δiy21∗ + iy22∗. (16)

Table 5 shows that on average, both types of capital would shrink relative to their actual values as
more resources are pushed into producing final consumption. However, their relative shares would
also change as shown in the last two columns. The optimal ratio of research to physical capital is
greater than the actual ratio of research to physical capital in every year. The results are even more
pronounced in some countries such as the United States where optimal research capital investments
are greater than actual research capital investments in every year. In addition, the optimal physical
capital stock in the United States would shrink relative to its actual level. In the United States, the
increase in research capital and decrease in physical capital relative to actual levels would result in
an optimal research to physical capital ratio almost twice as great as the actual ratio. For instance,
during 1999–2001, the terminal period ratio of actual knowledge capital to actual physical capital
is 0.027 but the ratio of optimal knowledge capital to optimal physical capital is 0.042. In our last
three-year period, 2010–2012, the actual ratio is 0.026, but the optimal ratio is 0.053. In relative terms
then, our empirical results are consistent with Romer’s (1990) theory that predicts underinvestment
in research capital because of its spillover effects and because prices in stage 2 are greater than the
competitive level.
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Table 6
Actual and optimal ratio of research capital (c1) to physical capital (c2) for six countries with optimal investment in
research capital

Actual ratio Optimal ratio
Country c1T /c2T c1∗T /c2∗T

China 0.013 0.039
Iran 0.005 0.010
New Zealand 0.012 0.024
Saudi Arabia 0.002 0.003
United Kingdom 0.015 0.030
United States 0.025 0.048
Six country mean 0.012 0.026
Mean for other 47 countries 0.012 0.017

Six countries (China, Iran, New Zealand, Saudi Arabia, United Kingdom, and United States)
have optimal R&D investments that are equal to actual R&D investments in every three-year
period 1999–2001 and 2010–2012, but these same countries overinvested in physical capital relative
to knowledge capital. Table 6 reports means of the actual and optimal ratios of R&D capital (c1)
to physical capital (c2) in the terminal period (T = 3) and compares them to the mean ratios for
the other 47 countries in the sample. The optimal amount of physical capital in the terminal period
is smaller than the actual quantity for the six countries. Thus, the final outputs could be produced
using the same amount of R&D capital and labor, but less physical capital. Therefore, the excess
physical capital gets pushed into the final output via the expansion factors λt. In addition, the six
countries account for 48–50% of actual cumulative R&D spending among all 53 countries, and
the two biggest economies, United States and China, account for 44–46% of all R&D spending.
These results point to an overallocation of resources to physical capital. In addition, the work by
Peri et al. (2015) found that 30–50% of productivity growth in U.S. cities was due to the growth
of foreign STEM researchers. Our model uses the number of authors in a country as a fixed input
in the research sector, but does not consider reallocations of STEM researchers across countries.
Allowing reallocation of researchers between countries might be another way of increasing final
output, but this reallocation is not part of our model and in practice is restricted by governments’
immigration policies.

Table 7 reports the ratios by year for the six countries reported earlier and for the other 47
countries. For the six research-efficient countries the actual ratios of R&D to physical capital,
average 1.2%, but with optimal ratios that range from 1.9% in 2007–2009 to 3.2% in 2010–2012.
The other 47 countries have similar actual ratios of R&D to physical capital, about 1.2%, but the
optimal terminal period ratios of R&D to physical capital range only from about 1.5% to almost
2%. Thus, it appears that the six research-efficient countries, especially China and the United States
should allocate more to R&D capital relative to physical capital.

5. Conclusions

The transmission of existing knowledge and the production of new knowledge are important
drivers of productivity growth. We construct a dynamic network technology where knowledge is an
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Table 7
Ratios of research capital to knowledge capital by year

6 Countries 47 Countries

Actual ratio Optimal ratio Actual ratio Optimal ratio
Period c1T /c2T c1∗T /c2∗T c1T /c2T c1∗T /c2∗T

1999–2001 0.012 0.025 0.012 0.019
2000–2002 0.013 0.027 0.013 0.019
2001–2003 0.013 0.027 0.013 0.020
2002–2004 0.012 0.027 0.012 0.019
2003–2005 0.012 0.026 0.012 0.017
2004–2006 0.012 0.025 0.011 0.017
2005–2007 0.012 0.025 0.011 0.015
2006–2008 0.012 0.023 0.011 0.017
2007–2009 0.012 0.019 0.011 0.016
2008–2010 0.012 0.021 0.011 0.017
2009–2011 0.012 0.032 0.011 0.018
2010–2012 0.012 0.032 0.011 0.017

intermediate product. The network model consists of two stages where knowledge, measured as the
number of scientific publications in STEM fields, is produced in stage 1 and then used as an input in
stage 2 where it is combined with labor and physical capital to produce final consumption and two
types of investment spending: investment in new research capital and investment in new physical
capital. A country experiences dynamic effects in several ways. First, the two types of investment
spending that occur in period t augment the country’s production possibilities in t + 1. Second,
new knowledge (publications) produced by a country in t spills over and augments the country’s
production in period t + 1. Third, although new knowledge produced by a country in t can only be
used by the same country in t, by period t + 1 that same knowledge spills over to other countries as
it becomes more widely disseminated.

We use panel data on 53 countries during 1999–2012 to estimate the model using DEA. Dy-
namic efficiency averages about 70% compared with the average static efficiency of about 75%.
Thus, outputs could be increased the most by countries realizing greater technical efficiency in
converting publications and other inputs into real GDP. But there are still some gains that could
be realized by an intertemporal reallocation of the investments in research capital and physical
capital. For the 53 countries, the average ratio of research capital to physical capital ranges is
about 0.012 and the optimal ratio of research capital to physical capital is 0.019. This result is
consistent with Romer’s (1990) theory of endogenous technical change, which showed that private
firms will tend to underallocate resources to research because of the public good properties of
knowledge.

Our dynamic optimization problem takes a country’s research capital as given in the initial period
and that capital depreciates over time. Each subsequent period’s capital equals depreciated capital
plus new research investment. A country is research efficient when the optimal amount of research
capital (depreciated capital plus new investment) equals the actual amount of research capital and
the country produces on the frontier of stage 1 technology. Six countries—China, United States,
United Kingdom, Iran, Saudia Arabia, and New Zealand—produced on the research frontier every
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year. For the six research-efficient countries, the ratio of optimal R&D capital to optimal physical
capital increases from around 0.025 in 1999–2001 to 0.032 in 2010–2012. The same ratio trends
downward for the other 47 countries, from 0.019 to 0.0165. China and the United States accounted
for 48–50% of cumulative R&D spending among the 53 countries and these two countries have the
highest average ratio of optimal R&D to optimal physical capital, 3.9% and 4.8%, respectively.

In 2000, European countries set an ambitious goal of allocating 3% of GDP to R&D by 2010
in what is known as the “Lisbon strategy” (Bongardt and Torres, 2013). Only a few countries in
our sample met this goal by 2010: Denmark, Finland, Sweden, and Switzerland in Europe, along
with Korea, Japan, and Israel. Our results indicate that increasing R&D investments relative to
capital investments can increase potential outputs. But we caution that those resources would have
to be used efficiently to reach potential. Since our model estimates that countries are on average
only 70% efficient, some of that potential output will likely disappear as various inefficiencies arise.
Nonetheless, countries such as China, Korea, and Iran have increasingly allocated resources to
R&D and have also realized relatively strong economic growth (Zhou and Leydesdorf, 2006; Moed
and Galevi, 2014; Moed, 2016).

We offer several caveats of our study. First, the data are highly aggregated, which masks most
of the interactions between the actual researchers within and across countries and disciplines.
Second, our model might suffer from a “curse of dimensionality” as the relatively small number of
countries, and a large number of outputs and inputs probably puts an upward bias to the efficiency
estimates. Daraio and Simar (2007) propose a factorial analysis to reduce this curse, and future
research might usefully incorporate factor analysis into the dynamic network model. Third, our
model has used only publications as the knowledge output. Private R&D divisions of businesses and
increasingly, universities, also produce patents, which is another knowledge output. Future research
might usefully account for these patents in a dynamic network model.
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Färe, R., Grosskopf, S., 1998. Efficiency and productivity in rich and poor countries. In Jensen, B.S., Wong, K. (eds)

Dynamics, Economic Growth and International Trade. University of Michigan Press, Ann Arbor, MI.
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