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Abstract. Process mining aims to understand the actual behavior and performance
of business processes from event logs recorded by IT systems. A key requirement
is that every event in the log must be associated with a unique case identifier (e.g.,
the order ID in an order-to-cash process). In reality, however, this case ID may not
always be present, especially when logs are acquired from different systems or when
such systems have not been explicitly designed to offer process-tracking capabilities.
Existing techniques for correlating events have worked with assumptions to make
the problem tractable: some assume the generative processes to be acyclic while oth-
ers require heuristic information or user input. In this paper, we lift these assumptions
by presenting a novel technique called EC-SA based on probabilistic optimization.
Given as input a sequence of timestamped events (the log without case IDs) and a
process model describing the underlying business process, our approach returns an
event log in which every event is mapped to a case identifier. The approach minimises
the misalignment between the generated log and the input process model, and the
variance between activity durations across cases. The experiments conducted on a va-
riety of real-life datasets show the advantages of our approach over the state of the art.
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1 Introduction

Recent years have seen a drastically increasing availability of process execution data from
various data sources [16]. Process mining offers different analysis techniques that can help
to extract business insights from these data, known as event logs. To this end, each event
in an log must have at least three attributes [17]: (i) the event class referring to a specific
activity in the process (e.g., “Order checked” or ”Claim assessed”), (ii) the end timestamp
capturing the completion time for that activity, and (iii) the case identifier (e.g., the order
number in an order-to-cash process, or the claim ID in a claims handling process). Data
lake infrastructures, though, often put more emphasis on storing and synchronising data
than on structuring them in a way that process mining can be readily applied [6,11].

Prior research has described the problem of missing case identifiers as a correlation
problem, because the connections between different events has to be reestablished based
on heuristics, domain knowledge or payload data. In essence, the correlation problem is
concerned with identifying which events belong together to the same case when a unique
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Event Id Activity Timestamp

1 A 28.11.2018 13:01:01

2 A 28.11.2018 13:02:02

3 B 28.11.2018 13:05:03

4 B 28.11.2018 13:07:04

5 C 28.11.2018 13:15:05

6 D 28.11.2018 13:30:06

7 A 28.11.2018 13:52:07

8 C 28.11.2018 14:08:08
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Fig. 1: Overview of the EC-SA approach.

case identifier is missing. Existing correlation techniques face the challenge of operating
in a large search space. For this reason, previous proposals have introduced assumptions
to make the problem tractable. Some techniques assume the generative processes to be
acyclic [14,9] while others require heuristic information about the execution behavior of
activities in addition to the process model [7]. Beyond that, performance has been an issue.

In this paper, we address the correlation problem as a multi-level optimization problem.
We propose a novel technique called EC-SA (Events Correlation by Simulated Annealing),
which is based on simulated annealing. As illustrated in Fig. 1, the technique takes as
input a set of uncorrelated events and a (normative or descriptive) process model that
captures knowledge of the underlying business process, and produces an event log as
output. The technique revolves around two nested objectives. First, it seeks to minimize
the misalignment between the generated log and an input process model; second, it seeks
to minimize the activity execution time variance across cases. This latter objective builds
on the assumption that same activities tend to have similar duration across cases.

The remainder of this paper is organized as follows. Section 2 discusses the related
work. Section 3 presents the different phases of our novel EC-SA event correlation
technique. Section 4 then discusses the experimental evaluation on real-life logs before
Section 5 concludes the paper.

2 Related Work

Several techniques have been defined to address the event correlation problem. The fol-
lowing ones correlate the events from the control flow perspective. The greedy approach
in [9] estimates a Markov model for an uncorrelated event log. It does not support cyclic
behavior. It is sensitive to concurrency and the number of overlapping cases at a given
point in time. In [18], the authors provide an approach that uses sequence partition to
search the solution space for the minimal set of patterns that can represent the uncorrelated
event log. The approach does not support cyclic. As an output, it produces the behavioral
patterns of the log. The Correlation Miner (CMiner) approach [14] works in two phases.
The first phase is discovering an acyclic process model from the uncorrelated log using
linear programming. In the second phase, the discovered model is used to correlate the
events by solving quadratic programming constraints. It does not support cyclic models.
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The performance of the approach is highly sensitive to the amount of uncorrelated events
mainly because of the quadratic-constraints based phase. The Deducing Case Ids (DCI)
approach in [7] searches the solution space for the possible correlation between the events,
and prunes the search space based on the given input in terms of the process model and
heuristic data on activity execution behavior. DCI supports the cyclic processes.It is
sensitive to the quality of the input data and not computationally efficient.

Our approach has common factors with CMiner and DCI. The three techniques con-
sider the activity duration to find a solution, and they use the control flow to identify the
correlation between the events.

Two techniques tackle the correlation problem by considering the data perspective
have been devised to date. In [13] the authors address the correlation problem in the web
service environment. Their semi-automated approach correlates events of the service
logs as process views based on a correlation condition using the event data from different
data layers. In [15], the authors address the problem of having the event data stored in
databases. They mine the association and correlation rules over the different attributes in
the database. Then, they measure the support of these rules over the data and use the most
supported rules for correlating the events. They use the MapReduce technique to improve
the performance of applying the correlation constraints.

In summary, these recent techniques make assumptions about process behavior, avail-
able information and size of search space. Our EC-SA technique lifts those assumptions.

3 Event Correlation Technique

We treat the problem of automatically correlating events as a multi-level optimization
problem. Specifically, our technique, EC-SA, is based on population-based simulated
annealing [2]. The technique revolves around two nested objectives: (i) minimizing the
misalignment between the generated event log and the input process model, and (ii) mini-
mizing the activity execution time variance across cases. In order to describe our technique
precisely, we first introduce a number of preliminary concepts.

3.1 Preliminaries

We introduce the basic notions of event, uncorrelated event log, case and projection of
a case over an event attribute. Thereupon, we present the definitions of event log and trace.

An event e is an atomic unit of execution. Events bear attributes. In particular, we
assume the following attributes to be mandatory: activity nameAct (string) and timestamp
Ts (date-time). The value of attribute X on event e shall be denoted as e.X , e.g., e.Ts
refers to the timestamp of e. We assume a total order ď to be defined over the universe of
events. Therefore, we assign to every event a unique integer index (or event id for short),
induced by ď on the events. We shall denote the index i of an event e as a subscript, ei.
We assume the assignment of Ts to be coherent with ď, i.e., if eď e1 then e.Tsď e1.Ts.
In Fig. 1(a), e.g., event e3 is such that e3.Act“B and e3.Ts“28.11.2018 13:05:03.

An uncorrelated event log (or uncorrelated log for short) UL is a finite set of events
with total order ď. Figure 1(a) depicts an uncorrelated event log UL.

A case σ“xeσ1
,...,eσny is a finite sequence of length n of events eσi with 1ď iďn

induced by ď, i.e., such that eσi ď eσk for every iďkďn. We assume every case to be
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assigned a unique case identifier (case id for short), namely an integer in a convex subset.
The value of attributeX over case σ shall be denoted as σ.X . In Fig. 1(c), σ2“xe2,e4,e6y.
We write Lpeq “ σ to indicate that the case of event e in log L is σ. In the example of
Fig. 1(c),Lpe2q“Lpe4q“Lpe6q“σ2.

An event logL“tσ1,...,σnu is a finite non-empty set of non-overlapping cases, i.e.,
if ePσi, then eRσj for all i,j P r1...ns, i‰ j. We denote its cardinality as |L|“N with
Ně1. Figure 1(c) shows an event log consisting of cases σ1, σ2, and σ3. Notice that the
union of all events of every case of a logL, together with the total order defined on them,
is an uncorrelated log. For the sake of conciseness, we denote this totally ordered events
set as ULpLq. A trace t is a projection of a case σ over the activity names: t“Actpσq. In
Fig. 1(c), Actpσ2q“xA,B,Dy.

3.2 The problem

Given an uncorrelated logUL as input (like the one in Fig. 1(a)), the output of EC-SA is an
event logL that partitions UL into a set of cases, i.e., such that for every event ePUL there
exists one and only one case σ PL s.t. e Pσ. Figure 1(c) shows such a log. To derive L
from UL, EC-SA considers as an additional input a process model (e.g., the Workflow net
depicted in Fig. 1(b)), which drives the mapping of events to cases. We assume the process
model to have exactly one start activity (initially, only one activity is enabled) and to
expose terminating conditions (at some stage of the run, no activity is enabled any longer).

3.3 Multi-level optimization

The event correlation problem can be solved by optimization metaheuristic techniques.
EC-SA uses a multi-level simulated annealing as optimization technique. Simulated An-
nealing (SA) is a metaheuristic that searches for the nearest approximate global solution in
the search space of the optimization problem, by simulating the cooling process of metals
through the annealing process. Using SA to solve the event correlation problem helps in
finding a global optimal correlated log in reasonable time.

SA explores the search space through the following steps. It starts by creating the
initial population, as we are using the population-based SA [2]. A population (pop) is a
non-empty set of individuals (|pop|ě1). The population is formed by generating random
individuals. Then SA initializes the current step Scurr“ 1 and the current temperature
with an initial temperature, τcurr“τinit. The annealing process begins with the generation
of a neighbor solution x1 for the current individual x. Next, SA computes the energy
cost function between x and x1, namely δfcpx,x1q. Both δfcpx,x1q and τcurr are used as
input to compute the acceptance probability of the new neighbor solution, which we
denote as probpx1q. probpx1q determines if the new neighbor, x1, can be used as the next
individual. Notice that probpx1qmay select x1 even though it performs worse than x in
order to increase the chances to skip the local optimum and let the algorithm further
explore the search space. At each iteration, SA compares the global optimal solution xG
at step Scurr´1, i.e., the best solution over the iterations r0,Scurrr, with the local optimal
solution xL in pop at Scurr based on δfcpxG,xGq. Thus, SA can return the best solution
over all the iterations. Finally, SA uses a cooling schedule that defines the rate at which
the temperature (τcurr) cools down, and increments Scurr by 1. SA repeats the annealing
and cooling process till Scurr reaches the maximum number of iterations (Smax).
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Fig. 2: The EC-SA technique

SA has a set of parameters that influence the annealing process: (i) the initial tempera-
ture (τinit), (ii) the maximum number of steps (Smax), and (iii) the population size (|pop|).
In addition to these parameters, SA requires the following main functions to be defined:
(i) the creation of a new neighbor (x1), (ii) the energy cost function (δfcpx,x1q), (iii) the
acceptance probability (probpx1q), and (iv) the cooling schedule. We implement those
functions to resolve the event correlation problem. In the rest of this section, we discuss
the SA steps using the defined functions.

The cooling schedule simulates the cooling-down technique of the annealing process
by controlling the computation of the current temperature τcurr. We use the logarithmic
function schedule, as follows: τcurr“ τinit

lnp1`Scurrq
.

Figure 2 shows the steps of EC-SA. Aside of the aforementioned SA-specific param-
eters, it requires as input (i) an uncorrelated event log (e.g., the one depicted in Fig. 1(a))
and (ii) a process model (e.g., the one of Fig. 1(b)). The approach generates a (correlated)
event log as its output (depicted, e.g., in Fig. 1(c)). We discuss the steps in details through
the following subsections.

Creating the initial population. As shown in Fig. 2, the first step is the generation of the
initial population, pop, of size |pop|ě1. An individual represents a possible event log,
such as the one depicted in Fig. 3(a). We use a dedicated data structure for such individuals
that we name log array.

A log arrayLA is an associative array mapping every event to a case. The size of the log
array is |LA|“|UL|. We write LApeq“σ to indicate that event e is mapped to case σ by
log arrayLA. In Figs. 3(a) and 4, the log array elements are labeled with the corresponding
event (e.g., B4 is event e4, where e4.Act“B). The content of each cell is the assigned
case id (e.g., B4 is assigned with case id 2, i.e., LApe4q“σ2). LA is created by replaying
the uncorrelated events on the process model. The replaying step is repeated based on the
population size. In our example, we assume |pop|“1 for readability purposes.

To generate the log array, we replay all events on the process model. Every run from
the initial activity to the termination conditions will correspond to a case. We name the
cases corresponding to non-terminated runs as open cases. We figure three scenarios when
replaying an event e over the input process model:
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1. e corresponds to the execution of the start activity of the process model (we name it
start event); then, a new run starts and a new case is open, accordingly;

2. e corresponds to the execution of an enabled (non-starting) activity on one (or more)
runs (enabled event); then, e is assigned to the case of the run that enables its activity,
or, if more runs enable it, it is assigned randomly to one of those.

3. e does not correspond to any enabled activity (non-enabled event); then, e is assigned
randomly to one of the open cases, although its activity was not enabled. This way, we
guarantee to correlate all the events even when the log has deviated from the model.

The replaying of the uncorrelated events in Fig. 1(a) on the process model in Fig. 1(b)
generates theLA1 individual in Fig. 3(a). In the example, upon e1 we generateσ1, and upon
e2, σ2 starts. Afterwards, there are two open cases within the log before e3: both σ1 and σ2
expect the execution of activity B or activity C. Therefore, e3 can belong to each of those
cases. In Fig. 3(a), e3 is assigned toσ2, as well as e4 and e5. To guarantee the assignment of
all uncorrelated events to some case, we randomly assign the non-enabled events to one of
the open cases. For instance, e6 is a non-enabled event, as both σ1 and σ2 are not expecting
activity D. Thus, e6 is randomly assigned to one of the open cases (σ2, in the example).

Creating a neighbor solution. The fundamental step of exploring the search space in the
simulated annealing technique is creating a new neighbor based on the current solution.
We explore the search space by selecting a changing point in the current individual (x) and
replay the events on the model from that point on in order to find a different solution (x1).
The selection of the changing point is based on the current step (Scurr) to determine from
which part of the LA the change may occur. For instance, when Scurr“1 the changing
point is randomly selected from the beginning of the log, i.e., the first few events. Instead,
when Scurr“Smax´1 the changing point is randomly selected from the end of the log,
i.e., the last few events. The continuous increment of Scurr leads to reducing the number
of events to be replayed at each iteration; this is in line with the cooling down mechanism
of the simulated annealing approach.

Energy cost function. The energy function is a fundamental part of simulated annealing.
As shown in Fig. 2, this function is divided into two components to support a bilevel objec-
tive and solve the correlation problem. The first-level objective (fapxq) aims at minimizing
the misalignment between the output log and the given process model. The second-level
objective (ftpxq) aims at minimizing the activity execution time variance within the log.

To measure the model-log misalignment we use the well-established alignment cost
function proposed in [1]. Figure 3 shows an example of the alignment computation. The
first step is to extract the cases from the log array as shown in Fig. 3(b). Then, we project
the traces from the cases as shown in Fig. 3(c). For each trace within the log, we compute
the raw alignment cost (δAptiq) of the trace w.r.t. the process model. For example, Fig. 3(d)
shows that the model cannot execute activity D in t2, so it is considered as a move in the
log. On the other hand, activity C in t1 is considered as a move in the model as it does not
occur in the trace although the model would require it. The third trace has no deviations.
The raw cost of the log is the summation of the traces’ alignment cost. For instance, the raw
cost of the log array in Fig. 3(a) is fapLA1q“δApt1q`δApt1q`δApt3q“1`1`0“2.

The second objective of EC-SA is to minimize the activity execution time variance.
We assume that the same activities tend to have similar execution duration across cases.
We thus calculate the time variance using the Mean Square Error (MSE) as in Eq. (2).
MSE measures the deviation between the expected activities durations and the correlated



A Probabilistic Approach to Event-Case Correlation for Process Mining 7
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A C

(d) Alignments of each trace

Fig. 3: Alignment computation of LA1

events durations. Given an activity a, we compute the average of the activity durations as
the expected value Timeavgpaq. Given a case σ“xeσ1 ,...,eσny, we compute the Elapsed
Time (ET), i.e., the event duration, of an event eσi Pσ (with 1ď iďn) as follows:

ETpσ,eσiq“

#

eσi .Ts´eσi´1
.Ts if 1ă iďn

0 otherwise
(1)

Recalling that with LApeqwe indicate the case to which e is assigned by log array LA,
the (time-)MSE is computed as follows.

MSEpLAq“
1

|LA|

|LA|
ÿ

i“0

pTimeavgpei.Actq´ETpLApeiq,eiqq
2 (2)

TheMSE is used as the second-level objective function, ft. For example, the average execu-
tion times (in minutes) of each activity in the log array of Fig. 3(a) areTimeavgpBq“2.52,
TimeavgpCq“12.02, and TimeavgpDq“15.02. Considering the expected time values for
each of the events, we have that ftpLA1q“MSEpLA1q“4.1 mins.

Based on the energy function, i.e., on objective functions fa (alignment cost) and ft
(time-MSE), the energy cost function, δfcpx,x1q, is computed as follows.

δfcpx,x
1q“

$

&

%

fapx
1q´fapxq if fapx1qąfapxq

ftpx
1q´ftpxq otherwise.

(3)

probpx1q“exp
´δfcpx,x

1q

τcurr (4)

The acceptance probability, probpx1q, is computed using δfcpx,x1q and the current temper-
ature (τcurr) as shown in Eq. (4). EC-SA compares the value of probpx1qwith a random
value in the interval r0,1s to accept (if higher) or reject (if lower) the new neighbor. In this
way, we simulate the annealing process, enforced by the fact that the decrease of the τcurr
temperature also diminishes the randomness of the choice. Furthermore, notice that the
memory-less stochastic perturbation makes it possible to skip the local optimal.
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Algorithm 1: Selection of the solution for the next iteration
input :Current LogArray x; new neighbor LogArray x1

output :Selected LogArray

1 if fapx1
qď fapxq then return x1 ;

2 else if fapx1
q“ fapxq then

3 if ftpx1
qď ftpxq or probpx1

qěrandomp0,1q then return x1 ;

4 else if fapx1
qą fapxq and probpx1

qěrandomp0,1q then return x1 ;
5 return x

Selection of the next individual. Algorithm 1 shows the full selection procedure of the
individual for the next iteration. Its decision between x and x1 is based on the objective
functions, fa (first-level) and ft (second-level), and probpx1q (perturbation). If the new
neighbor (x1) has a lower alignment cost, then it is selected. If the new neighbor (x1)
and current individual (x) have the same alignment cost, then we check the activity time
variance. We alter the final decision with a random selection weighed by probpx1qwhich,
in turn, is calculated on the basis of the current temperature, τcurr, and δfcpx,x1q. As Eq. (3)
shows, also δfcpx,x1q considers ftpxq and ftpx

1q in this case. On the contrary, if the new
neighbor has a higher alignment cost than the current individual, we calculate δfcpx,x1q
based on fapxq and fapx

1q. The acceptance probability, again, may alter the decision. This
process is repeated for each individual within the population.
Running Example. Figure 4 shows the intermediate results within the EC-SA iterations.
We assume that Smax“4 and τinit“100. Figure 4(a) shows the new individual created
from the initial individualx“LA1. Since fapxq“ fapx

1q and ftpxqă ftpx
1q , then δfcpx,x1q

is computed considering ft. δfcpx,x1q is equal to 0.4. Thus, prob(x1) is calculated on the
basis of τcurr“100 and δfcpx,x1q. Upon the comparison of probpx1q against a random
value in r0,1s, we assume that x1 is selected and replaces x in the population. Figure 4(b)
shows the second iteration, where fapx

1q “ 0 ď fapxq “ 2. Therefore, x1 is directly
selected without computing the acceptance probability as it performs better than the
current individual (x). Figure 4(c) shows the last iteration. The new neighbor achieves
a higher fapx1q“1 than the current individual (fapxq“0). Thus, δfcpx,x1qis computed on
the basis of fa. Based on probpx1q at τcurr“91 and a selection against the random value,
we assume that x1 is rejected and x is kept in the population.

Finally, EC-SA returns the solution that has the best fa and ft over all the iterations,
i.e., the global optimal solution xG till Smax, as shown in Fig. 1(c). Following the EC-SA
steps in Fig. 2, the algorithm proceeds until Scurr“Smax. The replaying of the events
from different changing points in the log over the iterations grows the search space to
explore. Accepting a worse solution than the current solution in some iterations helps to
skip the optimal local solution and reach the optimal global solution.

4 Evaluation

We implemented EC-SA in a freely available prototype tool.3 Using this tool we conducted
two experiments to evaluate the accuracy and time performance of our approach, and
compared the results with the state-of-the-art approach DCI [7].

3 Available at https://github.com/DinaBayomie/EC-SA/releases/tag/v1.0

https://github.com/DinaBayomie/EC-SA/releases/tag/v1.0
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probpx1

q is irrelevant)

A1 A2 B3 B4 C5 D6 A7 C8 𝑓𝑎(𝑥1) = 2  

Case Id 1 2 2 2 2 2 3 3 𝑓𝑡(𝑥1) = 3.1 

A1 A2 B3 B4 C5 D6 A7 C8 𝑓𝑎(𝑥1`) = 2 

Case Id 1 2 1 1 1 1 3 3 𝑓𝑡(𝑥1`) = 3.3 

A1 A2 B3 B4 C5 D6 A7 C8 𝑓𝑎(𝑥1) = 2  

Case Id 1 2 1 1 1 1 3 3 𝑓𝑡(𝑥1) = 3.1 

A1 A2 B3 B4 C5 D6 A7 C8 𝑓𝑎(𝑥1`) = 0 

Case Id 1 2 1 2 1 2 3 3 𝑓𝑡(𝑥1`) = 1.8 

A1 A   2      B3      B4      C5       D6      A7     C8      fa(𝑥) = 0
Case Id 1 2 1 2 1 2 3 3 ft(𝑥) = 2.4

A1 A   2     B3      B4       C5       D6      A7     C8      fa(𝑥') = 1
Case Id 1 2 1 1 1 2 3 3 ft(𝑥') = 4.5

(c) Iteration 3 (Scurr“3, τcurr“91, probpx1
q“0.98)

Fig. 4: EC-SA iterations, with Smax“3 and τinit“100

4.1 Design

Given an event log with correlated events (the “original log”), we removed the case
identifiers and created an uncorrelated set of events. Using the latter log as input, we
conducted two experiments (see Fig. 5). First, we measured the accuracy of the log
generated by our approach against the original log, by taking as input process knowledge
the set of distinct traces extracted from the original log itself. The purpose of this first
experiment was to measure the loss of accuracy in the log produced by EC-SA, when using
as input the equivalent of a perfectly fitting and precise process model (as represented by the
set of traces of the original log). In the second experiment, instead of the distinct traces of
the original log, we used as process knowledge the process model mined from the original
log using two state-of-the-art automated discovery methods: Split Miner [4] and Inductive
Miner [10]. These two methods strike different tradeoffs in terms of fitness, which captures
the degree to which the discovered process model is able to recognize the traces in the event
log, and precision, which captures the extent to which the behavior allowed by the process
model is observed in the event log. The purpose of this second experiment was to measure
how well our approach is able to correlate events, in spite of an input model that is not
perfectly fitting nor precise. This second scenario is closer to reality, where a process model
may be available within the organisation, though this model is not a faithful representation
of the behavior captured by the set of uncorrelated events we want to correlate. Finally,
we compared the results of the second experiment with the DCI approach as a baseline.

To measure the accuracy of the event log generated by EC-SA w.r.t. the original log,
we used two measures:L2Lsim andL2LSMAPE.L2Lsim is a log-to-log similarity measure,
defined as the average string-edit distance between each trace of the generated log and
its closest trace in the original log, weighted by the relative frequency of each trace in the
two logs (cf. Def. 1). In essence, this measure is the transposition of the alignment-based
fitness measure between a model and a log [1] to the case of two logs. L2LSMAPE is the
symmetric mean absolute error of the events elapsed time between the two logs (cf. Def. 2).
We used this measure to assess the time deviation between the events in the generated log
and those in the original log. Finally, we measured the time taken by our approach and
by DCI to complete the correlation task, using a timeout of 24 hours.
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Original Event Log
Remove case IDs

Process KnowledgeDistinct Log Traces

Process Model EC-SA Correlated Event Log      

Compute L2L-Sim and L2L-SMAPE

Exp2: Mine 
process model

Uncorrelated events

Exp1:
Extract
log traces

Fig. 5: Evaluation steps

Table 1: Example illustrating L2Lsim computation steps

(a) L1 traces

t1,1“Actpσ1,1q“xA,B,Cy

t1,2“Actpσ1,2q“xA,B,Dy

t1,3“Actpσ1,3q“xA,Cy

(b) L2 traces

t2,1“Actpσ2,1q“xA,B,B,Dy

t2,2“Actpσ2,2q“xA,Cy

t2,3“Actpσ2,3q“xA,Cy

(c) Iteration 1

∆ins
delpt1,3,t2,2q“0 ∆ins

delpt1,3,t2,3q“0 ∆ins
delpt1,1,t2,3q“1

∆ins
delpt1,2,t2,1q“1 ∆ins

delpt1,1,t2,2q“1 ∆ins
delpt1,2,t2,2q“3

∆ins
delpt1,2,t2,3q“3 ∆ins

delpt1,1,t2,1q“3 ∆ins
delpt1,3,t2,1q“4

Definition 1 (L2Lsim). Let ∆ins
del be the string-edit distance allowing only for inser-

tions and deletions [12]. Let L1 and L2 be two event logs of same cardinality N ,
L1 “ tσ1,1,σ1,2,...,σ1,Nu and L2 “ tσ2,1,σ2,2,...,σ2,Nu. We define the pair of trace-
closest cases ofL1 andL2, pσ1,‹,σ2,‹q, as follows:

pσ1,‹,σ2,‹q“argmin
σ1,iPL1

σ2,jPL2

!

∆ins
delpActpσ1,iq,Actpσ2,jqq

)

with 1ď i,jďN (5)

The log-to-log similarity distance L2Lsim is thus inductively defined as follows:

NˆL2LsimpL1,L2q“

#

∆ins
delpActpσ1,1q,Actpσ2,1qq if |L1|“|L2|“1

L2LsimpL1ztσ1,‹u,L2ztσ2,‹uq otherwise
(6)

Operationally,L2Lsim is computed as follows: we first sortL1 andL2 by their trace-closest
pairs of cases, then we sum up the respective ∆ins

del distances till saturation, and finally
we derive L2Lsim by averaging the sum over the number of cases in the logs. Table 1
shows two example logs,L1 in Table 1(a) andL2 in Table 1(b), and the computation of
L2LsimpL1,L2q. We compute∆ins

del for each pair of traces, and sort them as in Table 1(c).
For instance,∆ins

delpt1,3,t2,2q is 0 as there is no deviation between the two traces. By se-
lecting this pair, ∆ins

delpt1,3,σ2,‹q) and ∆ins
delpt1,‹,σ2,2q are removed (the marked cells in

Table 1(c)). Thus, L2LsimpL1,L2q“
2
3«0.67.

Definition 2 (L2LSMAPE). L2LSMAPE is the Symmetric Mean Absolute Error of the
events Elapsed Time (ET) between two event logs,L1 andL2, such that their events are
equivalent, i.e., ULpL1q“ULpL2q. Let ETpLpeq,eq be the Elapsed Time of event e in log
L as per Eq. (1). We define L2LSMAPE as follows:

L2LSMAPEpL1,L2q“
1

ř|L1|

i“0 |σi|
ˆ

ÿ

ePULpL1q

|ETpL1peq,eq´ETpL2peq,eq|

|ETpL1peq,eq|`|ETpL2peq,eq|
(7)

In the following, we will use the original log asL1 and the generated log asL2.
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Table 2: Descriptive statistics of public logs
Traces Events Tr. length

Evt. log Total Dst.
% Total Dst.

% m. avg M.

BPIC12 13087 33.4 262200 36 3 20 175

BPIC13cp 1487 12.3 6660 7 1 4 35

BPIC13inc 7554 20.0 65533 13 1 9 123

BPIC14f 41353 36.1 369485 9 3 9 167

BPIC151f 902 32.7 21656 70 5 24 50

BPIC152f 681 61.7 24678 82 4 36 63

BPIC153f 1369 60.3 43786 62 4 32 54

BPIC154f 860 52.4 29403 65 5 34 54

BPIC155f 975 45.7 30030 74 4 31 61

BPIC17f 21861 40.1 714198 41 11 33 113

RTFMP 150370 0.2 561470 11 2 4 20

SEPSIS 1050 80.6 15214 16 3 14 185

Table 3: Results of Exp. 1

Evt. log L2Lsim L2LSMAPE

BPIC12 0.87 0.13

BPIC13cp 0.85 0.20

BPIC13inc 0.91 0.21

BPIC14f 0.86 0.28

BPIC15f1 0.89 0.22

BPIC15f2 0.82 0.09

BPIC15f3 0.91 0.02

BPIC15f4 0.83 0.21

BPIC15f5 0.94 0.02

BPIC17 0.96 0.31

RTFMP 0.96 0.32

SEPSIS 0.91 0.11

4.2 Datasets

We used a dataset of model-log pairs from a recent benchmark of automated discovery
methods [3]. This collection contains twelve public real-life event logs extracted from
the 4TU Centre for Research Data.4 These logs record executions of business processes
from a variety of domains, such as healthcare, finance, government and IT service man-
agement. They are the BPI Challenge (BPIC) logs from 2012 to 2017, the Road Traffic
Fines Management Process (RTFMP) log, and the SEPSIS Cases log.5

Table 2 reports the logs characteristics. These logs are widely heterogeneous ranging
from simple to very complex, with a log size ranging from 681 traces (for the BPIC152f
log) to 150,370 traces (for the RTFMP log). A similar variety can be observed in the
percentage of distinct traces, ranging from 0.2% to 80.6% of the total number of traces,
and the number of event classes (i.e., the activities executed within the process), ranging
from 7 to 82. Finally, the length of a trace also varies from very short, with traces containing
only one event, to very long, with traces containing 185 events.

For each log, we used the process model obtained by Split Miner (SM) and Inductive
Miner (IM), both with noise filtering enabled and default parameters, as per the benchmark
in [3]. These two methods strike different tradeoffs between fitness and precision: IM tends
to create models with higher fitness but low precision; SM tends to create smaller models
with an overall higher F-Score (the harmonic mean of fitness and precision), though with
lower fitness. This led to a total of 24 log-model pairs for our evaluation.

4.3 Results

Tables 3 and 4 show the results of the two experiments, respectively. From Exp. 1 we can
see that using a perfectly accurate input (the distinct traces of the original log), the average
loss of accuracy is only 10% (average L2Lsim = 0.901, min = 0.82, max = 0.96). This
is consistent with the events elapsed time, which is relatively low across all twelve logs
(average L2LSMAPE = 17.6%, mix = 2%, max = 28%). Overall, these results indicate the

4 https://data.4tu.nl/repository/collection:event_logs_real
5 Seven of these logs, namely the BPIC14 log, the five BPIC15 logs and the BPIC17 log, were

filtered in [3] using the technique in [8] to remove infrequent behavior. We kept this filtering to be
able to use the models associated with these logs in the benchmark dataset.

https://data.4tu.nl/repository/collection:event_logs_real
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Table 4: Results of Exp. 2 with Split Miner (SM) and Inductive Miner (IM)

SM-mined model SM-based output log IM-mined model IM-based output log

Source log Fitness Precision L2Lsim L2LSMAPE Fitness Precision L2Lsim L2LSMAPE

BPIC12 0.97 0.72 0.83 0.44 0.98 0.50 0.82 0.42

BPIC13cp 0.90 0.93 0.78 0.41 0.82 1.00 0.78 0.40

BPIC13inc 0.98 0.92 0.92 0.61 0.92 0.54 0.89 0.57

BPIC14f 0.77 0.84 0.77 0.40 0.89 0.64 0.77 0.42

BPIC15f1 0.90 0.88 0.81 0.30 0.97 0.57 0.79 0.35

BPIC15f2 0.77 0.90 0.77 0.12 0.93 0.56 0.74 0.21

BPIC15f3 0.94 0.78 0.85 0.18 0.95 0.55 0.82 0.15

BPIC15f4 0.73 0.91 0.77 0.33 0.96 0.58 0.74 0.30

BPIC15f5 0.79 0.94 0.90 0.14 0.94 0.18 0.60 0.32

BPIC17 0.96 0.81 0.94 0.45 0.98 0.70 0.92 0.47

RTFMP 1.00 0.97 0.96 0.47 0.99 0.70 0.93 0.52

SEPSIS 0.76 0.77 0.89 0.27 0.99 0.45 0.72 0.40

robustness of the specific optimization technique chosen (multi-level simulated annealing),
which proves to be appropriate for the problem at hand. These results were achieved by
setting the initial temperature to 1,000 and the maximum number of steps to 100.

As expected, when comparing the results of the two experiments (cf. Tables 3 and 4),
the logs generated in Exp. 1 using as input the distinct log traces of the original log have
higher L2Lsim and lower L2LSMAPE values than the logs generated in Exp. 2 using a
process model as input. However, the loss in L2Lsim between the two experiments is
only 4.42% on average, barring a modest increase in L2LSMAPE (16.67% on average).
These differences are attributable to the fact that the models used as input are not perfectly
accurate. Specifically, fitness and precision affect the L2Lsim measure negatively. Given
that in general the precision of IM is much lower than that of SM, while its fitness is slightly
higher, we obtain better results both in terms of L2Lsim and L2LSMAPE when using as
input the models discovered by SM. For example, the precision of the SM model for
BPIC15f5 is 0.94 as opposed to 0.18 in the case of IM, while the two fitness measures are
much closer to each other (0.79 for SM, 0.94 for IM). A very low precision as in the case
of IM for this log, provides a large number of possibilities to replay the process and thus to
correlate events in ways that are different than those in the original log. In the specific case
of the BPIC15f5 log, this leads to a difference of 30% in L2Lsim between SM and IM.

Leaving aside the specific differences between SM and IM, the average L2Lsim across
all 24 model-log pairs is still relatively high (0.82), which means that in most cases we can
correlate events correctly. The average L2LSMAPE is also relatively low (0.36), meaning
that the event times in the generated log deviate by 36% on average from those of the
original log. In other words, we correctly assign events to their specific cases on 64% of
the cases on average.

Table 5 compares the results of the second experiment with DCI using the models
generated by SM. This table also reports the time performance of the two approaches.
Looking at the accuracy, we can see that EC-SA outperforms DCI in all except three
logs where L2Lsim is higher for DCI, and one log where L2LSMAPE is lower for DCI. In
those logs where EC-SA outperforms DCI, the differences in L2Lsim range from small
to substantial increases. For example, in the case of the BPIC15f5 log, our approach’s
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Table 5: Results of Exp. 2 with EC-SA and DCI (using the SM-mined model)

EC-SA output (SM) DCI output (SM)

Source log L2Lsim L2LSMAPE Exec. [h] L2Lsim L2LSMAPE Exec. [h]

BPIC12 0.83 0.44 5 0.89 0.47 18.5

BPIC13cp 0.78 0.41 1.1 0.81 0.30 5

BPIC13inc 0.92 0.61 2.2 0.77 0.50 19

BPIC14f 0.77 0.40 2.7 ą24

BPIC15f1 0.81 0.30 5.2 0.81 0.43 21.9

BPIC15f2 0.77 0.12 4 0.71 0.54 22.3

BPIC15f3 0.85 0.18 6 0.89 0.20 23.7

BPIC15f4 0.77 0.33 6 0.71 0.53 22.7

BPIC15f5 0.90 0.14 5 0.74 0.50 23.5

BPIC17 0.94 0.45 8 ą24

RTFMP 0.96 0.47 7 ą24

SEPSIS 0.89 0.27 1.6 0.84 0.25 17

L2Lsim is 22% higher than that of DCI. In this case, the discovered model has a fitness of
0.79. As DCI strictly depends on the process model behavior, it cannot assign the deviating
events to any case, thus around 22% of the events will not be correlated and thus excluded
from the generated log. EC-SA handles this problem by randomly assigning these events
to one of the open cases, i.e. cases started before the event occurrence. On the contrary,
when the model has very high fitness, DCI is able to correlate all the events to their possible
cases because it builds a complete representation of the solution space, which will thus
include the optimal solution. On the other hand, EC-SA’s degree of randomness may lead
to escaping the global optimum if the number of steps set is not sufficiently high, for the
model-log at hand. As a result, DCI can have a slightly higher L2Lsim than EC-SA, as in
the case of BPIC12 where the discovered model has fitness of 0.97, and DCI’s L2Lsim

is 6% higher than that of EC-SA. In reality, though, we cannot assume the input model
to be highly fitting. Rather, we expect this model not to be very accurate both in terms
of fitness and precision, given that it would be a model created manually by process
analysts through interviews and workshops (so it may be biased towards the perspective
of particular process participants), and may in addition be out-of-date.

Looking at the time performance, we can observe that DCI suffers from significant
performance issues as it takes close to 20 hours for the majority of logs, timing out at 24
hours for three logs. Specifically, DCI takes 4ˆ the average execution time of EC-SA. In
effect, DCI requires as input extra information such as minimum, average and maximum
execution time for each activity. For our evaluation, we calculated this heuristic data based
on the three quartiles of the activities execution time in the original log. The quality of the
DCI output is affected by the quality of its inputs. The heuristic data affects theL2LSMAPE

and L2Lsim because it is used to prune the various correlation possibilities assessed by
the approach.

5 Conclusion

We presented a novel approach called EC-SA to address the problem of correlating events
that belong to the same case. Our approach uses multi-level objective simulated annealing
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for mapping each event to a case. For optimization, we use trace alignment cost and activity
execution time variance. Our evaluation in terms of log-to-log similarity, symmetric mean
absolute error of event elapsed times and overall time performance on a range of real-life
model-log pairs shows that our approach outperforms the state of the art. A possible avenue
for future work is to include the payload of uncorrelated events to improve correlation
accuracy, e.g. data inputs/outputs of process activities. Another avenue for future work is to
explore different forms of process knowledge as input to EC-SA, e.g., declarative rules [5].
Acknowledgements. This research is partly funded by the Australian Research Council
(DP180102839) and by the EU H2020 programme under agreement 645751 (RISE BPM).
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