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Abstract

A graph G = (V,E) is a pairwise compatibility graph (PCG) if there exists
an edge-weighted tree T and two non-negative real numbers dmin and dmax,
dmin ≤ dmax, such that each node u ∈ V is uniquely associated to a leaf of
T and there is an edge (u, v) ∈ E if and only if dmin ≤ dT (u, v) ≤ dmax,
where dT (u, v) is the sum of the weights of the edges on the unique path
PT (u, v) from u to v in T . Understanding which graph classes lie inside and
which ones outside the PCG class is an important issue. In this paper we
show that some interesting classes of graphs have empty intersection with
PCG; they are wheels, strong product of a cycle and P2 and the square of
an n node cycle, with n sufficiently large. As a side effect, we show that
the smallest planar graph not to be PCG has not 20 nodes, as previously
known, but only 8 (it is C2

8 ).

Keywords: Phylogenetic Tree Reconstruction Problem, Pairwise
Compatibility Graphs (PCGs), PCG Recognition Problem, Smallest
Planar not PCG, Wheel.

1. Introduction

Graphs we deal with in this paper are motivated by a fundamental prob-
lem in computational biology, that is the reconstruction of ancestral relation-
ships [13]. It is known that the evolutionary history of a set of organisms is
represented by a phylogenetic tree, i.e. a tree where leaves represent distinct
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known taxa while the internal nodes possible ancestors that might have led
through evolution to this set of taxa. The edges of the tree are weighted in
order to represent a kind of evolutionary distance among species. Given a
set of taxa, the phylogenetic tree reconstruction problem consists in finding
the “best” phylogenetic tree that explains the given data. Since it is not
completely clear what “best” means, the performance of the reconstruction
algorithms is usually evaluated experimentally by comparing the tree pro-
duced by the algorithm with those partial subtrees that are unanimously
recognized as “sure” by biologists. However, the tree reconstruction prob-
lem is proved to be NP-hard under many criteria of optimality, moreover real
phylogenetic trees are usually huge, so testing these heuristics on real data
is in general very difficult. This is the reason why it is common to exploit
sample techniques, extracting relatively small subsets of taxa from large phy-
logenetic trees, according to some biologically-motivated constraints, and to
test the reconstruction algorithms only on the smaller subtrees induced by
the sample. The underlying idea is that the behavior of the algorithm on
the whole tree will be more or less the same as on the sample. It has been
observed that using in the sample very close or very distant taxa can cre-
ate problems for phylogeny reconstruction algorithms [9] so, in selecting a
sample from the leaves of the tree, the constraint of keeping the pairwise
distance between any two leaves in the sample between two given positive
integers dmin and dmax is used. This motivates the introduction of pair-
wise compatibility graphs (PCGs): given a phylogenetic tree T , and integers
dmin, dmax we can associate a graph G, called the pairwise compatibility
graph of T , whose nodes are the leaves of T and for which there is an edge
between two nodes if the corresponding leaves in T are at weighted distance
within the interval [dmin, dmax].

From a more theoretical point of view, we highlight that the problem of
sampling a set of m leaves from a weighted tree T , such that their pairwise
distance is within some interval [dmin, dmax], reduces to selecting a clique
of size m uniformly at random from the associated pairwise compatibility
graph. As the sampling problem can be solved in polynomial time on PCGs
[11], it follows that the max clique problem is solved in polynomial time on
this class of graphs, if the edge-weighted tree T and the two values dmin, dmax

are known or can be provided in polynomial time.

The previous reasonings motivate the interest of researchers in the so
called PCG recognition problem, consisting in understanding whether, given
a graph G, it is possible to determine an edge-weighted tree T and two inte-
gers dmin, dmax such that G is the associated pairwise compatibility graph.
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Figure 1: a. A graph G. b. An edge-weighted caterpillar T such that G = PCG(T, 4, 5).
c. G where the PCG-coloring induced by triple T, 4, 5 is highlighted.

In Figure 1.a a small graph that is PCG(T, 4, 5) is depicted and, in Figure
1.b, T is shown. In general, T is not unique; here T is a caterpillar, i.e. a
tree consisting of a central path, called spine, and nodes directly connected
to that path. Due to their simple structure, caterpillars are the most used
witness trees to show that a graph is PCG. However, it has been proven
that there are some PCGs for which it is not possible to find a caterpillar
as witness tree [4].

Due to the flexibility afforded in the construction of instances (i.e. choice
of tree topology and values for dmin and dmax), when PCGs were introduced,
it was also conjectured that all graphs are PCGs [11]. This conjecture has
been confuted by proving the existence of some graphs not belonging to
PCG. Namely, Yanhaona et al. [15] show a not PCG bipartite graph with
15 nodes (Figure 2.a). Mehnaz and Rahman [12] generalize the technique in
[15] to provide a class of bipartite graphs that are not PCGs. More recently,
Durochet et al. [8] prove that there exists a not bipartite graph with 8
nodes that is not PCG (Figure 2.b); this is the smallest graph that is not
PCG, since all graphs with at most 7 nodes are PCGs [4]. The authors of [8]
provide also an example of a planar graph with 20 nodes that is not PCG
(Figure 2.c). Finally, it holds that, if a graph H is not PCG, every graph
admitting H as induced subgraph is not PCG, too [5].

From the other side, many graph classes have been proved to be in PCG,
such as cliques and trees, cycles, single chord cycles, cacti, tree power graphs
[16, 15], interval graphs [2], triangle-free outerplanar 3-graphs [14], Dilworth
2 and Dilworth k graphs [6, 7].

However, despite these results, it remains unclear which is the boundary
of the PCG class. In this paper, we move a step in the direction of searching
new graph classes that are not PCGs, by showing that the three following
classes of graphs have empty intersection with PCG:
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Figure 2: a. The first graph proven not to be a PCG. b. The graph of smallest size proven
not to be a PCG. c. A planar graph that is not PCG.

• wheels, for which it was left as an open problem in [3] to understand
whether they were PCGs or not;

• graphs obtained as strong product between a cycle and P2, that are a
generalization of the smallest known not PCG [8];

• graphs constructed as the square of a cycle.

As a side effect we find the smallest planar graph (with 8 nodes) that is
not PCG: the square of the 8 node cycle; the smallest planar graph previously
known not to be PCG has 20 nodes.

We highlight that in [10] it is stated that a graph is not PCG if its
complement has two ’far’ induced subgraphs which are either a chordless
cycle of at least four nodes or the complement of a cycle of length at least 5;
two induced subgraphs are ’far’ if not only they are node disjoint but there
is no edge connecting them. The hypotheses of this result do not hold for
any graph classes we consider.

The rest of this paper is organized as follows. Since all the three graph
classes are handled with the same technique, we describe it in Section 2; in
Section 3 we list some forbidden configurations, useful in the following; in
Sections 4, 5 and 6 the results dealing with the previously named classes are
presented. In Section 7, for any graph G in each one of the three classes, we
show that by deleting any node from G we get a PCG, so proving that it
does not contain any induced subgraph that is not PCG, i.e. we prove that
the graphs inside all the three graph classes are minimal not PCGs. We
conclude the paper with Section 8, where we address some open problems.
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2. Proof Technique

In this section, after introducing some definitions, we describe the general
proof technique we exploit to prove that all the three considered classes of
graphs have empty intersection with the class of PCGs, formally defined as
follows.

Definition 1. [11] A graph G = (V,E) is a pairwise compatibility graph
(PCG) if there exist a tree T , a weight function assigning a positive real
value to each edge of G, and two non-negative real numbers dmin and dmax,
dmin ≤ dmax, such that each node u ∈ V is uniquely associated to a leaf of T
and there is an edge (u, v) ∈ E if and only if dmin ≤ dT (u, v) ≤ dmax, where
dT (u, v) is the sum of the weights of the edges on the unique path PT (u, v)
from u to v in T . In such a case, we say that G is a PCG of T for dmin

and dmax; in symbols, G = PCG(T, dmin, dmax).

In order not to overburden the exposition, in the following, when we
speak about a tree, we implicitly mean that it is edge-weighted.

Given a graph G = (V,E), we call non-edges of G the edges that do not
belong to the graph. A tri-coloring of G is an edge labeling of the complete
graph K|V | with labels from set { black, red, blue } such that all edges of
K|V | that are in G are labeled black, while the other edges of K|V | (i.e. the
non-edges of G) are labeled either red or blue. A tri-coloring is called a
partial tri-coloring if not all the non-edges of G are labeled.

Notice that, if G = PCG(T, dmin, dmax), some of its non-edges do not
belong to G because the weights of the corresponding paths on T are strictly
larger than dmax, while some other edges are not in G because the weights of
the corresponding paths on T are strictly smaller than dmin. This motivates
the following definition.

Definition 2. Given a graph G = PCG(T, dmin, dmax), we call its PCG-
coloring the tri-coloring C of G such that:

(u, v) is red in C if dT (u, v) < dmin,

(u, v) is black in C if dmin ≤ dT (u, v) ≤ dmax,

(u, v) is blue in C if dT (u, v) > dmax.

In such a case, we say that triple (T, dmin, dmax) induces PCG-coloring C.
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In order to read the figures even in gray scale, we draw red edges as red
and dotted and blue edges as blue and dashed in all the figures.

In Figure 1.c we highlight the PCG-coloring induced by triple (T, 4, 5)
where T is the tree in Figure 1.b.

The following definition formalizes that not all tri-colorings are PCG-
colorings.

Definition 3. A tri-coloring C (either partial or not) of a graph G is called
a forbidden PCG-coloring if no triple (T, dmin, dmax) inducing C exists.

Observe that a graph is PCG if and only if there exists a tri-coloring C
that is a PCG-coloring for G.

Besides, any induced subgraph H of a given G = PCG(T, dmin, dmax) is
also PCG, indeed H = PCG(T ′, dmin, dmax), where T ′ is the subtree induced
by the leaves corresponding to the nodes of H. Moreover, H inherits the
PCG-coloring induced by triple (T, dmin, dmax) from G. Thus, if we were
able to prove that H inherits a forbidden PCG-coloring from a tri-coloring
C of G, then we would show that C cannot be a PCG-coloring for G in any
way. This is the core of our proof technique that, given a graph G that we
want to prove not to be PCG, consists in:

1. listing some forbidden PCG-colorings of particular graphs that are
induced pairwise compatibility subgraphs of G;

2. showing that each tri-coloring of G induces a forbidden PCG-coloring
in at least an induced subgraph;

3. concluding that G is not PCG, since all its tri-colorings are proved to
be forbidden.

3. Forbidden Tri-Colorings of Some PCGs

We now highlight some forbidden partial tri-colorings (for short f-c).
Along the paper, we will use them to show that the three considered classes
have empty intersection with PCG.

Given a graph G = (V,E) and a subset S ⊆ V , we denote by G[S] the
subgraph of G induced by nodes in S.

A subtree induced by a set of leaves of T is the minimal subtree of T
which contains those leaves. In particular, we denote by Tuvw the subtree
of a tree induced by three leaves u, v and w.

The following lemma from [15] will be largely used:
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Figure 3: Case of Lemma 2.

Lemma 1. Let T be a tree, and u, v and w be three leaves of T such that
PT (u, v) is the largest path in Tuvw. Let x be a leaf of T other than u, v, w.
Then, dT (w, x) ≤ max{dT (u, x), dT (v, x)}.

It is immediate to see that the m node path, Pm, is a PCG; the following
lemma gives some constraints to the associated PCG-coloring.

Lemma 2. Let Pm, m ≥ 4, be a path and let C be one of its PCG-colorings.
If all non-edges (v1, vi), 3 ≤ i ≤ m− 1, and (v2, vm) are colored with blue in
C, then also non-edge (v1, vm) is colored with blue in C.

Proof. Refer to Figure 3. Let C be the PCG-coloring of Pm induced by
triple (T, dmin, dmax). We apply Lemma 1 iteratively.

First consider nodes v1, v2, v3 and v4 as u, w, v and x: PT (v1, v3) is easily
the largest path in Tv1v3v2 ; then dT (v2, v4) ≤ max{dT (v1, v4), dT (v3, v4)} =
dT (v1, v4) because (v1, v4) is a blue non-edge by hypothesis while (v3, v4) is
an edge.

Now repeat the reasoning with nodes v1, v2, vi and vi+1, 4 ≤ i < m,
as u, w, v and x, exploiting that at the previous step we have obtained
that dT (v2, vi) ≤ dT (v1, vi): in Tv1viv2 , PT (v1, vi) is the largest path and so
dT (v2, vi+1) ≤ max{dT (v1, vi+1), dT (vi, vi+1)} = dT (v1, vi+1) since (v1, vi+1)
is a blue non-edge while (vi, vi+1) is an edge.

Posing i = m − 1, we get that dT (v2, vm) ≤ dT (v1, vm); since non-edge
(v2, vm) is blue by hypothesis, (v1, vm) is blue, too.

Given a graph, in order to ease the exposition, we call 2-non-edge a
non-edge between nodes that are at distance 2 in the graph.

Lemma 3. Let Pn, n ≥ 3, be a path. Any PCG-coloring of Pn that has at
least one red non-edge but no red 2-non-edges is forbidden.

Proof. If n = 3, there is a unique non-edge and it is a 2-non-edge; so, the
claim trivially follows.
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Figure 4: Some forbidden tri-colorings of small graphs. Acronym f-c stands for forbidden
coloring.

So, let it be n ≥ 4 and consider a triple (T, dmin, dmax) inducing a PCG-
coloring with at least a red non-edge. Among all red non-edges, let (vi, vj)
be the one such that j − i is minimum. Assume by contradiction, j − i > 2.
Consider now the subpath P ′ induced by vi, . . . , vj . P ′ has at least 4 nodes
and inherits the PCG-coloring from Pn; in it, there is only a red non-edge
(i.e. the non-edge connecting vi and vj). P ′ satisfies the hypothesis of
Lemma 2, hence (vi, vj) must be blue, against the hypothesis that it is red.

The following lemma is proved in [16] and here translated in our setting:

Lemma 4. In every PCG-coloring of the n node cycle Cn, n ≥ 4, there
exist at least one red and one blue non-edges.

Theorem 1. Let Cn, n ≥ 4, be a cycle. Then any PCG-coloring of Cn that
has no red 2-non-edges is forbidden.

Proof. Let Cn = PCG(T, dmin, dmax), n ≥ 4; from Lemma 4, there exists
at least a non-edge (u, v) such that dT (u, v) < dmin. In our setting, this
means that every PCG-coloring of Cn, n ≥ 4, has at least a red non-edge.
By contradiction, w.l.o.g. assume that this non-edge is (v1, vi), with 4 ≤ i <
n− 1. We apply Lemma 3 on the induced Pi and the thesis follows.

Theorem 2. The tri-colorings in Figure 4 are forbidden PCG-colorings.
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Proof. We prove separately that the tri-colorings in figure are forbidden
for PCGs 2K2, P4, K1,3 and K3 ∪K1.

Forbidden tri-coloring f-c(2K2)a:
We obtain that the tri-coloring in Figure 4.a is forbidden by rephrasing

Lemma 6 of [8] with our nomenclature.

The other proofs are all by contradiction and proceed as follows: for each
tri-coloring in Figure 4, we assume that it is a feasible PCG-coloring induced
by a triple (T, dmin, dmax) and show that this assumption contradicts Lemma
1.

Forbidden tri-coloring f-c(2K2)b:
From the tri-coloring in Figure 4.b we have that

dT (b, c) < dmin ≤ dT (a, b) ≤ dmax < dT (a, c).

Thus PT (a, c) is the largest path in Ta,b,c. By Lemma 1, for leaf d it must
be: dT (b, d) ≤ max {dT (a, d), dT (c, d)} = dT (c, d) while from the tri-coloring
it holds that dT (c, d) ≤ dmax < dT (b, d), a contradiction.

Forbidden tri-coloring f-c(P4):
From the tri-coloring in Figure 4.c we have that

dT (a, b), dT (b, c) ≤ dmax < dT (a, c).

Thus PT (a, c) is the largest path in Ta,b,c. By Lemma 1, for leaf d we have:
dT (b, d) ≤ max {dT (a, d), dT (c, d)} = dT (c, d) while from the tri-coloring it
holds that dT (c, d) ≤ dmax < dT (b, d), a contradiction.

Forbidden tri-coloring f-c(K1,3):
From the tri-coloring in Figure 4.d we have that

dT (a, b), dT (b, c) ≤ dmax < dT (a, c).

Thus PT (a, c) is the largest path in Ta,b,c. By Lemma 1, for leaf d we have:
dT (b, d) ≤ max {dT (a, d), dT (c, d)} while from the tri-coloring it holds that
dT (a, d), dT (c, d) < dmin ≤ dT (b, d).

Forbidden tri-coloring f-c(K3 ∪K1):
From the tri-coloring in Figure 4.e we have that

dT (a, d), dT (a, c) < dmin ≤ dT (c, d).

Thus PT (c, d) is the largest path in Ta,c,d. By Lemma 1, for leaf b it must
be: dT (a, b) ≤ max {dT (c, b), dT (d, b)} while from the tri-coloring it holds
that dT (c, b), dT (d, b) ≤ dmax < dT (a, b), a contradiction.
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Figure 5: Some forbidden partial tri-colorings of small graphs. Acronym f-c stands for
forbidden coloring.

Theorem 3. The partial tri-colorings in Figure 5 are forbidden PCG-colorings.

Proof. Using the results of Theorem 2, we again prove separately that
each tri-coloring is forbidden by contradiction.

Forbidden tri-coloring f-c(A):
Let us assume that the partial tri-coloring in figure 5.a is a PCG-coloring.

Consider the PCG-coloring inherited by path G[b, c, d, e]. To avoid f − c(P4),
non-edge (e, b) must be blue. Now consider the PCG-coloring inherited by
cycle G[a, b, c, d, e]. From Lemma 4, every PCG-coloring of Cn, n ≥ 4, has
at least a red non-edge. Thus at least one of the non-edges between (a, c)
and (a, d) is red and w.l.o.g. let assume it is (a, c). To avoid f − c(P4) for
path G[c, d, e, a], non-edge (a, d) is red, too. Now, consider the PCG-coloring
inherited by the cycle G[b, c, d, e, f ]; with a similar reasoning, we get that
the two non-edges (f, c) and (f, d) are both red. Thus we have four red
non-edges, namely (a, c), (a, d), (f, c) and (f, d). This implies f − c(2K2)a
for G[a, c, d, f ], a contradiction.

Forbidden tri-coloring f-c(B):
From the tri-coloring in Figure 5.b we have that

dT (b, c) < dmin ≤ dT (b, e), dT (e, c).

Without loss of generality, let assume dT (b, e) ≤ dT (e, c). Thus PT (e, c)
is the largest path in Tb,c,e. By Lemma 1, for leaf d we have: dT (b, d) ≤
max {dT (d, e), dT (c, d)} while from the tri-coloring it holds that
dT (d, e), dT (c, d) ≤ dmax < dT (b, d), a contradiction.

Forbidden tri-coloring f-c(C):

10



From the the tri-coloring in Figure 5.c, extract the inherited PCG-
colorings for the two subgraphs G[a, c, d, e] and G[b, c, d, f ]. To avoid f-
c(K3∪K1), the non-edges (a, e) and (b, f) are both blue. Now we distinguish
the two possible cases for the color of non-edge (a, f):

(a, f) is a red non-edge: consider the PCG-coloring for subgraph G[a, b, e, f ].
To avoid f-c(2K2)b, non-edge (b, e) has to be blue. This implies that
the PCG-coloring for path G[a, b, d, e, f ] has all the 2-non-edges with
color blue while the non-edge (a, f) is red. This is in contradiction
with Lemma 3.

(a, f) is a blue non-edge: in this case consider Lemma 1 applied to tree
Ta,d,f . We distinguish the three cases for the largest path among
PT (a, d), PT (a, f) and PT (d, f):

PT (a, d) is the largest path: for leaf b it must be
dT (f, b) ≤ max {dT (a, b), dT (d, b)} while from the tri-coloring
dT (a, b), dT (d, b) ≤ dmax < dT (f, b).

PT (a, f) is the largest path: for leaf c it must be
dT (d, c) ≤ max {dT (a, c), dT (f, c)} while from the tri-coloring
dT (a, c), dT (f, c) < dmin ≤ dT (d, c).

PT (d, f) is the largest path: for leaf e it must be
dT (a, e) ≤ max {dT (d, e), dT (f, e)} while from the tri-coloring
dT (d, e), dT (f, e) ≤ dmax < dT (a, e).

In all the three cases, a contradiction arises.

4. The Wheel

Wheels Wn+1 are n length cycles Cn whose nodes are all connected
with a universal node. They have already been studied from the pairwise
compatibility point of view. Indeed, wheel W6+1 is PCG and it is the only
graph with 7 nodes whose witness tree is not a caterpillar [4] (see Figure
6.a). Moreover, it has been proven in [3] that also the larger wheels up to
W10+1 do not have a caterpillar as a witness tree but, up to now, no other
witness trees are known for these graphs and, in general, it has been left as
an open problem whether wheels with at least 8 nodes are PCGs or not. In
this section we completely solve this problem.

First we prove that W7+1 is PCG.

Theorem 4. Wheel W7+1 is PCG.
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Figure 6: a. Tree T such that W6+1 = PCG(T, 5, 7); b. Tree T such that W7+1 =
PCG(T, 9, 13).

Proof. In order to prove the statement, it is enough to show a triple (T,
dmin, dmax) witnessing that W7+1 is PCG. Tree T is shown in Figure 6.b,
and the values of dmin and dmax are 9 and 13, respectively.

Then, we prove that every larger wheel Wn+1, n ≥ 8, is not a PCG.

Theorem 5. Let n ≥ 8. The graph Wn+1 is not PCG.

Proof. As list of useful forbidden PCG-colorings we will use f-c(2K2)a,
f-c(P4), f-c(K1,3), f-c(B) and the forbidden tri-coloring in Theorem 1.

We now prove that every tri-coloring of Wn+1 induces a forbidden PCG-
coloring for a certain induced pairwise compatibility subgraph.
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Figure 7: The four cases in the proof of Theorem 5.

Let be given any tri-coloring of Wn+1; in view of Theorem 1, there exists
a red 2-non-edge, w.l.o.g. let it be (v1, v3). Let us now consider the three
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non-edges (v7, v1), (v1, v3), (v3, v5). There are only 4 possibilities for the
colors of these non-edges and we will study them one by one (see Figure 7).

Case in Figure 7.a:
Assume first that (v4, v7) is blue; then non-edge (v3, v7) is necessarily

red in order to avoid f-c(K1,3) on the graph induced by nodes c, v1, v3 and
v7. In the following we summarize this sentence as:

(v3, v7) red ← f-c(K1,3) on G[c, v1, v3, v7].
and a chain of obliged colored non-edges follows, namely:

− (v3, v6) red ← f-c(B) on G[c, v3, v4, v6, v7] (indeed, (v3, v7) is red and
(v4, v7) is blue, so (v3, v6) cannot be blue)

− (v1, v4) blue ← f-c(K1,3) on G[c, v1, v4, v7]
− (v1, v6) red ← f-c(K1,3) on G[c, v1, v3, v6]
− (v4, v6) blue ← f-c(K1,3) on G[c, v1, v4, v6]

We got a path induced by nodes v3, v4, v5 and v6 with forbidden coloring
f-c(P4), a contradiction, meaning that (v4, v7) cannot be blue.

So, (v4, v7) is red, and we have the following chain of obliged colored
non-edges:

− (v1, v5) blue ← f-c(K1,3) on G[c, v1, v3, v5]
− (v1, v4) red ← f-c(K1,3) on G[c, v1, v4, v7]
− (v2, v4) red ← f-c(B) on G[c, v1, v2, v4, v5]
− (v2, v7) red ← f-c(K1,3) on G[c, v2, v4, v7]
− (v5, v7) blue ← f-c(K1,3) on G[c, v1, v5, v7]
− (v4, v6) red ← f-c(P4) on G[v4, v5, v6, v7]
− (v2, v6) red ← f-c(K1,3) on G[c, v2, v4, v6]
− (v1, v6) red ← f-c(K1,3) on G[c, v1, v4, v6]

Graph G[v1, v2, v6, v7] has forbidden coloring f-c(2K2)a, and this is a
contradiction, meaning that (v4, v7) cannot be red.

Case in Figure 7.b:
Notice that:

− (v3, v7) red ← f-c(K1,3) on G[c, v1, v3, v7]
− (v5, v7) red ← f-c(K1,3) on G[c, v3, v5, v7]
− (v1, v5) red ← f-c(K1,3) on G[c, v1, v3, v5]

Assume now that (v4, v7) is blue; then we have the following chain of
oblied colored non-edges:

− (v5, v8) red ← f-c(B) on G[c, v4, v5, v7, v8]
− (v3, v8) red ← f-c(K1,3) on G[c, v3, v5, v8]
− (v1, v4) blue ← f-c(K1,3) on G[c, v1, v4, v7]
− (v2, v5) red ← f-c(B) on G[c, v1, v2, v4, v5]
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− (v2, v8) red ← f-c(K1,3) on G[c, v2, v5, v8]
− (v2, v7) red ← f-c(K1,3) on G[c, v2, v5, v7]

so G[v2, v3, v7, v8] has forbidden coloring f-c(2K2)a, a contradiction.
So, (v4, v7) must be red, and (v1, v4) red ← f-c(K1,3) on G[c, v1, v4, v7].
Now, we consider the non-edge (v1, v6). If (v1, v6) is red:

− (v4, v6) red ← f-c(K1,3) on G[c, v1, v4, v6]
− (v3, v6) red ← f-c(K1,3) on G[c, v1, v3, v6]

and we have a contradiction arisen from having f-c(2K2)a on G[v3, v4, v6, v7].
If, on the contrary, (v1, v6) is blue, then:

− (v2, v7) red ← f-c(B) on G[c, v1, v2, v6, v7]
− (v2, v4) red ← f-c(K1,3) on G[c, v2, v4, v7]
− (v2, v5) red ← f-c(K1,3) on G[c, v2, v5, v7]

deducing a contradiction on G[v1, v2, v4, v5] with forbidden coloring f-c(2K2)a.
Case in Figure 7.c:

− (v3, v7) blue ← f-c(K1,3) on G[c, v1, v3, v7]
− (v5, v7) blue ← f-c(K1,3) on G[c, v3, v5, v7]

Let us now consider in this order the non-edges (v5, vn), (v5, vn−1), . . .
and let (v5, vi) be the first encountered blue non-edge, surely existing because
(v5, v7) is blue.
We distinguish two subcases: either i = n or i < n.

If i = n:
− (v3, vn) blue ← f-c(K1,3) on G[c, v3, v5, vn]
− (v1, v5) red ← f-c(K1,3) on G[c, v1, v3, v5]
− (v1, v6) red ← f-c(B) on G[c, vn, v1, v5, v6]
− (v3, v6) red ← f-c(K1,3) on G[c, v1, v3, v6]
− (v6, vn) blue ← f-c(K1,3) on G[c, v3, v6, vn]
Now, If n = 8, then v7 and vn are adjacent and G[v6, v7, vn, v1] has forbidden
tri-coloring f-c(P4). If, on the contrary, n > 8, then we have the forbidden
tri-coloring f-c(B) on G[c, vn, v1, v6, v7].

If i < n, we know that (v5, vi+1) is red; moreover:
− (v3, vi+1) red ← f-c(K1,3) on G[c, v3, v5, vi+1]
− (v3, vi) blue ← f-c(K1,3) on G[c, v3, v5, vi]
− (v2, vi+1) red ← f-c(B) on G[c, v2, v3, vi, vi+1]
− (v2, v5) red ← f-c(K1,3) on G[c, v2, v5, vi+1]
− (v6, vi+1) red ← f-c(B) on G[c, v5, v6, vi, vi+1]
− (v2, v6) red ← f-c(K1,3) on G[c, v2, v6, vi+1]
− (v3, v6) red ← f-c(K1,3) on G[c, v3, v6, vi+1]
We get subgraph G[v2, v3, v5, v6] colored with f-c(2K2)a.
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Case in Figure 7.d:
We distinguish two subcases, according to the color of non-edge (v1, v4).
If (v1, v4) is blue:

− (v3, vn) red ← f-c(B) on G[c, vn, v1, v3, v4]
− (v5, vn) blue ← f-c(K1,3) on G[c, v3, v5, vn]
− (v4, vn) blue ← f-c(B) on G[c, vn, v1, v4, v5]
− (v3, v7) blue ← f-c(K1,3) on G[c, v1, v3, v7]

Now we show that (v3, vn) red and (v4, vn) blue imply (v3, v8) red and (v4, v8)
blue, so obtaining G[c, v3, v4, v7, v8] with forbidden coloring f-c(B), a con-
tradiction.
To show the assert it is sufficient to prove that if (v3, vi) is red and (v4, vi)
is blue and i > 8, then (v3, vi−1) is red and (v4, vi−1) is blue.
− (v3, vi−1) red ← f-c(B) on G[c, v3, v4, vi−1, vi]
− (v1, vi−1) red ← f-c(K1,3) on G[c, v1, v3, vi−1]
− (v4, vi−1) blue ← f-c(K1,3) on G[c, v1, v4, vi−1]
and this part of the proof is concluded.

If, instead, (v1, v4) is red:
− (v4, v7) blue ← f-c(K1,3) on G[c, v1, v4, v7]
− (v1, v5) blue ← f-c(K1,3) on G[c, v1, v3, v5]
− (v4, vn) red ← f-c(B) on G[c, vn, v1, v4, v5]
− (v3, vn) blue ← f-c(2K2)a on G[v1, vn, v3, v4]
Now, if n = 8 then the nodes v7 and v8 are adjacent and G[v3, v4, v7, vn] has
forbidden tri-coloring f-c(B). Thus, let us assume n > 8.
− (v4, vn−1) red ← f-c(B) on G[c, v3, v4, vn−1, vn]
− (v1, vn−1) red ← f-c(K1,3) on G[c, v1, v4, vn−1]
− (v3, vn−1) red ← f-c(K1,3) on G[c, v1, v3, vn−1]
− (v5, vn−1) blue ← f-c(K1,3) on G[c, v3, v5, vn−1]
Similarly to what we did before, now we show that (v4, vn−1) red and
(v5, vn−1) blue imply (v4, v8) red and (v5, v8) blue, so obtaining G[c, v4, v5, v7, v8]
with forbidden coloring f-c(B), a contradiction.
To show the assert it is sufficient to prove that if (v4, vi) is red and (v5, vi)
is blue and i > 8, then (v4, vi−1) is red and (v5, vi−1) is blue.
− (v4, vi−1) red ← f-c(B) on G[c, v4, v5, vi−1, vi]
− (v1, vi−1) red ← f-c(K1,3) on G[c, v1, v4, vi−1]
− (v5, vi−1) blue ← f-c(K1,3) on G[c, v1, v5, vi−1]

We conclude the proof deducing that G is not PCG since all the partial
colorings shown in Figure 7 are not feasible.
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Figure 8: Graph Cn�P2.

5. The strong product of a cycle and P2

Given two graphs G and H, their strong product G�H is a graph whose
node set is the cartesian product of the node sets of the two graphs, and
there is an edge between nodes (u, v) and (u′, v′) if and only if either u = u′

and (v, v′) is an edge of H or v = v′ and (u, u′) is an edge of G.
In the following, we study graph Cn�P2, a 2n node graph in which

two cycles are naturally highlighted; we call v1, . . . , vn and u1, u2, . . . , un,
respectively, their nodes as shown in Figure 8.

We recall that C4�P2, i.e. the graph depicted in Figure 2.b, has already
been proved not to be PCG [8].

We apply our technique to Cn�P2, by showing that every tri-coloring
leads to forbidden tri-coloring f-c(C). Since this tri-coloring appears only
when n ≥ 6, we need to handle the case C5�P2 separately.

Theorem 6. Graph C5�P2 is not PCG.

Proof. According to the second step of the proof technique, we focus on
any tri-coloring of C5�P2 and prove that it is forbidden.

Consider cycle G[v1, v2, v3, v4, v5] = PCG(T, dmin, dmax); from Lemma
4, there exists at least a blue non-edge.

Thus, w.l.o.g. assume that non-edge (v2, v5) is blue. In order to avoid
forbidden coloring f − c(A) on the induced subgraph G[v1, v2, v3, u4, v4, v5],
non-edge (v1, v4) must be red. The same reasoning can be used for the follow-
ing three induced subgraphs: G[u1, v2, v3, u3, u4, v5], G[u1, v2, v3, v4, u4, v5]
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and G[u1, v2, v3, v4, u4, v5] to prove that non-edges (u1, v4), (v1, v3) and (u1, v3)
must be red, too. We get f − c(2K2)a on the induced subgraph G[u1, v1, v3, v4],
a contradiction.

In view of the last step of the proof technique, C5�P2 is not PCG, so
concluding the proof.

Theorem 7. Graph Cn�P2, n ≥ 6, is not PCG.

Proof. We exploit again the technique described in Section 2.
We will use f-c(2K2)a, f-c(K3 ∪K1), f-c(B), f-c(C) and the forbidden

tri-coloring in Theorem 1.
According to Step 2, we prove that for each tri-coloring of Cn�P2, with

n ≥ 6, there exists an induced pairwise compatibility subgraph of Cn�P2

that inherits a forbidden PCG-coloring.
Let fix any tri-coloring of Cn�P2. Consider the cycle G[v1, v2, . . . , vn]; in

view of Theorem 1, there exists a red 2-non-edge in the cycle, w.l.o.g. let it
be (v2, v4). Consider now the induced subgraph G[v2, u2, v3, v4, u4]. In order
to avoid f-c(B), at least one between the non-edges (u2, v4) and (v2, u4) must
be red. Thus, either (v2, v4) and (u2, v4) are red or (v2, v4) and (v2, u4) are
red. Due to the symmetry of Cn�P2, it is not restrictive to assume that
non-edges (v2, v4) and (v2, u4) are red. From this, we can prove that all the
non-edges incident on v2 are red. To do that, it is sufficient to show that if
non-edges (v2, vi) and (v2, ui), 4 ≤ i < n, are red, then non-edges (v2, vi+1)
and (v2, ui+1) are red, too. To this aim consider the induced subgraph
G[v2, vi, ui, vi+1]; in order to avoid f-c(K3 ∪ K1), on the three non-edges
(v2, vi), (v2, ui) and (v2, vi+1) the red color can not appear exactly twice.
Since (v2, vi) and (v2, ui) are both red, it follows that (v2, vi+1) must also
be red. Analogously, considering the induced subgraph G[v2, vi, ui, ui+1], to
avoid f-c(K3 ∪K1) we get that (v2, ui+1) is red.

In particular, when i = n − 1, we have that (v2, vn) and (v2, un) are
both red. Consider now the induced subgraph G[v2, u2, vn, un]; to avoid
f-c(2K2)a, we have that (u2, x), with x ∈ {un, vn}, must be a blue non-
edge. Analogously, to avoid f-c(2K2)a on the induced graph G[v2, u2, v4, u4],
(u2, y), with y ∈ {u4, v4} must be a blue non edge. Finally, we get the f-c(C)
on the induced graph G[x, v1, v2, u2, v3, y], a contradiction.

Step 3 of the proof technique concludes the proof.
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6. The square of a Cycle

We recall that all graphs with at most 7 nodes are PCG [4] and that
cycles are PCGs [15], so we focus on n ≥ 8.

For easing the proofs, the nodes of C2
n will be indexed with values in the

finite group Zn of the integers modulo n, i.e. V (C2
n) = {v0, v1, . . . , vn−1}.

As a consequence, for each pair vi, vj , the edge (vi, vj) belongs to C2
n if and

only if j − i ∈ {1, 2, n− 1, n− 2}.
Before proving that C2

n is not PCG, we need some ad-hoc forbidden
PCG-colorings for C2

n.
Given a PCG-coloring of C2

n, we call red-node a node v of C2
n if all the

non-edges incident on v are of red color.

Lemma 5. Let C2
n, n ≥ 8, be a square cycle. Then:

1. Any PCG-coloring of C2
n where all the 2-non-edges are blue is forbid-

den.

2. Any PCG-coloring of C2
n having two red non-edges from a common

non red-node to two adjacent nodes is forbidden.

3. Any PCG-coloring of C2
n having two adjacent red-nodes is forbidden.

Proof. We prove separately the three claims.

1. The proof is by contradiction. Let assume a PCG-coloring of C2
n

without red 2-non-edges in C2
n. We distinguish two cases:

n is even Consider the PCG-coloring inherited by cycle Cn
2

induced

by all the vertices of C2
n with even index (i.e. Cn

2
= G[v0, v2, . . . vn−2]).

The length of this cycle is at least 4 and all its 2-non-edges are
blue. This contradicts Theorem 1.

n is odd Consider the PCG-coloring inherited by cycle Cdn
2
e =

= G[v0, v2, . . . , vn−3, vn−1] induced by all the nodes with even
index. All the 2-non-edges in Cdn

2
e are in the set {(v2i, v2i+2) | 0 ≤

in−32 } ∪ {(vn−3, v0), (vn−1, v2)}. The set {(v2i, v2i+2) | 0 ≤ in−32 }
corresponds to 2-non-edges in C2

n and, by our assumption, all
these non-edges are blue in the PCG-coloring inherited by the
cycle. However, the length of Cdn

2
e is at least 6 thus, by Theorem

1, at least one of the two non-edges {(vn−3, v0), (vn−1, v2)} is red
in the PCG-coloring of Cdn

2
e inherited from the PCG-coloring of

C2
n. The red non-edge (vn−3, v0) implies a PCG-coloring for path

P = G[v0, v2, . . . , vn−3] of at least 4 nodes where all the 2-non-
edges are blue while non-edge (v0, vn−3) is red. The red non-edge
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(vn−1, v2) implies a PCG-coloring for path P = G[v2, . . . , vn−1]
of at least 4 nodes where all the 2-non-edges are blue while the
non-edge (v2, vn−1) is red. In both cases we have a contradiction
with Lemma 3.

2. Let vi and vi+1 be the two adjacent nodes and let vj be the non red-
node. The proof is by contradiction:

• If j+2 6= i−1, consider the induced subgraph G[vj , vi−1, vi, vi+1];
since n ≥ 8, due to f − c(K3 ∪K1) the non-edge (vj , vi−1) is red.
Iterating this reasoning we have that all the non-edges (vj , vk),
with j + 2 < k < i, are red.

• If j−2 6= i+2, consider the induced subgraph G[vj , vi, vi+1, vi+2];
since n ≥ 8, due to f − c(K3 ∪K1) the non-edge (vj , vi+2) is red.
Iterating this reasoning we have that all the non-edges (vj , vk),
with i + 1 < k < j − 2, are red.

Thus we have the contradiction that vj is a red-node.

3. Let vi and vi+1 be the two adjacent red-nodes and consider the induced
subgraph G[vi, vi+1, vi+4, vi+5]; since n ≥ 8, the subgraph is in fact a
K2. Thus we obtain the forbidden tri-coloring f − c(2K2)a.

Now we show other two ad-hoc forbidden PCG-colorings that hold only
for n ≥ 10 because in the proof we exploit f − c(C). Hence, at the end of
this section, we will prove separately that C2

8 and C2
9 are not PCGs.

Lemma 6. Let C2
n, n ≥ 10, be a square cycle. Then:

1. Any PCG-coloring of C2
n with a triple of nodes (vi, vi+4, vi+8), 0 ≤ i <

n, such that vi+8 is the only non red-node is forbidden.

2. Any PCG-coloring of C2
n with a triple of nodes (vi−6, vi−3, vi), 0 ≤ i <

n, such that vi−6 is the only non red-node is forbidden.

Proof. We prove separately the two claims.

1. We consider two cases:

non-edge (vi+1, vi+5) is red Since vi is a red-node, edge (vi, vi+5) is
a red non-edge, too. Due to lemma 5.2, this implies that node
vi+5 is a red-node. Hence we have two adjacent red-nodes (i.e.
vi+4 and vi+5) and, by lemma 5.3, we have a forbidden PCG-
coloring.
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non-edge (vi+1, vi+5) is blue Consider the induced subgraph
G[vi+1, vi+3, vi+4, vi+5, vi+6, vi+8] having the two red non-edges
(vi+1, vi+4) and (vi+4, vi+8). Since n ≥ 10, due to t he forbidden
tri-coloring f − c(C), non-edge (vi+5, vi+8) is red. Thus there are
two red non-edges (vi+4, vi+8) and (vi+5, vi+8) and, in view of
lemma 5.2, node vi+8 is red.

2. The proof is similar to the previous one: now we consider the induced
subgraph G[vi−6, vi−4, vi−3, vi−2, vi−1, vi+1] having the two red non-
edges (vi−6, vi−3) and (vi−3, vi+1). Non-edge (vi−2, vi+1) must be blue
(otherwise node vi−2 would be a red-node like vi−3 and, by lemma 5.3,
we would have a forbidden PCG-coloring). Due to f − c(C), non-edge
(vi−2, vi−6) is red. Thus we have two red non-edges (vi−6, vi−3) and
(vi−6, vi−3) and, by lemma 5.2, the node vi−6 is red.

We are now ready to prove that C2
n is not PCG.

Theorem 8. Graph C2
n, n ≥ 10, is not PCG.

Proof. The proof is by contradiction. Let (vi, vi+4) be a red 2-non-edge in
C2
n (such a non-edge must exist by Lemma 5.1). Consider now the induced

path G[vi, vi+1, vi+3, vi+4]. In this path we have the red non-edge (vi, vi+4)
thus, due to f − c(P4), one of the non-edges (vi, vi+3) and (vi+1, vi+4) is red,
too and at least one of the nodes vi and vi+4 is the end-point of two red
non-edges toward adjacent nodes. Hence one of these nodes is a red-node
(see lemma 5.2). Reindexing the nodes of C2

n, this red-node is node v0.
Consider now the induced subgraph G[vn−3, vn−1, v0, v1, v2, v4]. In this sub-
graph the non-edges (vn−3, v0) and (v0, v4) are red and, due to f − c(C), at
least one of the non-edges (vn−3, v1) and (v1, v4) is red. We consider two
cases:

non-edge (v1, v4) is red The two non-edges (v0, v4) and (v1, v4) are red so,
by Lemma 5.2, node v4 is a red-node. Considering the triple of nodes
(v0, v4, v8), by Lemma 6.1, node v8 is a red-node, too. We can iterate
this reasoning on the triple (v4, v8, v12) and so on finally obtaining
that V ∗ = {vi | i ≡ 0 (mod 4)} is a set of red-nodes in the PCG-
coloring. Moreover each node vi, with i 6≡ 0 (mod 4), is adjacent
to some node in V ∗ thus, by lemma 5.3, n is a multiple of 4 (and
n ≥ 12) and set V ∗ contains all the red-nodes of the PCG-coloring.
Consider now the cycle induced by all the nodes having an odd index,
i.e. G[v1, v3, v5, . . . , vn−1]. This cycle is n

2 ≥ 6 long thus, by Theorem
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1, it contains at least a red non-edge. Let (vi, vj) be one of these red
non-edges. Node vj is necessarily adjacent to a node in V ∗, hence
there are two red non-edges from adjacent nodes incident toward vi in
C2
n implying that vi is a red-node (by lemma 5.2). This contradicts

the fact that vi 6∈ V ∗.

non-edge (vn−3, v1) is red The proof is analogous to the previous one: due
to the two red non-edges (vn−3, v0) and (vn−3, v1), by lemma 5.2, node
vn−3 is a red-node. Considering the triple of nodes (vn−6, vn−3, v0)
in lemma 6.2, node vn−6 is a red-node, too. We can iterate this
reasoning on the triple (vn−9, vn−6, vn−3) and so on finally obtaining
that V ∗ = {vi | i ≡ 0 (mod 3)} is a set of red-nodes in the PCG-
coloring. Moreover, each node vi, with i 6≡ 0 (mod 3), is adjacent
to some node in V ∗ so, due lemma 5.3, n is a multiple of 3 (and
n ≥ 12) and set V ∗ contains all the red-nodes of the PCG-coloring.
Consider now the cycle induced by all the nodes that are not in V ∗,
i.e. G[1, 2, 4, . . . , n − 2, n − 1]. This cycle has length at least 8 and,
by Theorem 1, there is at least a red non-edge connecting two nodes
of the cycle. Let (vi, vj) be one of these red non-edges. Node vj is
adjacent to a node in V ∗, so vi is the end-point of two red non-edges
toward adjacent nodes in C2

n as a consequence vi is a red-node (by
Lemma 5.2). This contradicts the fact that vi 6∈ V ∗.

Theorem 9. Graph C2
8 is not PCGs.

Proof. We exploit again the technique described in Section 2.
We will use f-c(2K2)a, f-c(2K2)b, f-c(K3 ∪K1), f-c(P4) and the forbid-

den tri-coloring in Theorem 1.
We then prove that for each tri-coloring of C2

8 , there exists an induced
subgraph of C2

8 that inherits a forbidden PCG-coloring.
Let fix any tri-coloring of C2

8 . Consider the induced cycle G[v0, v2, v4, v6],
in view of Theorem 1, there exists a red 2-non-edge in the cycle (i.e. at least
one of the non-edges (v0, v4) and (v2, v6) is red). Consider also the induced
cycle G[v1, v3, v5, v7], again, in view of Theorem 1, there exists a red 2-non-
edge in the cycle (i.e. at least one of the non-edges (v1, v5) and (v3, v7) is
red). W.l.o.g. let us assume that the two non edges (v0, v4) and (v1, v5)
are red. Consider now the induced subgraph G[v0, v1, v4, v5]. In order to
avoid f-c(2K2)a and f-c(2K2)b, exactly one of the two non-edges (v0, v5)
and (v1, v4) is red. Again it is not restrictive to assume (v0, v5) red and
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(v1, v4) blue. Now note that to avoid f-c(K3 ∪ K1) on the two subgraphs
G[v0, v1, v4, u7] and G[v1, v4, v5, v6] both the non-edges (v4, v7) and (v1, v6)
are blue.
We distinguish two subcases, according the color of the non-edge (v2, v6),
and show that in both the cases we get a contradiction:

(v2, v6) is blue. Consider the induced cycle G[v1, v2, v4, v6, v7]. To avoid a
forbidden configuration Theorem 1 implies that the non-edge (v2, v7)
is red. Thus we obtain the subgraph G[v2, v4, v6, v7] with forbidden
coloring f-c(P4), a contradiction.

(v2, v6) is red. In this case:

− induced subgraph G[v1, v2, v3, v6] cannot have f-c(K3 ∪K1) so im-
plying (v3, v6) blue;

− induced subgraph G[v0, v3, v4, v5] cannot have f-c(K3 ∪K1) hence
(v0, v3) is red;

− in order to avoid f-c(K3∪K1) on G[v0, v3, v6, v7], edge (v3, v7) must
be blue.

It turns out that the subgraph G[v1, v3, v4, v6, v7] is a cycle without
red non-edges. This is in contrast with Theorem 1.

Corollary 1. Graph C2
8 is the smallest planar graph that is not PCG.

Theorem 10. Graph C2
9 is not a PCG.

Proof. We will use f-c(2K2)a, f-c(P4) and the forbidden tri-colorings in
Theorem 1 and in Lemma 5.

We prove that for each tri-coloring of C2
9 , there exists an induced sub-

graph of C2
9 that inherits a forbidden PCG-coloring. Fix any tri-coloring of

C2
9 and let V ∗ ⊆ V (C2

9 ) be the set of red-nodes of the tri-coloring. We know
by Lemma 5.1 and 5.3 that set V ∗ is not empty and does not contain adja-
cent nodes. Thus, up to isomorphisms, we can consider only the following
four cases:

V ∗ = {v0}, V ∗ = {v0, v3},

V ∗ = {v0, v4} and V ∗ = {v0, v3, v6}.

Now we show that each of theese cases get a contradicion.
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V ∗ = {v0} In this case v3, v4 and v6 are not red-nodes; as a consequence,
all the non-edges (v1, v4), (v4, v8), (v3, v8) and (v1, v6) are blue (see
Lemma 5.3). Thus, to avoid a forbidden coloring in the induced cycle
G[v1, v3, v4, v6, v8], non-edge (v3, v6) must be red (see Theorem 1). So,
we have the induced path G[v1, v3, v6, v8] with forbidden tri-coloring
f-c(P4), a contradiction.

V ∗ = {v0, v3} In this case all the non-edges in the induced cycle C5 =
G[v1, v2, v4, v6, v8] are blue (see Lemma 5.3). This is in contradiction
with Theorem 1.

V ∗ = {v0, v5} In this case v1 and v4 are not red-nodes. As a consequence,
all the non-edges (v4, v8), (v1, v4), (v1, v6) and (v2, v6) are blue (see
Lemma 5.3). Moreover, to avoid the forbidden tri-coloring f-c(2K2)a
in the induced subgraph G[v2, v3, v6, v8], there must be at least one
blue non-edge; w.l.o.g. assume it is (v2, v8). Hence, the induced cycle
C5 = G[v1, v2, v4, v6, v8] has all the non-edges of color blue. This is in
contradiction with Theorem 1.

V ∗ = {v0, v3, v6}. In this case all the non-edges not inciding on red-nodes are
blue (see Lemma 5.3). In particular, all the non-edges in the induced
cycle C6 = G[v1, v2, v4, v5, v7, v8] are blue. This is in contradiction
with Theorem 1.

7. Minimality

If a graph contains as induced subgraph a not PCG, then it is not PCG,
too. We call minimal non PCG a graph that is not PCG and it does not
contain any proper induced subgraph that is not PCG.

In this section we prove that every graph G inside each one of the three
considered classes we have just proved not to be PCGs is a minimal not
PCG. The proof is constructive and it provides an edge-weighted tree T and
two values dmin and dmax such that PCG(T, dmin, dmax) = G \ {x} for any
node x of G.

The following theorem states that wheels are minimal not PCGs.

Theorem 11. Let n ≥ 8. The graph obtained by removing any node from
Wn+1 is PCG. In other words, Wn+1 is a minimal not PCG.

Proof. Notice that, if we remove from Wn+1 the central node, the resulting
graph is a cycle; if we remove any other node, the resulting graph is an
interval graph. In both cases, we get a PCG [16, 1].
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Now we prove that Cn�P2 is a minimal not PCG. The proof is construc-
tive and it provides an edge-weighted tree T and two values dmin and dmax

such that PCG(T, dmin, dmax) = Cn�P2 \ {x} for any node x of Cn�P2.

Theorem 12. The graph obtained by removing any node from Cn�P2, n ≥
4, is PCG. In other words, Cn�P2 is a minimal not PCG.

Proof. To prove the statement, we remove from the graph a node x and
prove that the new graph G′ is PCG. In view of the symmetry of the graph,
it is not restrictive to assume that x = un. We construct a tree T such that
G′ = PCG(T , 2n− 2, 2n + 2).

We distinguish the following two cases depending on whether n is an
even or an odd number:

n is an even number: (refer to Figure 9.a) tree T is a caterpillar with
n − 1 internal nodes that we denote as x1, x2, . . . , xn−1. The internal
nodes induce a path from x1 to xn−1 and edges on this path (xi, xi+1),
1 ≤ i < n − 1, have all weight 2. Leaves vi and ui, 1 ≤ i < n, are
connected to xi with edges of weight n. Finally leaf vn is connected
to the node xn

2
with an edge of weight 1.

u1 v1

x1

u2 v2

x2

un
2
vn

2

xn
2

vn

un−1vn−1

xn−12

n n n n n n n n

1

a.

u1 v1

x1

u2 v2

x2

ubn
2
c vbn

2
c

xbn
2
c y

vn

udn
2
evdn

2
e

xdn
2
e

un−1vn−1

xn−12

n n n n n n n n n n

1
1 1

b.

Figure 9: Caterpillars for the proof of Theorem 12.

n is an odd number: (refer to Figure 9.b) tree T is a caterpillar with n
internal nodes that we denote as x1, x2, . . . , xn−1 and y. The internal
nodes x1, . . . , xbn2 c induce a path from x1 to xbn2 c and edges (xi, xi+1),

1 ≤ i <
⌊
n
2

⌋
, have weight 2. The internal nodes xdn2 e, . . . , xn−1 induce

a path from xdn2 e, to xn−1 and edges (xi, xi+1),
⌈
n
2

⌉
≤ i < n− 1, have

weight 2. Leaves vi and ui, 1 ≤ i < n, are connected to xi with edges
of weight n. Finally the internal node y is connected to xbn2 c, xdn2 e
and vn with edges of weight 1.

In both cases, G′ = PCG(T, 2n− 2, 2n + 2).
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Finally, we prove that also C2
n is a minimal not PCG.

Theorem 13. The graph obtained by removing any node from C2
n, n ≥ 8,

is PCG. In other words, C2
n is a minimal not PCG.

Proof. Consider the graph C2
n, n ≥ 8. To prove the theorem we remove

from the graph a node x and prove that the new graph G′ is PCG. Without
loss of generality assume that x = vn. We construct a tree T such that G′ =
PCG(T , 2n− 2, 2n + 4). We consider the following two cases depending on
whether n is an even or an odd number:

• n is an odd number. Tree T is a caterpillar with n− 1 internal nodes
we denote as x1, x2, . . . , xn−1

2
−1, y, xn−1

2
, . . . , xn−2. The internal nodes

induce a path from x1 to xn−2 and edges (xi, xi+1), 1 ≤ i < (n−1)/2−1
and (n − 1)/2 ≤ i < n − 2, have weight 2. Edges (xn−1

2
−1, y) and

(y, xn−1
2

) have weight 1. Leaves vi, 1 ≤ i ≤ n− 2, are connected to xi
with edges of weight n. Finally, leaf vn−1 is connected to the node y
with an edge of weight 3. See Figure 10.a.

• n is an even number. Tree T is a caterpillar with n− 1 internal nodes
we denote as x1, x2, . . . , xn−1. The internal nodes x1, . . . , xn−1 induce
a path and edges (xi, xi+1), 1 ≤ i < n− 1, have weight 2.

Leaves vi, 1 ≤ i < n, are connected to xi with edges of weight n. Finally
vn−1 is connected to xn−2

2
with an edge of weight 3. See Figure 10.b.
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Figure 10: Caterpillars for the proof of Theorem 13: a. n odd; b. n even.
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8. Conclusions

In this paper we proved that wheels, Cn�P2 and the square of cycles are
not PCGs. As a side effect, we got that the smallest planar graph not to be
PCG has not 20 nodes, as previously known, but only 8.

Even if all the considered classes are obtained by operating on cycles,
we think that the same technique we used can be potentially exploited to
position outside PCG many other graph classes not related to cycles. This
would represent an important step toward the solution of the very general
open problem consisting in demarcating the boundary of the PCG class.
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