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Abstract

The automation of agricultural tasks is the key to sustainable and efficient food
production. In this context, Precision Agriculture (PA) and robotics are set to have
a great impact and to transform this sector. The former is a farming management
concept based on monitoring key indicators of crop health and targeting treatment
only to plants or infested areas that need it. The latter is the technological tool
that will allow applying the PA concept in the fields. However, to effectively carry
out almost any (farming) task in autonomy, a robot must be capable of perceiving
its surroundings and, at the same time, modeling the environment in a meaningful
manner.

Despite the great progress achieved during the last years in automating farming
activities by using robotic platforms, most of the existing systems do not provide
a sufficient autonomy level. This is due to a couple of major factors. On the one
hand, the farming scenario shows peculiar characteristics and challenges, while, on
the other hand, current robotic solutions mainly focus on specific farming tasks and
may lack in flexibility. Making farming robots more autonomous brings the benefits
of completing faster the assigned tasks and adapting to different purposes and farm
fields, which make them more useful while increasing their profitability. However,
making farming robots more autonomous involves increasing their perception and
awareness of their surrounding environment.

This thesis focuses on perception methods that enable robots to autonomously
operate in farming environments, specifically a localization and mapping method
and a collaborative mapping between aerial and ground robots. They improve the
robot perception capabilities by exploiting the unique context-based characteristics
of farm fields and by merging sensorial data gathered from several heterogeneous
sensors. Additionally, this thesis addresses the problem of crop/weed mapping by
employing end-to-end visual classifiers. This thesis also presents contributions to
perception-based control methods. Such approaches allow the robot to navigate the
environment while taking into account the perception constraints. The following is
a full list of contributions:

e A method to summarize a big dataset by information entropy maximization.
The manual annotation of the summarized dataset allows the trained network
to obtain a similar classification accuracy while down-scaling the manual
annotation effort.

e A model-based dataset generation method for crop and weed detection. The
generated data can be used to supplement a real-world training dataset,
reducing the manual annotation effor. Some synthetic data are made available
as open-source datasets.

o A multi-cue positioning system for ground farming robots that fuses several
heterogeneous sensors and incorporates context-based characteristics.

e A novel multimodal environment representation that at the same time en-
hances the key characteristics of the farm field, while filtering out redundant
information.
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e A collaborative mapping method that registers agricultural maps acquired by
both aerial and ground vehicles.

o Perception-based control methods that steer a (farming) robot to the desired
location while satisfying perception constraints.
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Chapter 1

Introduction

There is a growing demand for food production due to the rapid growth of the
world population. Sustainable agriculture is the only viable way of meeting this
demand without causing a negative environmental impact. Precision agricultural
techniques seek to address this challenge by observing, measuring and responding
to inter and intra-field variability in crops [92]. Intervariability may result from a
significant number of factors such as weather variables (temperature, precipitations,
relative humidity, etc.), soil characteristics (texture, depth, nitrogen levels), cropping
practices (till/no-till farming), weeds and diseases, etc.

These practices, however, cannot meet alone themselves the growing demand of food
since they are extremely labour intensive and time consuming. An effective solution
to this problem can be found in the robotic sector. Indeed, as pointed out in [39, 17],
the availability of autonomous system architectures gives the opportunity to develop
a new range of flexible agricultural equipment based on small, smart machines that
reduce waste, improve economic viability, reduce environmental impact, and increase
food sustainability. The exploitation of this technology will enable to automatize
almost any agricultural task. An Unmanned Aerial Vehicles (UAVs) will be able to
survey a field from the air, to build an aerial map and to detect infested areas. On
the other hand, a multi-purpose agricultural Unmanned Ground Vehicles (UGVs)
can refine the aerial map, perform targeted intervention on the ground, and provide
detailed information for decision support, all with minimal user intervention.
However, state-of-the-art farming robots show automation capabilities that are not
mature enough to allow them to safely operate in different real-world scenarios,
or work reliably during long periods of time. One of the main reasons derives
from the farming context itself. Autonomous operations of robotic systems in an
agricultural environment, indeed, is rather a challenging task due to the peculiar
characteristics and features of common farming scenarios. The environment is
dynamic, non-deterministic and semi-structured with many sources of noises. In
addition, a strong perceptual aliasing arises in either visual or geometrical sensorial
data.

For instance, a robot autonomously navigating the rows in a farm field should be
able to accurately estimate its pose along with other essential navigation parameters
such as the distance between the rows while they are constantly changing in their
size and appearance. It should also be capable of reliably detect the end of the row
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when it is in sight and plan a safe trajectory to not damage the surrounding plants.
Likewise, the weed control unit, with which a farming robot is generally equipped,
should be able to identify, in real-time, weeds from the plants. Differentiating crops
from weeds is a challenging problem since they share similar textures, sizes, and
shapes. The robot should also be able to estimate the position of the weed to a high
degree of precision to carry out an effective focused treatment without damaging
the neighboring plants. Finally, the robots, if more than one, should use the newly
gathered data to update an environmental map from where obtain useful high level
information to help the high level decision making. These problems are further
accentuated by the strong perceptual aliasing and by the fact that the sensors have
some inherent limitations in their range and resolution, and sensor measurements
can be noisy.

This thesis tackles some specific perception problems that arise when designing an
autonomous farming robot. It describes scene segmentation methods and algorithms
to reduce the manual data annotation effort. These algorithms consist of data
summarization approach that automatically selects from a large dataset the most
informative subsets that better describe the original one, and a model-based dataset
generation approach that exploits a modern graphic engine to build a highly realistic
synthetic dataset. Additionally, this thesis describes localization and mapping
methods, either individual or collaborative, to enable a farming robot to represent
a farm field and to localize within it. This thesis also presents perception-based
control methods to enable the robot to autonomously move in the farm field, while
explicitly taking into account perception constraints.

This introduction is structured as follows. Sec. 1.1 provides a brief introduction to
Precision Agriculture, and a general overview about the advantages and challenges
in using robots in agricultural contexts. Sec.1.2 summarizes the state-of-the-art of
the main research topics covered by this dissertation. Sec. 1.3 depicts the operating
scenario adopted in this thesis, helping in contextualizing the contributions and
motivating the research objectives of this dissertation. Sec. 1.4 provides a full list of
the contributions presented in this thesis.

1.1. Precision Agriculture

Precision Agriculture (PA), also known as ’smart farming’, is now a term used
throughout agricultural systems worldwide. However, the concept of fully au-
tonomous agricultural vehicles goes back in the past: the first development of
robotics in agriculture can be dated as early as the 1920s [165], with research to
incorporate automatic vehicle guidance into agriculture beginning to take shape,
while examples of early driverless tractor prototypes using leader cable guidance
systems date back to the 1950s and 1960s. However, the first time the PA concept has
made its appearance was in the late 1980s with the matching of grid-based sampling
of soil chemical properties for grain industries. Since then, with the advancement
and availability on the market of new technologies (e.g. Global Navigation Satellite
System (GNSS) in the 1990s, and so on ...), PA concept spread across different
farming industries and crop types. For a more comprehensive review of the PA
history, I refer the reader to [150].
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Many definitions of PA exist, but the most appropriate comes from the US House
of Representatives (US House of Representatives, 1997) which defines PA as an
approach to manage the farming production process that allows to "an integrated
information and production-based farming system that is designed to increase long
term, site-specific and farm production efficiency, productivity and profitability while
minimizing unintended impacts on wildlife and the environment".

This definition properly resumes the main PA principles: taking into account the
time and space variability of factors that influence the farming production process to
improve the input efficiency in the dynamic management of the process. Improving
efficiency means to use fewer resources while achieving better results, or, achieving
the same results while using the same amount of inputs. At first glance, therefore,
it would seem that the objective of PA is a revisitation of good agricultural man-
agement, for example as regards crop production. However, the commonly adopted
good agricultural practices do not take adequately into account the dynamics of
agricultural systems, which lead to large temporal variability in the responses to the
production factors. In this regard, PA makes use of the best solutions technology has
to offer in terms of monitoring and actuation capabilities, and it is usually applied
in fields by smart systems that can automatize the work in the field and effectively
target the treatments. For example, intelligent irrigation systems can measure the
crop growth status and the water stress with a local granularity and respond by
irrigation strategy that aims in minimizing the water waste.

However, in the last years, the development of new sensing technologies and smart
machines gave the opportunity to robots to emerge as enabling technology for the
future robotic PA systems [39].

1.1.1. Robots in Agriculture

Ever since quadrotor, or robots in general, became affordable and reliable about a
decade ago, the number of their applications has increased very fast and by now it
covers essentially every task that involves surveying, e.g., gathering data in a fast,
reliable, and autonomous manner. Among the others, a part of these applications
falls in the PA context.

Emerging applications of robots in agriculture include weed control ([32], [5], [4]),
cloud seeding [33], planting seeds, harvesting, environmental monitoring, and soil
analysis ([10], [101]), while flying drones are successfully deployed for crop moni-
toring and spraying [34]. Other use-cases concern sheep shearing and autonomous
horticultural tasks such as pruning and spraying.

In summary, most of the applications of agricultural robots are for active tasks, 7.e.
moving and interacting with the environment autonomously. Such tasks are hard,
repetitive, and expensive to accomplish without robots, but they are also what robots
are particularly well suited for. Companies and Start-ups ([8], [2]), all together, form
a billion-dollar market, which is expected to grow much more in the coming years.
Therefore there is a huge need to further exploit the potential of autonomous robots.
To make such robots really useful and more profitable, it is crucial to increase their
autonomy, their capability to properly model the surrounding environment, and the
speed at which they can operate. The current bottleneck in the implementation of
these functionalities is largely in the perception capabilities of agricultural robots
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that are the main focus of this dissertation.

1.1.2. Advantages

The potential benefits brought by robots, either UAVs or UGVs, in PA applications
are several.

From an aerial perspective, flying drones can perform fast aerial inspections of
the target field. Their high thrust-to-weight-ratio enables UAVs to carry different
kinds of sensors, enabling the user to customize the data acquisition according
to the specific needs of the user. The gathered data are well suited to compute
RGB and multispectral maps of the farmland, helping the farmer to better monitor
diseases, pest, irrigation, fertilizer condition, and the crop growth information as well.
Moreover, thanks to the recent developments in embedded computing platforms,
they can also carry-out data processing on-line and fly autonomously, allowing the
operator to work on other tasks.

On the other hand, ground farming robots are designed to replace human labor.
They do not have stringent payload constraints such as aerial vehicles, therefore they
can carry more sensors and end effectors as well. In particular, end effectors allows
the platform to actively interact with the environment and to perform different tasks
such as harvesting, berry-thinning, spraying, and bagging. Actuators can be designed
in a modular manner by choosing different sensor settings, status indicators, and
ground treatment packages, thus leading the platform to be adaptable to a wide range
of farm management activities and different crop types. Moreover, ground vehicles
can be also deployed to perform detailed inspections of specific areas of the field.
Finally, the gathered information can be used alongside existing precision agriculture
machinery, for example, by providing position maps for fertilizer application.

In addition, besides the platform typologies, an essential advantage is the possibility
to bring several types of sensors, in particular, visual sensors. They represent one
of the most informative sensors on the market, compared to their cost, and offer
several benefits for farming tasks. Vision-based is mandatory to perform tasks such
as detection, segmentation, and classification of crop versus weeds ([96, 36, 127]). It
is also crucial to track people or obstacles to enable safe navigation within the fields,
and it also allows for an accurate actuation through visual-servoing techniques.

In summary, robots are well suited for agricultural tasks since they can autonomously
perform several farming activities in an autonomous manner.

1.1.3. Challenges

Despite there has been great progress on automating agriculture activities using
robots, there are still some open challenges that prevent farming robot to safely and
effectively operate in all types of farming scenarios.

A common challenge is represented by weather and environmental conditions. Robots
should work in real-world conditions such as humidity, fog, and varying temperatures.
For example, UAVs should be robust to rain and snow and should guarantee long
operational time, while UGVs should be capable of traveling on uneven and noisy
terrains and working at night. In addition, sensors and batteries should guarantee a
working range with both low and high temperatures.

Another important challenge to address is the flexibility of farming robots. Indeed,
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most existing systems have been developed to solve only specialized tasks. The
specificity of each farming task, either from the perception or from the actuation
perspectives, does not allow for an easy application of the same software and hard-
ware solution in different contexts. Different harvesting tasks, for instance, require
ad-hoc end effectors to pick the fruits, and computer vision methods can not easily
adapt the robot semantic scene understanding according to the crop-type features.
Moreover, the robot may need an adaptable shape to deal with different interspaces
between crop rows.

The agricultural scenario itself also involves, in general, unique challenges. The scene
presents strong perceptual aliasing and it is also dynamic. As a direct consequence,
standard localization and mapping algorithms are likely to yield poor results, and
loop closures methods, either visual and geometrical, are not reliable enough. On
the other hand, relying on a RTK-GPS as the main localization source leads the
robot to be vulnerable to outages and usually involves an initial effort for setting
up the base stations. This also leads the collaboration in a multi-platform robotic
solution to be extremely challenging. The data sharing among robots without a
reliable data association also prevents the solution to be effective and usable.

The unique agricultural field characteristics also make field navigation quite chal-
lenging. For example, the ground vehicle has to move with sufficient accuracy to
avoid damaging the crop, while the flying drone, in case of a per-plant inspection,
should constantly frame the target plant with the on-board camera due to the strong
visual aliasing.

Agricultural scenarios also offer a big challenge for computer vision and machine
learning. The former requires to be robust to illumination changes, weather condi-
tions, and perceptual aliasing while ensuring enough accuracy to effectively carry
out weed control and to estimate crucial vision-based parameters for safe naviga-
tion. Computer vision applied to PA often depends on machine learning, particularly
for those classification and segmentation tasks such as crop and weeds identification.
Most of the employed machine learning techniques fall in the Deep Learning area,
such as Convolutional Neural Networks (CNNs). While these methods can solve
individual classification problems with impressive accuracy, the visual appearance of
agricultural scenarios dramatically varies field by field. Also training a classifier for a
specific crop presents overwhelming challenges: (i) the many differences between the
crop types, (ii) the crop growth under different conditions, and (iii) even the different
ground conditions make this task extremely challenging for machine learning. A
statement that properly summarizes these concepts may be: “Deep learning is great
at interpolating conditions between what it knows; it is not good at extrapolating
to situations it hasn’t seen. And in agriculture, you always feel that there is a
set of conditions that you haven’t yet classified“ [35]. Moreover, the problem of
optimally train machine learning-based classifiers is still open. Dealing with the
above-introduced variability involves the acquisition and pixel-wise annotation of
large datasets through a large human effort. Finally, a working machine learning
architecture should also adapt the learner models during long-term operations to
deal with the strong varying conditions.

Summarizing, the above-mentioned problems and the lack of flexibility pose a high
risk of no return on investment for farmers. This thesis is tackling the following
challenges around farming robots:



6 1. Introduction

¢ Development of methods to minimize the manual annotation effort for training
effective crop-weeds visual classifiers;

e Achieving a reliable localization and mapping capability for farming robots by
exploiting the characteristics of the agricultural environment;

e Enabling a ground-aerial farming robot collaboration by providing a shared
environment representation;

« Allowing robots to explicitly take into account perception targets in the vehicle
control pipeline.

1.2. State-of-the-art

This section summarizes the state-of-the-art in the key research problems addressed
in this thesis: crop/weeds classification, localization and mapping, heterogeneous
robot collaboration, and perception-based control. Our aim is to show how the work
presented in this thesis relates to and extends the state-of-the-art methods.

1.2.1. Crop/Weeds Classification

The problem of plant classification can be considered an instance of the so called
fine-grained visual classification (FGVC) problem, where the aim is to distinguish
between objects belonging to the same macro-class, such as species of animals, or
models of cars. FGVC problems are intrinsically difficult, since the visual differences
between these similar categories (in our case, plant species) are often minimal, and
only in recent works have been obtained noteworthy results ( [27], [66], [96], [97]).
Despite the literature on this topic is extremely wide, it can be roughly split into two
major paradigms: hand-crafted features ([146], [23], [67], [27],[86]) and end-to-end
learning methods ([66], [96], [97], [127], [138], [95]).

The former methods are based on common, or hand-crafted features, such as Color
Co-occurrence Method (CCM) from hue, saturation and intensity color space, Scale
Invariant Feature Transform (SIFT), Grid-Based Color Moment (GBCM), and many
others. Those methods report high classification performances in the order of 80-90%
in terms of accuracy and strongly depend on the type of features chosen.
Conversely, end-to-end learning methods address the problem in a different manner:
they train neural networks to allow them to directly learn the proper features for the
classification/segmentation task. These approaches achieve classification accuracy
around 94%, due to their ability to discriminate also crops that are very similar
to weeds but suffer from inflexibility and limitations in their representative power.
Indeed, all those data-driven systems share the need for a tedious labeling effort. In
the context of precision agriculture, the requirement for large datasets leads to a
significant effort: datasets should be acquired across different plant growth stages
and weather conditions.

1.2.2. Localization and Mapping

An accurate global pose estimation system is an essential component for an effective
farming robot. However, self-localizing within farmlands poses several challenges, in
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particular for the strong aliasing, either visual or geometrical, and for the lack of
distinguishable landmarks. In addition, crops grow over time constantly changing
their appearance. One common way to overcome these limitations is by using Global
Navigation Satellite System (GNSS) to geo-localize the robot in the farm field ([113],
[151], [155]). However, the vulnerability to outages makes the above solutions not
fully reliable in the farming robotics context.

On the other hand, the benefits in using local sensory information ([163], [29], [76],
[105], [65], [84]), and the incorporation of a robust detection of crop rows ([41], [83])
in the navigation pipeline offer the possibility to overcome the RTK-GPS related
issues. Although those methods proved sufficient reliability, they might suffer from
the challenging crop row extraction in the post-emergency growth stage of the crops
or, in some cases, they are tailored for specific use-cases and might not generalize
over different crop types.

1.2.3. Aerial-Ground Robots Cooperation

Thanks to the complementarity of their characteristics, a combination of aerial and
ground robots is commonly deployed in different contexts. PA particularly benefits
from this multi-platform solution since UAVs allow for rapid inspections of the farm
field, while UGVs can perform targeted interventions.

The multi-robot cooperation is a recurrent problem and many solutions have been
proposed by either using multi-robot SLAM algorithms or map merging/map regis-
tration strategies in both 2D ([15, 19, 139]) and 3D ([21, 51, 75]) settings. However,
the heterogeneity of the involved robots and the lack of distinctive visual and geo-
metrical features in an agricultural environment prevent the employment of standard
multi-robot SLAM methods. On the other hand, map registration is a challenging
problem, especially when dealing with heterogeneous robots, where data is gathered
from different points-of-view and with different noise characteristics. It has been
intensively investigated, especially in the context of urban reconstruction with aerial
and ground data ([25], [152], [49]).

All the above-mentioned solutions make use of strong context-based assumptions
that might not fit the agricultural context. There are a few works that deal with
map registration in an agricultural context by using homogeneous robots ([28], [37]).
However, the further challenges that appear when registering UAV on UGV lead
the former methods to not be enough reliable.

1.2.4. Peception-Based Control

Controlling a robot in a PA context means to steer the vehicle from a specific pose
configuration to another one to perform certain agronomic interventions and/or
collect data. In this regard, the goal pose may depend on the agronomic target
location in the field. However, a farming field often shows a strong repetitiveness in
its patterns, either geometric or visual, possibly misleading the on-board navigation
system.

A possible solution to overcome this challenge is to constantly keep the agronomic
target in the center of the field-of-view of a sensor mounted on-board, such as a
camera. This problem is commonly known as visual servoing, namely controlling a
robot through a direct visual feedback, and has been widely investigated in the last
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decades ( [124], [63], [61], [9], [104]).

The above-cited methods can be split into two parallel branches: Position-Based
Visual Servoing (PBVS) and Image-Based Visual Servoing (IBVS). In PBVS, the 3D
goal pose is directly obtained from a 3D view of the target, while IBVS formulates
the problem in terms of image feature locations. Both suffer their own weaknesses:
the former is very sensitive to initial conditions, camera calibration parameters and
image noise corruption. In the latter, it is particularly challenging to model the
relationship between vehicle dynamics and the feature projection error, especially for
under-actuated systems. The above-introduced issues are even more pronounced in
a farming scenario since retrieving a 3D prior knowledge from an agronomic target
is extremely challenging.

Recent approaches are based on hybrid techniques, where image features and 3D
data are fused together to develop a more stable controller than IBVS or PBVS
alone ([62], [147], [43], [42]).

Despite the promising results, the formerly introduced approaches might suffer a
high computational cost and, in general, they assume to fly in an obstacle-free
environment.

1.3. The Flourish project

Servers
Sensor data analysis and
multiresolution map building

Farmer’s Device
Daily field status and up-to-date
information to support decision making

Ground Vehicle
BoniRob by AMAZONE and BOSCH
Autonomous targeted intervention

Small multi-copter used for
continuous autonomous survey
Equipped with multispectral sensors

Figure 1.1. The working scenario: an aerial robot and a ground robot collaborate to
monitor a farm field. The picture has been taken from the EU founded Project "Flourish".
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To set the application that motivates the work done in this thesis, this section
presents an operating scenario: the Flourish Project, an EU funded project, in which
Sapienza University of Rome participated as partner of the consortium, working on
the mapping and on the robot collaboration part. The Flourish project proposes to
develop an adaptable robotic solution for precision farming by combining the aerial
survey capabilities of a small autonomous multi-copter Unmanned Aerial Vehicle
(UAV) with a multi-purpose agricultural Unmanned Ground Vehicle (UGV). With
such a multi-platform setup, the whole system is able to survey a field from the air,
perform a targeted intervention on the ground, and provide detailed information
for decision support, all with minimal user intervention. An example of a working
scenario is depicted in Fig. 1.1: an aerial robot and a ground robot collaborate to
monitor a farm field. The UAV is equipped with multispectral sensors that are used
to extract vegetation health indexes and to spot weed patches within the field. Thus,
through continuous monitoring of the field, the UAV builds and keeps up to date
a multi-spectral map of the field, communicating to the UGV the location of the
weeds in the field. Once the weed data are delivered, the UGV performs targeted
intervention, where the nature of the treatment may also be decided by the user,
and updates the field map. The whole data are then sent to the farmer to support
high-level decision making.

1.4. Contributions

This section summarizes the key contributions of this thesis. It further highlights
the connections between the individual results and points to related video and
open-source code contributions. In total, the research presented in this thesis
has been published in five peer-reviewed conference publications and two journal
publications. These works received two nominations for the Best Student Paper
Award Finalist. The relevant algorithms and datasets developed within this work

are available as open-source!.

1.4.1. Crop/Weeds Classification

In this section, I present algorithms that reduce the human effort required to train
an effective and robust classification system for crop/weed segmentation.

lyww.dis.uniromal.it/~labrococo/fsd
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Fast and accurate crop and weed identification with summarized train
sets for precision agriculture

1. C. Potena, D. Nardi, and A. Pretto. "Fast and Accurate Crop and Weed
Detection with Summarized Train Sets for Precision Agriculture". In Intelligent
Autonomous Systems 14 (IAS), 2016, pp. 105-121, Best Student Paper
Award Finalist, doi: 10.1007/978-3-319-48036-7_9

Deep neural networks have been setting new records in almost all of the computer
vision challenges and continue to gain interest in the field of artificial intelligence.
Such networks have a big potential in Precision Agriculture since they allow to train
highly discriminative visual models capable to distinguish among different plant
species with great accuracy. On the other hand, the level of expressivity of such
networks is limited by the size and the annotation quality of the training dataset. To
deal with these issues, I propose an unsupervised dataset summarization algorithm
that automatically summarizes a large, non-annotated, dataset by taking the most
informative part of the initial dataset. This enables to streamline and speed-up
the manual dataset labeling process, otherwise extremely time consuming, while
preserving good classification accuracy.

Automatic Model Based Dataset Generation for Fast and Accurate
Crop and Weeds Detection

1. M. Di Cicco, C. Potena, G. Grisetti, and A. Pretto. "Automatic model
based dataset generation for fast and accurate crop and weeds detection".
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017, pp. 5188-5195, doi: 10.1109/IROS.2017.8206408

To cope with limited available data, there are several approaches to aid the train-
ing of deep networks. A novel approach is to synthetize training samples through
computer-generated imagery. One of the main concerns in the use of synthetic data
for the training is whether the source domain is close enough to the target domain
(i.e., the domain of real-world images) to make it possible an effective application.
Modern graphic engines meet these constraints, by offering high realism and high
variability in the generation procedure by changing viewpoint, illumination, weather
conditions, and the level of detail which provides a valuable augmentation of the
data. I present a model-based dataset generation for training crop/weed classifiers.
By parameterizing the generation procedure with the key aspects of the target
environment (i.e., number of leaves, plants growth stage, and so on), the proposed
approach is able to generate a potentially infinite number of annotated realistic
scenes with a few starting real-world textures. The reported experiments show how
to use these data for augmenting a small real-world dataset to sensibly improve the
classification accuracy. Some synthetic images generated by the proposed approach
are available as open-source. This work results from a fruitful collaboration with
Ph.D. Maurilio Di Cicco under the joint supervision of my Prof. Alberto Pretto and
Prof. Giorgio Grisetti. My contribution mainly lies in the idea on which the work is
built and on the deep neural network architecture setting up and testing.
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Related Datasets
http://www.dis.uniromal.it/ labrococo/fsd/syntheticdatasets.html

Related Video
https://www.youtube.com/watch?v=jMcxquK6G8k

1.4.2. Localization and Mapping

In this section, I present our localization and mapping system, and its application on
the Bosch Bonirob. With this work I achieved a few centimeter localization errors,
thus enabling a farming robot to safely navigate through the field.

An Effective Multi-Cue Positioning System for Agricultural Robotics

1. M. Imperoli*, C. Potena*, D. Nardi, G.Grisetti, and A. Pretto. "An Effective
Multi-Cue Positioning System for Agricultural Robotics". In IEEE Robotics
and Automation Letters (RAL), 2018, vol. 3, num. 4, pp. 3685-3692, doi:
10.1109/LRA.2018.2855052

One of the main capabilities that autonomous ground farming robots must have is
to navigate the environment without harming the valuable crop. Modern mapping
and localization frameworks have proven to be accurate and reliable in several
robotics scenarios. However, localizing a robot within an agricultural scenario is
a complex task, and conventional approaches might easily fail. To deal with the
above-mentioned issues, I present a multi-cue positioning system specifically tailored
for farming robots. To achieve the required localization accuracy, the proposed ap-
proach fuses several heterogeneous sensor data with a few context-based constraints.
The entire optimization is cast as a pose-graph optimization and runs in real-time.
The results show how this approach allows achieving a small centimetric error, even
in case of a GPS failure. The proposed algorithm and together with two datasets
annotated with ground truth are available as open-source. This work results from
a fruitful collaboration with Ph.D. Marco Imperoli under the joint supervision of
my Prof. Alberto Pretto, Prof. Giorgio Grisetti, and Prof. Daniele Nardi. My
contribution is equally split with Ph.D. Marco Imperoli and, in particular, lies in
the whole system development, testing, and data acquisition on the field.

Related Software
https://bitbucket.org/cirpote/pose__graph
https://bitbucket.org/Imperoli/mcaps

Related Datasets
http://www.dis.uniromal.it/ labrococo/fsd /mappingdatasets.html

Related Video
https://www.youtube.com/watch?v=iumZcOM49wo
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1.4.3. Aerial-Ground Robots Cooperation

In this section, I present our collaborative mapping framework for heterogeneous
robots. With this work I achieved cutting edge registration performance between
UAV and UGV maps, also when the maps to register have a significant scale
difference.

AgriColMap: Aerial-Ground Collaborative 3D Mapping for Precision
Farming

1. C. Potena, R. Khanna, J. Nieto, R. Siegwart, D. Nardi, and A. Pretto.
"AgriColMap: Aerial-Ground Collaborative 3D Mapping for Precision Farming".
In IEEE Robotics and Automation Letters (RAL), 2019, vol. 4, num. 2, pp.
1085-1092, doi: 10.1109/LRA.2019.2894468

In a robotic multi-platform application like the Flourish project, both aerial and
ground robots must share a common environment representation. This property
is essential to let the robots collaborate toward the common goal (e.g., updating
the field map with newly acquired information). On the other hand, merging ex-
teroceptive information from heterogeneous robots presents a few challenges: the
drastic viewpoint change, data scale discrepancies, and strong visual aliasing. To
deal with the above-introduced issues, I present a method for an effective and robust
map merging. The proposed method firstly transforms the 3D colored maps into
a multimodal environment representation, and then it casts the data association
problem as a Large Displacement Optical Flow (LDOF). The results show that the
resulting non-rigid transformation allows to effectively merge maps with large scale
discrepancies and initial guess errors.

Related Software
https://github.com/cirpote/agricolmap

Related Datasets
http://www.dis.uniromal.it/ labrococo/fsd/collaborativemapping.html

Related Video
https://www.youtube.com/watch?v=F3FtxcB1kOM

1.4.4. Perception-Based Control

In this section, I present control approaches that allow incorporating visual and
avoidance constraints, allowing for safe and effective navigation through the envi-
ronment. Despite their generality, the presented method provides several benefits
also in farming activities, particularly when performing monitoring tasks at the
resolution of the single plant.

Effective target aware visual navigation for UAVs

1. C. Potena, D. Nardi, and A. Pretto. "Effective target aware visual navigation
for UAVs'". In European Conference on Mobile Robots (ECMR), 2017, pp. 1-7.
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doi: 10.1109/ECMR.2017.8098714

In this paper, I propose an effective vision-based navigation method that allows a
multirotor vehicle to simultaneously reach a desired goal pose in the environment
while constantly facing a target object or landmark. Standard techniques such as
Position-Based Visual Servoing (PBVS) and Image-Based Visual Servoing (IBVS) in
some cases (e.g., while the multirotor is performing fast maneuvers) do not allow to
constantly maintain the line of sight with a target of interest. Instead, the proposed
approach computes the optimal trajectory by solving a non-linear optimization
problem that minimizes the target reprojection error, while meeting the UAV’s
dynamic constraints. The desired trajectory is then tracked by means of a real-time
Non-linear Model Predictive Controller (NMPC): this implicitly allows the multirotor
to satisfy both the required constraints. The method has been successfully evaluated
in many real and simulated experiments, making an exhaustive comparison with a
standard approach.

Non-Linear Model Predictive Control with Adaptive Time-Mesh
Refinement

1. C. Potena, B. Della Corte, D. Nardi, G. Grisetti, and A. Pretto. "Non-
linear model predictive control with adaptive time-mesh refinement". In
IEEE International Conference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR), 2018, pp. 74-80, doi: 10.1109/SIMPAR.2018.8376274

In this paper, I present a novel solution for real-time, Non-Linear Model Predic-
tive Control (NMPC) exploiting a time-mesh refinement strategy. The proposed
controller formulates the Optimal Control Problem (OCP) in terms of flat outputs
over an adaptive lattice. In common approximated OCP solutions, the number of
discretization points composing the lattice represents a critical upper bound for
real-time applications. The proposed NMPC-based technique refines the initially
uniform time horizon by adding time steps with a sampling criterion that aims to
reduce the discretization error. This enables a higher accuracy in the initial part of
the receding horizon, which is more relevant to NMPC while keeping bounded the
number of discretization points. By combining this feature with an efficient Least
Square formulation, our solver is also extremely time-efficient, generating trajectories
of multiple seconds within only a few milliseconds. The performance of the proposed
approach has been validated in a high fidelity simulation environment, by using a
UAV platform. An open-source C++ implementation of the proposed method has
been also released.

Related Software
https://bitbucket.org/gnomicSolver /gnomic

Joint Vision-Based Navigation, Control and Obstacle Avoidance for
UAVs in Dynamic Environments

1. C. Potena, D. Nardi, and A. Pretto. "Joint Vision-Based Navigation, Control
and Obstacle Avoidance for UAVs in Dynamic Environments". In European



14 1. Introduction

Conference on Mobile Robots (ECMR), 2019, remaining details to appear
soon

This work addresses the problem of coupling vision-based navigation systems for
Unmanned Aerial Vehicles (UAVs) with robust obstacle avoidance capabilities. The
former problem is solved by maximizing the visibility of the points of interest, while
the latter is modeled through ellipsoidal repulsive areas. The whole problem is tran-
scribed into an Optimal Control Problem (OCP) and solved in a few milliseconds
by leveraging state-of-the-art numerical optimization. The resulting trajectories
are well suited for reaching the specified goal location while avoiding obstacles
with a safety margin and minimizing the probability of losing the route with the
target of interest. Combining this technique with a proper ellipsoid shaping (i.e., by
augmenting the shape proportionally with the obstacle velocity or with the obstacle
detection uncertainties) results in a robust obstacle avoidance behavior. The reported
experiments validate the approach through extensive simulated experiments that
show effective capabilities to satisfy all the constraints even in challenging conditions.
An open-source C++ implementation of the proposed method has been also released.

Related Software
https://github.com/cirpote/rvb_mpc
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Chapter 2

Crop/Weed Segmentation

In this chapter, I focus on the crop/weed detection module. Such a module is an
essential component for farming robots since it allows the platform to properly per-
ceive the environment and to carry out weed control by either autonomous removal
or spraying. For example, in the Flourish project context, an effective plant segmen-
tation module would enable the robot to properly distinguish between sugarbeets
and weeds, allowing the sprayer to autonomously apply treatments to the target
weeds by using visual feedback. However, detecting crop and weeds represents one of
the most challenging problems: the differences between plant categories are minimal,
and plants are often overlapping. An illustration of an image-based classification
input and output is reported in Fig. 2.5 (more specifically, second column).

The most promising state-of-the-art approaches in this area usually make use
of machine learning techniques, such as Convolutional Neural Networks (CNNs)
([127][132][85]) or random forest classifiers [96]. The usage of such techniques,
especially CNNs, allows training highly discriminative visual models capable to
distinguish among different plant species with great accuracy. The major draw-
back of these data-driven approaches is that the level of expressivity is limited by
the size of the training dataset. The bigger the training dataset is the bigger the
generalization capabilities of the model are. However, in the context of precision
agriculture, the requirement for large datasets usually leads to a significant effort.
More specifically, datasets should be acquired across different plant growth stages
and weather conditions. In addition, the training images must be provided with an
accurate semantic pixel-wise annotation. Despite the images can be pre-processed
and segmented, thus reducing the annotation effort at the segment level [89], the
manual pixel-wise annotation is still a challenging and extremely time-consuming
task. Actually, due to this problem, the size of the semantic datasets is usually
relatively small [164].

In this chapter, I report the two major contributions of this thesis which address
the crop/weed segmentation and the minimization of the labeling effort problems
under two different perspectives:

1. A fast and accurate crop and weed identification with summarized train sets
for precision agriculture;

2. An automatic model-based dataset generation for fast and accurate crop and
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weed detection.

2.1. Related Work

2.1.1. Plants Classification/Segmentation

The problem of plant classification can be considered an instance of the so-called
fine-grained visual classification (FGVC) problem, where the purpose is to recognize
subordinate categories such as species of animals, models of cars, etc. FGVC
problems are intrinsically difficult since the differences between similar categories
(in the considered case, plant species) are often minimal, and only in recent works,
the researchers obtained noteworthy results (e.g., [119, 167]).

Burks et al. [23] proposed to use Color Co-occurrence methods (CCM) as texture
statistics as input variables for a backpropagation (BP) neural network for weed
classification. Feyaerts and van Gool [46] presented a performance of a classifier
based on multispectral reflectance in order to distinguish the crop from weeds. The
best classifier, based on neural networks (NN), reached a classification rate of 80%
for sugar beet plants and 91% for weeds. Also Aitkenhead et al. [7] proposed
a NN based approach: the captured images were first segmented into cells that
are successively classified, achieving a final accuracy up to 75%. In Haug et
al. [65] a Random Forest (RF) classifier was proposed. It uses a large number of
simple features extracted from a large overlapping neighborhood around sparse pixel
positions. This approach achieves strong classification accuracies, due to its ability
to discriminate also crops that are very similar to weeds. This approach has been
improved in Lottes et al. [96] by extending the features set and including a relative
plant arrangement prior that helps to obtain better classification results.

Recently Han Lee et al. [91] presented a leaf-based plant classification system that
uses convolutional neural networks to automatically learn suitable visual features.
Also Reyes et al. [132] used CNN for fine-grained plant classification: they used a
deep CNN with the architecture proposed by Krishevsky et al. [85], first initialized
to recognize 1000 categories of generic objects, then fine-tuned (i.e., specialized) for
the specific task to recognize 1000 possible plant species.

2.1.2. Synthetic Dataset Generation

Modern data-driven classification approaches like CNN architectures require a large
amount of data to obtain the best performance. One recently proposed solution
to address this issue is to generate synthetically the training datasets. Many
approaches addressed this issue by exploiting modern graphic engines. [134, 144]
present approaches based on synthetic data extracted from computer video games,
showing how a merged training dataset composed of synthetic and real-world images
performs better than a real one. Modern video games are a compelling source of high
quality annotated data but they also have an important drawback. They are usually
closed-source, so it is not possible to customize and modify the output data stream.
In other approaches, the artificial world is totally handcrafted using modern graphic
tools. Mancini et al. [100] presented an urban scenario developed by means of Unreal
Engine 4 for the monocular depth estimation. Experiments using the synthetic data
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for the training phase, without any fine-tuning, show good generalization properties
on real data. A similar technique has been used in [64] to build a city environment for
pedestrian detection, showing how using purely synthetic data is able to outperform
models trained on a limited amount of real-world scenes. In that kind of solution,
the great human effort required in the dataset acquisition and labeling is transferred
into the synthetic world crafting. Even if the latter involves a minor effort, it is still
a time-consuming activity and the amount of generated data depends on the size of
the generated artificial world.

Another approach used to mitigate the labeling effort is based on transfer learning
[117]. For instance Yosinski et al. [168] show how better is the transferability of
features depending on the distance between the base and the target task.

2.2. Fast and Accurate Crop and Weed Identification
with Summarized Train Sets for Precision
Agriculture

(a) (d)

Figure 2.1. (a) One of the BOSCH Bonirob employed to acquire the datasets used
in the experiments; (b),(¢) An example of an RGB+NIR image pair acquired by the
multispectral camera mounted on the robot; (d) The segmented image obtained using the
proposed vegetation detection algorithm: blue pixels represent projections of 3D points
that belong to green vegetation; (e) The results of the proposed pixel-wise classification
algorithm: pixels that belong to crop are highlighted in violet, pixels that belong to
weeds are highlighted in red.

In this section of the thesis, I present a robust and efficient weed identification
system that leverages the effectiveness of convolutional neural networks (CNNs) in
both the detection and classification steps. The proposed system takes as input
4-channels RGB+NIR images (e.g., Fig. 2.1(b),(c)), provided by a multispectral
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camera mounted on a farm robot (e.g., Fig. 2.1(a)) that autonomously monitors
the crop and can apply selective weed treatments. The weed identification task
includes, before plant classification, a plant detection step. Detection is generally a
more challenging and time-consuming task compared with classification, since it may
require an exhaustive search in the whole image, with variable bounding box sizes.
In the context of green plants, the detection task can be simplified by exploiting the
Normalized Difference Vegetation Index (NDVI) [135], extracted from the RGB+NIR
images: NDVTI enables to obtain a simple, fast and pixel-wise segmentation between
green vegetation and soil (e.g., [65], [96]). Unfortunately, being threshold-based, this
technique is not robust against illumination changes and different soil conditions:
a careful tuning of the threshold and an outlier removal process are necessary to
get a good segmentation [96]. To overcome these limitations, the proposed method
combines the NDVT based segmentation with a trained lightweight CNN (henceforth
referred to as sNet) that takes as input small patches of the RGB+NIR images. The
idea is to use a very conservative threshold in order to select through the NDVI
most of the true positive pixels (i.e., pixels that represent vegetation). The CNN is
then used to validate each selected pixel, pruning most of the false positives (e.g.,
Fig. 2.1(d)). The reported experiments show that this hybrid technique outperforms
the NDVI based segmentation while preserving a good computational speed.
Pixels marked as vegetation in the segmentation step are then processed with a
deeper 3-classes CNN (henceforth referred to as cNet) in order to recognize the
category (crop, weeds or soil). Despite cNet processes only pixels classified as
vegetation in the previous step, including also the class 'soil’ in the cNet CNN helps
to prune at no cost the remaining false positives not detected by the sNet CNN. In
order to meet the real-time constraints required by the proposed system, i.e. the
classification process should terminate within one second from the image acquisition
time!, the proposed method also employs a blob-wise voting scheme, where blobs are
connected regions extracted from the segmentation mask. The reported experiments
will show that: (a) the classification stage achieves state-of-the-art results; (b) the
pipeline composed by the two sequential CNNs (sNet + cNet) obtains similar results
if compared with a single cNet, but with a considerable gain in speed.

In the last part of this section, I also address a relatively new problem that I call
unsupervised dataset summarization. It is well known that CNNs to be effective
require large manual labeled training datasets [143]. Unfortunately, plant identifica-
tion requires a challenging and extremely time consuming per-pixel labeling process.
The proposed idea is to reduce the size of the dataset before the manual labeling
stage, in order to streamline and speed-up the manual dataset labeling process while
preserving good classification performances. The proposed algorithm automatically
selects a subset of K images that contain the most informative features over the N
images of the whole dataset, K < N, in order to summarize in the best possible way
the original dataset. The labeling process will then involve only these K images. The
features based subsets selection method is different from other max-relevance and
min-redundancy feature selection methods (among the others, [121, 158]) since it is
unsupervised, i.e. it does not require the labels as input. The unsupervised dataset

'In the considered setup, one second represents a reasonable time constraint in order to enable
the robot to actively remove the weeds as soon as they are detected.
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summarization problem is formulated as a combinatorial optimization problem, using
as a reward a submodular set function inspired by the coverage set functions used
in text document summarization problems [93]. The reported experiments will show
that the proposed dataset selection algorithm outperforms in all the experiments
both the random dataset selection and the supervised manual selection strategies.

2.2.1. Vision-Based Plant Classification

Vegetation Detection
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Figure 2.2. Architecture of the sNet CNN.

The goal of the vegetation detection task is to discriminate in the RGB+NIR
images between pixels that represent projections of 3D points that belong to green
vegetation and the other pixels. This process enables to simplify and speed up the
subsequent plant detection and classification tasks.

Due to the photosynthesis, healthy green plants absorb more solar energy in the
visible spectrum, causing a low reflectance level in the RGB channels. Similarly, the
reflectance of the near-infra-red spectrum is affected by the same phenomena with
opposite results and, as a direct consequence, with a low reflectance level in the NIR
channel.

A well-known indicator that is used to measure the reflectance properties of the plants
is the Normalized Difference Vegetation Index (NDVI) [135], which is calculated as
follows for each pixel (u,v):

Inir(u,v) — Zr(u,v)
T —
~Novi(u,v) Inir(u,v) + Ir(u,v)

where Zr(u,v) and Zyrr(u,v) stand for the spectral reflectance measurements
taken from the R channel (visible red) and from the near-infrared channel, respectively.
The vegetation detection task is typically solved by means of a thresholding operation
on the NDVI image: a pixel (u,v) is classified as vegetation if Zypyr(u,v) > thy,
with thy a fixed threshold. Unfortunately, a single threshold usually is not robust
against illumination changes and different soil conditions, even inside a single image.
To address this problem, the idea is to combine the NDVI with a lightweight
convolutional neural network. The proposed approach firstly performs a thresholding
operation on the NDVI using a conservative threshold, that allows preserving most

(2.1)
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of the pixels that belong to vegetation. For each pixel classified as vegetation, it
exploits a trained CNN applied to a 15x15 pixels 4 channels patch around the pixel.
This network (sNet, Fig. 2.2) includes a single convolutional layer with rectified
linear unit (ReLU) activation function, followed by a max-pooling layer and a local
response normalization step. The strides in the convolutional layer are set to 1 and
the strides in the pooling layer are set to 2, where a max pool operator is applied to
2x2 patches. The normalized neurons provided as output from the convolutional
and pooling layers are used as inputs for a fully connected layer. The final neurons
are then fully connected to the output labels "plant’ (i.e., vegetation) and ’soil’ (i.e.,
not vegetation), that are normalized through a softmax layer. The architectural
choices made for this CNN represent a good experimental trade-off between the sake
of efficiency and the segmentation performances (see Sec. 2.2.3).

Pixel-Wise Crop/Weed Classification
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Figure 2.3. Architecture of the cNet CNN.

The detection system described so far provides an accurate vegetation mask

of the input image. Pixels that belong to vegetation need now to be classified
between crops and weeds. In this plant classification task, there are a lot of possible
error sources, among others the similarity between plant species and the partial
overlapping between different plants. To learn more specific features that help
to disambiguate in these challenging conditions, the second step of the proposed
approach exploits a slightly deeper network with input patches of 61x61 pixels over
the 4 RGB+NIR channels and, accordingly, a higher number of output neurons
for every layer. The final network cNet (Fig. 2.3) includes two convolutional layers
with ReLLU activation function, each followed by a max pooling layer and a local
normalization layer. As in the sNet, both the max pooling layers of c¢Net operate on
2x 2 patches with strides of 2 pixels. The normalized feature maps are then used as
inputs for two fully connected layers before passing through a softmax activation
function.
Despite the cNet processes only pixels classified as vegetation by sNet (i.e, pixel
classified as “plant”), cNet also keeps the class ’soil’” as a possible output of cNet.
Through experimental evidence, I found that this helps pruning at no cost the
remaining false positives not detected by the sNet CNN.

Blob-Wise Crop/Weed Classification

The plant detection and classification pipeline previously presented provides state-
of-the-art results, but it still suffers from some limitations: (a) A pure pixel-wise
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Data: The input image Z and a conservative threshold thypy for the
NDVI.
Result: A set of classified blobs B,
/* Compute the vegetation mask Z, x/
foreach (u,v) € Z do
T, < ’soil’;
if INDVI('U, U) Z thNDVI then
if sNet(u,v) = ’plant’ then
‘ I, < 'plant’;
end
end

end

Extract from Z, a set of blobs (i.e., connected regions) B = {b;,...,b,} of
pixel classified as ’'plant’;

B, + {};

foreach b; € B do

/* A number of pixel is randomly sampled from the blob,

where s depends on the blob size |b;] */

Sample s pixel (u,v); from the blob b;, s < |b;;

Classify each pixel (u,v); using cNet;

if The majority of the s pizels have been classified as ’sugar’ then
‘ B, «+ B, U {b;, sugar};

else if The majority of the s pizels have been classified as ‘weed’ then
‘ B, «+ B, U {b;, weed};

end

end
Algorithm 1: Blob-Wise Crop/Weed Detection and Classification

approach can lead to the detection of false-positive plants composed by very few
misclassified pixels; (b) Differently from sNet, cNet does not meet the real-time
constraints required by the proposed system.

In order to address these problems, the proposed method employs a blob-wise based
voting scheme that speeds-up the processes while removing most of the small false
positives plants. The pseudo-code of the proposed method is reported in Algorithm
1: it first computes the vegetation mask 7, as described in Sec. 2.2.1 (lines 1-8), it
extracts all the connected regions whose pixels are classified as ’plant’ (line 9) and,
finally, it classifies the blobs by applying cNet on a subset of pixels (lines 10-19):
each pixel “votes” for a class, the majority decides the class of the whole blob, blobs
classified as ’soil’ are discarded.

2.2.2. Unsupervised Dataset Summarization

The CNNs described above should be trained using pixel-wise labeled datasets:
unfortunately, pixel-wise data annotation is an extremely time-consuming process,
even if the user can exploit specific labeling tools that allow to quickly detect
pixels belonging to vegetation by means of local thresholding operations based on
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NDVI. The first solution to this problem would be to extract and label only a
subset of K images, randomly selected between the N images of the original dataset,
K < N. Experimental evidence (Sec. 2.2.3) indicates that a randomly selected
subset often does not well describe the original dataset, i.e. the subset provides
a poor information “coverage” of the original dataset. Alternatively, the subset
selection process could be done manually, by looking for a “good” subset of the
sample images that well represent the original dataset: this strategy usually enables
to obtain better classification results compared with randomly select subsets. 1
introduce here a simple but effective algorithm that enables to automatically select a
subset of the training set that shows very good coverage properties over the original
dataset. I call this problem unsupervised dataset summarization, where unsupervised
means that the subset is extracted before the labeling process and summarization
means that the subset must be very informative about the original dataset. This
problem can be formulated as a special case of the Knapsack Problem, that given a
set V of NV elements, each one with a given weight ¢;, asks for the subset S* that
maximize a set function F : 2V — R subject to a constraint that requires the total
weight of the subset to be less or equal than a given threshold K:

S* = argmax F(S) subject to Zci <K (2.2)
ScV i€S

The set function F, also called objective function, measures the “quality” of a given
subset. In this case, the set V is the original dataset that contains N images,
the constraint is represented by an equality constraint where for each ¢ you have
¢; = 1, while the set function F should tell how well the subset S summarizes the
original dataset V. It is well known that this class of problems is NP-hard, so the
computation of the optimal solution S* is often not feasible. Despite that, a good
approximated solution can be obtained if the objective function F is monotone
submodular. A set function F is submodular if for each A C B C V and for some
element = ¢ B, you have that:

F(AUz)— F(A) > F(BUz) — F(B) (2.3)

A submodular set function is monotone if for each A C B you have F(A) < F(B).
Submodular functions have a very attractive property [109]: it can be proven that if
F is monotone submodular, then F(S) > (1 - %) F(S*) ~ 0.632 F(S*)2, with S an
approximated solution computed using a greedy algorithm.

Subset Selection as a Document Summarization

The proposed method is inspired by the document summarization task that, given a
set, V that contains all the sentences of a text document, searches for a subset of
sentences S C 'V that well represents the original document. Typically this task is
subject to some constraints, such as the maximum number of words or the maximum
number of sentences that comprise the subset.

Let a dataset acquired by a robot moving in the field be the original “document” V,

2This is a lower bound: in most of the practical cases the approximated solution ensures much
better results.
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possibly composed by thousands of images. Let each image be a “sentence” of V,
each one composed by a set of “visual words” [148], the problem of subset selection
can be reduced as a standard document summarization problem. Lin and Bilmes
[93] faced the document summarization problem by proposing a class of submodular
set functions that measure both the similarity of the subset S to the document to
be summarized (also called “coverage” of the original document) and the “diversity”
of the sentences that compose the subset S. Since the goal is to encourage subset S
that well describe V, the proposed approach employs as objective function a simple
but effective coverage set function:

ﬁ(S) = Z Wy j (2.4)
i€V, ,jE€S

where w;; > 0 represents a similarity between the image (i.e., “sentence”) i and the
image j. £(S) is clearly monotone submodular.

Bag-of-Visual-Words from the CNN

In the document summarization task, sentences are usually represented using bag-
of-terms vectors: in a similar way, the proposed method represents each image using
bag-of-visual-words vectors [148]. Since the goal is to train a CNN (in this case,
the CNN of Fig. 2.3) using a very informative subset of the original dataset, the
aim is to extract the visual words directly from the trained CNN. In a typical CNN
architecture, the sequence of convolutional layers usually computes a n-dimensional
vector f, used as input of a sequence of fully connected layers: the decision over the
output classes depends only on f. Such a vector represents a descriptor, or signature,
of the input image or patch. In this specific case, the proposed method applies the
cNet of Fig. 2.3 to 61x61 possibly overlapping patches of the input image. After two
convolutional + pooling layers (blue dotted box in Fig. 2.3) the patch is reduced
to a 384-dimensional vector f. The idea is to represent an image as a collection
of m visual words, derived from the vectors f;, ¢ = 1,..., m provided by the CNN
applied to m patches. If the cardinality of the vocabulary trough visual words is
denoted with W, it becomes possible to quantize the descriptors f into visual words
exploiting the k-means clustering algorithm [16]. The bag-of-visual-words vector for
a given image is simply the W-dimensional histogram that reports the number of
times that each visual word « appears in the image.

w;; is computed by using the following cosine similarity:

_ ZOCESZ (hazi ’ h/a’] ) Zhg)
where h,; and h, j are the number of times that the visual word o appears in the
image, and ih,, is the inverse document frequency, that is calculated as the logarithm

of the ratio of the number of images where a appears, over the total number of
images N that compose the input dataset.

(2.5)

wij

The Proposed Algorithm

The proposed method is not directly applicable: In this work, it is tacitly assumed
that the considered CNN is already able to provide valid results even if it is still
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Data: The input dataset V with N images Z, the size W of the visual word
vocabulary, the size K of the output subset
Result: The selected subset S
foreach 7 € V do
Extract in a fixed grid a number of m patches;
For each patch, compute the descriptor f provided as output of the
convolutional layers of the pre-trained CNN;
end
Quantize all the descriptors into W visual words using the k-means
algorithm;
foreach 7 € V do
Compute the W-dimensional histogram that reports the numbers of
times that each visual word « appears in Z;
end
S« {}
for £+ 1 to K do

T* < argmax L(SU{Z});
IEV\S

S« SU{Z*};
end
Algorithm 2: Unsupervised Dataset Summarization

in the training phase (i.e., the approach is looking for a good subset of the original
data set to be used for training). This issue is solved by pre-training the CNN using
a general labeled auxiliary dataset or a randomly selected, manually labeled subset
of the input dataset.

The pseudo-code of the Unsupervised Dataset Summarization technique is reported
in Algorithm 2: firstly, the CNN descriptors from a set of patches (lines 1-4) are
computed, then the bag-of-visual-words vectors (lines 5-8) are extracted and finally
the subset S is selected by using a simple greedy algorithm that exploits the coverage
set function reported in Eq. 2.4 and the similarity between images reported in
Eq. 2.5 (lines 9-13).

2.2.3. Experimental results

The experimental results presented in the following are designed to show the accuracy
of the proposed classification system. They also confirm the performances reached by
a CNN trained on a small and very representative dataset, build-up by the proposed
unsupervised dataset summarization approach.

Experimental setup

Two datasets are considered, both collected from a BOSCH Bonirob farm robot
(Fig. 2.1(a)) moving on a sugar beet field. Both the datasets are composed of a set
of images taken by a 1296x966 pixels 4-channel JAT AD-130 camera mounted on
the Bonirob. During the acquisition, the camera pointed downwards on the field
and took images with a frequency of 1 Hz.
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The first dataset (Dataset A) is composed of 700 images and it has been collected in
the first growth stage of the plants when both crop and weeds have not yet developed
their complete morphological features. The second dataset (Dataset B) is composed
of 900 images and it has been collected after 4 weeks: plants, in this case, are in an
advanced growth stage. From each dataset different subsets have been extracted,
each one manually labeled.

The performance of the proposed classification approach has been measured by using
two widely used metrics: the mean accuracy (MA, Eq. 2.6) and the mean average
precision (MaP, Eq. 2.7):

1 X T, T,
MA:NZT +Fposing+F (2.6)
n=1 +pos pos neg neg
| @
MaP = 0 > AP(q) (2.7)
=1

where T),s and F,s are the numbers of true and false positives, T},eq and Fyey are
the numbers of true and false negatives, and AP(q) is the average precision.

The proposed CNNs cNet and cNet have been implemented and trained by using
the open source library TensorFlow [6].

Vegetation Detection

The first set of experiments is designed to show the performances of the vegetation
detection approach that makes use of a conservative NDVI segmentation as initial
pixel segmentation (see Sec. 2.2.1).

Different networks, in terms of the amount and sizes of convolutional and fully
connected layers, have been tested by using the same training set taken from the
dataset A. The results are shown in Table 2.1. The best mean average precision
and accuracy (96.8% and 91.3%, respectively) is achieved with the biggest networks,
composed of two convolutional and two fully connected layers. Nevertheless, the final
choice is to use the sNetlc10-1f20, being it a perfect trade-off between average time
and accuracy. The performance of this network is then compared with the standard
NDVT based vegetation detection algorithm for some fixed thresholds (Table 2.2):
the results of sNet are remarkable since it outperforms NDVI in all cases while it
does not depend on any threshold.

Crop/Weed Classification

To show the classification accuracy of the proposed pipeline, different experiments
for both the pixel-wise and blob-wise approaches have been carried out. The results
of a comparison among different networks in the case of pixel-wise classification
are reported in Table 2.3(a). As described in Sec. 2.2.1, the proposed network is
a combination of a sNet followed by a cNet. Average timing results are reported
for sample steps of 1 (i.e., the cNet is applied to each active pixel) and 3 pixels
(i.e., the cNet is applied on a grid with spacing 3 by 3 pixels). The best trade-off in
terms of accuracy, precision and computational time is obtained by the combination
sNet1c10-1f20 + cNet2c64-2f192 |, where the cNet is composed by four layers, equally
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Table 2.1. Vegetation detection results for different sNet networks. The network names
follow the convention: sNet <z >c <y > — < z > f < w >, where x: number of
convolutional layers, y: size of output feature maps, z: number of fully connected layers,
w: size of the fully connected layers.

Net Type MA MaP Average Timels]
sNet1c10-120 96.7% 91.2%  0.43
sNet1c5-1f10 96.6% 90.8% 0.34
sNet1c20-1140 96.7% 91.2% 0.45
sNet2c10-220 96.8% 91.3% 1.05
sNet2c5-2f10 96.8% 91.3% 0.98
sNet2c20-2{40 96.8% 91.3% 1.23

Table 2.2. Comparison between the NDVI threshold based vegetation detection and the
sNet1c10-1f20

Net Type sNet NDVIlGO NDV1170 NDVIlgo NDVIlgo NDVI200

Mean Accuracy 96.7% 90.2% 95.6% 96.4% 95.2% 92.3%

divided into two convolutional and two fully connected layers. This network reaches
a MaP of 96.1% with a lower computational time with respect to the others. A
further comparison is made between the combinations of sNet and cNet with the
cNet network used alone. In this case the cNet has to be applied to the whole image,
and the complete image classification is done in 23 seconds without any significant
increase in precision. Examples of pixel-wise and grid classification are shown in Fig.
2.4(a) and 2.4(b).

Table 2.3(b) reports classification performance obtained using the proposed blob-wise
classification algorithm (Seq. 2.2.2). The results are remarkable since the reported
statistics refer only to the image pixels classified as vegetation by the sNet. These
results are obtained without employing any plant position prior. Moreover, the
timing results meet the real-time constraints required by the proposed system. Some
qualitative results are reported in Fig. 2.4(c).

Unsupervised Dataset Summarization

This last part report the performance evaluation of the unsupervised dataset sum-
marization algorithm. To do so, the pixel-wise classification results are compared
by using a CNN similar to the cNet depicted in Fig. 2.3, with a descriptor size of
384 entries (i.e. the size of the first fully connected layer). The chosen subset size is
composed of K = 50 images for both dataset A and dataset B: The CNN is trained
by using K randomly chosen images taken only from the dataset A (¢cNetRandomA in
Table 2.4) and K randomly chosen images taken only from the dataset B (c¢NetRan-
domB in Table 2.4). The training steps are repeated by using K images manually
chosen from the dataset A (cNetManualA in Table 2.4) and K images manually
chosen from the dataset B (cNetManualB in Table 2.4): in both cases, the proposed
architecture looks for subsets that well represent the original dataset. Finally, the
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Table 2.3. Classification results for different c¢Net networks. The network names follow the
convention: cNet <z >c<y>— < z> f <w >, where x: number of convolutional
layers, y: size of output feature maps, z: number of fully connected layers, w: size of the
fully connected layers.

(a) Pixel-wise and 3x3 grid classification

Net Type MA  MAgsxs MaP  Mapsyxs T[s] Tsxs[s]

scNet2c64-2f192 92.3% 93.3% 96.2% 95.6% ~200 ~23
sNet1c10-1f20 + cNet2c64-2f192  91.7% 91.8% 96.1% 94.3% ~31 -~3.1
sNet1c10-1f20 + cNet2¢32-2f100  90.8% 90.7% 95.2% 94.1% ~30 ~2.8
sNet1c10-1f20 + cNet2c96-2f384  91.7% 91.7% 97.2% 94.5% ~34 ~2.9
sNet1c10-1f20 + cNet3c64-3f192  91.8% 91.8% 97.4% 95.7% ~41 ~4

sNet1c10-1f20 + cNet3c96-3f384  92% 91.9% 97.4% 94.9% ~42 ~4.3

(b) Blob-wise classification

Net Type MA MaP T[s|

scNet2c64-2f192 92.3% 96.2% 23

sNet1cl10-1f20 + cNet2c64-2f192 97.1% 98.3% 0.99
sNet1c10-1f20 + cNet2c¢32-2f100 95.6% 97.8% 0.93
sNet1c10-1f20 + cNet2c96-2f384 97.2% 98.3% 1.02
sNet1c10-1f20 + cNet3c64-3f192  98% 98.3% 1.74
sNet1cl10-1f20 + cNet3c96-3f384 98% 98.7% 2.01

CNN is trained by using the automatically selected subsets obtained by applying
Algorithm 2 (¢NetUdsA and cNetUdsB), where cNetRandomA and cNetRandomB
are used as pre-trained CNNs, respectively, and a vocabulary of W = 4096 visual
words. In addition, cross-validation of the trained CNNs is carried out, evaluating
a CNN trained with the dataset A with a validation set extracted from dataset B,
and vice versa. As shown in Table 2.4, the network trained by using subsets selected
by the proposed unsupervised dataset summarization algorithm outperform in all
the evaluations the network trained with the manually and the randomly chosen
training sets, in both datasets A and B. The relatively poor classification results
(59.4%) obtained with a CNN tested with a subset of the dataset B and trained using
samples taken from dataset A is due to the fact that the dataset A includes only
plants that are in their first growth stage, thus without their complete morphological
features.

Globally, the results are comparable with the ones recently reported in [96],
obtained using the same datasets but, differently from [96], the proposed architecture
does not exploit any row arrangement. It is expected to obtain even better results
by integrating also this type of information.
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Table 2.4. Pixel-wise classification performances comparison for both datasets A and B
for a cNet trained with different trainings sets.

TrainSet & Dataset MaP A MaP B
cNetRandomA 94.5%  57.7%
cNetManualA 95.4%  57.9%
cNetUdsA 96.1% 59.4%
cNetRandomB 781%  97.5%
cNetManualB 79.1%  98.6%
cNetUdsB 82.3% 99.4%

Figure 2.4. (a)(b) Pixel-wise and 3x3 grid-based classification mask outputs from the
sNetlemlfm + cNet2cm2fm network: in black, green and blue are represented, respec-
tively, pixels that belong to soil, weed, and crop; (c¢) Final blob-wise classification outputs
from sNetlemlfm + cNet2cm2fm network: pixels that belong to crop are highlighted in
violet, pixels that belong to weeds are highlighted in red.

Manual Annotation Effort Reduction

The reduction in the manual annotation effort F is easily quantifiable by the subset
size K and the whole training dataset size through E = (1 — — &) x 100. Tt

size(Dataset;)
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results to be around 93% for DatasetA and around 94.5% for datasetB. A different
choice of K would trivially lead to a different effort reduction and, in general, an
increase in K would lead also to a slightly better classification performance due to
an increased number of images in the training subset. The choice of K is, therefore,
a trade-off between the network performance and the reduction of the manual
annotation effort.

2.3. An automatic model based dataset generation for
fast and accurate crop and weed detection

Figure 2.5. In the top left, the BOSCH BoniRob employed to acquire the datasets used in
the experiments, on top right an artificial sugar beet field generated using the proposed
procedure, and on the bottom right the synthetic ground truth annotation mask. In the
second column, a real-world image of sugar beets and Capsella Bursa-Pastoris with its
hand-made ground truth. An example of a synthetic generated field is reported in the
bottom left picture.

In this section of the thesis, I explore the use of an open-source graphics engine
as a solution for the above-mentioned problem, i.e. by creating data algorithmically.
What makes this problem challenging is the realism and the fidelity required to
reproduce the key aspects of the target environment, i.e. the virtual scenario must
resemble as close as possible to the real one. This requires precise modeling in
terms of texture, 3D models and light conditions. Previous work on virtual dataset
creation have focused mainly on handcrafted virtual worlds, moving the human
effort from the annotation process to the synthetic dataset creation (e.g., [100, 64]).
Unlike these approaches, in this thesis I focus on the procedural generation of virtual
datasets, allowing us to potentially create an infinite number of synthetic images
without any manual labor. More specifically, the proposed method parametrizes the
target environment with a set of key rules. Each synthetic scene is then generated
by using few real-world textures (e.g., plant leaf textures, soil textures, ...) and by
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modulating the chosen environmental parameters (e.g., weather conditions, size of
plants, ...).

The quality® of the synthetic datasets is evaluated using them to train a modern
deep learning architecture, and then testing it on real data. As the results suggest,
even if the virtual scene does not contain all the weed species, the level of accuracy
approximates the accuracy reached with real data. An additional test is carried out
by performing the same tests training the testbed network with a synthetic dataset
augmented with a small number of real images, obtaining even better results. Here
the idea was to emulate a real use-case, where only a limited amount of annotated
data is available.

2.3.1. Procedural Dataset Generation

Procedural generation is a widely used technique in computer graphics, and it has
been exploited in several scenarios, such as virtual city generation [54] and virtual
dungeons creation [94]. The goal of the procedural dataset generation is to build
a randomized rendering pipeline. In this case, the procedural generation can be
viewed as a generative model from which fully labeled training images of agricultural
scenes can be sampled. The main goals in building this pipeline were twofold: (i)
Realism, the synthetic agricultural data has to closely resemble the real one, letting
the trained model to work in real agricultural environment; (ii) variety, the artificial
dataset must guarantee a good coverage over the appearance variations, resulting
in an unpredictable range of possible scenes. In the following, an exhaustive
explanation about how these issues are taken into account is provided. Firstly, the
generic kinematic model of a leaf prototype that used to generate leaves of different
plant species is described. Then, the entire artificial plant assembling procedure
is reported. Finally, the scattering scheme with which the realistic soil and the
rendering procedure that allows obtaining at no cost annotated data from the virtual
crop field is described.

Description of the Leaf Model

The general kinematic model of the simulated leaf is devised as a kinematic tree
where the root node is the first reference system of the stem, ST1 (see Fig. 2.6).
The chain follows the stem direction until the base of the leaf (B), and then the
leaf’s principal vein, reaching finally the peak (PK). Each joint onto the leaf (VNi)
can be used as a starting point for two mirrored branches (STLi, STRi) with respect
to the leaf principal axis, following the secondary veins.

The posture of the jth leaf joint with respect to the parent one is parametrized,
according to the Denavit-Hartenberg convention, with a single rotation around the
z-axis (see Fig. 2.6). The benefit of using such a method is twofold. Firstly, it
allows covering a wide variety of crops and weeds realistic leaves in different growth
stages just choosing the number of vein joints and their relative distances.
Secondly, acting on the kinematic chain angles as input parameters it is possible
to bend the artificial leaf to resemble physical effects such as gravity. In addition,

3The term "quality“ denotes here the amount and quality of the information transferred to the
trained model.
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PK

ST1}

Figure 2.6. Leaf kinematic model representing a leaf.
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Figure 2.7. (a) Shows the generic planar surface mesh. The number of polygons’ subdivi-
sions can be kept as low as possible at the expense of deformation quality while acting
on the skeleton. (b) Highlights the Normal Map while (c) and (d) respectively represent
the Ambient Occlusion and the Heightmap. (e) Shows the final shading results as well
as the skeleton.

and most importantly, adding a random component to such angles in the generation
phase leads to an unpredictable range of possible leaves.

Once the leaf kinematic model is ready, the skeleton obtained from such a model is
associated with a planar surface mesh. The artificial leaf model is then physically-
based shaded [126] by means of a high definition RGBA texture taken from real-world
pictures. The alpha channel represents the opacity mask.
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Figure 2.8. Examples of three different weeds obtained from a single leaf texture. In
the top row three instances of sugar beets, in the second row three different Capsella
Bursa-Pastoris weeds, in the last row three Galium Aparine specimens.
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N,=1 N, =2

Figure 2.9. (a) Shows an example of a plant composed by a single layer leaves, while (b)
represents the case of two layers arranged around the growth-axis g.

To enhance the rendering quality as well as the real-world fidelity, the proposed
method exploits an approximation of the Normal Map (used to simulate high-
resolution details on a low-resolution model, see Fig. 2.7(b)), an Ambient Occlusion
map (used to approximate how bright light should be shining on any specific part of
a surface, see Fig. 2.7(c)) and a Height Map (used to provide extra definition to the
leaf model, see Fig. 2.7(d)).

Plant Modeling

The modeling of an artificial plant follows a procedural scheme too. In order to
resemble as much as possible the semblance of real plants, the synthetic plant model
needs to take into account properties such as the average number of leaves per plant,
their relative distribution, and the number of leaf layers. The whole set of plant
species is thus modeled with a generic multi-layer radial distribution of leaves.
According to fig. 2.9, an artificial plant is composed of three main entities:

o growth stage axis: it is the axis (called g in Fig. 2.9) around which the leaves
are placed. Such axis is parametrized by the 3D position p in the scene and
the relative direction d with respect to the gravity vector.

e layers number: the number of leaf layers Ny, which is usually related to the
growth stage.

o leaves per layer: an average number of N; leaves is distributed around the
growth stage axis, where IN; depends on the specific plant species. The ith leaf
is placed with an offset of QN% + «, where a represents a random component
used to diversify the leaf arrangement.
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o size of leaves per layer: as the previous parameters, the size S is constrained to
the age of the specimen. Conversely to the layers number, a random variation
is intrudoced on the leaf size by means of a multiplicative factor r % .5

Among the above-mentioned parameters, the number of leaves per layer INj, the
number of the layers N and the size S; are kept with the same values, which depends
on the plant species, choosing them accordingly to [103].

In this way, modulating the remaining parameters (p,d, a, ), the proposed system
is able to procedurally generates a large variety of realistic crop and weeds instances.
In order to give a further increment to the virtual environment variation, in each
dataset, plants belonging to two different growth stages are generated. Since the
initial growth stage is the most important in the targeted treatments, it is noteworthy
to highlight how this model allows covering most of the plant species that can be
found in a real agricultural environment. Examples of different instances of virtual
weeds obtained following the proposed generation procedure are shown in Fig. 2.8.

Perlin Noise

L R

Perlin Noise
Parameters

LERP
parameters

Linear Interpolation

Procedural Soil

Figure 2.10. Example of terrain generation using two inputs. The image shows how two
textures are blended together. A linear interpolation node has two textures and an
intensity image as inputs. The intensity image is generated via Perlin Noise. The linear
interpolation node blends the input images using the intensity input as a selector.

Virtual Dataset Generation

The final step required to render a realistic agricultural scene is represented by the
virtual environment generation procedure, which consists of the following parts: soil
generation, lightning, and plants spawning. The ground is simulated as a simple
planar surface, wherefrom the fragments point of view different real-world textures
have been used (see Fig. 2.10). Each texture can represent different kinds of soil, i.e
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dirt, cracked dirt, stony..., and for each soil texture, the Normal Map, the Ambient
Occlusion and the Height Maps are generated. These textures are blended together
via Perlin Noise linear interpolation [122] to finally generate the soil, as shown in
Fig. 2.10.

Following a similar blending procedure between Height Maps and the Normal Maps of
the respective textures, a realistic vertices displacement is obtained. By modulating
the Perlin Noise parameters, it becomes possible to actually generate different
configurations of the terrain both on the fragments and vertices’ point of view. To
resemble the light conditions of real-world datasets, different light sources can be
placed into the scene. In this way, the choice of the light source directly affects the
scene illumination conditions, resulting in different shadowing behaviors.

Objects, such as plants, weeds, rocks, sticks.., are then spawned around the scene via
a random distribution. The normal direction of the soil surface sampled in the plant
position is then used as the initial growth stage direction corrupted by a small white
noise perturbation. The whole scene is finally projected into the image plane, using
intrinsic and extrinsic camera parameters as close as possible to the real camera
used for the actual crop/weeds detection.

Artificial Ground Truth Generation

To generate the ground truth labeled images, the target object material is set as unlit
and, as an emissive component, it is just required to put the color of the belonging
class. Thus, just turning off the anti-aliasing on the camera and all the lights in
the scene, it is possible to easily obtain the annotation mask required to train the
model. An example of a final rendered sample is shown in Fig. 2.11, where (a) is
the artificial terrain RGB image and (b) is the synthetic ground truth.

2.3.2. Experiments

The experiments reported in the following are designed to support the claims made
in section2.3: a synthetic dataset obtained by means of a procedural generative
model and few real-world textures can be used to train a modern machine learning
framework, obtaining comparable results with respect to the same framework trained
with a real dataset. This result enables a dramatic reduction of the human effort
required to acquire and label real data. Furthermore, as the results suggest, a
synthetically generated dataset can also be used to supplement small real datasets,
enabling cutting-edge results.

Experimental Setup

Two datasets are considered, both collected from a BOSCH Bonirob farm robot
(Fig. 2.5) moving on a sugar beet field. Both the datasets are composed of a set
of images taken by a 1296x966 pixels 4-channels (RGB-NIR) JAI AD-130 camera
mounted on the Bonirob. During the acquisition, the camera pointed downwards on
the field and took images with a frequency of 1 Hz.

The first dataset (Real A) is composed of 700 images and it has been collected in the
first growth stage of the plants when both crop and weeds have not yet developed
their complete morphological features. The second dataset (Real B) is composed of
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Figure 2.11. (a) Shows an example of a generated RGB image the proposed system is
capable to provide. In (b) each class has been labeled by using a different color. In the
example, the system automatically highlights in green the objects that belong to the
sugar beet class, in red the weeds (like the Capsella Bursa-Pastoris) while the soil is
turned to black.

900 images and it has been collected after 4 weeks: plants, in this case, are in an
advanced growth stage. Each dataset has been manually labeled: the annotation
procedure typically takes 5 to 30 minutes per image.

For the procedural dataset generation, the proposed approach exploits the Unreal
Engine 4% as the graphic engine. Since the proposed architecture aims to make
a direct comparison against the real-world data, the evaluation has been carried
out by using a generated synthetic dataset of comparable size with respect to the
real ones. 4 synthetic datasets are rendered in total, each one composed of 1300
images, using the method presented above: (i) The first one (called Synthetic A in
the tables) includes only sugar beet plants and some random weeds. (ii) Synthetic
B includes sugar beet plants and many instances of the Capsella Bursa-Pastoris
weed, that is the most common weed found in the real datasets. (iii) In Synthetic C

4Unreal Engine 4 is a complete open-source creation suite for game developers
https://www.unrealengine.com/en-US/blog.
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Table 2.5. Image segmentation results.

Test Set A Test Set B

Net Variant Train Set GA CA IJU GA CA I/U
Real A 98.6 596 575 943 560 51.7

Real B 94.7 671 643 962 723 66.2

Synthetic A 99.2 66.8 474 963 749 554

RGB SegNet Synthetic B 97.8 622 533 955 60.2 55.1
Synthetic C 98  61.3 539 96.1 59.7 55.3

Synthetic D 97.6 625 531 956 60.1 552

Real-Augmented 98.1 63.7 52.6 96.3 59.6 55.5

Real A 09.7 88.9 80.3 975 884 724

Real B 99.6 821 729 981 91.0 83.1

. Synthetic A 99.4 80.3 589 964 809 58.3

RGB Basic SegNet Synthetic B 995 86.8 60.2 968 83.3 583
Synthetic C 995 702 551 965 559 52.5

Synthetic D 99.6 787 59.8 967 842 61.1

Real-Augmented 99.6 84.6 74.1 99.8 91.3 76.2

another kind of weed called Galium Aparine is included. (iv) Synthetic D contains
sugar beet plants and all the aforementioned weed species. To address the case of
a limited amount of annotated data, an additional dataset called Real-Augmented
has been generated. This dataset is assembled by adding a random sample of 100
images from Real A and 100 images from Real B to Synthetic D. Since simulating
in a realistic manner the effect of the light reflection in the Near Infrared (NIR)
channels has never been addressed in the literature, only the RGB data is considered
for the experiments. As test sets, two subsets removed from Real A and Real B have
been used (called Test Set A and Test Set B in the tables, respectively). All the
images have been resized to 480 x 360 pixels. The performance has been measured
by exploiting widely used metrics: global classification accuracy (acronym GA in the
tables) that provides the number of correct predictions divided by the number of all
predictions; per-class average accuracy (CA) that provides the mean over all classes
of the number of correct predictions made for a specific class divided by the actual
number of samples of this class; average intersection over union (I/U, see Eq. 2.8);
precision and recall (P and R, see Eq. 2.9):

1 Y Ty
U= | —— 22— 2.8
/ N“<Tpi+Fm+Fm> (28)
Ty Ty
= P R= 2 (2.9)
Tpi+Fpi TpZ+FTLl

where 7 represents the class number, N is the total number of classes, T}, F}; and
F,,; the number of true positives, false positives and false negatives, respectively, for
the class i. Finally, all metrics are multiplied by 100 to turn them into percentages.



38 2. Crop/Weed Segmentation

SegNet

Differently from my previous work described in Sec.2.2, the performance, and quality
of the generated synthetic databases have been evaluated by using an effective
pixel-wise classification CNN, SegNet [12]. The main difference with respect the
CNN described in 2.2, where the entire image is first divided into patches and
then classified blob-wise with a voting scheme, SegNet makes a pixel-wise semantic
classification. This leads to higher accuracy, since SegNet is able to discriminate
even in the case of overlapping plants. Such advantages make SegNet particularly
suitable for the purposes of this work. For the evaluation phase, a smaller version
of SegNet called Basic SegNet has been used. While the former is composed of 26
layers, the latter has only 8 layers. The main motivation that stands behind the
choice of two different variants of the same network is the avoidance of overfitting.
The bigger network has been developed for semantic segmentation of a large number
of classes, prone to overfit in case of a small number of output classes.

Crop/Weed Classification and Vegetation Detection

Figure 2.12. Some examples of real image segmentation using a RGB Basic SegNet
trained using synthetic datasets. First row: input real RGB images. Second row:
ground truth labels. Third row: segmentation results.

The first set of experiments compare the performance among different crop /weeds
classifiers. The difference is made in terms of training dataset and network typology,
while the comparison is made by applying the trained models on both Test Set
A and Test Set B. Table 2.5 reports numerical results of the pixel-wise soil-crop-
weeds classification, while in Fig. 2.12 some qualitative results are depicted. In this
experiment, the most significant metrics are the per-class average accuracy and the
average intersection over union. The global accuracy can be sometimes a misleading
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Table 2.6. Vegetation detection results

Test Set A Test Set B

Net Variant Train Set P R P R
Real A 9.0 47.7 971 408

Real B 98.2 529 94.9 69.0

Synthetic A 53.0 904 53.8 49.3

RGB SegNet Synthetic B 67.5 49.6 717 68.5
Synthetic C 63.2 642 T73.8 756

Synthetic D 67.5 67.6 T7.9 76.9

Real-Augmented 68.1 65.1 83.3 84.2

Real A 802 984 903 986

Real B 90.7 931 91.0 945

. Synthetic A 80.9 90.9 785 86.2

RGB Basic SegNet o0 1 etic B 81.3 941 79.9 89.2
Synthetic C 776 914 69.2 87.1

Synthetic D 822 940 804 89.7

Real-Augmented 83.1 94.2 83.6 92.8

Table 2.7. Infer runtime

Net Variant time (s)

RGB SegNet 0.14
RGB Basic SegNet  0.08

metric: for instance, in the considered test sets the majority of pixels represents soil
in the scene, hence also a classifier that predicts only soil will still obtain good GA
performance.

The best performance are generally obtained by the RGB Basic SegNet network
trained with real datasets (Real A and Real B) and with the Real-Augmented dataset.
Particularly, the latter often outperforms the real ones, achieving very good average
intersection over union results for both Test Set A and Test Set B and a remarkable
per-class average accuracy of 91.3% on Test Set B.

Moreover, also the results obtained by RGB Basic SegNet trained solely with the
synthetic datasets are noteworthy, especially for the Synthetic B and Synthetic
D datasets. These surprising results are also implicitly confirmed in [64], where
the authors claimed that using synthetic data can outperform models trained on a
limited amount of real scene-specific data. Another interesting result is the significant
performance difference between Synthetic B and Synthetic C. The main motivation
that probably stands behind these fluctuating results is the actual weed distribution
in the real-world datasets. Indeed, in such data, the Capsella Bursa-Pastoris plays
the role of the most common weed while there are just a few instances of Galium
Aparine.

It is also important to note how the incremental inclusion of different weed species
in the artificial datasets yields a monotone positive trend in the classification
performance, converging toward the real-data performance when real data is included
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in the training dataset. This fact implicitly confirms the goodness of the proposed
architecture.

On the other hand, the results obtained by the complete SegNet version RGB SegNet
are generally poor, also for real data, mainly due to overfitting phenomena.

Table 2.6 reports the numerical results of the pixel-wise soil-vegetation classification.
Also, this evaluation confirms the previous results: also, in this case, the synthetically
generated datasets are able to approximate the results obtained using the real
datasets, while as before RGB Basic SegNet performs much better in all cases
compared with RGB SegNet.

Here is noteworthy to highlight that the information coming from the NIR channel
is not exploited. Due to the high reflectance of green plants in this spectrum,
this information is strictly related to the vegetation detection: specific models to
synthetically generate the NIR channel are currently under investigation.

Finally, Table 2.7 reports the infer time of each network using an NVidia GPU GTX
1070.

Manual Annotation Effort Reduction

Also in this case, the reduction in the manual annotation effort F can be derived by
through £ = (1 — ngttlsdz)) x 100. Particularly, for datasets Real A and Real B,
it can be derived by assuming that the number of real images is equal to the subset
size K described in Sec. 2.2.2. By doing so, the reduction in the manual annotation

effort results to be around 85.7% for Real A and around 88.8% for Real B.

2.4. Summary of Results and Lessons Learned

This chapter of the thesis focuses on perception challenges that arise when devel-
oping crop/weed segmentation modules for farming robotics. Besides proposing
two different Convolutional Neural Networks to perform plant segmentation, two
important contributions have been proposed, namely "using a training dataset sum-
marization technique“ and ”generating realistic synthetic data to perform a better
data augmentation”. The purpose is to reduce the image annotation effort while
keeping a sufficient segmentation accuracy to perform agronomic interventions and
weed control. In particular, the first proposed architecture uses inner features from
a pre-trained network to summarize a large real-world dataset while keeping ad
adequate level of informativeness, i.e. ensuring that the summarized dataset allows
the network to properly generalize the segmentation problem. Conversely, the second
proposed approach addresses the problem by generating a huge number of realistic
images through a modern graphics engine. Through the analysis of the segmentation
accuracy, the reported experiments show how a CNN trained with summarized or
synthetic datasets allows for a high segmentation accuracy.

These procedures provide simple and effective ways to deal with the big annotation
effort involved in the annotation of large datasets and, moreover, these concepts can
be applied in other robotics contexts.
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Chapter 3

Mapping and Localization

The crop/weed perception module introduced in the previous chapter enables a
farming robot to measure crop health indicators. However, to carry out a targeted
weeding or a disease control of the field, the semantic information provided by the
former module should be fed inside a map of the target environment. Indeed, such a
map would provide the user with a general overview of the crop status, and help the
farmer with high-level decision making. Moreover, locating the infested areas allows
the robot to perform targeted treatments in a fully autonomous manner. Therefore,
this chapter focuses on robot mapping and localization module.

Those two complementary capabilities are strictly required, and almost every robot
with autonomous navigation capabilities is equipped with this module. Specifically,
in a farming scenario, an accurate global pose estimation system is an essential
component to handle several tasks: (i) navigation and path planning; (ii) autonomous
ground intervention; (iii) acquisition of relevant semantic information. However,
self-localization inside an agricultural environment is a complex task: the scene is
rather homogeneous, visually repetitive and often poor of distinguishable reference
points. For this reason, conventional landmark-based SLAM architectures are likely
to yield poor results. On the other hand, most farming navigation systems rely on
high-end Real-Time Kinematic Global Positioning Systems (RTK-GPSs) to localize
the UGV on the field with high accuracy [162][113]. This technology bases its
great accuracy (i.e. a few centimetric errors) on geo-localized ground stations that
calculate the estimation error. The latter is then sent to the GPS rover stations
which are mounted on the moving platforms aiding their localization estimation.
The relatively high cost and the effort in setting up the base station usually prevented
this technology to be used in real farming applications in the past. However, in
the last years, its cost became affordable while some services providing the correc-
tion signals wirelessly becomes available. An example of this service is located in
NRW /Germany and is called SAPOS [1]. Despite this technology presents fewer
drawbacks nowadays, it is still vulnerable to outages or signal loss. In addition,
the wireless signal is penalized in some specific environments, such as in hazelnut
precision farming, where trees and their canopy may block the wireless signal.

On the other hand, consumer-grade GPSs! usually provide noisy data, thus not

'n this section, the term GPS is used as a synonym of the more general acronym GNSS (Global
Navigation Satellite System) since almost all GNSSs use at least the GPS system, included the two
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guaranteeing enough accuracy and reliability for safe and effective operations. More-
over, a GPS cannot provide the full state estimation of the vehicle, i.e. its attitude,
that is an essential piece of information to perform a full 3D reconstruction of the
environment.

In this chapter, I present one of the major contribution of this thesis which ad-
dresses the self-localization of farming robots. The problem is tackled through a
multi-sensor fusion approach, and the results show how the method allows the robot
to safely navigate within the environment. Moreover, in this study, a benchmark
and assessment of different sensors in the precision farming context are presented,
highlighting both their weaknesses and strengths.

3.1. Related Work

The problem of global pose estimation for UGVs has been intensively investigated,
especially in the context of self-driving vehicles and outdoor autonomous robots
moving in urban environments. The task is commonly approached by integrating
multiple sources of information. Most of the state-of-the-art systems rely on IMU-
aided GPS [44], while they differ in the other sensor cues they use in the estimation
process. Cameras are used primarily in [141][120][131][159][142], while LIDARs
have been used in [87].

In urban scenarios, the presence of a prior map allows improving the estimation by
constraining the robot motion. [50][22] use 2D road maps, while [38] propose to use
more rich Digital Elevation Models (DEMs). The sensors fusion is usually carried
out by means of parametric [50] or discrete [87] filtering, pose graph optimization
[131][159], set-membership positioning [38], or hybrid topological/filtering [141].
As stated in the introduction, these approaches cannot be used effectively in agri-
cultural environments, since a prior map is typically not available. In addition,
crops exhibit substantially a less stable structure than an urban environment, and
their appearance varies substantially over time. Hence, the localization inside an
agricultural field, by using a map built on-line, turns out to be extremely difficult
since stable features are hard to find. For this reason, most of the available localiza-
tion methods for farming robots are based on expensive global navigation satellite
systems [151][155][113]. However, relying on the GPS as the primary localization
sensor exposes the system to GPS related issues: potential signal losses, multi-path,
and a time-dependent accuracy influenced by the satellite positions.

The main task of an agricultural robot is to follow the crop rows and take some
action along the way. To this extent, English et. al [40], proposed a vision based
crop-row following system. While effective, this system assumes that the crops are
clearly visible from the camera of the robot, and this is not true at all growth stages
of the plants. Furthermore, the estimate of a crop row tracking tends to accumulate
drift along the row direction.

To gain robustness and relax the accuracy requirements on the GPS, it is natural to
use the plants as landmarks to build a map using a SLAM algorithm. To this extent,
Cheein et al. [29] propose to find and to use as landmarks, in a SLAM system,
olive tree stems. The stem detection algorithm uses both camera and laser data.

GNSS r used in our experiments.
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Other approaches are based on the detection of specific plant species and thus they
address very specific use cases. Jin et al. [76] focuses on the individual detection of
corn plants by using RGB-D data. In [162], the authors propose a MEMS-based 3D
LIDAR sensor to map an agricultural environment by means of a per-plant detection
algorithm. Gai et al. [6] proposed an algorithm that follows leaf ridges detected
in RGB images to the center. Similar approaches rely on Stem Emerging Points
(SEPs) localizations: Mitdiby et al. [105] follow sugar beet leaf contours to find the
SEPs. In [65] the authors perform machine learning-based SEP localization in an
organic carrot field. Kraemer et al. [84] proposed an image-based plant localization
method that exploits a CNN to learn time-invariant SEPs.

3.2. An Effective Multi-Cue Positioning System for
Agricultural Robotics

Global
Optimization

¥
Raw GPS Optimized Orthomosaic
path path Field View

Figure 3.1. (Left) The Bosch BoniRob farm robot used in the experiments; (Center)
Example of a trajectory (Dataset B, see Sec. 3.2.3) optimized by using our system:
the optimized pose graph can be then used, for example, to stitch together the images
acquired from a downward looking camera; (Right) The obtained trajectory (red solid
line) with respect to the trajectory obtained using only the raw GPS readings (blue
solid line). Both trajectories have been over-imposed on the actual field used during the
acquisition campaign.

In this section, I present a robust and accurate 3D global pose estimation system
for UGVs (Unmanned Ground Vehicles) designed to address the specific challenges
of an agricultural environment. Our system effectively fuses several heterogeneous
cues extracted from low-cost, consumer-grade sensors, by leveraging the strengths
of each sensor and the specific characteristics of the agricultural context. The
global localization problem is cast as a pose graph optimization problem (Sec. 3.2.1):
the constraints between consecutive nodes are represented by motion estimations
provided by the UGV wheel odometry, local point-cloud registration, and a visual
odometry (VO) front-end that provides a full 6D ego-motion estimation with a
small cumulative drift?. Noisy, but drift-free GPS readings (i.e., the GPS pose
solution), along with a pitch and roll estimation extracted by using a MEMS Inertial
Measurement Units (IMU), are directly integrated as prior nodes. Driven by the fact
that both GPS and visual odometry provide poor estimates along the z-axis, i.e. the

2In VO open-loop systems, the cumulative drift is unavoidable.
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axis parallel to the gravity vector, the proposed localization and mapping architecture
improve the state estimation along this challenging direction by introducing two
additional altitude constraints:

1. An altitude prior, provided by a Digital Elevation Model (DEM);
2. A smoothness constraint for the altitude of adjacent nodes>.

Both the newly introduced constraints are justified by the assumption that, in an
agricultural field, the altitude varies slowly, i.e. the soil terrain can be approximated
by piecewise smooth surfaces. The smoothness constraints exploit the fact that a
farming robot traverses the field by following the crop rows, hence, by using the
Markov assumption, the built pose graph can be arranged as a Markov Random
Field (MRF). The motion of the UGV is finally constrained using an Ackermann
motion model extended to the non-planar motion case. The integration of such
constraints not only improves the accuracy of the altitude estimation but it also
positively affects the estimate of the remaining state components, i.e. x and y (see
Sec. 3.2.3).

The optimization problem (Sec. 3.2.2) is then iteratively solved by exploiting a graph-
based optimization framework [88] in a sliding-window (SW) fashion (Sec. 3.2.2),
i.e., optimizing the sub-graphs associated with the most recent sensor readings. The
SW optimization allows obtaining on-line localization results that approximate the
results achievable by an off-line optimization over the whole dataset.

In order to validate our approach (Sec. 3.2.3), I used and made publicly available
with this work two novel challenging datasets acquired using a Bosch BoniRob
UGV (Fig. 3.1, left) equipped with, among several others calibrated sensors, two
types of low-cost GNSS receivers: a Precise Point Positioning (PPP) GPS and a
consumer-grade RTK-GPS. Exhaustive experiments with several sensors setups are
reported, showing remarkable results: the global localization accuracy has been
improved up to 37% and 76%, compared with the raw localization obtained by
using only the raw RTK-GPS and PPP-GPS readings, respectively (e.g., Fig. 3.1).
Moreover, the reported experiments also show that our approach allows localizing
the UGV even though the GPS performances temporarily degrade, e.g. due to a
signal loss.

3.2.1. Multi-Cue Pose Graph

The challenges that must be addressed to design a robust and accurate global pose
estimation framework for farming applications are twofold: (i) the agricultural
environment appearance, being usually homogeneous and visually repetitive; (ii) The
high number of cues that have to be fused together. In this section, the formulation
of a robust pose estimation procedure able to face both these issues is presented.
The proposed system handles the global pose estimation problem as a pose graph
optimization problem. A pose graph is a special case of factor graph?, where the
factors (-) are only connected to variables (i.e., nodes) pairs, and variables are only

3The term ”adjacent“ denotes nodes that are temporally or spatially close.
4A factor graph is a bipartite graph where nodes encode either variables or measurements,
namely the factors.
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Figure 3.2. (Left) Illustration of an edge connecting two nodes z; and z;. The error
e;,; is computed between the measurement z; ; and the predicted measurement 2; ;. In
addition, each edge encodes an information matrix €2; ; that represents the uncertainty
of the measurement; (Right) Sliding-window sub-graph optimization: nodes that belong
to the current sub-graph are painted in red, old nodes no more optimized are painted in
blue, while nodes that will be added in the future are painted in white.

represented by robot poses. For this reason, it is common to represent each factor
with an edge. Solving a factor graph means finding a configuration of the nodes for
which the likelihood of the actual measurements is maximal. Since all the involved
noises are assumed to follow a Gaussian distribution, this problem can be solved by
employing an iterative least square approach.

Let X = {xo,...,xn_1} represents the vector of graph nodes that represents the
robot poses at discrete points in time, where each x; = (73, R;) is represented by
the full 3D pose in terms of a translation vector T; = [t;; Ly tzﬂ']’ and, using the
axis-angle representation, an orientation vector R; = [rg; 7y 24|, both in R3. This
pose is defined with respect to a global reference centered in xy°. Let z be the
sensor measurements that can be related to pairs or single nodes. Let z ; be a
relative motion measurement between nodes x; and x;, while z; be a global pose
measurement associated to the node x;. Additionally, let €); ; and €); represent the
information matrices encoding the reliability of such measurements, respectively.
From the poses of two nodes x; and x;, it is possible to compute the expected relative
motion measurement 2; ; and the expected global measurement 2; (see Fig. 3.2, left).
The errors between those quantities is then formulated as:

€ij = Zij — Zij, € = Zi — Zi, (3.1)

Thus, for a general sensor X providing a relative information, an edge can be
characterized (i.e., a binary factor (ele,Qle)) by the error eg};H and the
information matrix QZX] of the measurement, as described in [60]. In other words, an
edge represents the relative pose constraint between two nodes (Fig. 3.2, left). In
order to take into account also global pose information, unary constraints are used,
namely a measurement that constrains a single node. Hence, for a general sensor
Y providing an absolute information, (e, Q) is defined as the prior edge (i.e., an
unary factor) induced by the sensor ) on node x;. Fig. 3.3 depicts a portion of a pose
graph highlighting both unary and binary edges. Each edge acts as a directed spring
with elasticity inversely proportional to the relative information matrix associated
with the measurement that generates the link. Our pose graph is built by adding

®Each global measurement (e.g., GPS measurements) is transformed in the reference frame .
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an edge for each sensor reading, for both relative (e.g., wheel odometry readings)
and global (e.g., GPS readings) information. In addition, the proposed architecture
integrates other prior information that exploits both the specific target environment
and the assumptions that have been formerly made. In the following, the full list of
edges exploited in this work is reported, and they divided between local (relative)
and global measurements (the acronyms used in Fig. 3.3 are reported in brackets):

Local measurements: Wheel odometry measurements (WO), Visual odometry
estimations (VO), Elevation constraints between adjacent nodes (MRF), Ackermann
motion model (AMM), Point-clouds local registration (LID).

Global measurements: GPS readings (GPS), Digital Elevation Model data
(DEM), IMU readings (IMU)S.

Let <e}{£1, Q}/ 2,) be the relative constraint induced by a visual odometry algo-
rithm, (eygfl, Qf‘ffﬁ as the relative constraint induced by the wheel odometry, and
<eiL7iI f_)l, QZLZI f_)l> as the relative constraint obtained by aligning the local point-clouds
perceived by the 3D LIDAR sensor.
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Figure 3.3. Overview of the built pose graph. Solid arrows represent graph edges, that
encode conditional dependencies between nodes, dotted arrows temporal relationships
between nodes. For the sake of clarity, only edges directly connected with the node x;
are shown, by representing only one instance for each class of edges: (i) the binary non
directed MRF constraint (e}, QMEL): (ii) the binary directed edge (e;%;,;, 2%, 1)
induced from sensor X € {VO, WO, AMM, LID}; (iii) the unary edge (¥, Q) induced
by sensor Y € {GPS,DEM,IMU}. The graph is superimposed on a cultivated field to
remark the relationship between the graph structure and the crop rows arrangement.

Often, GPS and visual odometry provide poor estimates of the robot position
along the z-axis (i.e, the axis that represents its elevation). In the GPS case, this
low accuracy is mainly due to the Dilution of Precision, multipath or atmospheric
disturbances, while in the visual odometry this is due to the 3D locations of the

SIn this approach, the IMU is referred as global measurement due to its properties to estimate
the heading angle with respect to the magnetic north and the roll and pitch angles with respect to
the Earth’s gravity.
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tracked points. In a typical agricultural scenario, most of the visual features belong
to the ground plane. Hence, the small displacement of the features along the z-axis
may cause a considerable drift. On the other hand, agricultural fields usually present
locally flat ground levels and, moreover, a farming robot usually traverses the field by
following the crop rows. Driven by these observations, the local ground smoothness
assumption is enforced by introducing an additional type of local constraints that
penalizes the distance along the z-coordinate between adjacent nodes. Therefore,
the built pose graph can be augmented by a 4-connected MRF [18]: each node is
conditionally connected with the previous and the next nodes in the current crop
row, and with the spatially closest nodes that belong to the previous and next crop
rows, respectively. This constraint is from now on referred as <e%ff , Q%ff ) in
Fig. 3.3 (e.g., the set {;_1, %, Tit1, Timm, Tit+n}). A further type of local constraint
based on the Ackermann steering model is then added. As reported in Sec. [? ], the
robot used in this work navigates within the environment according to Ackermann
steering kinematics. despite this, the local constraint can be formulated to fit, case
by case, the specific architecture of the employed farming robot. Particularly, the
Ackermann constraint used in the proposed architecture assumes that the robot is
moving on a plane. In this work, this assumption is relaxed to local planar motions
between temporal adjacent nodes. Such a motion plane is updated with the attitude

estimation of the subsequent node. This constraint is integrated by means of a new

type of edge, namely <efi]‘f{w , ;4%{\/[ ).

Local constraints are intrinsically affected by a small cumulative drift: to overcome
this problem, some global measurements are integrated into the graph drift-free as
position prior information. In particular, a GPS prior zZG PS and an IMU prior zZI Mu
with associated information matrices QFFS and QMY are defined. The IMU is used
as a drift-free roll and pitch reference’, where the drift resulting from the gyroscopes
integration is compensated by using the accelerometers data.

Finally, an additional global measurement is introduced by means of an altitude
prior, provided by a DEM. A DEM is a special type of Digital Terrain Model that
represents the elevation of the terrain at some location, by means of a regularly
spaced grid of elevation points [69]. The DEM maps a 2D coordinate to an absolute
elevation. Since in this chapter I made the assumption that the altitude varies
slowly, the current position estimate T; (i.e., the t,; and t,; components) can be
used to query the DEM for a reliable altitude estimation zpgai = f(te,ty,:), with
associated information matrix QPFM . The cost function is then assembled as follows:

N—-1
L X X X Yoy V' MRF MRF _MRF’
Ji= ) (Zei,iflgi,iflei,ifl + e 0Yey + ) e Ol el (3.2)
=1 X % JEN;
Binary constraints Unary constraints MRF constraint

where X and ) represent respectively the set of binary and unary constraints
defined above (see Fig. 3.3), and N; stands for the 4-connected neighborhood of the
node x;.

I experienced that integrating the full inertial information inside the optimization did not
positively affect the state estimation: our intuition is that the slow, often unimodal, motion of
our robot makes the IMU biases difficult to estimate and sometimes predominant over the motion
components.
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3.2.2. Pose Graph Optimization

In this section, the solution of the cost function reported in Eq. 3.2 is explained,
describing the error computation, the weighting factors assignment procedure and the
on-line and off-line versions of the optimization. Finally, some key implementation
insights are reported.

Error Computation

For each measurement z, given the current graph configuration, a prediction Z needs
to be provided in order to compute errors in Eq. 3.2. Z represents the expected
measurement, given a configuration of the nodes, which are involved in the constraint.
Usually, for a binary constraint, this prediction is the relative transformation between
the nodes z; and x;, while for an unary constraint it is just the full state z; or a subset
of its components. Let X; be a general homogeneous transformation matrix related
to the full state of the node z; (e.g., the homogeneous rigid body transformation
generated from T; and R;) and &(-) as a generic mapping function from X; to a
vector; now, Z; ; and 2; can be expressed as:

Zii= ®X;1-Xy), 4 =d(X;) (3.3)

In this work not all the constraints belong to SE(3): indeed, most of used sensors
(e.g., WO, IMU) can only observe a portion of the full state encoded in x. Therefore,
in the following, the process with which the expected Z is obtained for each involved
cue is presented (for some components, the subscripts ¢ and j are omitted by using
the relative translations dt and rotations dr between adjacent nodes):

VO and LID: these front-ends provide the full 6D motion: 2VC and 2%7P are
built by computing the relative transformation between the two connected nodes as
in Eq. 3.3;

WO: the robot odometry provides the planar motion by means of a roto-
translation zyo = (dty, dty, dry): 2O is built as ¢(X; ' - Xj)|t,,t,.r-» the subscripts
after @(-) specify that the map to the vector Z involves only such components;

MRF and DEM: they constrain the altitude of the robot, the estimated
measurements are obtained as:

BMEF — (0,0,t,; —t.,0,0,0) (3.4a)
sPEM — (0,0,t,,,0,0,0) (3.4b)

GPS: this sensor only provides the robot position:
2708 = (T3, 03x1) (3.5)

IMU: from this measurement the proposed approach actually exploits only the
roll and pitch angles, being the rotation around the z axis provided by the IMU usually
affected by not negligible inaccuracies. Therefore, you have 2/MV = D(Xi)lry iy

AMM: such a constraint is formulated by a composition of two transformation
matrices. The first one encodes a roto-translation of the robot around the so-called
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Instantaneous Center of Rotation (ICR). The proposed approach follows the same
formulation presented in [129]:

cos(;l;z) —singdgz) 0 p- cos(zgz)
X (p, dr.) = Sm(o 7) COSO{) (1) 0'8“8( 7) (3.6)
0 0 0 1

where p is the norm of the translation along dt, and dt,. Additionally, a further
rotation along those two axes is added by also taking into account the ground slope,
and by rotating the ideal plane on which the vehicle steers following the Ackermann
motion model:

(3.7)

X(drg,dry) = lR(dg;;ldry) 01113]

Hence, 24MM is obtained as ®(X(dry,dry) - X(p,drs)).

Dynamic Weight Assignment

The impact of each constraint in the final cost function (Eq. 3.2) is weighted by its
relative information matrix. As a consequence, such information matrices play a
crucial role in weighting the measurements, i.e. giving much reliability to a noisy
sensor can lead to errors in the optimization phase. This problem is tackled by
dynamically assigning the information matrix for each component as follows:

WO: the proposed approach uses as information matrix QZ‘;O the inverse of
the covariance matrix WO of the robot odometry, scaled by the magnitude of the
distance and rotation traveled between the nodes x; and z;, as explained in [154];

VO: in this case, the inverse of the covariance matrix V¢ provided as output
by the visual odometry front-end is used, weighting the rotational and translational
sub-matrices (XY and V07T with two scalars Avo,r and Ayo 1, experimentally
tuned. Since the VO system internal parameters are not directly tuned, the proposed
method employs these "VO agnostic“ scaling factors that have the analogous effects
as injecting a higher sensor noise. In the experiments, A\yo r and Ay o 1 are set as 5
and 1, respectively;

MRF': the information matrix Q%RF is set as diag(0,0,wM%¥ 0,0,0). The
weight wMPF = \yrrp /|2 — 7j¢, ¢, is inversely proportional to the distance in the
(z,y) plane between the two nodes, while Ay;rr has been experimentally tuned.
Avrr = 0.8 in the experiments;

GPS: as information matrix QZ-GP S the proposed approach uses the inverse of
the covariance matrix 275 provided by the GPS sensor;

AMM: as information matrix Qf‘JM M " the proposed approach uses an identity
matrix scaled by the magnitude of the traveled distance between the nodes z; and
xj, similarly to the wheel odometry constraint. This allows to model the reliability
of such a constraint as inversely proportional to the traveled distance;

IMU: as information matrix QlI MU “the proposed approach uses the inverse of
the covariance matrix LMY provided by the IMU sensor;
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DEM: the information matrix QPFM is set as diag(0,0,w?"M 0,0,0), where
w? EM s empirically tuned. In the experiments wZD EM g set as b;
LID: the information matrix QZLJI D is set as the inverse of the covariance matrix
estimated from the transformation provided by the registration algorithm (e.g., an
ICP algorithm), by using the procedure described in [128]. Such an information
matrix allows adapting the influence of the point-cloud alignment inside the optimiza-
tion process, enabling to correctly deal also with the lack of geometrical structure

on some dimensions, e.g. in farming scenarios with small plants.

Sliding-Window Optimization

A re-optimization of the whole pose graph presented above, every time a new
node is added, cannot guarantee the real-time performances required for on-line
field operations, especially when the graph contains a large number of nodes and
constraints. This issue is solved by employing a sliding-window approach, namely
performing the optimization procedure only on a sub-graph that includes a sequence
of recent nodes. Each time a new node associated with the most recent sensor
readings is added to the graph, the sub-graph is updated by adding the new node
and removing its oldest one, in a Sliding Window (SW) fashion. The optimization
process is performed only on the current sub-graph, while older nodes maintain the
state assigned during the last optimization where they were involved. In order to
preserve the MRF constraints, the size of the sub-graph is automatically computed
so that any adjacent nodes in the previous row are included (see Fig. 3.2, right).
Global optimization of the whole pose graph is then carried out off-line, using as
initial guess the node states assigned on-line using the SW approach.

Implementation Details

Temporal Synchronization: In the previous sections, I tacitly assumed that
all sensor measurements associated with a graph node share the same timestamp.
However, in a real context, this is usually not true. In the proposed architecture, the
creation of new nodes is triggered every stepyo meters (0.3 m in our experiments),
by using the wheel odometry as a distance reference. For each node, the proposed
architecture associates synchronized estimates of the other sensor readings, which
are obtained by means of linear interpolation over the closest readings of each used
sensor. This enables to associate to the same node a set of heterogeneous sensor
readings that share the same time stamp.

Visual Odometry Failures: VO systems are usually tuned by default to provide
high accuracy at the expense of the robustness. This limitation is addressed by
employing a simple strategy designed to mitigate VO failures. To do so, the local
reliability of the WO is exploited: when the difference between WO and VO is
greater than a given threshold, a failure of the latter is assumed. In this case, the
influence of the VO during the pose graph optimization is reduced by downscaling
its information matrix.

Point-Cloud Registration: Point-clouds acquired by a 3D LIDAR are typically
too sparse to perform a robust alignment: thus, a number of LIDAR readings are
accumulated into a single point-cloud by using the motion estimations provided by
the VO. The point-cloud registration is finally performed using the Iterative Closest
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Point (ICP) algorithm.

Graph Optimization: Both the on-line and off-line pose graph optimizations are
performed (Sec. 3.2.2) using the Levenberg-Marquardt algorithm implemented in
the g2o0 graph optimization framework [88].

3.2.3. Experiments

In order to analyze the performance of our system, two datasets® with different UGV
steering modalities are considered. In Dataset A the robot follows 6 adjacent crop
rows by constantly maintaining the same global orientation, e.g. half rows have been
traversed by moving the robot backward, while in Dataset B the robot is constantly
moving in the forward direction. Both datasets include data from the same set of
sensors: (i) wheel odometry; (ii) VI-Sensor device (stereo camera + IMU) [111];
(iii) Velodyne VLP-16 3D LIDAR; (iv) a low cost U-blox RTK-GPS; (v) an U-blox
Precise Point Positioning (PPP) GPS. For a comprehensive description of the UGV
farm robot, the sensors setup and the calibration procedure, I refer the interested
readers to the on-line supplementary material®.

In all our experiments, Stereo DSO [161] is employed as the VO subsystem and
the ICP implementation provided by the PCL library as point-cloud registration
front-end. The IMU, the wheel odometry and both the GPSs provide internally
filtered outputs (attitude, relative and absolute positions, respectively), along with
covariance matrices associated with the outputs in the IMU and GPSs cases. The
DEM of the inspected field is built by using the Google Elevation API that provides,
for the target field, measurements over a regularly spaced grid with a resolution of
10 meters. Such measurements are then interpolated to provide denser information.
The 3D ground truth reference has been acquired by using a LEICA laser tracker.
This sensor tracks a specific target mounted on the top of the robot and provides a
position estimation (x, y and z) with millimeter-level accuracy. Both datasets have
been acquired by using the Bosch BoniRob farm robot (Fig. 3.1, left) on a field in
Eschikon, Switzerland (Fig. 3.1, right). The Bosch BoniRob is a multi-functional,
four-wheel drive agricultural robot. Each wheel has 3 degrees of freedom, that means
they can independently turn, steer and change track width. The BoniRob is hence
an omnidirectional drive robot that can adapt itself to a wide range of farming
fields. For this specific work, the robot has been manually controlled according to
Ackerman steering kinematics. In addition to these two datasets, a third dataset
(Dataset C') have been created. This datasets simulates a sudden RTK-GPS signal
loss, e.g. due to a communication loss between the base and the rover stations. In
particular, it simulates the accuracy losses by randomly switching for some time to
the PPP-GPS readings.

In the following, the quantitative results are reported by using the following
statistics build upon the localization errors with respect to the ground truth reference:
Root Mean Square Error (RMSE in the tables), maximum and mean absolute error
(Max and Mean), and mean absolute error along each component (erry, err, and
errs).

8www.dis.uniromal.it/.labrococo/fsd
9www.dis.uniromal.it/.labrococo/fsd/ral2018sup.pdf
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3.2.4. Dataset A and Dataset B

Table 3.1. Error statistics in Dataset A and Dataset B by using different sensor setups
and constraints for the global, off-line and the sliding-window (SW), on-line pose graph
optimization procedures. The results of the ORB SLAM 2 system (OS2 in the table)
are reported for both type of GPSs.

DatasetA DatasetB

GPS
WO
VO
IMU
ELEV

LIDAR

€3
é% erry erry erry Max RMSE erry erry err, Max RMSE

AMM

0.349 0.582 1.577 2.959 1.710 0.306 0.501 1.484 2.875 1.621

0.311 0.520 1.537 2.954 1.630 0.246 0.416 1.424 2.829 1.504

v 0.343 0.572 0.475 1.627 1.071 0.241 0.408 0.492 1.782 1.168
0.239 0.412 0.672 1.628 0.961 0.222 0.362 1.298 2.392 1.211
0.233 0.422 0.649 1.421 0.863 0.227 0.361 1.292 2.571 1.242

v 0.239 0.411 0.528 1.398 0.719 0.221 0.364 1.019 2.362 1.119
0.224 0.411 0.551 1.375 0.726 0.201 0.397 0.881 2.019 0.951
0.222 0.389 0.531 1.281 0.729 0.229 0.407 0.652 1.613 0.829
0.239 0.361 0.523 1.272 0.739 0.231 0.369 0.641 1.461 0.732
0.224 0.371 0.453 1.124 0.621 0.221 0.362 0.619 1.611 0.734
0.234 0.360 0.440 1.093 0.564 0.199 0.360 0.475 1.161 0.660
0.234 0.342 0.311 0.921 0.422 0.198 0.361 0.463 1.121 0.604
0.211 0.331 0.282 0.897 0.416 0.182 0.339 0.369 1.198 0.471
0.201 0.331 0.289 0.824 0.401 0.173 0.331 0.321 1.117 0.461
v 0.252 0.419 0.349 0.991 0.549 0.291 0.431 0.459 1.291 0.652

PPP
AN N N N N N N N N NN NN
AN N N N N NN NENEN
NN NENENENEN
N N N NN

N N N RN
ENENENEEN

SNENENN

0S2+GPS 0.234 0.417 0.643 1.534 0.915 0.209 0.401 0.371 2.123 1.047

0.059 0.051 0.121 0.431 0.128 0.054 0.062 0.091 0.322 0.122

v 0.053 0.042 0.105 0.431 0.125 0.049 0.058 0.086 0.321 0.119

v v 0.053 0.042 0.054 0.279 0.088 0.047 0.048 0.062 0.192 0.091

v as 0.048 0.049 0.060 0.306 0.092 0.045 0.046 0.064 0.209 0.091

R v v v 0.046 0.047 0.061 0.279 0.090 0.045 0.045 0.064 0.211 0.090
E v v v v 0.046 0.047 0.061 0.278 0.089 0.045 0.045 0.062 0.197 0.090
v s 0.046 0.050 0.056 0.248 0.088 0.045 0.046 0.039 0.165 0.075

v v v v v 0.047 0.049 0.034 0.251 0.076 0.045 0.046 0.035 0.154 0.074

v VY v Vv Vv v 0.051 0.049 0.068 0.312 0.097 0.046 0.048 0.064 0.219 0.095

v a4 v v 0.045 0.048 0.034 0.260 0.075 0.044 0.046 0.034 0.151 0.073

v s v v v 0.053 0.051 0.042 0.272 0.084 0.051 0.051 0.035 0.172 0.084
082+4-GPS 0.051 0.045 0.059 0.293 0.097 0.051 0.054 0.068 0.231 0.102

This set of experiments shows the effectiveness of the proposed method and the
benefits introduced by each cue. Tab. 3.1 reports the results obtained by using
different sensor combinations and optimization procedures over Dataset A and
Dataset B. The table is split according to the type of GPS sensor used; the sensor
setups that bring the overall best results are highlighted in bold. The proposed
system is also compared with the ORB SLAM 2 system [107], a best-in-class Visual
SLAM system, with its mapping and loop closures back-ends activated. For a fair
comparison, the GPS information (PPP and RTK) is added as a global constraint
at each key-frame triggered by ORB SLAM 2.

A first result is the positive impact of including the new proposed constraints in
the optimization: both the ELEV and MRF cues individually integrated lead to
noteworthy improvements in the estimation along the z when a noisy GPS is used
(PPP-GPS case). Another remarkable result is the decreasing error trend, almost
monotonic: the more sensors are introduced in the optimization process, the smaller
the resulting RMSFE and Max errors are. This behavior occurs in both Dataset
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Figure 3.4. Dataset A, PPP-GPS: (Top) Qualitative top view comparison between the
raw GPS trajectory (left) and the optimized trajectory (right); (Bottom): absolute z,y
(left) and z (right) error plots for the same trajectories.

—Best Sensors Slotup—GPS RTK-’PPP

0.4 [FGPS RTK—Best Sensors Setup)

error[m]

0 100 200 300 400 500 600 0 200 400 600
t[s] t[s]

Figure 3.5. (Left) Dataset A, RTK-GPS: Absolute error plots for the raw GPS trajectory
and the optimized trajectory obtained by using the best sensors configuration (see
Tab. 3.1). (Right) Dataset C, absolute error plots for the raw GPS trajectory and the
optimized trajectory (see Tab. 3.3). The time interval when the signal loss happens is
bounded by the two dashed lines.

A and Dataset B, and proves how the proposed method properly handles all the
available sources of information. Another important outcome is the relative RMSE
improvement obtained between the worst and the best set of cues, which is around
the 37% for RTK case, and 76% for the PPP case; in both these setups our system
outperforms the ORB SLAM 2 system. A noteworthy decrease of the error also
happens to the Max error statistic, respectively, 40% and 70%: this fact brings
a considerable benefit to agricultural applications, where spikes in the location
error might lead to harming crops. For the best performing sensor setup, this
experimental section also reports the results obtained by using the SW, on-line pose
graph optimization procedure (Sec. 3.2.2): also, in this case, the relative improvement
is remarkable (32% and 67%, respectively), enabling a safer and more accurate
real-time UGV navigation.

Fig. 3.4 (top) depicts a qualitative top view comparison between the raw PPP-GPS
trajectory (top-left) and the trajectory (top-right) obtained after the pose graph
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Figure 3.6. Comparison between output point-clouds: (left) without IMU and LIDAR and
(right) with IMU and LIDAR in the optimization.

optimization, using the best sensors configuration in Dataset A. The error plots
(bottom) show how the introduction of additional sensors and constraints allows
to significantly improve the pose estimation. Similar results for Dataset A and
RTK-GPS are reported in Fig. 3.5 (left).

For both GPSs, the maximal error reduction happens when all the available cues are
used within the optimization procedure except for the low-cost RTK-GPS case, where
the ELEV constraint worsens the error along the z axis. Actually, the RTK-GPS
usually provides an altitude estimate, which is more accurate than the one provided
by the interpolated DEM. It is also noteworthy to highlight the propagation of
the improvements among state dimensions: the integration of constraints that only
act on a part of the state (e.g., IMU, LIDAR, ELEV) also positively affects the
remaining state components.

As a further qualitative evaluation, Fig. 3.6 reports the global point-cloud obtained
by rendering LIDAR scans at each estimated position, with and without the IMU
and LIDAR contributions within the optimization procedure: the attitude estimation
greatly benefits from these contributions. The runtimes of our system are reported
in Tab. 3.2, for both the off-line and on-line, sliding-window cases.

Table 3.2. Runtime performance for the global, off-line and the sliding-window (SW),
on-line pose graph optimization (Core-i7 2.7 GHz laptop).

SW  #Nodes #FEdges #Iters time(s)

Dataset 786 8259 24 13.493
A v 98 763 4 0.0989
Dataset 754 8032 22 12.993
B v 104 851 5 0.1131

3.2.5. Dataset C

This set of experiments is designed to prove the robustness of the proposed system
against sudden losses in the GPS sensor accuracy. Tab. 3.3 reports the quantitative
results of our system over Dataset C' by means of RMSE and Max errors. Even
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Table 3.3. Error statistics in Dataset C by using different sensor setups and constraints in
the optimization procedure.

DatasetC
faet
A, ~ Max RMSE
s B 5 & 2 2 g =
1.313  0.647
v 1.291 0.613
& v v 1.259  0.552
S N v v 1.171 0.431
; v v v v 0.882 0.356
E v v vV 0.551 0.223
K v v v v 0655  0.204
v v v v v 0521 0.201
v Vv Vv v v Vv v 053 0181
v v v Y v v 0419 0.168

in the presence of a RTK-GPS signal loss that lasts for more than one crop row,
the best sensors setup leads to a remarkable RMSE of 0.166 m and a relative
improvement around the 72%. Moreover, also in Dataset C' the RMSE and the
Mazx error statistics follow the same decreasing trend shown in Tab. 3.1. Fig. 3.5
(right) compares the absolute error trajectories for the best sensors configuration
against the error trajectory obtained by using only the GPS measurements: the
part where the signal loss occurs is affected by a higher error. Another interesting
observation regards the non-constant effects related to the use of the ELEV constraint.
As shown in Tab. 3.3, in some cases it allows decreasing the overall error, while in
other cases it worsens the estimate. The latter happens when the pose estimation
is reliable enough, i.e. when most of the available constraints are already in use.
As explained in section 3.2.4, in such cases the ELEV constraint does not provide
any additional information to the optimization procedure, while with a less accurate
PPP-GPS its use is certainly desirable. The last remark concerns the best RMSE,
which is around 7.5¢m, achievable when the best sensor setup is available. A farming
robot navigating within the environment with an error similar to the one achieved
with the proposed architecture can safely move without the risk of damaging the
crop. Indeed, planting patterns exploited in agriculture applications usually consider
a minimum intra-row space around 25 — 30cm.

3.3. Summary of Results and Lessons Learned

Conversely from the related state-of-the-art, where the proposed solutions exploit
the GPS as the main source of information, and from the SLAM literature where,
similarly, only a few sensors are used to perceive and map the environment, I propose
a multi-cue localization a mapping system. Indeed, when navigating within complex
environments, as in a flat and landmark-less farm field, each individual sensor, if
used as a stand-alone system, would probably lead the navigation system to fail. On
the other hand, the exploitation of multiple sources of information and context-based
constraints is fundamental to aid the robot localization and mapping capabilities.

Particularly, as described in Sec. 3.2.1, the problem is formulated as a pose-graph
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optimization, where each new heterogeneous measurement acts as an additional
constraint on a specific part of the robot state. Such a formulation of the problem
also allows taking advantage of the specificity of the scenario by introducing context-
based constraints which aim to enhance the strengths of each integrated information.
Through the analysis of the localization accuracy, this chapter shows how the whole
system ensures a sufficient precision that enables for autonomous and safe navigation,
i.e. guaranteeing the robot to not harm the crop.
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Chapter 4

Collaborative Mapping

The module described in the previous chapter enables a farming robot to navigate
in a previously unknown farming environment by building an accurate map and, at
the same time, localizing within it. However, an additional capability for a farming
robot would be to build a map of the same farmland in a cooperative manner. This
capability proves to be essential and offer several benefits in automatizing farming
activities. For instance, in the case of a vast environment, the constructed maps, if
partially overlapping, can be merged together. This would allow using more robots
in a collaborative manner [81], reducing the working time. Moreover, registering
maps of the same farmland acquired in different days or hours allows observing
and measuring the evolution of the crops and the appearance of infested areas or
diseases.

A collaborative module would also provide benefits when using heterogeneous robots.
In the specific use-case scenario considered in this thesis, the Flourish project, a
collaborative mapping module would allow the UAV to quickly provide a coarse
reconstruction of a large area [82], which can be updated with a more detailed and
higher resolution map portions generated by the UGV when inspecting some specific
areas.

This chapter focuses on the collaborative mapping between heterogeneous robots,
such as a UAV and a UGV. There are two classes of methods designed to generate
multi-robot environment representations: (i) multi-robot Simultaneous Localization
and Mapping (SLAM) algorithms (e.g., [72][58]), that concurrently build a single
map by fusing raw measurements or small local maps generated from multiple
robots; (ii) map registration algorithms (e.g., [15][21]) that align and merge maps
independently generated by each robot into a unified map. On the one hand, the
lack of distinctive visual and 3D landmarks in an agricultural field, along with the
difference in the robots’ point-of-views (e.g., Fig. 4.1), prevent direct employment
of standard multi-robot SLAM pipelines, either based on visual or geometric fea-
tures. On the other hand, merging maps independently generated by the UAVs
and UGVs in an agricultural environment is also a complex task, since maps are
usually composed of similar, repetitive patterns that easily confuse conventional
data association methods [57]. Furthermore, due to inaccuracies in the map building
process, the merged maps are usually affected by local inconsistencies, missing data,
occlusions, and global deformations such as directional scale errors, that negatively
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affect the performance of standard alignment methods. Geolocation information
associated with (i) sensor readings or (ii) maps often can not solve the limitations of
conventional methods in agricultural environments, since the location and orientation
accuracy provided by standard reference sensors! [74] is not suitable to prevent such
systems from converging towards sub-optimal solutions (see Sec. 4.2.4)

Figure 4.1. Pictures of the same portion of field seen from the UAV point-of-view (left)
and from the UGV point-of-view (right). The local crop arrangement geometry, such
as the missing crop plants, is generally not visible from the UGV point-of-view. The
yellow solid lines represent an example of manually annotated correct point matches. It
is important to underline the complexity required in obtaining correct data association,
also from a human point-of-view. The fiducial markers on the filed have been used to
compute the ground truth alignments between the maps.

In this chapter, I present one of the major contributions of this thesis which
addresses the collaborative mapping between aerial and ground robots in farming
scenarios.

4.1. Related Work

The field of multi-robot cooperative mapping is a recurrent and relevant problem
in literature and, as previously introduced, several solutions have been presented
by means of either multi-robot SLAM algorithms or map merging/map registration
strategies, in both 2D ([15, 19, 139]) and 3D ([21][51][75]) settings. Registration of
point cloud based maps can also be considered as an instance of the more general
point set registration problem [30][47]. In this work, I mainly review methods based
on map registration, since the heterogeneity of the involved robots and the lack of
distinctive visual and geometrical features on an agricultural environment prevent
the employment of standard multi-robot SLAM methods; a comprehensive literature
review about this class of methods can be found in [140].

Map registration is a challenging problem especially when dealing with heterogeneous
robots, where data is gathered from different points-of-view and with different noise
characteristics. It has been intensively investigated, especially in the context of
urban reconstruction with aerial and ground data. In [145], the authors focus on
the problem of geo-registering ground-based multi-view stereo models by proposing
a novel viewpoint-dependent matching method. Wang et al. [160] deal with aligning
3D structure-from-motion point clouds obtained from Internet imagery with existing
geographic information sources, such as noisy geotags from input Flickr photos and

!Global Positioning Systems (GPSs) and Attitude and Heading Reference Systems (AHRSs)
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geotagged city models and images collected from Google Street View and Google
Earth. Bédis-Szomort et al. [25] propose to merge low detailed airborne point clouds
with incomplete street-side point clouds by applying volumetric fusion based on a
3D tetrahedralization (3DT). Friih et al. [52] propose to use Digital Surface Models
obtained from a laser airborne reconstruction to localize a ground vehicle equipped
with 2D laser scanners and a digital camera, detailed ground-based facade models are
hence merged with a complementary airborne model. Michael et al. [152] propose a
collaborative UAV-UGV mapping approach in earthquake-damaged contexts. They
merge the point clouds generated by the two robots using a 3D Iterative Closest Point
(ICP) algorithm, with an initial guess provided by the (known) UAV takeoff location;
the authors make the assumption that the environment is generally described by
flat planes and vertical walls, also called the “Manhattan world” assumption. The
ICP algorithm has also been exploited in [49] and [68]. Forster et al. [49] align dense
3D maps obtained by a UGV equipped with an RGB-D camera and by a UAV
running dense monocular reconstruction: they obtain the initial guess alignment
between the maps by localizing the UAV with respect to the UGV with a Monte
Carlo Localization method applied to height-maps computed by the two robots.
Hinzmann et al. [68] deal with the registration of dense LiDAR-based point clouds
with sparse image-based point clouds by proposing a probabilistic data association
approach that specifically takes the individual cloud densities into consideration. In
[56], Gawel et al. present a registration procedure for matching LiDAR point-cloud
maps and sparse vision keypoint maps by using structural descriptors.

Although much literature addresses the problem of map registration for heterogeneous
robots, most of the proposed methods make strong context-based assumptions, such
as the presence of structural or visual landmarks, “Manhattan world” assumptions,
etc. Registering 3D maps in an agricultural setting, in some respects, is even more
challenging: the environment is homogeneous, poorly structured and it usually
gives rise to strong sensor aliasing. For these reasons, most of the approaches
mentioned above cannot directly be applied to an agricultural scenario. Localization
and mapping in an agricultural scenario is a topic that is recently gathering great
attention in the robotics community [162][40][74]. Most of these systems, however,
deal with a single robot, and the problem of fusing maps built from multiple robots
is usually not adequately addressed and a little, very recent research exists on this
topic. Dong et al. [37] propose a spatio-temporal reconstruction framework for
precision agriculture that aims to merge multiple 3D field reconstructions of the
same field across time. They use single row reconstructions as starting points for
the data association, that is actually performed by using standard visual features.
This method uses images acquired by a single UGV that moves in the same field at
different times and, being based on visual features, cannot manage drastic viewpoint
changes or large misalignments when matching aerial and ground maps. A local
feature descriptor designed to deal with large viewpoint changes has been proposed
by Chebrolu et al. in [28]. The authors propose to encode with such descriptor the
almost static geometry of the crop arrangement in the field. Despite the promising
results, this method suffers from the presence of occluded areas when switching from
the UAV to the UGV point-of-view.
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4.2. AgriColMap: Aerial-Ground Collaborative 3D
Mapping for Precision Farming

UAV Point of View

UGV Point of View

Figure 4.2. An overview of AgriColMap. Both the UGV and UAV generate, using
data gathered from their onboard cameras, colored point clouds of the cultivated field.
The proposed method aims to accurately merge these maps by means of an affine
transformation that registers the UGV submap (red rectangular area) into the UAV
aerial map (blue rectangular area), taking into account possible scale discrepancies.

In this section, I introduce AgriColMap, an Aerial-Ground Collaborative 3D
Mapping pipeline, which provides an effective and robust solution to the coopera-
tive mapping problem with heterogeneous robots, specifically designed for farming
scenarios. This problem is addressed by proposing a non-rigid map registration
strategy able to deal with maps with different resolutions, local inconsistencies, global
deformations, and relatively large initial misalignments. It is assumed that both a
UAV and a UGV can generate a colored, geotagged point cloud of a target farm
environment, e.g., by means of photogrammetry-based 3D reconstruction. (Fig. 4.2).
To solve the data association problem between the input point clouds, The proposed
system switches from a 3D problem to a 2D one, solved by using a global, 2D dense
matching approach. The key intuition behind this choice is that points belonging to
a cloud locally share similar displacement vectors that associate such points with
points in the other cloud. Therefore, the idea is to employ a regularized 2D matching
strategy that penalizes the displacement vectors discontinuities for each point neigh-
borhood?. With this formulation, good correspondences are iteratively improved and

2In other words, a regularized matching enforces the smoothness of the displacement vectors for
neighboring points.
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spread through cooperative search among neighboring points. This approach has
been inspired by the Large displacement Dense Optical Flow (LDOF) problem in
computer vision and, actually, the data association problem is formulated as a LDOF
problem. To this end, the colored point clouds are converted into a more suited,
multimodal environment representation that allows one to exploit two-dimensional
approaches and to highlight both the semantic and the geometric properties of the
target map. The former is represented by a vegetation index map, while the latter
through a Digital Surface Model (DSM). More specifically, each input point cloud is
converted into a grid representation, where each cell stores (i) the Excess Green index
(ExG) and (ii) the local surface height information (e.g., the height of the plants,
soil, etc.). Then, the data provided by the GPS and the AHRS are used to extract
an initial guess of the relative displacement and rotation between grid maps to
match. Hence, a dense set of point-to-point correspondences are computed between
matched maps by exploiting a modified, state-of-the-art LDOF system [73], tailored
to the precision agriculture context. To adapt this algorithm to the considered
environment representation, the proposed architecture uses a different cost function
that involves both the ExG information and the local structure geometry around each
cell. The proposed approach selects, by means of a voting scheme, the bigger subset
of correspondences with coherent, similar flows, to be used to infer a preliminary
alignment transformation between the maps. In order to deal with directional scale
errors, a non-rigid point-set registration algorithm is used to estimate an affine trans-
formation. The final registration is obtained by performing a robust point-to-point
registration over the input point clouds, pruned from all points that do not belong to
the vegetation. A schematic overview of the proposed approach is depicted in Fig. 4.3.

An exhaustive set of experiments (Sec. 4.2.4) on data acquired by a UAV and
a handheld camera are reported, simulating the UGV, on crop fields in Eschikon,
Switzerland. The results show that the proposed approach is able to guarantee with
a high probability a correct registration for an initial translational error up to 5
meters, an initial heading misalignment up to 11.5 degrees, and a directional scale
error of up to 30%. The proposed method achieves similar registration performance
across fields with three different crop species, showing that it generalizes well across
different kinds of crop species. Finally, is also reported an additional comparison
with state-of-the-art point-to-point registration and matching algorithms, showing
that the proposed approach outperforms them in all the experiments.

4.2.1. Problem Statement and Assumptions

Given two 3D colored point clouds My and Mg of a farmland (Fig. 4.3, first
column), built from data gathered from a UAV and a UGV, respectively, the goal is
to find a transformation F : R?® — R? that allows to accurately align them. M4 and
M can be generated, for instance, by using an off-the-shelf photogrammetry-based
3D reconstruction software applied to sequences of geotagged images. The proposed
method makes the following assumptions:

1. The input maps built form UAVs and UGVs data can have different spatial
resolutions but they refer to the same field, with some overlap among them;
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Figure 4.3. Overview of the proposed approach. For visualization purposes, in columns
2,6 and 7 the UGV and UAV point clouds are colored in blue and red, respectively,
pruned from all points that do not belong to vegetation, according to a thresholding
operator applied to the ExG index. Starting from the left side: (i) the input colored
point clouds gathered by the UAV and UGV, (ii) the initial noisy and biased rigid
alignment provided by the GPS and the AHRS; (iii) the generated multimodal grid
maps; (iv) the initial LDOF data associations, i.e. the point-to-point correspondences,
in yellow; (v) the "winning“ data associations (flows), in green, selected by a voting
scheme; (vi) the aligned point clouds according to the initial affine transform; (vii) the
final non-rigid registration after the refinement step.

2. The data used to build the maps were acquired at approximately the same
time;

3. The maps are roughly geotagged, possibly with noisy locations and orientations;

4. They can be affected by local inconsistencies, missing data, and deformations,
such as directional scale errors.

5. M4 is not affected by any scale inconsistencies.

Hypotheses 1, 2, and 3 are essential data requirements. Hypothesis 4) implies
the violation of the typical rigid-body transformation assumption between the two
maps: therefore, F' describes an affine transformation that allows anisotropic (i.e.,
non-uniform) scaling between the maps. Hypothesis 5) is an acceptable assumption,
since the map created by the UAV is usually wider than Mg, and generated by
using less noisy GPS readings, so the scale drift effect tends to be canceled: hence,
the proposed approach looks for a transformation that aligns Mg with M 4 by
correcting the scale errors of Mg with respect to M 4.

4.2.2. Data Association

In order to estimate the transformation F' that aligns the two maps, the proposed
approach seeks a set of point correspondences, ma g = {(p,q) : p € Ma,q € Mg}
between M4 and Mg, that represent points pairs belonging to the same global
3D position. As introduced before and shown in the experiments (see Sec. 4.2.4),
conventional sparse matching approaches based on local descriptors are unlikely
to provide effective results due to the big amount of repetitive and non-distinctive
patterns spread over farmlands. Instead, inspired by the fact that when the maps
are misaligned, points in M 4 locally share a coherent "flow“ towards corresponding
points in M, the proposed method casts the data association estimation problem
as a dense, regularized, matching approach. This problem resembles the dense optical
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flow estimation problem for RGB images: in this context, global methods (e.g., [70])
aim to build correspondences pixel by pixel between a pair of images by minimizing a
cost function that, for each pixel, involves a data term that measures the point-wise
similarity and a regularization term that fosters smoothness between nearby flows
(i.e., nearby pixel to pixel associations).

Multimodal Grid Map

The goal is to estimate m4 ¢ by computing a "dense flow* that, given an initial,
noisy alignment between the maps provided by a GPS and a AHRS (Fig. 4.3, second
column), associates points in M4 with points in M. Unfortunately, conventional
methods designed for RGB images are not directly applicable to colored point clouds:
I introduce here a multimodal environment representation that allows exploiting such
methods while enhancing both the semantic and the geometrical properties of the
target map. A cultivated field is basically a globally flat surface populated by plants.
A DSM? can well approximate the field structure geometry, while a vegetation index
can highlight the meaningful parts of the field and the visual relevant patterns: in
the considered environment representation, both these intuitions are exploited. The
proposed approach generates a DSM from the point cloud; for each cell of the DSM
grid, the model also provides an ExG index that, starting from the RGB values,
highlights the amount of vegetation. More specifically, a colored point cloud M is
transformed into a two-dimensional grid map J : R? — R? (Fig. 4.3, third column),
where for each cell it is provided both the surface height and the ExG index, with
the following procedure:

1. A rectangle that bounds the target area by means of minimum-maximum
latitude and longitude is selected;

2. The selected area is discretized into a grid map J of w x h cells, by using a
step of s meters. In practice, each of the w x h cells represents a square of
s x s meters. Each cell is initialized with (0,0) pairs;

3. Remembering that M is geotagged (see Sec. 4.2.1), each 3D point of M can
be associated to one cell of 7 just using the z,y, and yaw information;

4. For each cell with associated at least one 3D point, the proposed model
computes: (a) the height as a weighted average of the z coordinates of the 3D
points that belong to such cell; (b) the ExG index as a weighted average of the
ExG indexes of the 3D points that belong to such cell, where for each point
p:

ExG(p) = 2g, — rp — bp. (4.1)

with rp,, g, and b, the RGB components of the point; (c) the 3D global

position of the nearest point is stored in the original colored point cloud.

Both the averages use as weighting factor a circular, bivariate Gaussian distribution
with standard deviation 04,4 points with x,y coordinates close to the center of the
cell get a higher weight.

3A DSM is a raster representation of the height of the objects on a surface.
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Multimodal Large displacement Dense Optical Flow

The proposed architecture generates from both the M4 and Mg the corresponding
multimodal representations J4 and Jg. In the ideal case, with perfect geotags and
no map deformations, a simple geotagged superimposition of the two maps should
provide a perfect alignment: the "flow“ that associates cells between the two maps
should be zero. Unfortunately, in the real case, due to the inaccuracies of both the
geotags and the 3D reconstruction, non zero, potentially large displacements are
introduced in the associations. These offsets are locally consistent but not constant
for each cell, due to reconstruction errors. To estimate the offsets map, a modified
version of the Coarse-to-fine PatchMatch (CPM) framework is employed [73]. CPM
is a recent LDOF system that provides cutting edge estimation results even in
presence of very large displacements, and is more efficient than other state-of-the-art
methods with similar accuracy.

For efficiency, CPM looks for the best correspondences of some seeds that are refined
by means of a dense, iterative neighborhood propagation: the seeds are a set of
points regularly distributed within the image. Given two images Zo,Z; € R? and a
collection of seeds S = {s1,...,s,} at position {p(s1),...,p(sn)}, the goal of this
framework is to determine the flow of each seed f(s;) = M (p(s;)) —p(s;) € R?, where
M(p(s;)) is the corresponding matching position in Z; for the seed s; in Zy. The
flow computation for each seed is performed by an iterative, coarse-to-fine random
search strategy that minimizes a cost function:

f(si) = ar%min(C(f(sj))), s; € 5NN (4.2)

where C(f(-)) denotes the match cost between the patch centered at p(s;) in Zy
and the patch centered in p(s;) + f(-) in Zy, while N is a set of spatially adjacent
neighbors seeds around s; whose flow has already been computed in the current
iteration with Eq. 4.2. For a comprehensive description of the flow estimation
pipeline, I refer the reader to [73].

The goal is to use the CPM algorithm to compute the flow between J4 and Jg.
To exploit the full information provided by the grid maps (see Sec. 4.2.2), I modified
the CPM matching cost in order to take into account both the height and ExG
channels. The cost function is split in two terms:

Criow(f(si)) = a- Cpy (f(si)) + B - Crpru(f(s:)) (4.3)

Cpy (f(s;)) is the DAISY [156] based match cost as in the original CPM algorithm:
in this case the DAISY descriptors have been computed from the ExG channel of
Ja and Jo. Crpru(f(si)) is a match cost computed using the height channel. The
proposed method makes use of the Fast Point Feature Histograms (FPFH) [137]
descriptor for this second term: the FPFH descriptors are robust multi-dimensional
features which describe the local geometry of a point cloud?, in this case, they are
computed from the organized point cloud generated from the height channel of J4
and Jg. The parameters o and 5 are the weighting factors of the two terms. As in

Tt is noteworthy to highlight that the FPFH, being a local descriptor, does not embed global
displacements along the axes.
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[73], the patch-based matching cost is chosen to be the sum of the absolute difference
over all the 128 and 32 dimensions of the DAISY and FPFH flows, respectively, at
the matching points. The proposed cost function takes into account both the visual
appearance and the local 3D structure of the plants.

Once the dense flow between J4 and Jg has been computed (Fig. 4.3, fourth
column), the largest set of coherent flows is extracted by employing a voting scheme
inspired by the classical Hough transform with discretization step Zy; these flows
define a set of point-to-point matches m 4 ¢ that will be used to infer a preliminary
alignment (Fig. 4.3, fifth column).

4.2.3. Non-Rigid Registration

The estimation of the non-rigid transformation between the maps is addressed in
two steps. A preliminary affine transformation F is computed by solving a non-rigid
registration problem with known point-to-point correspondences. F = (§]:2@ is
computed by solving an optimization problem with cost function the sum of the
squared distances between corresponding points (Fig. 4.3, sixth column):

N

Creg(F) =" |Ipi — 3Rq; — ]| (4.4)
=0

with (ps, ¢;) € ma,q, N the cardinality of ma g, R and { the rotation matrix and
the translation vector, and § is a scaling vector.
To estimate the final registration, two subsets are firstly selected from the input
colored point clouds M4 and M¢, MY and M, that includes only points that
belong to vegetation. The selection is performed by using an ExG based thresholding
operator over M 4 and M. This operation enhances the morphological information
of the vegetation while reducing the size of the point clouds to be registered. Finally,
the target affine transformation F' is estimated by exploiting the coherent point drift
(CPD) [108] point set registration algorithm over the point clouds M"%¥ and MY,

N

using F' as initial guess transformation.

4.2.4. Experiments

In order to analyze the performance of the proposed system, I acquired datasets
on fields of 3 different crop types in Eschikon (Switzerland) - soybean, sugar beet,
and winter wheat. For each crop species I collected: (i) one sequence of GPS-IMU
tagged images over the entire field from a UAV flying at 10 meters altitude; (ii) 4-6
sequences of GPS/IMU-tagged images of small portions of the field from a UGV
point-of-view. Additionally, for the sugar beet field, I acquired an additional aerial
sequence of images from 20 meters altitude. More comprehensive details regarding
the acquired datasets are reported in Table 4.1.

The UAV datasets were acquired using a DJI Mavic Pro UAV equipped with
a 12 MP color camera, while the UGV datasets were acquired moving the same
camera by hand with a forward-looking point-of-view, simulating data acquisition by
a ground robot. The collected images are first converted into 3D colored point clouds
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using Pix4Dmapper [3], a professional photogrammetry software suite, which is then
aligned using the proposed registration approach. To analyze the performance of
the proposed approach, the following error metrics are employed:

St=t—1t 6r="Trace(R"-R) ds=s0% (4.5)
er = ||0t]|2 er = acos((dr —1)/2) es =||ds]|2 (4.6)

where @ stands for the element-wise division operator and (e, e,, e5) are, respec-
tively, the translational, the rotational, and the scale error metrics. Table 4.2 reports
the AgriColMap related parameters.

Table 4.1. Overview of the Datasets: the global scale error is, in general, bigger in the
UGV datasets since the camera is carried by hand, and therefore some GPS satellite
signals might be not received.

Crop Type Name # Tmages Crop Size Global Scale Recording

(avg.) Error Height (approx.)
sUGV A 16 6 cm 4% 1m
Sovbean sUGV B 19 6 cm 6% 1m
oybeall  suev ¢ 22 6 cm 7% Im
sUAV 89 6 cm 3% 10 m
sbUGV A 25 5 cm 6% 1m
S sbUGV B 26 5 cm 7% 1m
ggar sbUGV C 27 5 cm 5% 1m
eet sbUAV A 213 5 cm 3% 10 m
sbUAV B 96 5 cm 2% 20 m
Wi wwUGV A 59 25 cm 9% 1m
W‘ﬁ‘ter wwUGV B 61 25 cm 9% 1m
cat wwUAV 108 25 cm 5% 10 m

Table 4.2. Parameter set

Parameter o S s Oavg tf
Value 1 5 002m 0.04cm 1

Performance Under Noisy Initial Guess

This experiment is designed to show the robustness of the proposed approach under
different noise conditions affecting the initial guess, and different directional scale
discrepancies. For each UGV point cloud, an accurate ground truth non-rigid trans-
form is estimated by manually selecting the correct point-to-point correspondences
with the related UAV cloud. A random initial alignments between maps is estimated
by manually adding noise, with different orders of magnitude, to the ground truth
heading, translation, and scale. Then, the clouds are aligend with the sampled
initial alignments by using (i) the proposed approach; (ii) a modified version of the
proposed approach by moving from the ExG + DSM environment representation
to an RGB one (iii) a non-rigid standard ICP, (iv) the coherent point drift (CPD)
method [108], (v) a state-of-the art Globally Optimal 3D ICP (Go-ICP) [166], and
with standard sparse visual feature matching approaches [13, 136, 26|, applied as a
data association front-end to the proposed method in place of the proposed LDOF
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coll_map/imgs/acc_plots_new.png

Figure 4.4. Average success registration rate curves by varying the initial guess and the
initial scale error: (i) from top left to bottom right, the initial scale error is incrementally
increased: 0%, 10%, 20%, 30%; (ii) in each plot within the first and third rows, the
initial heading error d1 is kept fixed, while the initial translational misalignment ¢
is incrementally increased until 5 meters. For the experimental parts, 5 meters are
assumed to be a reasonable upper bound for the initial GPS translational error. (iii)
in the second and fourth rows figures dv is incrementally increased, while the initial
translational misalignment &t is kept constant. It is important to point out that the
successful registration rate of the Go-ICP [166] method is only reported for the cases
without an initial scale error since this approach only deals with rigid transformations.
For AgriColMap, different results obtained in each dataset are reported (sb: Soybean,
sgl0: Sugabeet 10m, sg20: Sugabeet 20m, ww: Winter Wheat).

based data association (Sec. 4.2.2): in the last cases, the proposed method exploits
only the ExG channel of the grid maps (Sec. 4.2.2). An alignment is considered
valid if: e; <= 0.05 m, e, <= 0.1 rad, and e, <= 2.5%.

The results are illustrated in Fig. 4.4. The proposed approach significantly outper-
forms the other approaches, ensuring an almost 100% success registration rate up to
a scale error of 25%, and a high probability of succeeding even with a 30% scale error.
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The ICP-based registration methods [108, 166], due to the absence of structural
3D features on the fields, fall into local minima with high probability. The closest
methods, in terms of robustness, are based on local feature matching [13][136][26],
succeeding in the registration procedure up to a scale error magnitude of 10%. While
analyzing the results, however, I verified that, unlike the proposed method, these
methods provide a larger number of wrong, incoherent point associations, and such
a problem is clearly highlighted for increasing scale deformations above 20% and
rotations above 0.1 radians. The superior robustness is also confirmed for noisy
initial guesses: unlike the other methods, the proposed approach guarantees a high
successful registration rate for a translational error up to 5 meters, and an initial
heading error up to 11.5 degrees, enabling it to deal with most errors coming from
a GPS or AHRS sensor. The proposed method generalizes well over the different
datasets, showing the capability to deal with different crop species, crop growth
stages (i.e., the winter wheat crop is in an advanced growth stage compared to the
soybean and sugar beet), soil conditions, and point cloud resolution (from different
UAV altitudes). An additional important outcome is the higher alignment probabil-
ity obtained with the ExG/DSM representation over the RGB one.

Table 4.3 reports a comparison between the inliers percentages when using the visual
(i.e., the ExG or the RGB) and the geometric terms in the cost function of (4.3).
Most of the information is carried by the visual term, especially by the ExG, while
the sole geometric term is not able to provide valid results. Nevertheless, when
combined, the latter acts as a strong outlier rejection term, improving the robustness
properties of the registration procedure. This is true especially for the sugar beet
dataset, where the inliers percentage increases quite significantly.

Table 4.3. Inliers percentage comparison when changing data terms in the LDOF cost
function.

Descriptor Type (% inliers)
Crop Type RGB ExG Depth ExG + Depth
Soybean 11.7% £ 4.3% 53.2% +14.9% 0.2% +0.1% 54.5% + 13.2%

Sugar Beet  49.2% +11.9% 64.1% +12.8% 0.4% +0.2% 68.1% + 13.6%
Winter Wheat 22.9% +9.7% 51.8% +17.4% 0.1% +£0.1% 52.4% +16.7%

Accuracy Evaluation

To evaluate the accuracy of the proposed registration approach, the provided results
are compared with the ground truth parameters and, by using all the successful
registrations, the average accuracy for each crop type and approach is reported. The
results are summarized in Tab. 4.5, and are sorted in increasing order of scale error.
On average, the proposed method results in a lower registration error as compared
to all the other evaluated methods for the same scale error. The difference in the
registration error is even more pronounced when comparing the Sugar Beet 10m
against Sugar Beet 20m datasets. Indeed, due to the higher sparseness of the points
in the latter, all the other methods tend to perform slightly worse than they do
with the Sugar Beet 10m. Conversely, the proposed method results in almost the
same registration error magnitudes, showing that it correctly deals with the different
densities of the initial colored point clouds. Fig. 4.5 also reports some qualitative
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results.

Ty

Figure 4.5. Qualitative registration results seen from aerial (left) and ground point-of-
views. In the former, the UGV clouds are indistinguishable from the UAV, proving the
correctness of the registration. Conversely, in the latter, the UGV clouds are clearly
visible due to their higher points density.

Runtime Evaluation

1.3%  6.7%
9.4% 4.0%

4.7%

B Geometric Features Extraction

B Dense Optical Flow Computation Runtime [sec]
Min Max Avg
AgriColMap  63.7 118.6 79.8

[ Initial Alignment Computation

[ Final Refinement ICP 2.1 10.6 4.5

[] Clouds Pre-processing CPD 49 232 82

Go-ICP 5.3 689.2 193.1

[ Visual Features Extraction SURF [13] 4.6 7.2 5.3

73.8% ORB [136] 3.9 6.7 438

Figure 4.6. Average percentage of the to- FAST+BRIEF [26] 3.7 6.4 4.5

tal runtime for different parts of the Agri-

ColMap pipeline. Table 4.4. Runtime comparison.

The average, maximum, and minimum computational time are recorded for all
tested methods over 100 successful registrations, reporting these values in Tab. 4.4.
The method requiring the biggest computational effort is Go-ICP. The proposed
approach requires half the computational time as compared to Go-ICP, but turns
out to be quite slow compared to the custom-built ICP, and, in general, to all
the other matching approaches. Fig. 4.6 shows the runtime percentages for the
proposed approach. The biggest component of the computational effort is required
to extract the geometric features (i.e., the FPFH features), meaning that the total
computational time might be reduced by switching to a less time consuming 3D
feature or by using only the visual term.
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4.3. Summary of Results and Lessons Learned

In this chapter of the thesis, I focus on the collaboration between the ground and aerial
vehicles, namely on building and sharing a common environment representation.
The related literature is wide, and the problem is usually addressed from a 3D
perspective and in an ad-hoc fashion, depending on the specific use-case. Conversely,
due to the specific characteristic of farming scenarios, I proposed to address the
problem from a 2D perspective. Particularly, as described in Sec. 77, the problem
is cast as a non-rigid map registration strategy, where the initial data association
problem is addressed in 2D. When registering a map in challenging contexts where
the geometric structures are poor, the enhancement of the environment-specific
characteristics is crucial. Indeed, by converting each individual map into an ad-hoc
representation that embeds vegetation density and height, is it possible to filter out
most of the redundant data. Such a representation of the environment also allows
exploiting 2D registration methods to carry out, in a robust manner, the initial data
association. Through the analysis of the success registration rate, I show how the
system allows for accurate and reliable results, also in the face of consistent noises
in the map scales and in the map geo-location. Moreover, the proposed method may
also provide benefits in another context where building a map in a collaborative
manner is highly recommended.
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Chapter 5

Perception Based Control

In the previous chapters of this thesis, I addressed several perception related chal-
lenges in PA contexts, such as a crop/weed segmentation module, a localization, and
mapping architecture and a collaborative mapping framework. The above-mentioned
methods may already provide a good backbone for a possible multi-robot agricultural
application, such as the one described in the Flourish project. Such a robotic system
could be already capable of safely moving within the environment, distinguishing
between crop and weeds, and building a shared map of the environment.
Nevertheless, problems may arise when the robot is controlled to carry out a tar-
geted task, such as pruning, applying targeted treatments, or performing targeted
inspections. In this setting, indeed, the required maneuvers are often carried out to
move a vehicle from a specific pose configuration to another one to perform certain
agronomic interventions and/or to collect data and, therefore, the goal pose may
depend on the agronomic target location into the field. These problems are usually
tackled by employing visual serving approaches, where the robot is steered by using
feedbacks coming from visual sensors [147]. However, the specific characteristics of
farming scenarios, such as the high pattern repetitiveness, and the strong sensor
aliasing, might possibly mislead the on-board navigation system. Moreover, obstacles
may lie or suddenly appear, along the desired route leading the robot to perform
reactive avoiding maneuvers. A viable solution to overcome the above-mentioned
issues is to explicitly take into account those constraints in the control loop.

This chapter of the thesis proposes a few possible approaches to address these issues,
with a specific focus on UAVs. In recent years, small Unmanned Aerial Vehicles
(UAVs) have increasingly gained popularity in many practical applications thanks
to their effective survey capabilities and limited cost. For some basic applications,
solutions are already available in the market to localize the drone and provide some
basic navigation and obstacle avoidance capabilities. However, to safely navigate in
the presence of obstacles, an effective and reactive planning algorithm is an essential
requirement.

Thanks to the progress in perception and control algorithms [59][110], and to the
increased computational capabilities of embedded computers, vision-based optimal
control techniques became a standard for UAVs moving in dynamic environments
[43][147]. They allow mitigating some of the vision-based perception limitations (e.g.
feature tracking failures) through an ad-hoc trajectory planning and have to some
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extent solved the vehicle state-estimation problem that, in the last decades, has been
commonly faced with motion capture systems. However, the problem of addressing
perception and obstacle avoidance together has been rarely investigated [42].

In this chapter, I report three contributions related to perception-based control:

1. An effective target aware visual navigation for UAVs, which splits the control
loop into two independent parts, addressing the perception-based planning
and the control part, respectively;

2. A non-linear model predictive control with adaptive time-mesh refinement,
where we exploit an adaptive strategy to reduce the computational burden
that affects optimal controllers when dealing with multiple constraints;

3. A joint vision-based navigation, control and obstacle avoidance for UAVs in
dynamic environments, where we develop a full control stack that incorporates
both perceptions and obstacles constraints.

An important and preliminary remark concerns the applicability of the above-
mentioned contributions in a farming setting. Those methods, indeed, have only
been tested in indoor and simulated environments, thus the results can be only
considered as a preliminary step in the direction of a possible application in precision
agriculture. Further tests and evaluation will be subject of future investigations.

5.1. Related Work

A vision-based UAV needs three main components to effectively navigate in a
dynamic environment:

1. A reactive control strategy, to accurately track a desired trajectory while
reducing the motors effort;

2. A reliable collision avoidance module, to safely explore the environment even
in the presence of dynamic, unmodeled obstacles;

3. An adaptive, perception aware, on-line planner, to support the vision-based
state estimation or to constantly keep the line-of-sight with a possible reference
target.

A wide literature addressing individually, or in pairs, these requirements is avail-
able, among others: [79][157][11][153]. However, they have rarely been addressed
together, in particular when dealing with unexpected and moving obstacles.
Requirement 1) is an essential capability for highly dynamic vehicles such as UAVs,
hence extensively covered in literature, and often formulated as an OCP [31]. Model
Predictive Controller (MPCs) is a well-known control technique capable to deal
with OCPs, and have recently gained great popularity thanks to increased onboard
computational capabilities of embedded computers. In [71] and [130] ACADO, a
framework for fast Nonlinear Model Predictive Control (NMPC), is presented; [78]
uses ACADO for fast attitude control of UAVs. In [59], the authors addressed the
reactive control problem by building upon a flatness-based Model Predictive Control:
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the approach converts the optimal control problem in a linear convex quadratic pro-
gram by accounting for the non-linearity in the model through the use of an inverse
term. Experiments performed in simulation and real environments demonstrate
improved trajectory tracking performance. In [110], the authors propose to employ
an iterative optimal control algorithm, called Sequential Linear Quadratic, applied
inside a Model Predictive Control setting to directly control the UAV actuation
system.

The collision-free trajectory generation (requirement 2) is usually categorized into
three main strategies: search-based approaches [77][133], optimization-based ap-
proaches [157][114], path sampling and motion primitives [106][118]. In [114] the
authors propose a motion planning approach capable to run in real-time and to
continuously recompute safe trajectories as the robot perceives the surrounding en-
vironment. Although the proposed method allows the UAV to replan at a high rate
and react to previously unknown obstacles, it might be vulnerable to vision-based
perception limitations.

Steering a robot to its desired state by using visual feedback obtained from
one or more cameras (requirement 3) is formally defined as Visual Servoing (VS),
with several applications within the UAV domain [123][102][90][42]. Among the
others, in Falanga et al. [42], the authors address the flight through narrow gaps
by proposing an active-vision approach and by relying only on onboard sensing
and computing. The system is capable to provide an accurate trajectory while
simultaneously estimating the UAV’s position by detecting the gap in the camera
images. Nevertheless, it might fail in the presence of unmodeled obstacles along the
path.

A fully autonomous UAV navigating in a cluttered and dynamic environment
should be able to concurrently solve all the three problems listed above. A solution
could be to combine three of the methods presented above, to deal with each problem
individually. Unfortunately, due to poor integration between methods and the overall
computational load, this solution is not easily feasible. Jointly addressing a subset
of these problem is a topic that is recently gathering great attention: in [147], the
authors propose to encode in the NMPC cost function the image feature tracks,
implicitly keeping them in the field of view while reaching the desired pose. In
Falanga et al. [43], the authors propose a different version of NMPC that also takes
into account the features velocity in the camera image plane. The controller will
eventually steer the vehicle keeping the features as close as possible to the image
plane center, while minimizing their motion. This mitigates the blur of the image due
to the camera motion, aiding the target detection and the features tracking. However,
the methods presented so far in general do not guarantee a fully autonomous flight
in cluttered environments or in presence of unmodeled obstacles. In [55], the authors
propose a NMPC which incorporate obstacles in the cost function. To increase the
robustness in avoiding the obstacles, the UAV trajectories are computed taking
into account the uncertainties of the vehicle state. Kamel et al. [79] deal with the
problem of multi-UAV reactive collision avoidance. They employ a model-based
controller to simultaneously track a reference trajectory and avoid collisions. The
proposed method also takes into account the uncertainty of the state estimator
and of the position and velocity of the other agents, achieving a higer degree of
robustness. Both these methods show a reactive control strategy, but might not
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allow the vehicle to perform a vison-based navigation.

5.2. Effective target aware visual navigation for UAVs

A T L LE Lo -
DA T LE et

Figure 5.1. An example of target aware visual navigation: the UAV is following an optimal
trajectory towards the target while constantly framing the target with the camera.

In this section, I propose an effective and robust VS controller that allows a UAV
to perform fast maneuvers without losing the line of sight with the target of interest
during the entire duration of the flight.

VS techniques can be split into two parallel branches: Position-Based Visual Servoing
(PBVS) and Image-Based Visual Servoing (IBVS). In PBVS, the 3D goal pose is
directly obtained from a complete 3D reconstruction of the surrounding environment
or from the 6D position of one or more landmarks placed in it. In contrast, IBVS
formulates the problem in terms of image features locations: the goal pose is defined
by means of desired features locations in the final image while the control law aims
to minimize the features re-projection error during the flight. Even if IBVS does not
require any full 3D estimation, it still needs the depth of the target. It has been
shown that both strategies have their own weaknesses. In IBVS it is particularly
challenging to model the relation between the vehicle dynamics and the feature
projection error, especially for under-actuated systems. Furthermore, inaccurate
estimation of the object depth leads to instabilities. In PBVS, since the control law
is directly designed in the state-space domain, there is a close dependence on the
accuracy of the 3D environment reconstruction or on the target pose estimation.
In practice, this estimation may be very noisy, leading PBVS to be very sensitive
to initial conditions, camera calibration parameters and image noise corruption.
Differently from the literature, I propose a procedure that decouples the planning
and the control problems. The planning task is addressed by employing a hybrid
approach. Firstly, as in PBVS, the proposed method gets the goal pose as the
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position and the relative orientation of the vehicle in the environment that allows
having the desired view of the target object.

Then, similarly to IBVS, the proposed approach models the trajectory as a
non-linear constrained optimization problem with a cost function that penalizes the
target’s location error, in order to constantly keep the target in the camera field of
view.

Once a global optimal trajectory! has been found, we employ an NMPC frame-

work as the controller and local planner. Making use of an efficient open-source
solver, the proposed control framework is capable to solve an NMPC problem in few
milliseconds, allowing us to use at each time step just the initial tuple of control
inputs? while simultaneously resolving the whole non-linear control problem.
The proposed method is compared against a common PBVS approach in both
simulated and real environments, getting in all experiments cutting edge results.
Additionally, a preliminary assessment is made with respect to a state-of-the-art
Optimal Visual Servoing (OVS) technique, suggesting that the proposed approach
can achieve comparable results.

5.2.1. UAV Dynamic Model

In the following, the vehicle dynamics equation used as constraints in the optimal
trajectory computation will be described.Let x}z/ be the position of the reference
frame Y expressed with respect to the reference frame Z. Furthermore, let express a
rotation matrix from the reference system Y to the reference system Z as R)Z/. For the
trajectory planning and the control of the multirotor vehicle, three main coordinate
reference systems will be used: (i) the camera frame with C; (ii) the world fixed
inertial frame with I; (iii) the body-fixed frame with B, that is the frame attached to
the Center of Gravity (CoG) of the UAV. The UAV configuration at each time step
is formulated by the position pk and the linear velocities v5 of the vehicle CoG, both
expressed in the inertial frame, and the vehicle orientation qé. More specifically,
the whole state of the vehicle is then expressed as z = {pIB, qé, vé}. At each time
step, the tuple of control inputs are also defined as u = {demd, GCmd,l/}cmd,Tcmd},
where the single terms stands for, respectively, the roll, pitch and yaw rate desired
commands and the commanded thrust.

The proposed method employs a widely used dynamic model for multirotor,
where the main forces that act on the vehicle are generated from the propellers.
More specifically, each propeller generates a thrust force Fpr proportional to the
square of the motor rotation speed. Moreover, also two other important effects that
became relevant in the case of dynamic maneuvers are taken into account, namely
blade flapping and induced drag. Both of them introduce additional forces in the
x-y rotor plane [99]. The considered dynamic model formulates them into a single
lumped drag coefficient Kp, as shown in [116][24], leading to the aerodynamic force

FaeTo,i:

"'With abuse of notation, as in other related work, the term "optimal trajectory" is referred to
the desired trajectory the multirotor tracks during the flight. Actually, due to the non-linear nature
of the cost function, the optimization does not always guarantee the convergence to the optimal,
global minimum.

2An NMPC provides a sequence of control inputs for a finite temporal horizon.
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T
Faero,i = FT,inragRIB 'Ué (51)

where ¢ stands for the propeller index, Kgrqg = diag{Kp, Kp,0}, Fr; is the z
component of the ¢ — th thrust force and Ué is the vehicle’s linear velocity (in the
next equations, where there is no confusion, superscripts and subscripts I and B
will be both omitted). The final dynamic model of the vehicle can be expressed as
follows:

p =0, (2@)
1, &
U= E (R T;O(FTJ - Faero,i) + Fe:ct) + g, (Qb)
. 1
¢ = —(ksPemd — ¢) (2.c)
L)
0 = i(k990md - 6) (Qd)
79
¢ = &cmd (26)

where m is the mass of the vehicle, F.,; are the external forces that act on the
multirotor. The proposed system also employs a low-level controller that maps the
high-level attitude control inputs in propellers’ velocity, as the one provided with
the Asctec NEO hexacopter used in the experiments. To achieve better tracking
performance, this inner control loop is modeled as first-order dynamic systems, where
the model parameters 7; and k; are obtained by a system identification procedure
[80].

5.2.2. Optimal Visual Servoing (OVS)

In this section, I describe how the dynamics and perception constraints are taken
into account when planning a trajectory and controlling the multirotor. The first
step is the goal pose computation, namely the position and orientation of the vehicle
that allows getting the desired view of the target. The proposed approach splits
the Optimal Visual Servoing (OVS) problem into two consecutive stages. First, an
optimal global trajectory is computed by solving a non-linear optimization problem.
In order to take into account the dynamic and perception constraints, the output
trajectory is minimized over the multirotor dynamics and the target re-projection
error in the image plane. To track the desired trajectory the proposed method
then employs a Receding Horizon NMPC controller, where a smaller non-linear
optimization problem is solved every time step and only the first control input is
actually sent to the multirotor.

5.2.3. Goal Pose Computation

Before computing the optimal trajectory, the multirotor has to retrieve the goal pose
it aims to reach. Such a pose depends on the task (e.g., inspection or patrolling)
and it usually requires the vehicle to frame a target (e.g., landmark or object)
from a specific distance and with a specific point of view. Retrieving a relative
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3D transformation from the camera is a well-known problem and has been widely
studied in the last decades. A widely used technique is based on the solution of a
Perspective-n-Point (PnP) problem [125]: such a technique requires prior knowledge
about the target object geometry and scale.

Since the choice of the goal pose computation algorithm goes behind the purpose
of this work, I assume for the sake of simplicity to have a real-time "black-box’
detection framework that outputs: (i) the (u,v) pixel coordinates of the target T' in
the camera image plane; (ii) the 3D position of the target in the camera frame pg ;
(iii) the orientation g} of the target object with respect to the camera frame C in
terms of yaw angle. The goal pose in world I reference system can be then obtained
as follows:

)

Pgoaty = Pi + qp( ¢B(ds —pF ) + pg) (3.a)

ngalIB = q%;ng%‘ (3b)

Where d% is the desired position of the target expressed in the camera frame,
while pg and qg are the extrinsic calibration parameters between the camera frame
and the body frame.

5.2.4. Optimal Trajectory Computation

Once the goal pose has been computed, the proposed approach needs to generate a
discrete trajectory composed by N tuples of the vehicle state vector {x, ...,xx} and
control inputs {ug, ..., un} that minimize the functional cost J subject to the vehicle
dynamics equations f(x,uy) described in Sec. 5.2.1. The time step of such dynamic
equations is given by 2, _to, where t; and ?y are respectively the final time and the
initial time, while N is the number of steps. Additionally, the custom choice of the

time variable allows us to define also the nominal speed 0, (i-€. A—Jf’), namely the

T
speed the vehicle is expected to fly. Similarly to [147], the cost function is defined as:

N-1

J(xo;N,uo;N_l) = JN(:EN) + Z Jk(:ck,uk) (4.&)
k=0

where Jp is the final cost and J, is the cost along the trajectory. At this point,
J is split into two main terms. The first one represents the cost over the desired
final state and the control effort, and it can be expressed as follow:

1 1
Jie(zp, ug) = Q(xk —an)TQ(zr, — zn) + iuTRu (4.b)

where () > 0 and R > 0 are the matrices that weight the control objectives. In
addition, in the second term of J; a cost that aims to penalize the re-projection
error of the target into the camera field of view is introduced. The entire cost in the
discrete time step k can be then formulated as:

1
T (xp, up) = J (g, ug) + §ei(xk)THe¢(xk) (4.0

ei(rg) = P(xg, P, m) — pi (4.d)
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where H > 0 is the penalization term over the target re-projection error and P
is a general camera projection function. Starting from the 3D position of the object
in the camera frame P;, the re-projection error is obtained by the knowledge of the
intrinsic calibration parameters of the camera, denoted in Eq. 4.d as 7, the extrinsic
parameters between the camera reference system C sensor and the body frame B,
and the desired position of the target object in the image plane p;. Differently from
[147], the proposed approach makes use of a weighting matrix H in place of a scalar
weighting factor, allowing us to scale the different components of the re-projection
error. Ideally, one wants to have a H that penalizes mostly the error along the
smaller dimension of the input image. H is set as follows:

hy 0
" (0 hy) (4.0)

Let hj—y 4 be the scale factor related to the smaller dimension (d; < d;), it is set
as follows:
d;
hi:thO', o= — (4f)
d;

This enables the UAV to cope with different camera sensor setups. Since the
proposed method introduces in the cost function J the re-projection error term of the
target with respect to the camera image plane, the optimal solution will implicitly
allow the vehicle to constantly face the target, maintaining it as close as possible to
the center of the image plane.

Optimal Control Solver

Once the optimal trajectory has been obtained, the multirotor must closely follow
it. To this end, the proposed method employs an NMPC that repeatedly solves the
following optimal control problem:

K-1
min > (lox = 24lg + llux = ugllz) + llzx — 24117 (5)
k=0
subject to: xpi1 = f(zp, ug) + fext(dr)
di+1 = di,
Umin Sug < Umam
To = Tinit
where @) > 0 is the weight factor over the state, R > 0 is the weight factor over
the control inputs and P is the weight factor over the final state. The controller
is implemented in a receding horizon fashion, meaning that the aforementioned
optimization problem is solved every time step over the fixed time interval [i,7 + K].
Once the optimization problem has been solved, the optimization procedure is
repeated for the time interval [i + 1,7 + K + 1] starting from the state reached
in ¢ + 1 and by using the previous solution as the initial guess. By solving this
optimization procedure in real-time, the proposed framework simultaneously provides
a feed-forward trajectory toward the desired state and a discrete set of control inputs
which will be used by the low-level onboard controller. This means that, in practice,
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Table 5.1. Comparison of simulated image error trajectory statistics for each method
across different nominal speeds®.

Avg. Pixel Error Max. pixel error
NMPC Sheckells NMPC Sheckells
tr Snom OVS PBVS o aif1a7p3 ovs PBVS et al.[147)3
10.2 2.01 32.5 89.2 ~63.8 55.05 145.36 ~127.6
7.5 2.73 45.03 109.4 ~85.3 76.91 199.21 ~195.1
6.6 3.10 55.2 125.2 ~90.7 98.76 223.67 ~207.9
5.1 4.02 62.5 146.9 not available 115.64 323.78 not available

Table 5.2. Comparison in terms of control effort between a standard PBVS approach and
the proposed one.

RMS RMS Roll RMS Pitch RMS Yaw
Thrust (g) Ref. (deg) Ref. (deg) Rate (rad/s)
NMPC NMPC NMPC NMPC

ty Snom OVS PBVS ovs PBVS ovs PBVS ovs PBVS
10.2 2.01 10.8 10.56 0.15 0.11 0.08 0.075 0.34 0.33
7.5 2.73 10.95 10.79 0.31 0.25 0.33 0.29 0.43 0.46
6.6 3.10 11.21 10.98 0.5 0.43 1.47 0.38 0.49 0.48
5.1 4.02 11.54 11.13 0.9 0.75 1.82 0.69 0.61 0.60

at the end of each optimization procedure only the first control input tuple is actually
sent to the multirotor controller, then the optimization procedure is repeated.

5.2.5. Simulation Experiments

PBVS Quadrotor Trajectory NMPC OVS Quadrotor Trajectory

X(m) -10
Y(m) X(m)

Figure 5.2. Example of trajectories obtained using PBVS(a) and NMPC OVS(b) with
Snom = 3.107: the latter constantly takes into account the target pose during the flight.

The proposed framework is firstly tested in a simulated environment by using the
RotorS simulator [53] and a simplified multirotor model with a front-facing camera.
The mapping between the high-level control input and the propellers velocities is
done by a low-level PD controller that aims to resemble the low-level controller
that runs on the real multirotor. From the higher controller level point of view, I
implemented a receding horizon NMPC [110], where the optimization problem is
solved by means of the efficient ACADO solver [71]. To demonstrate the effectiveness
of the proposed method, I fix the number of segments N and then flew the virtual



82 5. Perception Based Control

vehicle to the desired goal pose by using the approach described in section 5.2.2 and a
standard PBVS technique. The latter adopts a linear interpolation technique between
the starting and the goal poses obtaining a vector of N intermediate poses. Such
interpolated poses are then sent to the same NMPC that computes the trajectory
to track them. Once the final time ¢; has been fixed, by tuning N it is possible to
act on the flight behavior: increasing the number of segments will involve smoother
trajectories and control inputs since the delta-pose between two adjacent desired
states segments is smaller. On the other hand, increasing IV also brings to higher
computational costs when performing the optimal trajectory computation. I used
N = 55 as a trade-off between smoothness and computational velocity.

The goal pose is computed for each run employing an April Marker [115] attached
on a virtual building. Since the aim is to test the proposed approach with different lev-
els of aggressive maneuvers, I act on the Sy, parameter (i.e. changing the final time
tr). In all the experiments the initial state is set to x = {8, —12,14,0,0,1.918,0,0,0}.
Since the target is always kept in the same location inside the virtual environment,
the computed goal state is * = {6 + wg, 2 + wy, 9.4 + w;, 0,0, 1.57 + wyqw, 0,0, 0},
where w € R* is a small white noise random component due to the target detection
errors. The relative transformation between the initial and the final pose forces the
multirotor to retrieve an optimal trajectory along the 4 principal motion directions
of the vehicle.

Image Error Trajectory Image Error Trajectory

—  PBVS H —  PBVS
NMPC OVS NMPC OVS ||
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Time (s) Time (s)
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Figure 5.3. Comparison of simulated PBVS and NMPC OVS pixel error trajectories for
Snom = 3.107. Respectively error on the x-axis of the image plane in the left image,
while in the right one the pixel error on the y-axis.

Results

Quantitative image error trajectories for the OVS and PBVS methods for various
values of ¢ are reported in in Table 5.1. The reported results are obtained averaging
the performance of PBVS and OVS given the same goal pose and starting from the
same initial state for multiple trials. As a preliminary assessment, the experiments
also report some results from the experiments in Sheckells et al. [147], showing
that the proposed method can provide results comparable with this state-of-the-art
approach. It is important to highlight that, given this data, a direct comparison
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with [147] is not possible, since the pixel error statistics are strictly correlated with
the simulation setup which has not been released by the authors.

Remarkably, the target error trajectory along both image axes is almost always
lower than both the other approaches. In spite of this, from a qualitative point of
view (see Fig. 5.3), the PBVS trajectory seems to behave better in terms of pixel
errors at the same points. The explanation for such behavior comes from the different
shapes of the two trajectories. In this case, the vehicle is steered to avoid the target
to leave the center of the camera field of view, preferring a constant and possibly
small error. In the PBVS case, the trajectory is straightforward, involving bigger
errors in the acceleration and deceleration phases, worst average and maximum
errors, but sporadically smaller error compared with the OVS approach.

NMPC OVS Image Error Trajectory NMPC OVS Image Error Trajectory
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Figure 5.4. Comparison of simulated NMPC OVS pixel error trajectories for different
values of s,om. Respectively error on the x-axis of the image plane in the left image,
while in the right one the pixel error on the y-axis.

From the control inputs point of view, the reduced pixel error comes with an
energy effort trade-off: as reported in Table 5.2, the RMS thrust of each OVS
trajectory is larger with respect to the corresponding PBVS trajectory. A similar
conclusion can be drawn from the attitude points of view since maintaining the target
in the center of the camera involves larger angles and yaw rate commands. The
choice of the correct behavior depends on the task requirements and, by acting on the
optimization parameters (), Ry and Hy, it is possible to obtain the desired trade-off
between control effort and image error. Two samples of the trajectories generated by
the approaches are depicted in Fig. 5.2. Often the bigger pixel error terms in a VS
scenario occur in the initial and in the final phase, due to the attitude components
required to accelerate and decelerate the vehicle. As qualitatively reported in Fig. 5.2,
the OVS trajectory takes into account these two error sources by a small ascending
phase at the same time as the forward pitch command. Similarly, the trajectory
dips softly at the end of the flight so that the target remains in the center of the
image plane when the multirotor has to pitch backward in order to decelerate. From
the PBVS point of view, the trajectory is more or less a straight line. The vehicle
starts suddenly to pitch and to decrease its altitude, involving a bigger pixel error.

31 emphasize that the statistics from [147] have been obtained with a different simulation setup,
so they represent an indicative performance measure.
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5.2.6. Real Experiments

The proposed framework is tested on an Asctec NEO hexacopter Fig. 5.5 equipped
with an Intel NUC i7, where I implemented the proposed algorithm in ROS (Robotic
Operating system), running on Ubuntu 14.04. The overall weight of the vehicle is
2.8 Kg. For the state estimation, I make use of a forward-looking VI-Sensor [112]
and the ROVIO (Robust Visual Inertial Odometry) framework [20]. The ROVIO
output is then fused together with the vehicle Inertial Measurement Unit (IMU) by
using an Extended Kalman Filter (EKF) as described in Lynen et al. [98]. The
control inputs obtained at each time step by the proposed approach are then sent to
the low-level onboard controller by using the UART connection.

Several experiments have been carried out by acting on the sy, parameter. In
each run, the multicopter starts from the same initial state before starting to look for
the fixed target. The distance between the vehicle and the target is approximatively
8 m, and the environment is an indoor closed building.

Avg. Pixel Error

t Snom NMPC OVS PBVS
6 1.79 62.89 77.2
5 2.11 88.03 112.4
4 2.73 104.17 146.7
N 3 3.21 123.8 179.2
Figurew5.5. The Asctec NEO hexacopter Table 5.3. Comparison of image error for each
used for the real experiments. method across different nominal speeds.

Results

Qualitative results for trajectories with different values of s,,,,, are reported in Fig.
5.6, while table 5.3 reports the average error statistics between OVS and PBVS.
Apart from the same error behavior that also appears in the simulation experiments,
it is possible to note how the Mean Squared Error (MSE) pixel error for the OVS
approach is lower than the PBVS approach. The difference in terms of pixel MSE is
bigger in the initial and final phases where the PBVS, in order to accelerate and
slow down, is subject to the greatest kinematic movements in terms of roll and pitch
angles. It is also useful to highlights how both OVS and PBVS use a noisy target
detection approach. In practice, the multirotor is not able to obtain an accurate
3D position of the target object in the environment. This accounts for a constant
non-zero pixel MSE, even when the vehicle reaches the goal state.

5.3. Non-Linear Model Predictive Control with
Adaptive Time-Mesh Refinement

In this section, I provide an effective solution to NMPC based real-time control
problems, by proposing a novel adaptive time-mesh refinement strategy employed
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NMPC OVS and PBVS Image Error Trajectory NMPC OVS and PBVS Image Error Trajectory
160 160
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Figure 5.6. Comparison of real PBVS and NMPC OVS Mean Squared Error (MSE) pixel
trajectories for different values of s,0m. Respectively the MSE for s,,5,,, = 2.07 in the
left image, while in the right the MSE for s,,o,, = 3.1.

Figure 5.7. Illustration of the optimal trajectory computed at each  time instant by the
proposed approach. UAV frames represent trajectory points along the prediction
horizon T: the blue frames  represent the refined portion of the lattice, while the red
ones  correspond to the coarser rest of trajectory.

for solving the OCP implemented, and by releasing an open-source implementation
of the proposed NMPC strategy.
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The proposed approach formulates the task of steering a robot to a goal position,
or along a desired trajectory, as a least square problem, where a cost over the
dynamics and trajectory constraints is minimized. The optimization is performed
over a discrete-time parametrization in terms of the flat outputs [48] of the dy-
namical system, thus decreasing the dimensionality of the OCP while reducing the
computational effort required to find the solution.

In standard OCPs, an approximate solution to the continuous problem is found
by discretizing the underlying control problem over a uniform time lattice. The
number of discretization points is one of the major factors influencing the accuracy
of the solution and the computational time: I propose to mitigate this problem by
focusing also on the points location, so to condense more time samples where the
discretization error is high.

I propose an algorithm that iteratively finds a suitable points distribution within
the time-mesh, that satisfies a discretization error criterion. To keep the computa-
tional burden as low as possible, the proposed approach increases the local mesh
resolution only in the initial parts of the receding horizon, thus providing a higher
accuracy in the section of trajectory that is more relevant to the NMPC.

The implementation allows testing the proposed approach on different robotic

platforms, such as Unmanned Aerial Vehicles (UAVs), and ground robots, with both
holonomic and non-holonomic constraints.
I exploit this implementation in the reported experiments, where the proposed
approach is evaluated inside a simulated environment using an Asctec Firefly UAV. I
prove the effectiveness of the proposed method with performance comparison against
a standard NMPC solution.

5.3.1. Adaptive Finite Horizon Optimal Control
Problem Statement

The goal of this work is to generate an optimal trajectory along with the set of control
inputs to enable a robot to closely track it. This non-linear OCP is formulated in
an NMPC fashion over the finite time horizon T'. A general non-linear time-step
rule of the dynamics is assumed as

Try1 = f(or, ug) (5.2)

where x and u; denote the state vector and the control input vector at the time
t, respectively. f(xzk,uy) represents the non-linear dynamic model. It is assumed
to be differentiable with respect to the state x; and control input ug, and it maps
the state and the input vector in the subsequent time t; 1. The time-step of the
dynamics is given by T'/N, so that each xj, occurs at time ¢; = ity /N, where N is the
number of trajectory points used for finding the optimal solution and ¢; indicates
the desired final time. The goal is to find an optimal time-varying feedback and
feedforward control law of the form:

u(zg, k) = ufb(rg) +uf f(zg) (5.3)

where uf f(zy) is the feedforward term while ufb(xy) represents the feedback
control term. The optimal time-varying control law is found by iteratively finding
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an optimal solution for minimizing a cost function C.

Overview of the Control Framework

The cost function C is composed by a set of constraints over N time steps of the
state vector zo.y = {xo,1,...,zn} along with the corresponding input controls
up:N—1 = {uo,u1, ..., un—1}. Defining z; as the desired goal state, the cost function
can be formulated in a standard optimal control form as:

[\DM—A

N—
zjﬂm—wﬁé+WM%) (5.4)

where || - || stands for the Q-norm, @ > 0 is the matrix that penalizes the
distance to the goal state, and R > 0 is the matrix weighting the control inputs.
Moreover, in order to enable the solver to take advantage of the vehicle dynamic
model, the proposed architecture adds a continuity constraint between subsequent
states as:

P R
ﬂr2§0mﬂ flru)3,) (55)

where the A; matrix weights the single state component continuity, with A; > 0.
Intuitively, temporally adjacent states are forced to attain the system dynamics.

At this points, the proposed architecture adopts a simplifying working assumption
in order to reduce the computational cost of the optimization procedure employed
for minimizing the cost function stated in (5.5) and, therefore to handle non-linear
constraints in an on-line implementation: the assumption consists of restricting the
attention to non-linear differential flat systems [48]. As well-known, for such kind of
systems it can be find a set of outputs ¢ € R™, named flat, of the form

¢ = h(z,ui,- -, u™) (5.6)

such that there exist two functions 1, and ¢ for which the state and the input can
be expressed in terms of flat states and a finite number of their derivatives

up = ¢ (¢, 6, ¢ (5.8)

The formulation of the OCP in terms of flat states allows for a substantial di-
mensionality reduction of the problem, and consequently to a saving in terms of
computational cost. The cost function may consequently be rewritten using the flat
outputs as

N—
Z l9k(C) = 24 15 + 67 (5.9)
=0 —_——

Vi

l\DM—l
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and, by adding also the continuity constraints, the whole cost function is calculated
as

1 N—
C(Q) = ColQ) +5 Z (”Vk M + ller(OlIF+

+ [ or11(€) — F(Pr(€), 9x(C)) ||,241> (5.10)

Tk

To find the solution for the cost function in (5.10), the proposed method adopts
a well-established numerical method for solving optimal control problems, namely
direct multiple shooting [14]. In direct multiple shooting, the whole trajectory is
parametrized by finite number of flat outputs ¢ € RV™. Hence, by stacking all the
error components that compose the cost function (5.10), it is possible obtain an
error function e(() as

e(¢) = : (5.11)
vN-1(C)
dn-1(C)
L yv—1(C)

We minimize the error function in (5.11) by adopting a least-square iterative
procedure, where the trajectory is iteratively updated as

(<« CHC (5.12)

where the H operator performs the variable update, while taking into account
the specific composition of the flat state [149]. The update vector §¢ is found by
solving a linear system of the form HJé( = b with the terms H and b given by

H = J(Q)'QJ() (5.13)
b = J(¢) Qe (5.14)

where J(¢) = 0e(()/0¢. To limit the magnitude of the perturbation between
iterations and thus, enforce a smoother convergence, we solve a damped linear

system of the form
(H+ AI)6¢ =b. (5.15)

5.3.2. Adaptive Time-Mesh Refinement

In non-linear OCPs, the choice of the number of trajectories points IV is a major
factor affecting the computational cost that is required to get a solution and also the
accuracy of the solution itself. Hence, the goal is to effectively arrange the trajectory
points along the time horizon T

In the proposed method the trajectory points displacement is addressed by means
of an adaptive time-mesh refinement strategy. The proposed method starts finding
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an initial solution by solving the OCP, as described in Sec. 5.3.1, with a coarse
lattice. It looks for portions of the horizon T' that need to be refined: it then samples
here new keypoints with a fine granularity.

In particular, since the NMPC employs a receding horizon strategy — where only
the first trajectory point is actually used for the system actuation — the proposed
method focuses on the resampling procedure on the initial part of the horizon.

This allows us to achieve adequate tracking performance even with a minimum
amount of trajectory points IN. As a consequence, solving more complex OCPs with
longer time horizons T or additional constraints (e.g. obstacles to avoid, objects to
track, etc.) can be handled in real-time.

More formally, once the initial problem has been solved by employing the
procedure described in Sec. 5.3.1 over a uniform time-mesh, the solution is iteratively
processed.  As reported in Alg. 3, at each iteration, the time-mesh refinement
performs the following steps: (i) it performs a discretization error check (4.2 and
¢.12), which allows detecting where new trajectory points are required; (ii) it then
adds new points by interpolating them between the adjacent ones (¢. 7-8); (iii) finally,
it transcribes the sub-problem into an OCP and solves it (¢. 10-11). In the following,
these steps will be discussed in more detail.

5.3.3. Discretization Error Check

In order to proceed with the time-mesh refinement strategy, refinement and stopping
criteria have to be defined. The proposed method considers as main refinement
criterion of the discretization error between the flat variables. The discretization
error, at each lattice point, is computed as the difference between the current state
and a higher-order approximation of the solution trough the non-linear time-step
rule of the dynamics of (5.2). More specifically, starting from the (;_; node, the
proposed method performs a finer integration of the dynamics with respect to the
one employed during the OCP solution, obtaining fk Hence, the discretization error
is computed as

e¢, = l1Ck — Cll (5.16)

where || - || stands as the squared norm of two vectors. As a stopping criterion, the
proposed method considers a threshold on the discretization error e, .

Trajectory Points Interpolation

Once the discretization error has been obtained, the time-mesh refinement proceeds
by adding new trajectory nodes where required. In order to obtain a smooth
interpolation that preserves the flat states differentiability, the proposed architecture
uses the cubic Hermite interpolation. More formally, let ; and (; be two adjacent
flat states in the lattice, the interpolated flat state in the unit time interval [0, 1] is
computed as:

Ce = G2 =312 + 1) + ¢ (13 — 26 + ) + (3t — 2t%) + g;(tf” — %) (5.17)

where ¢ € [0,1] is the interpolation point, and C/ denotes the first-order flat variable
derivative.



90 5. Perception Based Control

Local Optimization Procedure

The refinement procedure adds more node points to the initial portion of the
trajectory where the discretization error is higher, so to obtain an improved solution.

As a consequence, the computational time increases. To avoid this the issue,
when progressively going from a coarse mesh to a refined one, the error function
in (5.11) is scaled only to the initial part of the horizon. More specifically, let
Ny = N; + Nggq be the number of initial trajectory points that are going to be
refined, where N; < N is a user-defined parameter representing the number of
points that belong to an initial section of the trajectory, and N,4q is the number of
points added at each iteration of the refinement algorithm. At each iteration, the
refinement procedure transcribes these points in an OCP and re-optimizes only the
mesh sub-intervals that belong to (o.n,,, = {0, , (N, }, While keeping unchanged
the remaining part of the trajectory.

Data: Cost function C, dynamics f(z(k),u(k)), OCP solution (o.x = {Co," - ,{N},
trajectory points to refine N,,.
Result: Refined trajectory (o.n+n, 4,
scale the OCP problem: (o.n,,, = {0, " ,CN,,, };
discretization error computation for each lattice point €¢,.y, ;
iter = 0;
while iter < max;;, do
foreach (; € (1.n,,, do
if € > errsys then
Cr = Interpolate((;, Civ1);
Add Ck to <0:Ntm,;
Ntm — Ntm + 1;
transcribe the scaled OCP;
apply the Least-Square solver;
estimate the discretization error e, ,
iter < iter + 1;
end
end

Algorithm 3: Time-Mesh Refinement Algorithm.

Table 5.4. Errors and Control Inputs Statistics for the Pose Regulation Experiment

Runtime errieans €rrrot Roll,.. Pitch,. YawRate  Thrust
N TMref 0" Tl pad rad rad] rad/s|  [Nm]
100 42 0.0537 0.0435 0.0196 0.0196 0.3305 15.2450
50 10 0.0613 0.0543 0.0184 0.0210 0.2906 15.1695
50 v 10.2 0.0608 0.0521 0.0191 0.0213 0.2863 15.2237
20 1 0.0724 0.0598 0.0195 0.0259 0.3146 15.1554
20 v 1.2 0.0703 0.0553 0.0193 0.0224 0.2929 15.2491
10 0.5 0.1096 0.0735 0.0207 0.0257 0.2964 15.1352
10 v 0.7 0.0823 0.0642 0.0197 0.0243 0.3321 15.1934
5 0.2 fail fail fail fail fail fail
5 v 0.4 0.1032 0.0667 0.0219 0.0234 0.3219 15.2154
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5.3.4. Experimental Evaluation

The proposed approach is tested in a simulated environment by using the RotorS
simulator [53] and a multirotor model. The mapping between the high-level control
input and the propeller velocities are done by a low-level PD controller that aims to
resemble the low-level controller that runs on a real multirotor.

The evaluation presented here is designed to support the claims made in the
introduction. I performed two kind of experiments, namely pose regulation and
trajectory tracking.

I provide a direct comparison between a standard NMPC implementation and
the one proposed in this section, 7.e. by using a time-mesh refinement strategy.

The OCP is formulated by composing each flat state of the UAV simulated model
as follows:

¢ = (p1,p2,p3,7) (5.18)

where p; is the translation in the world coordinate reference system along the "
axis, and ~ represents the yaw angle. For more detail about the dynamical model
and the flat model, please refer to Appendix A.

Pose Regulation

The following pose regulation experiment is designed to prove the accuracy and the
robustness of the proposed approach. In all the regulation experiments the desired
state is set to:

tr=2, ¢=(2,2,1,1.57), ¢=(0,0,0,0).

and the time-mesh refinement parameters to be erry.s = 107°,  mazje, = 2..

The pose regulation tasks are performed while varying the bins number N. The
goal is to show how the control accuracy deteriorates while going from a finer lattice
to a coarser one. To this end, it starts with N = 200, which is used as a reference
for the other bin setups. Then, the proposed method decreases the bins amount
up to N = 5 measuring the translational and rotational RMSE with respect to the
reference trajectory, for both the standard NMPC case and the proposed approach.
Tab. 5.4 reports the results of this comparison, along with the computational time
required for solving the OCP and the control inputs average.

The advantages of using a time-mesh refinement strategy are twofold. From one
side, when using a coarse lattice, as in the case of N = 20 and N = 10, the the
refined solution provides lower errors, with a negligible increment of computational
time. On the other hand, it intrinsically increases the robustness by adaptively
adding bins in the trajectory where needed, thus avoiding failures such as the one
registered with N = 5 in the standard NMPC formulation. Fig. 5.8 directly compares
the convergence with the reference trajectory (N = 200) and the ones recorded while
using N = 20 and N = 5 with the time-mesh refinement.

Trajectory Tracking

To prove the effectiveness of the proposed time-mesh refinement in a tracking scenario,
the UAV platform is commanded to track a challenging Lemniscate trajectory, defined
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pb_control/imgs/gnomic_pose_reg_new.png

Figure 5.8. Pose Error

by the following expression:

p1(t) = 2sin(t/2)
pa(t) = 2sin(t/2)cos(t/2)
ps3(t) = sin(t +5)/3

v(t) = sin(t/8)

ty is set to 0.5s and N is set to 5 for both the standard and the refined setup,
while erry.s and max;., are set with the same values used in the pose regulation
section 5.3.4.Fig. 5.9 and Fig. 5.10 report the results of the tracking experiments.
As expected, the use of a time-meshrefinement strategy allows for a more accurate
tracking since the OCP problem is solved over an adapted lattice.



5.3 Non-Linear Model Predictive Control with Adaptive Time-Mesh
Refinement 93

—Id

—C,
3 x 0.4

0.2

—€yl]

m
=
e[m]
(=]

0.5 -0.2

2 04 |

o 0.6

Figure 5.9. Lemniscate trajectory tracked with standard approach.
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Figure 5.10. Lemniscate trajectory tracked with time-mesh refinement.

Runtime

We recorded the time needed to solve the NMPC problem, as described in Sec. 5.3.1.
We performed all the presented experiments on a laptop computer equipped with an
i7-5700HQ CPU with 2.70 GHz. Our software runs on a single core and in a single
thread.

To reduce the noise in the measurements, we collect the computational times
for time horizons between 500ms and 4000ms, using bins of 200ms. For each
configuration of the solver, we compute the average computational time over 4000
planned trajectories with a UAV, and report these values in Fig. 5.11.

As shown in Fig. 5.11, while increasing the time horizon, and consequently the
number of bins, the computational time grows almost linearly. The computational
overhead of the time-mesh refinement, in this sense, does not affect such a cost, by
adding a constant time to the total computation.

40
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Figure 5.11. Average runtime over 4000 planned trajectories with horizon  up to 4s,
with an UAV model.
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Figure 5.12. Runtime percentage of the NMPC algorithm with time-mesh refinement in
case of t; = 2s with bins each 200ms.

Fig. 5.12 shows the runtime percentage in case of ¢ty = 2s with bins each 200ms,
where the time-mesh refinement slice includes the computational time involved in all
the different mesh refinement steps. Note that the time-mesh refinement portion has
constant time consumption. Thus its percentage value is indicative of this particular
setup only. It is also noteworthy to highlight how most of the runtime is absorbed
by the Jacobian calculation, being computed in a fully numerical manner.
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Figure 5.13. An example of an application for the proposed system: a UAV is asked to
reach the desired state while constantly framing a specific target (the red circular target
in the picture). The environment is populated with static obstacles (black and yellow
striped objects in the picture) that should be avoided. Dynamic obstacles (e.g., other
agents, depicted with the red moving box) may suddenly appear and block the planned
trajectory (i.e., the blue dashed line). With the proposed method, the UAV reacts to
the detected object by steering along a new safe trajectory (i.e., the red line).

5.4. Joint Vision-Based Navigation, Control and
Obstacle Avoidance for UAVs in Dynamic
Environments

In this section, I take a small step forward in this direction by proposing an optimal
controller that takes into account in a joint manner the perception, the dynamic, and
the avoidance constraints (Fig. 5.13). The proposed system models vehicle dynamics,
perception targets and obstacles in terms of Non-Linear Model Predictive Controller
(NMPC) constraints: dynamics are accounted by providing a non-linear dynamic
model of the vehicle, while targets are modeled by targets visibility constraints in
the camera image plane and obstacles by repulsive ellipsoidal areas, respectively.
The proposed system also allows incorporating estimation uncertainties and obstacle
velocities in the ellipsoids, allowing it to deal also with dynamic obstacles.

The entire problem is then transcribed into an Optimal Control Problem (OCP)
and solved in a receding horizon fashion: at each control loop, the NMPC provides
a feasible solution to the OCP and only the first input of the provided optimal
trajectory is actually applied to control the robot. By leveraging state-of-the-art
numerical optimization, the OCP is solved in a few milliseconds making it possible
to control the vehicle in real-time and to guarantee enough reactivity to re-plan the
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trajectory when new obstacles are detected.

Moreover, the proposed approach does not depend on a specific application and
can potentially provide benefits to a large variety of applications, such as vision-based
navigation, target tracking, and visual servoing.

5.4.1. Problem Formulation

The goal of the proposed approach is to generate an optimal trajectory that takes
into account perception and action constraints of a small UAV and, at the same
time, allows to safely fly through the environment by avoiding all the obstacles that
can lie along the planned trajectory.

The need for coupling action and perception constraints derives from different
factors. On the one hand, there are the vision-based navigation limits where
to guarantee an accurate and robust state estimation, it is necessary to extract
meaningful information from the image. On the other hand, in some specific cases
(e.g. Visual Servoing) the feedback information used to control the vehicle is extracted
from a vision sensor, thus the vision target should be kept in the camera image plane.
Similarly, taking into account the surrounding obstacles is important to ensure a
safe flight in cluttered environments.

Considering all those factors together allows to fully leverage the agility of UAVs
and to have a fully autonomous flight. Therefore, it is essential to jointly consider
all these constraints.

Let [ be the state vector of the target object (e.g., the 3D point representing
the center of mass of a target object), while let  and u be the state and the input
vectors of a robot, respectively. Furthermore, let o the state vector of the obstacles
to avoid. Let assume the robot’s dynamic can be modeled by a general, non linear,
differential equations system & = f(z,u). Finally, given some flight objectives, an
action cost can be defined as c,(x¢, ut), a perception cost ¢,(z4, Iy, ut), a navigation
cost ¢y (g, ur), and an avoidance cost ¢, (¢, 0f, ut)

Thus, the coupling of action, perception, and avoidance can be formulated as an
optimization problem with cost function:

ty
J = cp(wey) +/t ca(Tt; ut) + cp(we, e, ut) + cn (T, ur) + o, 0r, ug)dt
0

subject to: & = f(x,u) (5.19)

h(x, lg, 00, u) <0

where h(xy,l;, 0, us) stands for the set of inequality constraints to satisfy along
the trajectory, cg(x;s) stands for the cost on the final state, and ¢y —t( represents the
time horizon in which one wants to find the solution. In the following, a description
of all the cost function components is reported.

Quadrotor Dynamics

In the proposed approach, five reference frames will be considered: (i) the world
reference frame W3 (ii) the body reference frame B of the UAV; (iii) the camera
reference frame C; (iv) the ith obstacle reference frame Oi and the target reference
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Figure 5.14. Overview of the reference systems used in this work: the world frame W, the
body frame B, the camera frame C, the landmark and obstacles frames L and O;. Ty ¢
and Tgo represent the body pose in the world frame W and the transformation between
the body and the camera frames C, respectively. Finally, s is the landmark reprojection
onto the camera image plane.
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frame L. An overview of the reference systems is illustrated in Fig. 5.14.

To represent a vector or a transformation matrix, the proposed formulation makes
use of a prefix that indicates the reference frames in which the quantity is expressed.
For example, xyp denotes the position vector of the body B frame with respect to
the world frame W, expressed in the world frame.

According to this representation, let pw g = (pz, Py, p2)! and riwp = (¢, 0,9)T be the
position and the orientation of the body frame with respect to the world frame, ex-
pressed in the world frame, respectively. Additionally, let Viyp = (Ux,vy,vz)T
be the velocity of the body, expressed in the world frame. Finally, let v =
(T, demds Oemd, zl}cmd)T be the input vector, where 7' = (0,0,#)” is the thrust vector
normalized by the mass of the vehicle, and ¢cmd, Oemd, zﬁcmd are the roll, pitch, and
yaw rate commands, respectively. Thus, the quadrotor dynamic model f(x,u) can
be expressed as:

UWB = DWBRB
twp =gw + RwgT

. 1
T |
0 = —(koOema — 0)
To
Y = Yema
where Ry p is the rotation matrix that maps the mass-normalized thrust vector T
in the world frame, and gy = (0,0, —g)7 is the gravity vector. For the attitude
dynamics, the proposed formulation makes use of a low-level controller that maps the

high-level attitude control inputs into propellers’ velocity. The 7; and k; parameters
are obtained through an identification procedure [80].

Perception Objectives

Let pwr = (Ig, 1y, 1.)T the 3D position of the target of interest in the world frame
W. It is assumed that the UAV to be equipped with a camera having extrinsic
parameters described by a constant rigid body transformation Tgc = (ppc, Rpc),
where ppc and Rpc are the position and the orientation, expressed as a rotation
matrix, of the camera frame C with respect to B. The target 3D position in the
camera frame C' is given by:

por = (RwsRpe)" (pwi — (Rwspsc + pws)) (5.21)
The 3D point poy, is then projected onto the image plane coordinates s = (u,v)”
according to the standard pinhole model:
u= f, Pk v = f,PC (5.22)
PcLz pcLz

where f, and f, stand for the focal lenghts of the camera. It is noteworthy to highlight
that the optical centers parameters ¢, and ¢, are not being used in projecting the
target, since it is convenient to refer it with respect to the center of the image plane.
To ensure a robust perception, the projection s of a target of interest should be
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kept as close as possible to the center of the camera image plane. Therefore the
formulation of the perception cost ¢, (¢, I, ut) will be:

1
cp(z by, uy) = sHs',  H=h l]g ?] (5.23)
fr

where f. and f, represent the number of columns and rows in the camera image,
while h is a weighting factor. With this choice, the reprojection error of s is more
penalized in the shorter image axis. For instance, if the camera streams a 16:9 image,
the optimal solution will care more to keep s closer to the center of the image along
the v-axis.

Avoidance and Navigation Objectives

Let oo, = (04;,04;,05)T be the 3D position of the i-th obstacle in the world frame
W. To enable the UAV to safely flight, the trajectory has to constantly keep the
aerial vehicle at a safe distance from all the surrounding obstacles. Moreover, the
cost function(5.19) has to take into account objects with different shapes and sizes.
Thus, the avoidance cost ¢, (x, o, uy) is formulated as

No 1
— ., di=Pwp—owo,
; diW;d! W T owo: (5.24)

Wi = diag(wai, Wyi,wzi), wi = f(Vi,€,0;)

where NN, is the number of the obstacles and W; is the i-th weighting matrix. The
latter weighs the distances along the 3 main axes, creating an ellipsoidal bounding box.
More specifically, each component w; embeds the obstacle’s size v, velocity v, and
estimation uncertainties € (see Fig. 5.15). Among the others, this formulation allows
to set more conservative bounding boxes according to the obstacle detection accuracy.
Moreover, to guarantee a robust collision avoidance, the minimum acceptable distance
is formulated as an additional inequality h(x¢, o¢, us) constraint:

No
> diWid] >= dimin,i (5.25)
i=1

where d,in i represents the minimum acceptable distance for the i-th obstacle.

Action Objectives

The action objectives act to penalize the amount of control inputs used to steer the
vehicle. Therefore, the action cost c,(z¢, uy) is formulated as:

o, up) = RUT, U= u— Upey (5.26)

where R is a weighting matrix, and u,.; represents the reference control input
vector (e.g. the control commands to keep the aerial vehicle in hovering). Moreover,
to constrain the control commands to be bounded inside the input range allowed
by the real system, the proposed method also makes use of an additional inequality

constraint h(xy, u):
Upp <= U <= Uyp, (5.27)
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Figure 5.15. Ellipsoidal bounding box concept overview: the light blue area bounds the
obstacle physical dimensions, while the blue area embeds the uncertainties ¢ in the
obstacle pose estimation and velocity v. The blue area is stretched along the x axis
direction to take into account the object estimated velocity.

The remaining costs ¢, (¢, u¢) and c¢(z:¢) penalize the distance from the goal pose,
and are formulated as:

en(T, up) = zQzt, T=x-— Tpef

- o (5.28)
cr(xef) = TefQNTip,  Tep = Tif — Tref
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Figure 5.16. Target reprojection error for 10 hover-to-hover flights. The three different
color-maps represent the depth of the point of interest, the distance from the closest static
obstacle, and the distance between the current pose and the desired pose, respectively.
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5.4.2. Non-Linear Model Predictive Control

The cost function given in(5.19) results in a non-linear optimal control problem.
To find a time-varying control law that minimizes it, the proposed method makes
use of a Non-Linear Model Predictive Controller, where the cost function(5.19) is
firstly approximated by a Sequential Quadratic Program (SQP), and then iteratively
solved by a standard Quadratic Programming (QP) solver.

The whole system works in a receding horizon fashion, meaning that at each new
measurement, the NMPC provides a feasible solution and only the first control input
of the provided trajectory is actually applied to control the robot.

To achieve that, the system dynamics is discretized with a fixed time step dt over
a time horizon T into a set of state vectors xog.xy = {zo,x1,...,2n} and a set of
inputs controls ug.y = {ug,u1,...,un—_1}, where N = T /dt. Additionally,the state,
the final state, and input cost matrices are defined as @, Qn, and R, respectively.
The final cost function will be:

N-1
J = a‘:thNa_:tTf + Z (en+ca+cp+co) (5.29)
i=0

where T represents the difference with respect to the state reference values, while ¢,
Ca, ¢p and ¢, refer to the navigation, action, perception and avoidance objectives
introduced in the previous section.

For NMPC to be effective, the optimization should be performed in real-time. In
this regard, an approximation of each optimal solution is computed by executing
only a few iterations at each control loop. Moreover, the previous approximated
solution is kept and used as the initialization for the next optimization.

5.4.3. Experiments

The evaluation presented here is designed to support the claims made in the intro-
duction. Two kinds of experiments are performed, namely hover-to-hover flight with
static obstacles and hover-to-hover flight with dynamic obstacles. To demonstrate
the real-time capabilities of the proposed approach a computational time analysis
will also be presented. In all the reported results, the multirotor is asked to fly
multiple times by randomly changing the obstacles setup and the goal state.

5.4.4. Simulation Setup

The proposed approach is tested in a simulated environment by using the RotorS
UAV simulator [53] and an AscTec Firefly multirotor. The non-linear control problem
is set up with the ACADO toolbox and used the qpOASES solver [45]. By using
the ACADO code generation tool, the problem is then exported in a highly efficient
C code that is integrated within a ROS (Robot Operating System) node. The
discretization step to be dt is set as 0.2 s with a time horizon Ty = 2 s. To
guarantee enough agility to the vehicle, the control loop is run at 100 Hz. The
mapping between the optimal control inputs and the propeller velocities is done by
a low-level PD controller that aims to resemble the low-level controller that runs on
a real multirotor. To make the simulation more realistic, a further white noise with
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Dy o Jale) M P M P g 8] o) ol
0.2 53 98 0.029 1.35 2
v 2 0.4 79 129 0.030 1.39 2
v 4 2.0 84 142 0.031 1.41 2
v .6 10.4 90 151 0.040 1.47 2
v .8 18.9 92 155 0.040 1.50 2
v 1 24.8 98 157 0.041 1.52 2

Table 5.5. Trajectory statistics comparison across different simulation setups.

Dyn. obst. Dyn. obst. failure Avg. pix. Max pix.
delay velocity ls] rate (%]  error error Torque [N] Temalg] ofem]
2 2 1.9 81 101 0.031 1.40 2
2 4 3.5 89 111 0.031 1.41 2
2 .6 4.8 90 113 0.034 1.44 2
4 2 3.9 93 140 0.032 1.45 2
4 4 7.4 94 147 0.034 1.44 2
4 .6 11.9 107 151 0.035 1.49 2

Table 5.6. Trajectory statistics comparison across different dynamic obstacle spawning
setups.

standard deviation o is also added on the 3D positions of the detected obstacles.
The code developed in this work is publicly available as open-source software.
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Figure 5.17. Reprojection error in the hover-to-hover flight with dynamic obstacles (left-
side), and an example of the planned trajectory (right-side). The moving, dynamic,
obstacle is represented by the red cube where the varying color intensity represents its
motion over time.
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Figure 5.18. Example of a trajectory generated in the simulated scenario. The depicted
UAVs represent different poses assumed by the aerial vehicle across the time horizon.
The colored objects represent the static obstacle, while the red box the dynamic one.

Hover-To-Hover Flight with Static Obstacles

The presented experiment shows the capabilities in hover-to-hover flight maneuvers
with static obstacles. More specifically, the UAV is commanded to reach a set
of M randomly generated desired states Xges = (Zref,0, Tref,1s - --» Tref,m). Unlike
standard controllers, the proposed approach will generate, at each time step, control
inputs that will steer the vehicle towards the goal state while avoiding obstacles and
keeping the target in the image plane. Fig. 5.16 depicts the reprojection error of the
point of interest and its correlation with (i) the depth of the point of interest, (ii)
the distance from the closest obstacle, and (iii) the distance from the desired state.
The largest reprojection errors occur when the UAV is farther from the desired state,
or when the UAV has to fly closer to the obstacles. In these cases, the reprojection
error is slightly higher since the UAV has to perform more aggressive maneuvers.
However, as reported in Tab. 5.5, the UAV keeps a success rate of almost 100%
while keeping a low usage of control inputs.

Hover-To-Hover Flight with Dynamic Obstacles

This experiment shows the capabilities to handle more challenging flight situations,
such as the flight in the presence of dynamic, unmodeled obstacles (see Fig. 5.18 for
an example). To demonstrate the performance in such a scenario, a dynamic obstacle
is randomly spawned along the planned trajectory. Thus, to successfully reach the
desired goal, the UAV has to quickly re-plan a safe trajectory (see Fig. 5.17(c) and
Fig. 5.17(f) for an example). Moreover, to make experiments with an increasing
level of difficulty, the dynamic obstacle is spawned with a random delay and with a
random non-zero velocity. The random delay simulates the delay in detecting the



104 5. Perception Based Control

2000 -

1800

1600

1400 —

=
N
o
o

1000

800

computational time [us]

600 \

400

200 ' LA UL

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
time [s]

Figure 5.19. Average computational time plot across the planning phases: the (i) planning
phase in blue, (ii) the steady-planning phase in green, and (iii) the emergency re-planning
phase in red. The shaded areas represent the variance of the average computational
time.

obstacle or the possibility that the obstacle appears after the vehicle has already
planned the trajectory.

The reprojection error follows a similar trend as the previous set of experiments
(see Fig. 5.17), being higher when the vehicle is closer to static obstacles of farther
from the desired state. Fig. 5.17(d) reports the evolution of the reprojection error
colored according to the distance from the dynamic obstacle. Since the latter is
spawned close to the planned trajectory, the UAV has to perform an aggressive
maneuver to keep a safe distance from it. This usually leads tin having a smaller
reprojection error when the dynamic obstacle is close (i.e. the object is spawned
while the UAV was on the optimal trajectory), and a bigger error when the obstacle
is farther (i.e. the drone reacted with an aggressive maneuver to avoid it). Tab. 5.5
and Tab. 5.6 report some trajectory statistics. The proposed method keeps a success
rate above the 75% in almost all the conditions, even in the presence of large delays.
It is also noteworthy to highlight how the delay turns out to be more critical than
the dynamic obstacle’s velocity. The latter, indeed, makes the re-planning more
challenging only in specific circumstances (e.g. when the object moves towards the
UAV). Finally, the capability to avoid obstacles comes with a performance trade-off.
The greater the difficulty, the greater the use of control inputs. This is especially true
when the UAV has to avoid dynamic obstacles with a large delay since it involves
making expensive control maneuvers.
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Computational Time

To meet the control loop real-time constraints, the NMPC computational cost should
be as low as possible. Moreover, the computational cost is not constant and might
vary according to the similarity between the initial trajectory and the optimal one.
In this regards, the presented computational time evaluation distinguishes among
three main flight phases:

1. the planning phase, which occurs when the UAV has to plan a trajectory to
reach T4e;

2. the steady-planning phase, which occurs when the UAV is already moving
toward T ges;

3. the emergency re-planning, which occurs when a dynamic obstacle suddenly
appears along the optimal trajectory.

Fig. 5.19 reports the average computational costs for all those flight phases. The
average computational cost is constantly lower than 0.01 seconds, meeting the
control loop frequency constraints. The steady-planning phase turns out to be the
cheapest one. Indeed, since the control loop runs 100 times per second, the neighbor
trajectories are quite similar. Conversely, the emergency re-planning phase is the
most expensive and variable, since the trajectory to re-plan is often quite different
from the previous one, depending on where the dynamic obstacle is spawned.

5.5. Summary of Results and Lessons Learned

This chapter focuses on the problem of controlling a robot by explicitly considering
some perception and avoidance constraints. The overall study proposes three different
perspectives to address this task, namely “using a cascade of optimal controllers”,
“leveraging a least-square solver to exploit the differential flatness property” and
“tncorporating avoidance and perception constraints in a single optimal controller”.
Besides their generality, the described approaches may provide several benefits to
monitoring and controlling operations in farming activities, particularly where the
repetitiveness and the perceptual aliasing might mislead the onboard navigation
system of the robot. The proposed control architectures start from the basic concept
of visual servoing, which has been widely investigated in the literature and enforce
it by solving the whole problem in a minimization manner.

More specifically, in the first proposed solution, the perception constraint is for-
mulated as the error between the target object projection onto the camera image
plane and the center of the camera view. Thus, such a constraint is incorporated
into a Non-Linear Model Predictive Control that returns an optimal trajectory to
follow. Despite the low running frequency, the output trajectory satisfies both the
perception and physical constraints of the vehicle, leading to better performance. To
reduce the computational burden, a least-square solver and the differential flatness
property of underactuated vehicles are leveraged. More specifically, I formulate a
multi-resolution online smoother to solve, in real-time on a dynamically complex
platform, a non-linear optimal control problem. With this approach, I provide a
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more refined solution in the first portion of trajectory, i.e. the part that is actually
used to control the platform, at a reduced computational cost. Finally, in the
last of the proposed contributions, I also considered obstacles in the control stack.
The obstacles are formulated as ellipsoids where their dimensions depend on their
physical size, velocity, and detection uncertainty. Those avoidance constraints are
incorporated in a real-time Non-Linear Model Predictive Control implementation
together with the perception constraint. Through the analysis of the performed
trajectories, I show how the system allows for agile and effective maneuvers while
meeting all the constraint requirements. The same approaches can be also used in
more simple contexts, such as planning.
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Chapter 6

Conclusion and Discussion

The goal of this thesis is to assess to what extent an enhanced perception and an ad-
hoc environmental modeling can be exploited to improve the level of autonomy and
the effectiveness of robotic platforms in farming activities. This thesis is motivated
by the growing adoption of sensing technologies and automation for monitoring
and on-field intervention in agriculture: on the one hand, as described in chapter 1,
robotics is commonly perceived as an enabling technology to further increase the
window of opportunity for intervention and farm field monitoring. On the other
hand, at the current status, robotic platforms do not show adequate flexibility and
successfully handle only a few specific tasks. The main reasons for that are the set
of specific challenges that farming scenarios propose, ranging from the perceptual
aliasing, the lack of geometric structures and landmarks, and the large variability
in both the ground conditions and crop types. Therefore, the lack of operating
flexibility leads to low profitability of farming robotic platforms and poses a high
risk of no return on investment for farmers.

Hence, I focus on enhancing the robot’s capabilities in perceiving and modeling the
surrounding environment. In particular, I faced the following problems: crop/weed
classification, localization and mapping, collaborative mapping, and perception-based
control. In the following, a brief recap of each contribution is provided.

6.1. Chapter 2: Crop/Weed Segmentation

This chapter focused on the crop/weed segmentation problem, and on reducing
the human annotation effort while training effective machine learning classifiers.
In this specific context, robots are expected to navigate the environment while
detecting weeds, with a high level of accuracy, to carry out a weed control process.
To this end, I propose two different methods that reduce the annotation effort
required to create adequate training datasets for data-driven classification methods,
such as Convolutional Neural Networks. In particular, I initially propose a dataset
summarization technique to select from big datasets, a small set of real images to
label. The proposed method allows keeping an adequate level of informativeness
for the network training procedure. I also address the problem from a different
perspective, namely by generating a huge number of realistic images by exploiting a
modern graphics engine. Both the proposed approaches show promising results: they
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allow training effective visual classifiers while involving less effort during the labeling
procedure. In conclusion, the overall study provides some simple methods that may
help training data-driven approaches for farming robots with smaller annotation
efforts.

Open Problems and Future Directions. Despite the promising results, there
are still some open problems. An open challenge in robotic vision, and in particular for
machine learning perception in robotic agriculture, is the adaptation of those methods
to long-term operations. Most of the existing solutions, indeed, solely perform initial
training before the actual deployment of the considered robotic solution. However,
the great extent of farmlands and their fast appearance variability lead the trained
model to not be effective in all the possible working conditions.

Another open problem, this time more related to the proposed solution, concerns
the the dataset summarization method. Particularly, the informativeness of each
subset is evaluated by deep features extracted from the last layers of a neural
network. However, this study still relate on a partial annotation of the dataset: an
unsupervised approach would be desirable. Other interesting open problems regard
the synthetic plant generation algorithm. More specifically: (i) More specifically,
part of the saved labeling effort is invested in setting up the generation engine: is
there an alternative method that enables to drastically reduce this overhead? (ii)
Although segmentation methods exploit the NIR channel, the generation procedure
generates annotated RGB images. Is there a way to realistically simulate NIR data?
Both the above-mentioned issues might be valuable subjects for the research on
design an effective segmentation framework for farming robots. An interesting and
viable solution may be in adopting Generative Adversarial Networks (GANs), i.e.
training a network to learn how to generate realistic images.

6.2. Chapter 3: Mapping and Localization

In this chapter, I introduced a robust approach for improving the robot localization
and mapping capabilities within a farm environment. In fact, exploiting the specificity
of the agricultural domain, the proposed approach fuses several sensors modalities
and exploit domain-specific constraints. In particular, the problem is formulated as
a pose-graph minimization in 3D: each sensor reading is fed into the pose-graph with
an associated measurement matrix that encodes the noise and the accuracy with
respect to each degree of freedom to estimate. The pose-graph is then optimized by
minimizing a cost function in a sliding window fashion. The proposed method is
flexible and can be used with different sensor modalities or just with a few of them.
Indeed, the activation or deactivation of a specific sensor cue act on the accuracy of
a specific portion of the robot’s state. Experimental results show that, in spite of the
simplicity of the proposed technique, it allows the robot to reach sufficient accuracy
guaranteeing the robot to not harm the crop. I additionally assessed and benchmark
different sensors in the agriculture context, highlighting both their weaknesses and
strengths.
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Open Problems and Future Directions. Despite the flexibility of the proposed
method, there are still some open challenges. First of all, the map should properly
scale with the farmland extent while highlighting the major characteristics of the
target field. Most of the existing work, including the method proposed in this
thesis, formulate the map as a sparse set of keypoints, namely a set of salient points,
leading the proposed architectures to not be directly applicable to large-scale farming
environments.

Other interesting future work directions include: (i) introducing a more accurate
and dense Digital Elevation Model. In this regard, a viable solution may be in
using DEMs provided by UAVs; (ii) adding additional cues coming from the crop-
rows detection or, alternatively, by using semantic data as additional localization
landmarks (i.e. crop and weeds). On the other hand, there are still challenging
open questions. In particular, how to adapt this approach to different agriculture
contexts (i.e. orchards)? How to remove the dependency from the GPS? They both
represent research issues on design an effective and reliable localization and mapping
framework for farming robots.

6.3. Chapter 4: Collaborative Mapping

This chapter presents the AgriColMap framework, namely a method that allows
heterogeneous robots such as a UGV and a UAV to build a map in a collaborative
manner. This allows the proposed method to produce a highly 3D detailed map
of the farm and to collaboratively keep the map up to date.  The AgriColMap
framework is composed of several steps, each of which focuses a specific sub-problem
of the whole process. The key components are in the environment representation and
in the data association procedure. The former cast the problem in 2D, enhancing
the key characteristics of a farm field while filtering out all the redundant data. The
latter, namely a LDOF, allows retrieving an accurate data association by handling
the strong perceptual aliasing. Experimental evaluations prove the effectiveness of
the proposed solution, providing outstanding accuracy against translational and
rotational errors and scale discrepancies as well. Moreover, the outcomes prove how
the method well generalize over different crop types.

Open Problems and Future Directions. The key drawback of the proposed
method is the lower robustness against noisy initial guesses in the map orientations
with respect to noise in the translation and scale. This topic represents an interesting
future direction to develop a robust collaborative map framework. Additional
effort is also required to keep improving the process, starting from a reduction
of the computational burden, and including additional features when creating the
environmental model used in the registration process. Future research will also
focus on the extension of the proposed methodology, for example by considering
maps gathered over several weeks. Moreover, an additional interesting point may
be in adding semantic information in the built map, such as crop/weed density
information. In conclusion, the proposed solution can support further and more
challenging research topics in the context of heterogeneous robot collaboration, such
as build a temporal map of the target field to monitor the growth and health indexes
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of the crop.

6.4. Chapter 5: Perception Based Control

This chapter addresses the problem of controlling a robot by explicitly considering
perception and avoidance constraints. This is a key feature that can provide benefits
to farming robots. In the farming context, indeed, the strong perceptual aliasing
might mislead the on-board navigation system when performing specific agronomic
interventions. The approaches proposed in this thesis formulate the problem as a
cost function minimization over a finite time horizon, where the perception and
avoidance requirements are fed into the optimization as constraints. The experimental
evaluations show the effectiveness of the proposed solution, providing empirical proof
of the benefits introduced by these augmented control policies.

Open Problems and Future Directions. As remarked in chapter 5, the pro-
posed control architectures have only been tested in indoor and simulated environ-
ments. They represent a general assessment of their effectiveness when controlling
aerial platforms, and can, therefore, be considered as a preliminary assessment in the
direction of their possible application in precision agriculture. Thus, further effort
should be put in testing the proposed architectures within a farming environment
with real robots, either aerial or terrestrial.

6.5. Thesis Statement and Final Remarks

I believe that the proposed thesis represent a small but concrete step forward in the
state-of-the-art of robotic systems applied to precision agriculture, with solutions
that are easily applicable to a wide range of robots, farm management activities,
and crop types. In particular, this thesis explores the role of the perception and
environmental mapping in precision farming applications, arguing that:

1. enhancing the perception capabilities of robotic platforms in farming scenar-
ios, such as exploiting the specific features that it proposes, improves the
autonomous navigation capabilities;

2. an ad-hoc environment representation aids the localization and mapping capa-
bilities and the collaboration between heterogeneous robotic platforms;

3. the development of effective crop/weed segmentation systems can be carried
out with a lower annotation effort while keeping a sufficient segmentation
accuracy;

4. a control system that takes into account perception and avoidance constraints
leads to better performance and higher reliability in on-field operations.

In fact, I proved that, by taking into account the specific features and constraints
provided by farming scenarios, it is possible to improve the farming robot capabilities
under several aspects. Such a claim is supported by experiments carried out on
different components an autonomous robot is commonly equipped with: mapping,
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localization, collaborative mapping, control, and environment semantic segmentation.
Though this thesis is just a starting point for a future research line, it proved the
benefits brought by a proper use of the environment specificity in the precision
farming context.
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Appendix A

Differential Flatness for UAV

Let F7 be the right-hand inertial reference frame with unit vectors along the axes
denoted by {fm, fy,fz}. The vector p = (p1,p2, p3) € Fr denotes the position of the
center of mass of the vehicle.

Let Fg be the right-hand body reference frame with unit vectors {Bx, By, BZ},
where these vectors are the axes of frame F'g with respect to frame Fr. The orientation
of the rigid body is given by the rotation Rp = R = {Bz By BZ] € SO(3).

Let v € FT express the linear velocity of the body, expressed in the inertial
reference frame F7. Let w € Fp be the angular velocity of the body with respect
to Fr. Let m denote the mass of the rigid body, and I € R3*3 the constant inertia
matrix expressed in body frame, the rigid body equations can be expressed as

£=v,

(A.la)
mb = mgi, + RF, (A.1b)
R =R wy (A.1c)
Iv=-wxIw+r (A.1d)

where the notation wyx denotes for the skew-symmetric matrix formed from w. The
system inputs F;, 7 € F act respectively as thrust force and body torques. The
system reported in (A.1) can be represented exploiting the differential flatness
property. For an UAV underactuated vehicle, the flat outputs are given as { =
(p1,p2,p3,7) € R*, where ~ represents the yaw angle. Hence, by denoting p; =
(p1,p2,p3), it is possible to recover the full state and controls by using the following
relations: p = py, p = pr, Fr = ||m(py — ¢)|| and the three columns of the rotation
matrix R as:

R. = m(pr — g)/ Fi

cos vy cos vy
Ry =R, x | sinvy | /|R: % | sin v H
0 0

R, =Ry x R,.
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The angular velocity is recovered as

Wy = _Ry pt/Ft
Wy = R, Pt/Ft
Wy = '77:‘, (rz Rz)

where i, is the standard unit vector along the z-axis. To recover 7, w is firtly
recovered. Note that from the dynamics

mp" = (R&? + RO)F, 1. + 2 R OB, + R F) 1.
Solving this for w gives

4 .
wy = (—mRy pg ) _ wyw; Fy + 2w, Fy) | Fy
4 .
wy = (MR pg ) _ wWew; Fy — 2wy Fy) | Fy
w; = Fiis Ry + il RO,

Then, it is possible to use the dynamics 7 = Iw — Iw X w and 7 is recovered.
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