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Abstract 

The idea that science can be automated is so deeply related to the view that the method of 

mathematics is the axiomatic method, that confuting the claim that mathematical 

knowledge can be extended by means of the axiomatic method is almost equivalent to 

confuting the claim that science can be automated. I argue that the axiomatic view is 

inadequate as a view of the method of mathematics and that the analytic view is to be 

preferred. But, if the method of mathematics and natural sciences is the analytic method, 

then the advancement of knowledge cannot be mechanized, since non-deductive reasoning 

plays a crucial role in the analytic method, and non-deductive reasoning cannot be fully 

mechanized. 
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1. The Method of Mathematics and the Automation of Science 

 

This chapter aims to disentangle some issues surrounding the claim that scientific discovery 

can be automated thanks to the development of Machine Learning, or some other 

programming strategy, and the increasing availability of Big Data (see e.g. Allen 2001; 

Colton 2002; Anderson 2008; King et al. 2009; Sparkes et al. 2010; Mazzocchi 2015). For 

example, according to Anderson, the “new availability of huge amounts of data, along with 

the statistical tools to crunch these numbers, offers a whole new way of understanding the 

world” (Anderson 2008). In this perspective, we “can throw the numbers into the biggest 
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computing clusters the world has ever seen and let statistical algorithms find pattern where 

science cannot” (Ibidem). Sparkes and co-authors state that the advent of computers and 

computer science “in the mid-20th century made practical the idea of automating aspects 

of scientific discovery, and now computing is playing an increasingly prominent role in the 

scientific discovery process” (Sparkes et al. 2010). This increasing trend to automation in 

science has led to the development of so-called robot scientist, which allegedly, 

“automatically originates hypotheses to explain observations, devises experiments to test 

these hypotheses, physically runs the experiments by using laboratory robotics, interprets 

the results, and then repeats the cycle” (King at al. 2004). Some authors have gone, if 

possible, even further by claiming that the process of theory formation in pure mathematics 

can be automated. For example, Colton writes that theory formation in mathematics 

“involves, amongst other things, inventing concepts, performing calculations, making 

conjectures, proving theorems and finding counterexamples to false conjectures,” and that 

computer programs “have been written which automate all of these activities” (Colton 

2002, p. 1).  

Unlike other researches that deal with automated discovery, I will not focus here on 

assessing some specific and recent achievements in computer science to verify whether 

computer machines were really able to autonomously make the scientific discoveries that 

are credited to them. Rather, I wish to underline how the very idea that scientific discovery 

can be automated derives, at least in part, from a confusion on the nature of the method of 

mathematics and science, and how this confusion affects the judgement over whether 

machines provide genuine discoveries. The origin of this confusion may be due to the fact 

that the mathematical tools developed to deal with computability originated in the first half 

of the XX century, in what can be called a formalist and axiomatic cultural ‘environment’. 

From a formalist point of view, the method of mathematics is the axiomatic method, 

according to which, to demonstrate a statement one starts from some given premises, which 

are supposed to be true, and then deduces the statement from them. Hilbert, whose ideas 

were very influential at the time, viewed the axiomatic method as the crucial tool for 

mathematics and scientific inquiry more in general (Rathjen, Sieg 2018). For example, 

Hilbert writes that he believes that everything that can “be object of scientific thinking in 

general [...] runs into the axiomatic method and thereby indirectly to mathematics. Forging 

ahead towards the ever deeper layers of axioms [...] we attain ever deepening insights into 

the essence of scientific thinking itself” (Hilbert 1970, p.12). The mathematical agenda of 

the first decades of the XX century was set by Hilbert by fixing, in his famous address to 

the International Congress of Mathematicians held in Paris in 1900, the most relevant 
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mathematical problems, and by putting forward his formalist program (Zach 2016). 

Hilbert’s formalist program pursued two main goals: (1) the formalization of all of 

mathematics in axiomatic form, together with (2) a proof that this axiomatization of 

mathematics is consistent. In this view, the consistency proof itself was to be carried out 

using only finitary methods, in order to avoid any reference to infinitary methods, which 

were regarded as problematic because of their being related to a problematic and disputed 

concept such as that of infinity.  

The theoretical success achieved by logicians and mathematicians in dealing with 

computability led someone to think that the view on the nature of mathematical knowledge 

implied by the axiomatic method was in some way vindicated by such extraordinary 

achievements. But the assessment of some results in computability theory and the inquiry 

on what is the most adequate way to describe what we do when we do mathematics are 

distinct issues, and they should be kept distinct (Longo 2011). And whether we keep those 

issues distinct affects how we assess the claim that science can be automated. 

The way in which the confusion between mathematical successful developments in 

computability theory and the justification of axiomatic ideas originated, can be summarized 

as follows: the axiomatic view led to the rigorous study of computability. The study of 

computability led to the development of computer machines. Computer machines proved 

extraordinary useful and effective. This confirmed that computability theory was correct. 

And this led many to conclude that the axiomatic view, from which computability theory 

seemed to stem, should had been the correct view on what we do when we do mathematics, 

namely deducing consequences from given axioms. Now, mathematics has always been 

regarded as one of the highest achievements of human thought. So, the argument goes, if 

doing mathematics means to deduce consequences from given axioms, and machines are 

able to deduce consequences from given axioms thanks to the mathematical results 

developed by assuming that doing mathematics must be conceived of as deducing 

consequences from given axioms, this means both (1) that machines are able to do 

mathematics, and so that machines can in a sense think, and (2) that doing mathematics 

really means to deduce consequences from given axioms, i.e. that humans actually do 

mathematics by deducing consequences from given axioms. Now, if humans actually do 

mathematics by deducing consequences from given axioms, then human brains can be 

regarded as Turing Machines, at least in the sense that what we do when we think is, in the 

ultimate analysis, a kind of computation. Since mathematics and science are subsets of our 

thinking, this means that mathematics and science are computational activities. Indeed, a 

Turing Machine is a mathematical model of computation that defines an abstract machine 
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which is capable of simulating any algorithm’s behaviour. Since computational activities 

can be performed by computer machines, there is no compelling theoretical reason why 

machines might not be able to do mathematics and science. Nor is there any fundamental 

difference between Turing Machines and our brains. This is just a sketch of how the so-

called Computational Theory of Mind (CTM)1 is usually argued for. In this article, for the 

sake of convenience, I will refer to those who are broadly sympathetic to this line of 

reasoning and the idea that science can be automated as to ‘the computationalists’.  

It might be objected that those limitative results, such as Gödel’s and Turing’s, which 

paved the way to the development of computer machines, showed also that Hilbert’s 

formalist program was unfeasible, and that this should had been enough to refuse the 

axiomatic view of mathematics. Indeed, according to Gödel’s first incompleteness theorem, 

any sufficiently strong, consistent formal system F is incomplete, since there are statements 

of the language of F which are undecidable, i.e. they can neither be proved nor disproved 

in F. This theorem proves that the first one of the two main goals of Hilbert’s program, i.e. 

the formalization of all of mathematics in axiomatic form, is unattainable. Moreover, 

according to Gödel’s second incompleteness theorem, for any sufficiently strong, 

consistent formal system F, the consistency of F cannot be proved in F itself. This theorem 

proves that the second one of the two main goals of Hilbert’s program, i.e. to give a proof 

that the axiomatization of all of mathematics is consistent, is unattainable.2 Finally, Turing 

showed the relation between undecidability and incomputability, since it proved that there 

is no algorithm for deciding the truth of statements in Peano arithmetic. So, this objection 

is in a sense correct: limitative results showed that Hilbert’s program was unfeasible. But 

it has not to be overlooked that the ‘mathematical machinery’ developed by mathematicians 

such as Gödel and Turing to adequately deal with Hilbert’s problems and program was 

developed within a shared axiomatic perspective on mathematics and was perfectly suited 

to meet Hilbert’s standard of rigor and formalization (Longo 2003). So, despite those 

results showed that Hilbert’s program cannot be pursued, since they proved extremely 

useful and were developed within what can be called a Hilbertian theoretical framework, 

they contributed to perpetuate Hilbert’s view of mathematics, according to which the 

method of mathematics is the axiomatic method.  

Still today, many mathematicians and philosophers think that despite Hilbert’s program 

cannot be entirely realized, the ideas conveyed by such program are appealing and not 

 

1 On CTM, see Rescorla 2017. 

2 For a survey on Gödel’s theorems, see Raatikainen 2018. 
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completely out of track. In this view, the impact of limitative results such as Gödel’s and 

Turing’s on the formalist approach to mathematics has not to be overstated. For example, 

Calude and Thompson recently wrote that although it is not possible “to formalise all 

mathematics, it is feasible to formalise essentially all the mathematics that ‘anyone uses’. 

Zermelo-Fraenkel set theory combined with first-order logic gives a satisfactory and 

generally accepted formalism for essentially all current mathematics” (Calude, Thompson 

2016, p. 139). In their view, Hilbert program was not completely refuted by limitative 

results, rather it “can be and was salvaged by changing its goals slightly:” although it is not 

possible “to prove completeness for systems at least as powerful as Peano arithmetic,” it is 

nevertheless “feasible to prove completeness for many weaker but interesting systems, for 

example, first-order logic [...], Kleene algebras and the algebra of regular events and 

various logics used in computer science” (Ibidem).3 Examples of this kind testify that the 

axiomatic view, despite its inadequacy, is still the received view in the philosophy of 

mathematics.  

 

1.1. The Analytic View of the Method of Mathematics 

I argue that since the axiomatic view is inadequate, we should prefer an alternative view, 

namely the analytic view of the method of mathematics (Cellucci 2013, 2017), according 

to which knowledge is increased through the analytic method. According to the analytic 

method, to solve a problem one looks for “some hypothesis that is a sufficient condition 

for solving it. The hypothesis is obtained from the problem […], by some non-deductive 

 

3  This approach seems to forget that Hilbert did not seek formalization for the sake of 

formalization. Formalization was not an end, rather it was a means in Hilbert’s view. His main 

aim was to give a secure foundation to mathematics through the formalization of a part of it. And 

this goal cannot be reached because of Gödel’s results. So, it is difficult to overstate the relevance 

of those results for Hilbert’s view. That some limited portion of mathematics can be formalized 

or shown to be complete, but it is not possible to formalize the all of mathematics or prove its 

completeness in general, it is not something that can salvage Hilbert’s perspective “by changing 

its goals slightly,” rather it is a complete defeat of Hilbert’s view, since it shows the unfeasibility 

of its main goal. For example, according to Weyl, the relevance of Gödel’s results cannot be 

overstated, since because of those results the “ultimate foundations and the ultimate meaning of 

mathematics remain an open problem [...]. The undecisive outcome of Hilbert’s bold enterprise 

cannot fail to affect the philosophical interpretation” (Weyl 1949, p. 219). 
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rule, and must be plausible […]. But the hypothesis is in its turn a problem that must be 

solved,” and is solved in the same way (Cellucci 2013, p. 55).4  

The assessment of the plausibility of any given hypothesis is crucial in this perspective. 

But how has plausibility to be understood? The interesting suggestion made by the analytic 

view is that the plausibility of a hypothesis is assessed by a careful examination of the 

arguments (or reasons) for and against it. According to this view, in order to judge over the 

plausibility of a hypothesis, the following ‘plausibility test procedure’ has to be performed: 

(1) “deduce conclusions from the hypothesis”; (2) “compare the conclusions with each 

other, in order to see that the hypothesis does not lead to contradictions”; (3) “compare the 

conclusions with other hypotheses already known to be plausible, and with results of 

observations or experiments, in order to see that the arguments for the hypothesis are 

stronger than those against it on the basis of experience” (Ibidem, p. 56). If a hypothesis 

passes the plausibility test procedure, it can be temporarily accepted. If, on the contrary, a 

hypothesis does not pass the plausibility test, it is put on a ‘waiting list’, since new data 

may always emerge, and a discarded hypothesis may successively be re-evaluated. Thus, 

according to the analytic view of method, what in the ultimate analysis we really do in the 

process of knowledge ampliation, is to produce hypotheses, assess the arguments/reasons 

for and against each hypothesis, and provisionally accept or refuse such hypotheses. 

In the last century, the dominance of a foundationalist perspective on scientific and 

mathematical knowledge, the influence of Hilbert’s thought, and the diffusion of the idea 

that a logic of discovery cannot exist, led to the widespread conviction that the method of 

mathematics and science is (or should be) the axiomatic method.5 Analysis, i.e. the search 

for new hypotheses by means of which problems can be solved, has been overlooked or 

neglected (Schickore 2014). Philosophers rejected the goal of “traditional epistemology 

from Plato to Boole: a theory of discovery” (Glymour 1991, p. 75). Indeed, since Plato and 

Aristotle philosophers “thought the goal of philosophy, among other goals, was to provide 

methods for coming to have knowledge” (Ibidem). But in the XX century, “there was in 

 

4 The origin of the analytic method may be traced back to the works of the mathematician 

Hippocrates of Chios and the physician Hippocrates of Cos, and was firstly explicitly formulated 

by Plato in Meno, Phaedo and the Republic. Here I can only give a sketch of the analytic method. 

For an extensive presentation of the analytic view, see Cellucci 2017; 2013. 

5 For a survey of the main conceptions of method that have been put forward so far, see Cellucci 

2017; 2013. On the analytic method, see also Hintikka, Remes 1974, and Lakatos 1978, Vol. 2, 

Chap. 5. On the axiomatic method, see also Rodin 2014, part I. 
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philosophy almost nothing more of methods of discovery. A tradition that joined together 

much of the classical philosophical literature simply vanished” (Ibidem). For example, 

Popper famously stated that “there is no such thing as a logical method of having new ideas, 

or a logical reconstruction of this process” (Popper 2005, p. 8).  

Contrary to this perspective, the analytic view maintains that there is a logic of 

discovery, and that one of the goals of philosophy is to provide methods for coming to have 

knowledge. Indeed, the analytic method “is a logical method” and from the fact that 

“knowledge is the result of solving problems by the analytic method, it follows that logic 

provides means to acquire knowledge” (Cellucci 2013, p. 284). Since logic is a branch of 

philosophy, this means that philosophy does provide methods for coming to have 

knowledge. This also means that according to the analytic view, logic has not to be 

understood as an exclusively deductive enterprise. If logic is understood as an exclusively 

deductive enterprise, then there cannot be a logic of discovery, since knowledge ampliation 

requires non-deductive reasoning. Indeed, deductive rules are usually regarded as non-

ampliative, because the conclusion is contained in the premises, while non-deductive rules 

are usually regarded as ampliative, because the conclusion is not contained in the premises.6 

However, that there cannot be a deductive logic of discovery does not mean that there 

cannot be any logic of discovery. Indeed, logic does not need to be an exclusively deductive 

enterprise.7 According to the analytic view, there can be a logic of discovery, but such logic 

cannot be exclusively deductive.  

 

1.2. The Analytic Method as a Heuristic Method 

That according to the analytic view there can be a logic of discovery, but such logic 

cannot be exclusively deductive, implies that the analytic method is not an algorithmic 

 

6 The claim that in deduction the conclusion is contained in the premises has to be understood as 

meaning that the conclusion either is literally a part of the premises or implies nothing that is not 

already implied by the premises. The claim that deduction is non-ampliative has been disputed 

by some philosophers. For example, Dummett famously objects that, if deductive rules were 

non-ampliative, then, “as soon as we had acknowledged the truth of the axioms of a mathematical 

theory, we should thereby know all the theorems. Obviously, this is nonsense” (Dummett 1991, 

p. 195). On this issue, which cannot be treated here for reason of space, and for a possible 

rejoinder to Dummett’s objection, see Cellucci 2017, Sect. 12.7, and Sterpetti 2018, Sect. 6. 

7 This view is controversial. For a defense of the claim that a logic of discovery has to be deductive, 

see e.g. Jantzen 2015. 
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method. Methods can indeed be divided into algorithmic and heuristic (Newell, Shaw, 

Simon 1957). An algorithmic method “is a method that guarantees to always produce a 

correct solution to a problem. Conversely, a heuristic method is a method that does not 

guarantee to always produce a correct solution to a problem” (Cellucci 2017, p. 142). 

Algorithmic methods are closely associated with deductive reasoning and can be 

mechanized. Heuristic methods are instead closely associated with ampliative reasoning 

and cannot be mechanized. Algorithmic methods are regarded as closely associated with 

deductive reasoning, because algorithms are deeply related to computation, and 

computation can in a sense be regarded as a special form of deduction. For example, Kripke 

states that “computation is a deductive argument from a finite number of instructions,” 

namely a “special form of mathematical argument” where one “is given a set of 

instructions, and the steps in the computation are supposed to follow – follow deductively 

– from the instructions as given. So a computation is just another mathematical deduction, 

albeit one of a very specialized form” (Kripke 2013, p. 80). Although it is not really 

possible to equate computation with deduction in a strict sense, since despite deductions 

can be regarded as isomorphic to computable functions (see below, Section 2), there are 

computable functions that are not isomorphic to any deduction, and so it cannot be claimed 

that every algorithmic method is deductive in character and, therefore, every algorithmic 

method is non-ampliative, there is in any case a close relation between the non-ampliativity 

of deductive reasoning and the mechanizability of algorithmic methods on the one hand, 

and the ampliativity of non-deductive reasoning and the non-mechanizability of heuristic 

methods on the other hand. Since according to the analytic method, discovery is pursued 

by forming hypotheses through non-deductive inferences, which are ampliative, the 

analytic method is a heuristic method, and so it cannot be mechanized. 

Here some clarifications are in order. Indeed, both deductive and non-deductive 

inference rules can be formalized (Cellucci 2013), and so one might expect that both 

deductive and non-deductive reasoning could be mechanized. But things are more 

complicated. The crucial point is that there is no algorithmic method, i.e. no mechanizable 

method, to choose what inference rule to apply to what premise in order to produce the 

desired conclusion in a given context. For example, Gigerenzer states that although 

algorithms (i.e. formalized rules) for scientific inferences exist, “there is no ‘second-order’ 

algorithm for choosing among them,” but, he continues, despite there is no algorithm for 

choosing among algorithms, “scientists nonetheless do somehow choose, and with 

considerable success” (Gigerenzer 1990, p. 663). How can scientist do that? They “argue 

with one another, offer reasons for” their choices, and “sometimes even persuade one 
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another” (Ibidem). In other words, scientists choose which non-deductive inference rule to 

use in a given context by assessing the plausibility of such choice. This fits well with the 

analytic view, since which rule to use to find a hypothesis to solve a given problem is a 

hypothesis in its turn. So, also the process by which such hypothesis is evaluated has to be 

accounted for in terms of plausibility. And indeed, as Gigerenzer says, scientists provide 

and assess reasons for and against each hypothesis about which rule to use, i.e. they assess 

its plausibility. Gigerenzer says also that there is no algorithm for deciding what inference 

rule to use. This amounts to say that the process by which plausibility is assessed, i.e. the 

process by which reasons for and against a given hypothesis are evaluated, cannot be 

reduced to computation (more on this below). And this is true even for deductive reasoning. 

Indeed, even if a mathematical proof consists exclusively of deductions, there is no 

algorithm to automatically find out the ‘correct’ inferential path from a given set of 

premises to the desired conclusion, namely an algorithm to decide what deductive inference 

rule to apply to what premise and in what order. So, one should say that, in the strict sense, 

both deductive and non-deductive reasoning cannot be mechanized (Cellucci 2013).  

But, it might nevertheless be objected that in the case of deductive reasoning there is at 

least an algorithm, i.e. a mechanizable procedure, for enumerating all deductions from 

given premises. By means of the so-called British Museum algorithm (Newell, Shaw, 

Simon 1957), one can deduce all possible consequences from a given set of premises. One 

can apply, for instance, Modus Ponens to all premises and derive all two-steps conclusions 

that are so derivable. Then, one can apply Modus Ponens to the set of two-steps conclusions 

previously derived and derive all three-steps conclusions that are so derivable, and so on. 

Thus, one might be confident that if the conclusion one wishes to reach is deductively 

derivable from a given set of premises, the desired conclusion will sooner or later be 

derived by such algorithm. So, one might claim that, despite there is no algorithmic method 

to prove that a given statement C can be deduced from a given set of premises P, deducing 

consequences from P and checking whether C is among such consequences is in principle 

a mechanizable enterprise. Thus, although deduction is not mechanizable in the strict sense, 

it can be conceded to computationalists that deduction can in a sense be mechanized, 

because an algorithm can, at least in principle, be developed to derive all deducible 

conclusions from given premises. 

On the contrary, despite non-deductive inferences rules can be formalized as well as 

deductive rules, there is no algorithm for enumerating all the consequences that can be 

derived by means of non-deductive inference rules from a given set of premises. Non-

deductive inference rules are ampliative, and it is ampliativity that makes a difference with 
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regard to mechanizability. Indeed, if one has to mechanize an inferential process, the 

conclusion needs to be uniquely determined by its premises (Cellucci 2011). If it were 

otherwise, a mechanical procedure would be unable to decide what conclusion should be 

derived from a given premise. Analogously, when one deals with algorithms, each step 

needs to be determined by the previous one. In deductive inferences, conclusions are 

uniquely determined by premises. If, for instance, one applies the rule ‘Modus Ponens’ to 

premises ‘A → B’ and ‘A’, conclusion cannot but be ‘B’. This is one of the reasons why 

many computer scientists regard computation as deeply related to deduction. Hayes and 

Kowalski, for example, define computation as ‘controlled deduction’ (Hayes 1973; 

Kowalski 1979). Computer programs are indeed algorithms, and algorithms are deeply 

related to computation. In order to develop algorithms that perform in predictable ways, 

computer programs need to be made of predictable elementary computation steps, i.e. steps 

whose effects are predictable. For example, Pereira states that a computation is a sequence 

of “atomic computing actions [...]. Without predictability of the effects of sequences of 

elementary actions, the art of programming as we know it would be impossible, as would 

the art of painting if pigments changed their colors randomly under the brush” (Wos et al. 

1985, p. 9). If elementary computation steps are made of deductions, programs are 

predictable, since, as noted, in deduction conclusion is uniquely determined by premises. 

This explains why algorithmic methods, although they are not necessarily deductive in 

character, are usually regarded as closely associated with deductive reasoning.  

But when one deals with non-deductive inference rules, which are ampliative rules, 

conclusions are generally not uniquely determined by premises. From the very same 

premise, different (and possibly incompatible) conclusions can be inferred by means of the 

same non-deductive inference rule. Consider induction. From the (true) premise ‘all 

emeralds examined so far are green’, at least two different and incompatible conclusions 

can be inductively inferred, namely ‘all emeralds are green’ and ‘all emeralds so far 

examined are green, but all emeralds that will subsequently be examined will be blue’ 

(Goodman 1983, Chap. 3; Cellucci 2011). The fact that when one deals with non-deductive 

inferences, conclusions are generally not uniquely determined by premises, makes heuristic 

methods, which rest on non-deductive inferences, non-mechanizable. Since conclusion is 

not uniquely determined by premises, in order to decide which is the conclusion that one 

has to draw from a given set of premises, one has to assess the plausibility of each possible 

conclusion. As stated, the process by which plausibility is assessed, i.e. the process by 

which reasons for and against a given hypothesis are evaluated, cannot be reduced to 

computation (more on this below). Therefore, the process of plausibility assessment cannot 
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be made algorithmic. Since heuristic methods are based on non-deductive inferences, 

which in their turns are based on the process of plausibility assessment; and since the 

process of plausibility assessment cannot be made algorithmic, heuristic methods cannot 

be made algorithmic, i.e. they cannot really be mechanized. 

Moreover, as research develops, new inference rules might always be added to the set 

of non-deductive inference rules that we use to find hypotheses, and so new conclusions, 

which previously were underivable from a given set of premises, might eventually become 

derivable from that very same set of premises by means of such new rules. Again, there is 

no algorithm to foresee what non-deductive inference rules will be added. As Bacon states, 

“the art of discovery may grow with discoveries” (Bacon 1961–1986, I, p. 223). 

Since, contrary to deductive inferences, in the case of non-deductive inferences 

conclusions are not uniquely determined by premises and new rules might always be added, 

when one is dealing with non-deductive reasoning, there is no algorithm, not even in 

principle, to derive all possible consequences from given premises and check whether the 

desired conclusion is among them. Thus, in a sense, it can be said that non-deductive 

reasoning is non-mechanizable in an even stricter sense than deductive reasoning.8  

Finally, it must be taken into consideration that deduction is usually regarded as truth-

preserving, so that if premises are true, conclusion needs to be true. On the contrary, non-

deductive inferences are usually regarded as non-truth-preserving, so that even if premises 

are true, conclusion might be false. So, when it is said that there is an algorithmic method 

to solve a given problem, it can safely be inferred that there is a solution to that problem 

and that that solution is ‘correct’, at least in the sense that it is true, provided that premises 

are true. On the contrary, when it is said that there is a heuristic method to solve a given 

problem, it cannot safely be inferred that the solution will be the ‘correct’ one, since non-

deductive inference rules are not truth-preserving, and so conclusion might be false despite 

premises are true.  

It should now be clearer why when it comes to discovery, one usually deals with 

heuristic methods. As already said, while deduction is non-ampliative, non-deductive 

inferences are ampliative. Since discovery is related to knowledge ampliation, it is an 

 

8 On this sort of asymmetry between deductive and non-deductive reasoning with respect to 

mechanizability, cf. Cellucci 2017, p. 306: “there is no algorithm for discovering hypotheses, 

and hence for obtaining the solution [of a given mathematical problem] by analysis, while [...] 

there is an algorithm for enumerating all deductions from given axioms, and hence for obtaining 

the solution [of that problem] by synthesis.” 
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ampliative enterprise. So, usually it cannot be carried on by means of algorithmic methods, 

which usually rest on deduction, which is non-ampliative. Rather, discovery must be 

carried on by means of heuristic methods, since they rest on non-deductive inferences to 

extend our knowledge. And since non-deductive reasoning is ampliative but it cannot be 

mechanized, heuristic methods are ampliative, but they cannot be mechanized either.  

To recapitulate, algorithmic methods are methods by means of which it is possible to 

uniquely and automatically determine the solution of a problem. They are closely 

associated with deductive reasoning, because in deduction conclusion is uniquely 

determined by premises, and so deduction can be automated. Nevertheless, algorithmic 

methods need not to be deductive in character. There can well be algorithmic methods that 

are non-deductive in character. Consider the British Museum algorithm illustrated above. 

This algorithm is not deductive in character, despite it generates nothing but deductions. 

Nevertheless, it is able to uniquely and automatically determine the solution of a problem, 

i.e. it is an algorithmic method. Indeed, the British Museum algorithm can be mechanized, 

since it rests on deduction in order to solve a problem, and in deduction conclusion is 

uniquely determined by premises. Deduction can thus be automated. So, the British 

Museum algorithm, although it is not deductive in character, can be automated as well. 

Consider also “Baconian” induction, which is a kind of induction in which conclusion can 

be uniquely determined by given premises, and which can therefore be mechanized. This 

kind of inference is studied, for instance, by Inductive Logic Programming (Muggleton, 

De Raedt 1994). Nevertheless, this kind of “mechanical induction is an extremely limited 

one and in a sense can be reduced to deduction, so it is not really ampliative and hence is 

generally inadequate for discovery” (Cellucci 2013, p. 160). So, despite it cannot be 

claimed that algorithmic methods are deductive in character, it is fair to say that usually in 

non-deductive inferences conclusion is not uniquely determined by premises, and this 

makes those inferences non-mechanizable. So, those methods that rely on non-deductive 

inferences to solve a problem are usually non-mechanizable methods, i.e. they are heuristic 

methods. This is why algorithmic methods are usually closely associated with deductive 

reasoning, while heuristic methods are usually closely associated with ampliative 

reasoning. 

According to the analytic view, the axiomatic method is inadequate to explain 

advancement in mathematics and natural sciences precisely because, since it conceives of 

logic as an exclusively deductive enterprise, and deduction is non-ampliative, the axiomatic 
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method is unable to account for the process of hypotheses production.9 This means that the 

axiomatic method cannot improve our understanding of how we acquire new mathematical 

knowledge. From an epistemological point of view, it is disappointing that the alleged 

method of mathematics is unable to say anything relevant about how new mathematical 

knowledge is acquired. In the light of the axiomatic method, knowledge ampliation remains 

a mystery. On the contrary, in the analytic view the path that has been followed to reach a 

result and solve a problem is not occulted, since in this view the context of discovery is not 

divorced from the context of justification. For instance, an analytic demonstration consists 

in a non-deductive derivation of a hypothesis from a problem and possibly other data, 

where the hypothesis is a sufficient condition for the solution of the problem, and is 

plausible (Cellucci 2017, Chap. 21). 

It is important to underline that the analytic method involves both deductive and non-

deductive reasoning. Indeed, to find a hypothesis we proceed from the problem by 

performing ampliative inferences, and then in order to assess the plausibility of such 

hypothesis we deduce conclusions from it. But the role that deduction plays in the analytic 

view is not the exclusive role that deduction is supposed to play in the axiomatic view. 

According to the analytic view, axioms are not the source of mathematical knowledge, and 

we shouldn’t overestimate their role, which is limited to give us the possibility of 

presenting, for didactic or rhetorical purposes, some body of already acquired knowledge 

in deductive form. Axioms do not enjoy any temporal or conceptual priority in the 

development of mathematical knowledge, nor do they play any special epistemological 

role. As Hamming states, if “the Pythagorean theorem were found to not follow from 

postulates, we would again search for a way to alter the postulates until it was true. Euclid’s 

postulates came from the Pythagorean theorem, not the other way” (Hamming 1980, p. 87).  

Finally, it is worth noting that the concept of plausibility has not to be confused with 

the concept of probability. As Kant points out, “plausibility is concerned with whether, in 

the cognition, there are more grounds for the thing than against it” (Kant 1992, p. 331), 

while probability measures the relation between the winning cases and possible cases. 

Plausibility involves a comparison between the arguments for and the arguments against, 

so it is not a mathematical concept. Conversely, probability is a mathematical concept (see 

Cellucci 2013, Sect. 4.4). It may be objected that, although probability and plausibility 

 

9 This view can, at least in part, be traced back to Lakatos 1976, where Lakatos, by relying on the 

work of Pólya, strongly criticized the occultation of the heuristic steps that are crucial to the 

development of mathematics.  
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appear to be distinct concepts, we may account for plausibility-based considerations in 

terms of probability, because plausibility obeys the law of probability (Pólya 1941). But 

this objection is inadequate. To see that plausibility is not equivalent to probability, 

consider that, since probability is “a fraction whose numerator is the number of favorable 

cases and whose denominator is the number of all the cases possible” (Laplace 1951, p. 7), 

in order to effectively calculate the probability of a given hypothesis h, we have to know 

the denominator, i.e. the number of all the cases possible. But in many cases, we do not 

know (and perhaps we cannot even know) the number of all the cases possible. Thus, if 

plausibility were to be understood in terms of probability, we should not be able to evaluate 

the plausibility of all those hypotheses for which we are unable to determine in advance the 

set of all the possible rival alternatives. But, scientist routinely evaluate the plausibility of 

that kind of hypotheses, so it cannot be the case that probability is equivalent to 

plausibility.10  

That plausibility is not a mathematical concept and cannot be reduced to probability is 

crucial. Indeed, this implies that plausibility assessment cannot be reduced to computation 

and so made algorithmic. Thus, computer machines cannot perform plausibility 

assessment. Since plausibility assessment is central to the analytic method, that computer 

machines cannot perform plausibility assessment means that if the analytic method is the 

method by which scientific discovery is pursued, contrary to what computationalists claim, 

scientific discovery cannot be automated. 

 

1.3. The Analytic View and the Automation of Science 

There are three main arguments against the claim that science can be automated. The 

first one is that since there is no logic of discovery, machines cannot be programmed to 

make genuine discoveries. To face this argument, computationalists should prove that there 

is in fact an algorithmic method for discovery. Many computationalists attempt to do this, 

i.e. to provide evidences that programs do make scientific discoveries (see e.g. King et al. 

2009; Colton 2002). But to prove that machines made genuine scientific discoveries that 

are able to extend our knowledge is not an easy task, since, as this chapter tries to clarify, 

knowledge cannot really be extended by exclusively computational means.11 The second 

 

10 For an extensive treatment of this issue, see Cellucci 2013, Sect. 20.4; Sterpetti, Bertolaso 2018. 

11 I cannot analyse here the discoveries allegedly made by computer programs. This is a topic for 

future research. Briefly, the main questions one has to address when dealing with this issue are: 

(1) whether hypotheses are really produced by programs, since often either a set of hypotheses 
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argument against the claim that science can be automated is that, since human minds 

outstrip Turing Machines, machines cannot equate human computational performances, 

and so discovery will remain a human enterprise. To face this argument, computationalists 

need to show that some of its assumptions is unjustified. In Section 3, I deal with this 

argument and illustrate how difficult might be to defend some of its assumptions. The third 

argument against the claim that science can be automated is that there is a logic of 

discovery, but this logic is not exclusively deductive. According to this line of reasoning, 

the method of mathematics and science is the analytic method, and this implies that 

machines cannot implement it, because it is not an algorithmic method, i.e. it is not 

mechanizable. Thus, neither mathematics nor natural sciences can be automated. My claim 

is that this last argument is the most difficult one for the computationalists to refute, since 

it represents the most serious theoretical objection to the claim that science can be 

automated. Indeed, if one maintains the axiomatic view, as the supporters of the first two 

arguments against the claim that science can be automated usually do, it is likely that 

computationalists will find a way to defend their position, because the axiomatic method is 

deductive in character, and thus every instance of it can be mechanized, at least in principle. 

So, if one adopts the axiomatic view, one can hardly find out a truly compelling theoretical 

reason to support the claim that science cannot be automated. 

 

 

2. Proofs and Programs 

 

To allow my argument to take off the ground, it is important to clarify the connection 

between computer science and mathematics, better the connection between the claim that 

scientific discovery can be automated and the idea that mathematics is theorem proving.12 

Indeed, those who think that the method of mathematics is the axiomatic method, usually 

also think that mathematics is theorem proving (Cellucci 2017, Chap. 20). According to 

them, mathematicians start from a set of axioms and deduce theorems from them. On the 

 
or a set of heuristic strategies to routinely produce hypotheses from given inputs are already 

present in the so-called background knowledge of programs (see e.g. Marcus 2018); (2) whether 

programs can only produce results that can be obtained through a merely exploratory search of 

a well-defined space of possibilities, or they are also able to make innovative discoveries, i.e. 

discoveries that originate from the formulation of new concepts, i.e. concepts that cannot easily 

be derived from current ones and modify the very space of possibilities (see e.g. Wiggins 2006). 

12  On whether mathematics is theorem proving or problem solving, see Cellucci 2017, Chap. 20. 
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contrary, according to those who think that mathematics is problem solving, 

mathematicians analyze a problem and then try to infer, from the problem and other 

relevant available knowledge, a hypothesis that is able to solve it. As Mäenpää states, with 

his Grundlagen der Geometrie, Hilbert “reduced geometry to theorem proving” (Mäenpää 

1997, p. 210). Then, “Hilbert’s model has spread throughout mathematics” in the XX 

century, “reducing it to theorem proving. Problem solving, which was the primary concern 

of Greek mathematicians, has been ruled out” (Ibidem). I argue that mathematics is not 

theorem proving, because this view is unable to account for how mathematical knowledge 

is ampliated. For example, when Cantor demonstrated that to every transfinite cardinal 

there exist still greater cardinals, “he did not deduce this result from truths already known 

[…] because it could not be demonstrated within the bounds of traditional mathematics. 

Demonstrating it required formulating new concepts and new hypotheses about them” 

(Cellucci 2017, p. 310). So, mathematical knowledge cannot really be extended by 

exclusively deductive means. Mathematics is thus better conceived of as problem solving, 

since this view allows us to appreciate the role played by ampliative reasoning in finding 

hypotheses to solve problems. But if mathematics is not theorem proving, the axiomatic 

view is inadequate as a view of the method of mathematics, and so it cannot be claimed 

that science can be automated. To see why this may be the case, we need firstly to consider 

the relation between computer programs and mathematical proofs. Indeed, by the Curry-

Howard isomorphism, we know that there is a deep relation between computer programs 

and mathematical proofs.  

The Curry-Howard isomorphism establishes a correspondence between systems of 

formal logic as encountered in proof theory and computational calculi as found in type 

theory (Sørensen, Urzyczyn 2006, p. v; Prawitz 2008). Proof theory is focused on formal 

proof systems. It was developed in order to turn “the concept of specifically mathematical 

proof itself into an object of investigation” (Hilbert 1970, p. 12). The λ-calculus was 

originally proposed as a foundation of mathematics around 1930 by Church and Curry, but 

it was a “somewhat obscure formalism until the 1960s,” when its “relation to programming 

languages was [...] clarified” (Alama, Korbmacher 2018, Sect. 3). The λ-calculus is a model 

of computation. It was introduced few years before another model of computation was 

introduced, namely Turing Machines. In the latter model, “computation is expressed by 

reading from and writing to a tape, and performing actions depending on the contents of 

the tape” (Sørensen, Urzyczyn 2006, p. 1). Turing Machines resemble “programs in 

imperative programming languages, like Java or C” (Ibidem). In contrast, in λ-calculus one 

is concerned with functions, and “these may both take other functions as arguments, and 
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return functions as results. In programming terms, λ-calculus is an extremely simple higher-

order, functional programming language” (Ibidem). So, with the invention of computer 

machines, the λ-calculus proved to be a useful tool in designing and implementing 

programming languages. For instance, the λ-calculus can be regarded as an idealized 

sublanguage of some programming languages like LISP.  

Proof theory and the λ-calculus finally met, since Curry and Howard realized that the 

programming language was a logic, and that the logic was a programming language. In 

1934, Curry firstly observed that every type of a mathematical function (A → B) can be 

read as a logical proposition (A ⊃ B), and that under this reading the type of any given 

function always corresponds to a provable proposition. Conversely, for every provable 

proposition there is a function with the corresponding type (Curry 1934). In later years, 

Curry extended the correspondence to include terms and proofs (Wadler 2015). In 1969, 

Howard circulated a manuscript, unpublished until 1980, where he showed that an 

analogous correspondence obtains between Gentzen’s natural deduction and simply-typed 

λ-calculus (Howard 1980). In that paper, Howard made also explicit the deepest level of 

the correspondence between logic and programs, namely that simplification of proofs 

corresponds to evaluation of programs. This means that for each way to simplify a proof 

there is a corresponding way to evaluate a program, and vice versa (Wadler 2015). 

The Curry-Howard isomorphism is based on the so-called ‘propositions-as-sets’ 

principle. In this perspective, a proposition is thought of as its set of proofs. Truth of a 

proposition corresponds to the non-emptiness of the set. To illustrate this point, we will 

stick to an example made by Dybjer and Palmgren (2016). Consider a set Em,n, depending 

on m, n ∈ ℕ, which is defined by: 

 

𝐸𝑚,𝑛 =  {
{0}   𝑖𝑓 𝑚 = 𝑛
  ∅     𝑖𝑓 𝑚 ≠ 𝑛

  

 

Em,n is nonempty when m = n. The set Em,n corresponds to the proposition m = n, and 

the number 0 is a proof-object inhabiting the sets Em,n. Consider now the proposition: m is 

an even number, expressed as the formula ∃𝑛 ∈ ℕ. m = 2n. A set of proof-objects can be 

built which corresponds to this formula by using the general set-theoretic sum operation. 

Suppose that An (𝑛 ∈ ℕ) is a family of sets. Then its disjoint sum is given by the set of pairs  

 

(Σ𝑛 ∈ ℕ) An =  {(n, a) : 𝑛 ∈ ℕ, a ∈ An }. 
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If we apply this construction to the family An = Em,2n we can see that (Σ𝑛 ∈ ℕ)Em,2 is 

nonempty when there is an 𝑛 ∈ ℕ with m = 2n. By using the general set-theoretic product 

operation (Π𝑛 ∈ ℕ)An we can similarly obtain a set corresponding to a universally 

quantified proposition. 

So, in this context proofs of A ⊃ B are understood as “functions from (proofs of) A to 

(proofs of) B and A ⊃ B itself the set of such functions” (von Plato 2018, Sect. 6). If we 

take, for instance, “f : A ⊃ B and a : A, then functional application gives f(a) : B. The 

reverse, corresponding to the introduction of an implication, is captured by the principle of 

functional abstraction of [...] Church’s λ-calculus” (Ibidem). As von Plato states, the Curry-

Howard isomorphism made intuitionistic natural deduction crucial to computer science. 

Indeed, the Curry-Howard isomorphism “gives a computational semantics for intuitionistic 

logic in which computations, and the executions of programs more generally, are effected 

through normalization” (Ibidem). A proof of an implication A ⊃ B, for instance, is a 

“program that converts data of type A into an output of type B. The construction of an object 

(proof, function, program) f of the type A ⊃ B ends with an abstraction” (Ibidem). When 

an object a of type A is put into f as an argument, the resulting expression is not normal, 

“but has a form that corresponds to an introduction followed by an elimination. 

Normalization now is the same as the execution of the program f” (Ibidem).  

For the aim of this chapter, the relevance of the Curry-Howard isomorphism lies in that 

it shows that computer programs are strictly equivalent to formalized mathematical proofs. 

Indeed, we have that for each proof of a given proposition, there is a program of the 

corresponding type, and vice versa. But the correspondence is even deeper, in that for each 

way to simplify a proof there is a corresponding way to evaluate a program, and vice versa. 

This means that “we have not merely a shallow bijection between propositions and types, 

but a true isomorphism preserving the deep structure of proofs and programs” (Wadler 

2015, p. 75). In other words, we can understand programs as proofs and proofs as programs. 

Why the fact that programs are proofs is relevant to the discussion of the claim that 

science can be automated? Because to claim that science can be automated amounts to 

claim that computer machines are able to contribute to knowledge ampliation. Now, if one 

wishes to claim that machines are able to contribute to knowledge ampliation, and programs 

are equivalent to mathematical proofs, and mathematical proofs are chains of deductions 

from given axioms, then one needs to claim that mathematical knowledge can be ampliated 

by means of deductions from given axioms, or by means that can be shown to be equivalent 

to deduction. And this amounts to claim that the method by which mathematical knowledge 

is ampliated is the axiomatic method. More generally, to claim that machines are able to 
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contribute to knowledge ampliation amounts to claim that the process of knowledge 

ampliation can be entirely reduced to computation, i.e. that it is possible to account for the 

process of knowledge ampliation in exclusively computational terms. Indeed, if according 

to the axiomatic view, mathematical proofs are crucial to the ampliation of mathematical 

knowledge, and mathematical proofs are equivalent to programs, so that proofs can be 

mechanized, the process of knowledge ampliation can be accounted for in computational 

terms, i.e. it can be reduced to computation. In other words, if one wishes to claim that 

machines are able to contribute to knowledge ampliation, one commits oneself to the claim 

that the axiomatic view is an adequate view of how knowledge is extended. So, the claim 

that scientific knowledge can be extended by computer machines is equivalent to the claim 

that the method of mathematics is the axiomatic method and mathematical knowledge can 

be extended by means of that method. This implies that confuting the claim that 

mathematical knowledge can be extended by the axiomatic method is equivalent to 

confuting the claim that science can be automated. This is why I focus here on the issue of 

the method of mathematics in order to assess the claim that scientific discovery can be 

automated. 

 

 

3. Mathematical Knowledge 

 

In order to support the claim that, since the analytic method is the method of mathematics, 

neither mathematics nor natural sciences can be automated, in this section I illustrate one 

of the main reasons that can be provided to show that the axiomatic view is inadequate as 

a view of the method of mathematics.  

According to the traditional view of mathematics, mathematical knowledge is acquired 

by exclusively deductive means, namely by deductive proofs from previously acquired 

mathematical truths. For example, Prawitz states that “mathematics [...] is essentially a 

deductive science, which is to say that it is by deductive proofs that mathematical 

knowledge is obtained” (Prawitz 2014, p. 78). This view gives raise to several problems, 

but here I focus on the problem of accounting for how we acquired the initial body of 

mathematical truths from which mathematics originated. More precisely, I argue that since 

the axiomatic method is unable to account for how we acquired the initial body of 

mathematical truths from which mathematics originated, the axiomatic view is unable to 

secure the epistemic superiority of mathematical knowledge over scientific knowledge and 

provide a secure foundation to mathematics, and that this fact undermines one of the main 
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reasons for why the axiomatic view was so appealing to many philosophers in the first 

place. 

 

3.1. Mathematical Starting Points 

The problem of accounting for how we acquired the initial body of mathematical truths 

from which mathematics originated is deeply related to the issue of whether mathematics 

is distinct from other sciences. Indeed, the degree of certainty of mathematical knowledge 

is usually thought to be higher than that of scientific knowledge. Still today, mathematics 

is regarded as “the paradigm of certain and final knowledge” (Feferman 1998, p. 77) by 

most mathematicians and philosophers. According to many mathematicians and 

philosophers, the degree of certainty that mathematics is able to provide is one of its 

qualifying features. For example, Byers states that the certainty of mathematics is “different 

from the certainty one finds in other fields [...]. Mathematical truth has [...] [the] quality of 

inexorability. This is its essence” (Byers 2007, p. 328). The higher degree of certainty and 

justification displayed by mathematical knowledge is usually supposed to be due to the 

method of mathematics, which is commonly taken to be the axiomatic method. In this view, 

the method of mathematics differs from the method of investigation in the natural sciences: 

whereas “the latter acquire general knowledge using inductive methods, mathematical 

knowledge appears to be acquired [...] by deduction from basic principles” (Horsten 2015). 

So, it is the deductive character of mathematical demonstrations that confers its 

characteristic certainty to mathematical knowledge, since demonstrative “reasoning is safe, 

beyond controversy, and final” (Pólya 1954, I, p. v), precisely because it is deductive in 

character. 

Now, a deductive proof “yields categorical knowledge [i.e. knowledge which is 

independent of any particular assumptions] only if it proceeds from a secure starting point 

and if the rules of inference are truth-preserving” (Baker 2016, Sect. 2.2). Let us concede, 

for the sake of the argument, that it can safely be asserted that deduction is truth-preserving, 

and so that if premises are true, conclusion needs to be true.13 Then, if one embraces the 

axiomatic view, to prove that it is true that mathematical knowledge displays a higher 

degree of justification because of its deductive character, one has to prove that the 

mathematical starting points of mathematical reasoning, i.e. axioms, are known by some 

means that guarantees a degree of justification higher than the degree of justification 

 

13 For a defense of the claim that the axiomatic view is inadequate also because there is no non-

circular way of proving that deduction is truth-preserving, see Cellucci 2006. 
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provided by the means by which in the natural sciences the non-mathematical starting 

points of inductive inferences are known. Otherwise, the claim that mathematics is 

epistemically superior to natural sciences would be ungrounded. Indeed, according to the 

axiomatic method, mathematical knowledge is extended by deductions. So, the certainty of 

mathematical results depends on whether the axioms from which they are derived are 

known to be true with certainty. Mathematical results derived from axioms can in their turn 

become starting points for other deductions, and so on. At any stage of this process of 

ampliation of mathematical knowledge, the newly obtained results will be as certain as the 

initial starting points, since deduction is truth-preserving. This point has been clearly 

illustrated by Williamson:  

 

At any given time, the mathematical community has a body of knowledge, including both 

theorems and methods of proof. Mathematicians expand mathematical knowledge by 

recursively applying it to itself [...]. Of course, present mathematical knowledge itself grew 

out of a smaller body of past mathematical knowledge by the same process. Since present 

mathematical knowledge is presumably finite, if one traces the process back far enough, one 

eventually reaches ‘first principles’ of some sort that did not become mathematical 

knowledge in that way. (Williamson 2016, p. 243). 

 

The difficult question is: How such ‘first principles’ became mathematical knowledge? 

There is no clear and undisputed answer to this question. And yet answering to this question 

it is crucial, since the epistemic status of mathematical knowledge depends on the epistemic 

status of those first principles. 

The problem is that the axiomatic view is unable to account for how such ‘first 

principles’ became mathematical knowledge, nor is it able to justify their alleged epistemic 

superiority. Indeed, if mathematical knowledge is knowledge of the most certain kind, and 

the method of mathematics is the axiomatic method, in order to claim that knowledge 

produced by that method is certain, the starting points by which such knowledge is derived 

have to be known to be true with certainty. In an axiomatic context, this amounts to claim 

that one can know with certainty that the axioms that constitute our mathematical starting 

points are consistent. But, it is almost uncontroversial that it is generally impossible to 

mathematically prove that  axioms are consistent, because of Gödel’s results. Indeed, as 

already noted, by Gödel’s second incompleteness theorem, for any consistent, sufficiently 

strong deductive theory T, the sentence expressing the consistency of T is undemonstrable 

in T. So, according to many philosophers, there must be some other way to know with 

certainty that those axioms which constitute our mathematical starting points are consistent, 
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otherwise the claim that mathematical knowledge displays an epistemic status which is 

superior to that of scientific knowledge cannot be justified.  

This issue deserves a careful examination, since it is related to an important discussion 

on the philosophical consequences of Gödel’s results which took place in the last decades, 

namely the discussion on whether Gödel’s results imply that CTM is untenable (Horsten, 

Welch 2016; Raatikainen 2005). That discussion is useful to illustrate how even those 

philosophers who reject the idea that mathematical reasoning can be automated, failed to 

recognize the inadequacy of the axiomatic view, and so were led astray in their attempts to 

argue against the computationalist perspective.  

 

3.2. Gödel’s Disjunction 

Gödel regarded it as clear that the incompleteness of mathematics demonstrated that 

mathematical reasoning cannot be mechanized. In his view, it “is not possible to mechanize 

mathematical reasoning, i.e., it will never be possible to replace the mathematician by a 

machine, even if you confine yourself to number-theoretic problems” (Gödel *193?, p. 

164). In order to support his view, Gödel famously formulated the so-called Gödel’s 

Disjunction (GD), according to which either the human mathematical mind cannot be 

captured by an algorithm, or there are absolutely undecidable problems of a certain kind. 

More precisely, he states that “either [...] the human mind [...] infinitely surpasses the 

powers of any finite machine, or else there exist absolutely unsolvable diophantine 

problems” (Gödel 1951, p. 310), where ‘absolutely’ means that those problems would be 

undecidable, “not just within some particular axiomatic system, but by any mathematical 

proof that the human mind can conceive” (Ibidem). In other words, either absolute 

provability outstrips all forms of relative provability or there are absolutely undecidable 

sentences of arithmetic. That there are absolutely undecidable sentences implies that the 

mathematical world “is independent of human reason, insofar as there are mathematical 

truths that lie outside the scope of human reason” (Koellner 2016, p. 148). So, GD can be 

rephrased as follows. At least one of these claims must hold: either minds outstrip machines 

or mathematical truth outstrips human reason. 

A crucial notion in Gödel’s argument against the claim that minds are equivalent to 

machines is the notion of ‘absolute provability’. Relative provability is mechanizable, since 

it is provability within some particular axiomatic (i.e. formal) system, and any axiomatic 

system can be represented by a Turing Machine, i.e. it can be represented by an algorithm. 

The problem is that by Gödel’s first incompleteness theorem, for any sufficiently strong 

axiomatic system F, there are statements which are undecidable within F, i.e. they can 



PENULTIMATE DRAFT – PLEASE CITE THE PUBLISHED VERSION   

To appear in: A Critical Reflection on Automated Science, Bertolaso, M., Sterpetti, F. (eds.), Springer. 

 

23 

  

neither be proved nor disproved in F. Gödel shows how the issue of the decidability of 

statements in an axiomatic system F, is equivalent to the issue of the solvability of a certain 

kind of problems in arithmetic, namely diophantine problems. So, the argument goes, if 

there are absolutely undecidable sentences in mathematics, i.e. sentences that cannot be 

decided algorithmically, and if the human mind is equivalent to a Turing Machine, i.e. it is 

able to decide only algorithmically decidable sentences, then there are mathematical truths 

that cannot be known by human minds (Horsten, Welch 2016). 

Why did Gödel focus on diophantine problems? Because in order to support his idea 

that mathematical reasoning cannot be mechanized, Gödel aimed to show that, despite 

some portions of mathematics can be completely formalized, the all of  mathematics cannot 

be formalized. He was thus interested in finding the smallest portion of mathematics which 

cannot be formalized (Gödel *193?), and diophantine problems are among core problems 

in number theory. Moreover, the tenth problem in the famous list of Hilbert asked for “a 

procedure which in a finite number of steps could test a given (polynomial) diophantine 

equation for solvability in integers,” and it “is easy to see that it is equivalent to ask for a 

test for solvability in natural numbers” (Davis 1995, p. 159). Gödel’s result on the 

unsolvability of certain diophantine problems was not able to prove that Hilbert’s tenth 

problem is unsolvable. Nevertheless, the relation that Gödel highlighted between a set 

being computable and the solvability of a diophantine equation is deeply related to the 

hypothesis that Hilbert’s tenth problem is unsolvable, since to prove that Hilbert’s tenth 

problem is unsolvable amounts to show that “every recursively enumerable [...] relation is 

diophantine, or, equivalently, that every primitive recursive relation is diophantine” 

(Ibidem), as Matiyasevič proved in 1970 (Matiyasevič 2003).  

To better see the relationship between absolutely unsolvable diophantine problems and 

the issue of whether human minds are equivalent to Turing Machines, consider that Gödel 

subscribes to the iterative conception of sets. According to this conception, in order to 

construct ever larger sets, one begins with the integers and iterate the power-set operation 

through the finite ordinals. This iteration “is an instance of a general procedure for 

obtaining sets from a set A and well-ordering R” (Boolos 1995, p. 291). Axioms can be 

formulated to describe the sets formed at various stages of this process, but “as there is no 

end to the sequence of operations to which this iterative procedure can be applied, there is 

none to the formation of axioms” (Ibidem). Gödel observes that higher-level set-theoretic 

axioms will entail the solution of certain problems of inferior level left undecided by the 

preceding axioms; those problems take a particularly simple form, namely to determine the 
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truth or falsity of some diophantine propositions. Diophantine propositions are sentences 

of the form:  

 

(∀𝑥1, . . . , 𝑥𝑛 ∈ ℤ )(∃𝑦1, . . . , 𝑦𝑚 ∈ ℤ)𝑝(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) = 0 

 

where p is a diophantine polynomial, i.e. a polynomial with integer coefficients.  

Now, it can be proved that the question of whether a given Turing Machine produces a 

certain string as an output is equivalent to the question of whether a certain diophantine 

proposition P is true: the decision problem for diophantine propositions is essentially the 

decision problem for Turing Machines, under another description (Leach-Krouse 2016). 

Along this line of reasoning, Gödel proves that Gödel’s first theorem “is equivalent to the 

fact that there exists no finite procedure for the systematic decision of all diophantine 

problems” (Gödel 1951, p. 308). Thus, the decision problem for diophantine propositions 

is absolutely unsolvable, i.e. it is impossible to find a mechanical procedure for deciding 

every diophantine proposition.  

Now, recall that according to GD, either the human mind surpasses the powers of any 

finite machine, or else there exist absolutely unsolvable diophantine problems. We have 

seen that there are absolutely unsolvable diophantine problems. Does this mean that Gödel 

endorses the second disjunct of GD? The answer is in the negative. 

In Gödel’s view, that there is an algorithmically unsolvable decision problem for 

diophantine propositions does not mean that the answer to the question about whether there 

are diophantine unsolvable problems has to be in the affirmative. According to Gödel, it is 

true that we have “found a problem which is absolutely unsolvable [...]. But this is not a 

problem in the form of a question with an answer Yes or No, but rather something similar 

to squaring the circle with compass and ruler” (Gödel *193?, p. 175). Gödel’s idea is that 

the decision problem for diophantine propositions is undecidable because “the problem of 

finding a mechanical procedure restricts the types of possible solutions, just as the problem 

of squaring the circle with compass and straightedge restricts possible solutions” (Leach-

Krouse 2016, p. 224). In Gödel’s view, mechanical solutions aren’t the only intelligible 

solutions that can be offered to mathematical problems. In other words, Gödel believes that 

it is possible to decide diophantine propositions in some non-mechanical way. Indeed, 

Gödel credits Turing with having established beyond any doubt that the recursive functions 

are exactly the functions that can actually be computed. So, Gödel accepted the Church-

Turing thesis. But Gödel understood the thesis as stating that the “recursive functions are 
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exactly the mechanically computable functions, not the functions computable by a humanly 

executable method” (Ibidem).  

Why Gödel thinks that some mathematical problems are solvable even if there are no 

mechanical solutions to such problems? One of the reasons is that Gödel thinks “in a 

somewhat Kantian way that human reason would be fatally irrational if it would ask 

questions it could not answer (Raatikainen 2005, p. 525). It is because he subscribes to this 

kind of ‘rational optimist’ (Shapiro 2016) that Gödel rejects the second disjunct of GD, i.e. 

that there are absolutely unsolvable problems in mathematics. Gödel shares Hilbert’s belief 

that “for any precisely formulated mathematical question a unique answer can be found” 

(Gödel *193?, p. 164), and so that there cannot be absolutely unsolvable problems in 

mathematics. Hilbert was “so firm in this belief that he even thought a mathematical proof 

could be given for it, at least in the domain of number theory” (Ibidem). A mathematical 

proof of Hilbert’s idea that there aren’t absolutely unsolvable problems in mathematics can 

be understood as the proof of the following statement (H): given “an arbitrary mathematical 

proposition A there exists a proof either for A or for not-A, where by ‘proof’ is meant 

something which starts from evident axioms and proceeds by evident inferences” (Ibidem). 

But “formulated in this way the problem is not accessible for mathematical treatment 

because it involves the non-mathematical notion of evidence” (Ibidem), where ‘evidence’ 

can be understood as ‘justification’. But if one tries to reduce this informal notion of proof 

to a formal one, so that it can be accessible for mathematical treatment, then it comes out 

that it is not possible to prove (H), because, as Gödel himself proved, it is impossible to 

prove that there are not unsolvable mathematical problems, i.e. it is impossible to prove 

that for any mathematical proposition A there exists a proof either for A or for not-A. 

According to Gödel, this negative result can have two different meanings: “(1) it may mean 

that the problem in its original formulation has a negative answer, or (2) it may mean that 

through the transition from evidence to formalism something was lost” (Ibidem). In his 

view, it “is easily seen that actually the second is the case” (Ibidem). 

Why Gödel thinks that (2) is more plausible than (1)? Because according to him, “the 

number-theoretic questions which are undecidable in a given formalism are always 

decidable by evident inferences not expressible in the given formalism” (Ibidem). In other 

words, undecidability results are a reflection of the inadequacy of our current axioms. But 

new and better axioms can always be produced in order to ask questions left unanswered, 

because, as noted above, there is no limit to the process of axioms formation. It is for this 

reason that in Gödel’s view, questions which are undecidable in a given formalism are 

always decidable by evident inferences not expressible in the given formalism. For 
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example, consider Peano Arithmetic (PA). According to Gödel, if one climbs the hierarchy 

of types, the axiom system for second order arithmetic PA2 decides the statement left 

undecided at the lower level, namely the consistency of PA, i.e. Con(PA). Now one has to 

prove Con(PA2). But, for Gödel’s second incompleteness theorem, PA2 does not decide 

Con(PA2). However, the axiom system for third-order arithmetic PA3 settles the statement 

left undecided at the lower level, namely Con(PA2). And so on. Thus, in Gödel’s view, 

questions which are undecidable in a given formalism are always decidable by evident 

inferences not expressible in the given formalism. This can be done by introducing new 

and more powerful axioms and by working with such a more powerful formalism.14 What 

about the ‘evidence’ of those new ‘evident inferences’? According to Gödel, those new 

evident inferences “turn out to be exactly as evident as those of the given formalism” 

(Gödel *193?, p. 164).  

But this view is unsatisfactory, since it does not answer the very question we started 

with: How is it that the axioms of a given formalism are justified? If more powerful axioms 

can always be formed from inferior axioms, and if those more powerful axioms are as 

justified as the less powerful axioms from which they are derived, it is crucial to know to 

what extent initial axioms are justified. It cannot simply be answered that to prove what is 

not provable in a given formalism, one can always resort to some stronger axioms, which 

are as justified as the weaker axioms, because unless initial weaker axioms are known to 

be true with certainty, the fact that stronger axioms are as justified as weaker ones does not 

tell anything about the degree of certainty to which stronger axioms are justified. To prove 

something is to provide justification for something. If to prove something in system A, one 

has to rely on axioms of system A′, which are stronger than axioms of system A, and so on, 

then a regression is lurking.  

 

3.3. Intrinsic and Extrinsic Justification 

So, we need to focus again on the following question: How can mathematical starting 

points be justified? According to Gödel, axioms can be justified either intrinsically or 

extrinsically. Axioms that are intrinsically justified are those “new axioms which only 

 

14 In fact, things are more complicated. When one climbs the hierarchy of sets, the stronger axioms 

that become available lead to “more intractable instances of undecidable sentences” (Koellner 

2011, Sect. 1). For example, at the third infinite level one can formulate Cantor’s Continuum 

Hypothesis. These instances of independence “are more intractable in that no simple iteration of 

the hierarchy of types leads to their resolution” (Ibidem). I will not address this issue here. 
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unfold the content of the [iterative] concept of set” (Gödel 1964, p. 261). On the contrary, 

axioms are extrinsically justified if even “disregarding the intrinsic necessity of some new 

axiom, and even in case it has no intrinsic necessity at all, a probable decision about its 

truth is possible also in another way, namely, inductively by studying its ‘success’” 

(Ibidem), where by ‘success’ Gödel means ‘fruitfulness in consequences’ (Koellner 2014, 

Sect. 1.4.2). Both these accounts of how axioms can be justified are unsatisfactory. 

As regard intrinsic justification, according to Gödel by “focusing more sharply on the 

concepts concerned” (Gödel *1961/?, p. 383) one clarifies the meaning of those concepts. 

By such procedure, “new axioms, which do not follow by formal logic from those 

previously established, again and again become evident” (Ibidem, p. 385). In Gödel’s view, 

this explain why minds and machines are not equivalent, since “it is just this becoming 

evident of more and more new axioms on the basis of the meaning of the primitive notions 

that a machine cannot imitate” (Ibidem). But it is not easy to determine with certainty 

whether a new axiom is merely the unfolding of the content of the iterative concept of set, 

which is supposed to be sufficiently evident and unambiguous to be easily graspable by 

human minds. For example, against the widespread idea that the more familiar axioms of 

Zermelo-Fraenkel set theory with the axiom of Choice (ZFC) follow directly from the 

iterative conception of set, i.e. that they are intrinsically justified, while other stronger 

axioms, such as e.g. large cardinal axioms, are only supported by extrinsic justification, 

Maddy writes that even “the most cursory look at the particular axioms of ZFC will reveal 

that the line between intrinsic and extrinsic justification, vague as it might be, does not fall 

neatly between ZFC and the rest” (Maddy 1988, p. 483). According to Maddy, that the 

more familiar axioms of ZFC are “commonly enshrined in the opening pages of 

mathematics texts should be viewed as an historical accident, not a sign of their privileged 

epistemological or metaphysical status” (Ibidem).  

Besides the difficulty of demarcating intrinsic justification from extrinsic justification, 

there is also the difficulty of adjudicating between different possible but incompatible 

intrinsic justifications. For example, Cellucci criticizes Gödel’s idea that we can extend our 

knowledge of the concepts of set theory by focusing more sharply on the concept of set as 

follows: 

 

Suppose that, by focusing more sharply on the concept of set Σ, we get an intuition of that 

concept. Let S be a formal system for set theory, whose axioms this intuition ensures us to 

be true of Σ. So Σ is a model of S, hence S is consistent. Then, by Gödel’s first incompleteness 

theorem, there is a sentence A of S which is true of Σ but is unprovable in S. Since A is 

unprovable in S, the formal system S′ = S ∪ {¬A} is consistent, and hence has a model, say 
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Σ′. Then ¬A is true of Σ′ and hence A is false of Σ′. Now, Σ and Σ′ are both models of S, but 

A is true of Σ and false of Σ′, so Σ and Σ′ are not equivalent. Suppose next that, by focusing 

more sharply on the concept of set Σ′, we get an intuition of this concept. Then we have two 

different intuitions, one ensuring us that Σ is the concept of set, and the other ensuring us that 

Σ′ is the concept of set, where the sentence A is true of Σ and false of Σ′. This raises the 

question: Which of Σ and Σ′ is the genuine concept of set? Gödel’s procedure gives no answer 

to this question. (Cellucci 2017, p. 255). 

 

This scenario cannot be easily dismissed, because Gödel does not require intuition to be 

infallible (Williamson 2016), so we cannot exclude that we can find ourselves in the 

situation described above, where we have two different and incompatible intuitions of the 

concept of set, one ensuring us that Σ is the concept of set, and the other ensuring us that 

Σ′ is the concept of set. More generally, although it is often claimed that “axioms do not 

admit further justification since they are self-evident” (Koellner 2011, Sect. 1), it is very 

difficult to neatly distinguish what is self-evident and what is not. Indeed, “there is wide 

disagreement in the foundations of mathematics as to which statements are self-evident” 

(Koellner 2014, Sect. 1.4.1).15 As Hellman and Bell write, contrary to the “popular 

(mis)conception of mathematics as a cut-and-dried body of universally agreed-on truths 

and methods, as soon as one examines the foundations of mathematics, one encounters 

divergences of viewpoint […] that can easily remind one of religious, schismatic 

controversy” (Bell, Hellman 2006, p. 64). 

Moreover, one should also keep in mind that “even such distinguished logicians as 

Frege, Curry, Church, Quine, Rosser and Martin-Löf have seriously proposed 

mathematical theories that have later turned out to be inconsistent” (Raatikainen 2005, p. 

523). As Davis states, in all those cases insight “didn’t help” (Davis 1990, p. 660). 

Finally, by Gödel’s results we know that we cannot define once and for all a set of 

axioms, and then try to justify those axioms by claiming that they are self-evident because 

they are so simple and elementary that they cannot fail to appear as self-evident to anyone. 

Rather, we know that we will always need to introduce new ever stronger axioms. And 

those axioms are increasingly less simple than the simple ones we started with. So, even if 

one concedes, for the sake of the argument, that simplest axioms might appear as self-

evident to the majority of mathematicians, the fact that we need to introduce new stronger 

axioms raises the question of how one is to justify these new axioms, for “as one continues 

to add stronger and stronger axioms the claim that they are [...] self-evident [...] will grow 

 

15 On disagreement in mathematics, see Sterpetti 2018. 
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increasingly more difficult to defend” (Koellner 2011, Sect. 1), since it is usually perceived 

that the more one moves along the hierarchy of sets, the less axioms are self-evident, and 

rather they become increasingly disputable. 

As regard extrinsic justification, Gödel famously writes that:  

 

There might exist axioms so abundant in their verifiable consequences, shedding so much 

light upon a whole field, and yielding such powerful methods for solving problems [...] that, 

no matter whether or not they are intrinsically necessary, they would have to be accepted at 

least in the same sense as any well-established physical theory. (Gödel 1964, p. 261). 

 

Now, the problem is that this kind of justification makes mathematical knowledge on a 

par with scientific knowledge with respect to epistemic justification. In other words, this 

kind of justification of the axioms is unable to support the claim that mathematical 

knowledge is epistemically superior to scientific knowledge because it is deductively 

derived from premises which are certain. For example, Davis states that in this perspective 

new “axioms are just as problematical as new physical theories, and their eventual 

acceptance is on similar grounds” (Davis 1990, p. 660). But if mathematical starting points 

are justified because of their consequences, things do not go in the way predicted by the 

axiomatic view. Rather, things go the other way around. It is no more the case that 

conclusions are justified because they are deductively inferred from premises which are 

certain, rather premises are regarded as justified because it is possible to derive from them 

consequences which have so far proved  interesting or useful. This kind of reasoning is not 

deductive in character, rather it is inductive, and so it seems inadequate to support the 

axiomatic view of the method of mathematics and the alleged epistemic superiority of 

mathematical knowledge over scientific knowledge.  

Moreover, extrinsic justification makes mathematics susceptible to those criticisms that 

are usually reserved to natural sciences. For example, it might be objected that even if 

consequences derived from some new axiom A are useful and interesting, and no 

contradiction has so far been derived from A, one cannot know that things will continue 

this way. A contradiction may always emerge, unless A is known to be true with certainty. 

If we do not know A to be true with certain in advance, how can we know that a 

contradiction will not be derived from A within one hundred years? So, if mathematics is 

extrinsically justified, i.e. it is inductively justified, the justification of mathematical 

knowledge is prone to the same challenges to which the justification of scientific 

knowledge is prone.  
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3.4. Lucas’ and Penrose’s Arguments 

The fact that there is no way to show that the all of mathematics can be derived from 

some self-evident axioms or by merely elaborating on the concept of set, and so that 

mathematics can be intrinsically justified, implies that the axiomatic view is unable to 

support the claim that mathematical knowledge is epistemically superior to scientific 

knowledge. It also implies that the ‘inductive challenge’ just illustrated can be moved 

against those who wish to support the claim that scientific discovery cannot be mechanized 

because humans outstrip machines, if they maintain the axiomatic view of mathematics. 

To see this point, consider Lucas’ (1961) and Penrose’s (1989) arguments in support of 

the first disjunct of GD, i.e. the claim that minds outstrip machines, and so mathematics 

cannot be mechanized. It is worth noting that Gödel did not think that either one of the 

disjuncts of GD could be established solely by appeal to the incompleteness theorems. He 

thought instead that the disjunction as a whole, i.e. GD, was a “mathematically established 

fact” (Gödel 1951, p. 310), and that it was implied by his incompleteness theorems. In 

contrast, Lucas and Penrose argued that the incompleteness theorems imply the first 

disjunct of GD, i.e. the claim that minds outstrip machines (Koellner 2016). 

According to Lucas (1961), while any recursively enumerable system F can never prove 

its Gödel sentence G, i.e. the sentence saying of itself that it is not provable in F, human 

minds can know that G is true. In this view, G is absolutely provable, although it is not 

provable in F. According to Lucas this shows that minds outstrip machines. However, in 

order to draw such conclusion, one needs to assume that human minds can know that F is 

consistent, i.e. that it is absolutely provable that F is consistent. Indeed, to claim that G is 

absolutely provable amounts to claim that the consistency of the axioms of F is absolutely 

provable. It is worth recalling that we refer here to ‘absolute provability’, because it is 

instead algorithmically provable that the consistency of the axioms of F is not provable in 

F, because of Gödel’s second incompleteness theorem. 

To see why for Lucas’ argument to work one needs to assume that it is absolutely 

provable that F is consistent, recall that Gödel’s second incompleteness theorem has a 

conditional form (Raatikainen 2005). Indeed, Gödel showed that for any sufficiently strong 

formal theory F, if F is consistent, a sentence G in the language of F, which is equivalent 

in F to the sentence expressing the consistency of F, cannot be proved in F. Thus, if F 

proves only true sentences, i.e. it is consistent, then G cannot be proved in F. 

But how can one support the claim that it is absolutely provable that F is consistent? 

Penrose, following Lucas, claims that although G is unprovable in F, we can always ‘see’ 

that G is true by means of the following argument. If G is provable in F, then G is false, 
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but that is impossible, because our formal system “should not be so badly constructed that 

it actually allows false propositions to be proved!” (Penrose 1989, p. 140). If it is impossible 

to prove G in F, then G is unprovable, and therefore it is true.  

So, again, in order to ‘see’ the truth of G one has to be able to ‘see’ the consistency of 

the axioms of F, i.e. that it is not possible to derive contradictions from the axioms of our 

formal system. As Davis states, in this view if some form of “insight is involved, it must 

be in convincing oneself that the given axioms are indeed consistent, since otherwise we 

will have no reason to believe that the Gödel sentence [i.e. G] is true.” (Davis 1990, p. 660). 

In this line of reasoning, to ‘see’ the consistency of the axioms of F is thus precisely what 

humans can do, but machines cannot. Thus, humans must be able to see the consistency of 

axioms in some non-algorithmic way. This means that for Lucas’ and Penrose’s arguments 

to work, one should be able account for how it is possible to see the consistency of axioms 

in some non-algorithmic way. If it cannot be proved that human minds are able to know 

with certainty that the axioms of F are consistent in some non-algorithmic way, Lucas’ and 

Penrose’s argument would amount to a merely conditional statement asserting that ‘the 

Gödel sentence of F, i.e. G, is true, if F is consistent’. But this conditional statement is 

provable in F, and therefore to claim that humans can see the truth of such conditional 

statement is not sufficient for establishing the first disjunct of GD, i.e. the claim that minds 

outstrip machines.  

Now, neither Lucas nor Penrose give us an adequate and detailed account of what it is 

a non-algorithmic way of proving the consistency of the axioms of F. For instance, they do 

not provide any account of how it is that a human brain can ‘see’ the consistency of the 

axioms of F which may be compatible with what we know about human cognitive 

abilities.16 They simply assume that it is evident that (at least some portion of) mathematics 

is consistent, since no falsities can be derived in it. But, as we already noted, even if one 

concedes, for the sake of the argument, that there are certain limited formal theories of 

which the set of provable sentences can be seen to contain no falsehoods, such as e.g. Peano 

Arithmetic (PA); and even if one concedes, for the sake of the argument, that the Gödel 

sentence for PA is true and unprovable in PA, this does not amount to concede “that we 

can see the truth of Gödel sentences for more powerful theories such as ZF set theory, in 

which almost the whole of mathematics can be represented” (Boolos 1990, p. 655). Such 

an ‘extrapolation’ is ungrounded, and neither Lucas nor Penrose give us compelling reason 

to think that instead we should rely on it. Rather we have reason to be skeptical about such 

 

16 On this issue, see Sterpetti 2018. 
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an extrapolation. Indeed, in the absence of an adequate justification of the certainty by 

which we are supposed to know the consistency of the axioms of F, a sort of pessimistic 

meta-induction over the history of mathematics can be raised, which is analogous to the 

one raised by Laudan (1981) over the history of science. If, as already noted, distinguished 

logicians as Frege, Curry, Church, Quine, Rosser and Martin-Löf have proposed 

mathematical theories that have later turned out to be inconsistent, how can we be sure that 

our ‘seeing’ that F is consistent is reliable? Consider Zermelo-Fraenkel set theory, ZF. 

According to Boolos, there is no way to be certain that “we are not in the same situation 

vis-a-vis ZF that Frege was in with respect to naive set theory [...] before receiving, in June 

1902, the famous letter from Russell, showing the derivability in his system of Russell’s 

paradox” (Boolos 1990, p. 655).  

It should now be clearer why if one does not have a compelling justification for the 

claim that the axioms of F are consistent, then mathematical knowledge cannot be claimed 

to be epistemically superior to scientific knowledge. As Boolos says, are “we really so 

certain that there isn’t some million-page derivation of ‘0 = 1’ that will be discovered some 

two hundred years from now? Do we know that we are really better off than Frege in May 

1902?” (Ibidem).  

 

3.5. Lucas’s and Penrose’s Arguments and the Axiomatic View 

The discussion above shows that those who support the idea that minds are not 

equivalent to machines along the lines of Lucas and Penrose fail because, even if they wish 

to show that mathematical reasoning, and scientific discovery more generally, cannot be 

reduced to mechanical computation, their view of the method of mathematics is basically 

equivalent to the axiomatic view, according to which to do mathematics is to provide 

axiomatic proofs, i.e. to deductively prove theorems. This is the reason why they are 

committed to show that human minds can somehow ‘see’ something which is 

uncomputable by machines, i.e. something that cannot be deductively derived by machines. 

Their formalist and foundationalist approach to knowledge and mathematics leads them to 

think that in order to show that mathematical knowledge cannot be mechanized, it should 

be proved that humans can realize the axiomatic ideal that it has been proved machines 

cannot realize. But they do not really put into question the axiomatic view of mathematics. 

The problem is that if one claims that the method of mathematics is the axiomatic method, 

which relies exclusively on deductive inferences, since, as noted above in Section 1, in 

deduction conclusions are uniquely determined by premises, so that deduction can be made 

algorithmic and thus mechanized, it is then difficult for one to justify the claim that 
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mathematical knowledge cannot be mechanized. So, one of the reasons why Lucas’ and 

Penrose’s arguments fail is that they both remain within the boundary of the traditional 

view of mathematics, according to which we “begin with self-evident truths, called 

‘axioms’, and proceed by self-evidently valid steps, to all of our mathematical knowledge” 

(Shapiro 2016, p. 197). 

I think that the failure of Lucas’ and Penrose’s attempts invites us to rethink such a 

conception of the method of mathematics. Their failure does not show that minds are 

equivalent to machines, because it cannot really be proved that minds make computations 

that machines cannot make. Rather, their failure suggests that their view of the method of 

mathematics is inadequate, since it is unable to account for why it is that minds and 

machines are not equivalent. Since we have good reason to think that it is not so easy to 

prove that minds are equivalent to machines, if assuming the traditional view of 

mathematics is an impediment in showing why this is the case, we should reject such view 

of the method of mathematics and search for another view of mathematics that allows us 

to adequately account for that fact. In my view, such a different view of mathematics is 

already available, and it is the analytic view. 

What good reason do we have to think that it is not so easy to prove that minds are 

equivalent to machines? If minds were equivalent to machines, we would expect 

mathematical knowledge be advanced by deductions from given axioms. But the axiomatic 

view is challenged by the actual development of mathematics. Basically, mathematical 

knowledge is not advanced exclusively by means of deductions from given axioms. For 

example, Portoraro states that mathematicians “combine induction heuristics with 

deductive techniques when attacking a problem. The former helps them guide the proof-

finding effort while the latter allows them to close proof gaps” (Portoraro 2019, Section 

4.8). Shapiro writes that the standard way to establish new theorems is “to embed them in 

a much richer structure, and take advantage of the newer, more powerful expressive [...] 

resources. The spectacular resolution of Fermat’s theorem, via elliptical function theory, is 

not atypical in this respect” (Shapiro 2016, p. 197–198). This ‘holistic’ epistemology of 

mathematics is compatible with the analytic view of the method of mathematics.17 Indeed, 

in this view, we do not solve problems because we are able to derive the solution from a 

fixed set of axioms known to be consistent from the start, rather mathematical knowledge 

is ampliated by formulating new and richer hypotheses, which need not necessarily be new 

 

17 For an account of the resolution of Fermat’s Last Theorem inspired by the analytic view, see 

Cellucci 2017, Sect. 12.13. 
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axioms, and which can lead to the solution of the problems we are dealing with. So, it is 

not the case that complex mathematical problems are solved by starting from simple and 

consistent axioms. Rather, it is the case that some aspects of mathematics are illuminated 

by expanding our theoretical resources, i.e. by creating new and more complex 

mathematics, which can shed light on the mathematical problems that arise at a ‘lower’ 

level of complexity and give raise to new problems to be solved.  

It is important to stress that if one conceives of how mathematics advances in this way, 

one can more clearly see why mathematical reasoning cannot be mechanized. Basically, 

machines are fixed devices, which need to be built to produce desired outputs. In order to 

do that, one needs to know in advance almost everything about the problem the machine 

will be asked to solve. On the contrary, when we humans try to extend our knowledge, we 

do not know in advance what we will have to face, what shape the space of possibilities 

may have (Sterpetti, Bertolaso 2018). So, it is quite difficult to program a machine to make 

discoveries in the same way it happens to us humans to make discoveries. Since we do not 

know in advance how mathematical knowledge will be developed, we do not know how to 

program a machine that can really advance mathematical knowledge on its own. For 

example, Shapiro states that since “we do not know, in advance, just what rich theories we 

will need to prove future theorems about the natural numbers, we are not in a position to 

say what” the available theoretical resources are if we try to deal with issues such as 

whether “there are arithmetic sentences unknowable in principle” (Shapiro 2016, p. 198). 

The point is that while a Turing Machine has to have a fixed alphabet, a single language, 

and a fixed program for operating with that language, real “mathematicians do not have 

that. There is no fixed language, no fixed set of expressive resources, and there is no fixed 

set of axioms, once and for all, that we operate from” (Ibidem).  

It is because the axiomatic view is unable to satisfactorily account for how knowledge 

is ampliated that I think that there are good reasons to think that it is not easy to prove that 

machines are equivalent to minds. I claimed that the analytic view is instead able to provide 

a more satisfactory account of how knowledge is ampliated. But the analytic view does that 

at a cost. According to the analytic view, knowledge is advanced by non-deductive means. 

Non-deductive inferences rest on plausibility assessment. Plausibility is not a mathematical 

concept, so plausibility assessment cannot be reduced to computation, i.e. it cannot be 

mechanized. This implies that discovery cannot be mechanized and that there is no 

epistemic difference between scientific knowledge and mathematical knowledge. So, 

according to the analytic view minds are not equivalent to machines independently from 

whether machines and minds can make the same computations. The axiomatic view and 
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computationalism fall together. And the alleged epistemic superiority of mathematics falls 

as well. In this perspective, “there is no difference in kind between a mathematical proof, 

an entrenched scientific thesis, and a well-confirmed working hypothesis. Those are more 

matters of degree. In principle, nothing is unassailable in principle” (Ibidem).  

 

3.6. Absolute Provability and the Axiomatic View 

We have seen that it is not easy to claim that minds outstrip machines and that 

mathematics is epistemically superior to natural sciences, because it is not easy to adopt 

the axiomatic view and defend the claim that axioms are known to be consistent. Someone 

might try to rescue the axiomatic view and Gödel’s and Hilbert’s belief that “for any 

precisely formulated mathematical question a unique answer can be found,” by both (1) 

defending the claim that the all of mathematical knowledge is absolutely provable and (2) 

weakening the claim that mathematics is epistemically superior to natural sciences. The 

problem is that this strategy to rescue the axiomatic view leads to the explicit acceptance 

of the claim that minds are equivalent to machines. So, there is a sort of dilemma here: 

either one accepts CTM in order to rescue the axiomatic view, or one rejects the axiomatic 

view in order to defend the claim that minds are not equivalent to machines. 

For example, Williamson (2016) elaborates on Gödel’s view in order to shed light on 

the concept of absolute provability. He suggests applying the term ‘normal mathematical 

process’ to all “those ways in which our mathematical knowledge can grow. Normal 

mathematical processes include both the recursive self-application of pre-existing 

mathematical knowledge and the means, whatever they were, by which first principles of 

[...] mathematics originally became mathematical knowledge” (Williamson 2016, p. 243). 

In this view, a mathematical hypothesis is “absolutely provable if and only if it can in 

principle be known by a normal mathematical process” (Ibidem). So far, so good. If one 

follows Williamson’s argument, one can reach the conclusion that “every true formula of 

mathematics is absolutely provable, and every false formula is absolutely refutable” 

(Ibidem, p. 248). The problem is precisely that there is no satisfactory account of the means 

by which first principles of mathematics originally became mathematical knowledge. So, 

Williamson is not able to provide a justification of the claim that mathematical starting 

points became mathematical knowledge in a way which makes them epistemically superior 

to scientific knowledge, nor is he interested in providing such a justification, since he 

rejects the thesis that mathematical knowledge is certain in a way which is intrinsically 

different from the way in which scientific knowledge is certain. According to Williamson, 

that all arithmetical truths are absolute provable, “does not imply that human [...] minds 
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can somehow do more than machines” (Ibidem). It merely means that for “every 

arithmetical truth A, it is possible for a finitely minded creature [...] to prove A” (Ibidem). 

But there is nothing in this view that excludes the hypothesis that “for every arithmetical 

truth A, some implementation of a Turing machine can prove A” (Ibidem). Rather, in this 

view “the implementation of the Turing machine is required to come to know A by a normal 

mathematical process, and so to be minded” (Ibidem), precisely because Williamson 

conceives of mathematical reasoning exclusively in terms of computability. As we noted, 

if all of mathematical reasoning is accounted for in terms of computational activity, no 

room is left in this view for plausibility assessment, i.e. for non-deductive inferences and 

for those heuristic methods that rest on such inferences, since plausibility assessment 

cannot be reduced to computation. This means that, in this view, the method of mathematics 

is the axiomatic method, which rests exclusively on deduction. As already noted, deduction 

can be regarded as reducible to computational activity. This seems to imply that in this 

view, the axiomatic method is an algorithmic method and can therefore be mechanized. So, 

in Williamson’s view, there is no radical difference between machines and minds. If it is 

true that we know that no “possible implementation of a Turing machine can prove all 

arithmetical truths” (Ibidem), we got no reason to support the claim that finitely minded 

creatures like us can instead prove all arithmetical truths. Thus, minds do not outstrip 

machines.  

Why Williamson rejects the idea that mathematical knowledge is more certain than 

scientific knowledge? Precisely because there is no satisfactory way to support such a claim 

of superiority, and so he thinks that such claim should be rejected. The point is that there 

is no way to convincingly argue for the epistemic superiority of mathematical starting 

points. According to Williamson, for anyone who objects that his approach is unable to 

guarantee the mathematical certainty of the new stronger axioms that we need to introduce 

to prove statements left unsettled by weaker axioms, the “challenge is to explain the nature 

of this ‘mathematical certainty’ we are supposed actually to have for the current axioms, 

but lack for the new one” (Ibidem, p. 251).  

To recapitulate, Williamson’s view is unable to support the claim that mathematical 

knowledge is epistemically superior to scientific knowledge, because although Williamson 

conceives of mathematical reasoning in terms of computability, i.e. almost exclusively in 

deductive terms, he, unlike Gödel, does not believe that there is a way to prove that 

mathematical starting points are true which is distinct from the way by which scientific 

hypotheses are known to be true. And it is because of the supposed computational character 

of mathematical reasoning that in this view machines and minds are equivalent. 
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Williamson’s view is thus unable to support the claim that machines and minds are not 

equivalent because, as Lucas’ and Penrose’s, it endorses the axiomatic view of 

mathematics, according to which to do mathematics is to make deductions from given 

axioms. Since deductive reasoning can, at least in a non-strict sense, be mechanized, in this 

view it cannot be adequately supported the claim that machines are not equivalent to human 

minds. 

 

3.7. The Debate on Gödel’s Disjunction and the Axiomatic View 

The debate just illustrated can be summarized by describing it in a dilemmatic form: 

either (1) mathematics is epistemically superior to natural sciences, and so there must be a 

way to prove the consistency of axioms by some non-mechanical means, and this implies 

that human minds outstrip machines (Lucas’ and Penrose’s arguments), so that discovery 

cannot be automated; or (2) mathematics is not epistemically superior to natural sciences, 

and so there is no way to prove the consistency of axioms by some non-mechanical means, 

and this implies that human minds do not outstrip machines (Williamson’s argument), so 

that it cannot be excluded that discovery can be automated. 

I wish to stress again that what is taken for granted by both those who argue for (1) and 

those who argue for (2) is the axiomatic view, according to which mathematical knowledge 

is advanced by purely deductive means. In this perspective, whether minds and machines 

are equivalent depends on whether they are able to make the same computations. But this 

means that it has already been accepted that mathematical reasoning can really be reduced 

to computation. 

On the contrary, the analytic view does not have to face this dilemma. Indeed, according 

to the analytic view, mathematics and other sciences share the very same method, namely 

the analytic method, so there is no difference between mathematical knowledge and 

scientific knowledge with respect to epistemic justification. Both mathematics and sciences 

are advanced in the same way, i.e. by forming hypotheses through non-deductive inferences 

that are able (at least provisionally) to solve some given problems. In this view, deductive 

and non-deductive inferences are on a par with respect to their justification. So, the analytic 

view is able to account for the continuity between mathematics and sciences that it asserts 

we should expect, while the axiomatic view is not really able to justify its claim that 

mathematics and sciences display different degrees of epistemic justification. According to 

Cellucci, “the fact that generally there is no rational way of knowing whether primitive 

premises” of axiomatic proofs “are true [...] entails that primitive premises of axiomatic 
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proofs [...] have the same status as hypotheses” (Cellucci 2008, p. 12) in both mathematics 

and natural sciences.  

According to the analytic view, that there is no difference in the epistemic status of 

mathematical and scientific knowledge does not mean that machines are equivalent to 

minds, since in this view mathematical reasoning cannot be reduced to computation. 

Rather, in this view, non-deductive reasoning is essential to the ampliation of mathematical 

knowledge. So, in this view, that machines are not equivalent to minds does not imply that 

minds perform computations that machines cannot perform. In this view, machines are not 

equivalent to minds because non-deductive reasoning is crucial to the ampliation of 

knowledge. Since non-deductive reasoning cannot really be mechanized,18 because it rests 

on the process of plausibility assessment, which cannot be mechanized, machines are 

unable to perform non-deductive reasoning. And it is this fact that implies that 

mathematical knowledge cannot be ampliated by machines alone. 

 

 

4. Conclusions 

 

In this chapter, I showed how the idea that science can be automated is deeply related to 

the idea that the method of mathematics is the axiomatic method, so that confuting the 

claim that mathematical knowledge can be extended by the axiomatic method is almost 

equivalent to confuting the claim that science can be automated. I defended the thesis that, 

since the axiomatic view is inadequate to account for how mathematical knowledge is 

extended, the analytic view should be preferred. To do that, I analysed whether the 

axiomatic view can adequately account for two aspects of its own conception of 

mathematical knowledge, namely (1) how we acquired the initial body of mathematical 

truths from which the all of mathematics is supposed to be originated and (2) the alleged 

epistemic superiority of mathematics over natural sciences. Then, I developed an argument 

that can be summarized as follows. If the method of mathematics and science is the analytic 

method, the advancement of knowledge cannot be mechanized, since ampliative reasoning, 

i.e. non-deductive reasoning, plays a crucial role in the analytic method, and non-deductive 

reasoning cannot be fully mechanized.  

 

18 This claim might appear disputable to those who claim that ampliative reasoning is actually 

performed by machines. As already said, for reason of space, I have to leave the analysis of the 

claim that machines do autonomously perform ampliative reasoning for future work. 
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