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Abstract

Europe’s electricity sector is facing a major historical turning point shifting away from
fossil fuels towards more sustainable energy sources and moving from vertically
integrated public monopolies into competitive private companies in unbundled and
liberalized markets. In this scenario consumers are expected to play a fundamental role in
realising the full potential of the European energy market; the EU energy strategy, with
new policy and regulatory initiatives, in fact, recognizes consumers and communities as a
key driver of this process, encouraging them to take full ownership of the energy transition
and empowering them to actively participate in the electricity market by generating,
consuming and selling electricity back to the grid and interacting with other energy market
participants. Citizens are in fact no longer restricted to the role of passive end-use
consumers, but they are asked to be energy producers, or ‘prosumers’, representing an
important contribution to global sustainability and helping to decarbonize the electricity
sector. Furthermore, as well as allowing to increase the amount of renewable energy
generation, they have the potential to reduce the energy supply-demand gap and
electricity system losses and to provide opportunities for demand-side management and
for an active grid support increasing grid reliability flexibility, and resiliency. To this end,
distributed energy storage systems at the residential level have been identified as a priority
technology to open up new possibilities for local flexibility solutions and participation in
demand response, leading the energy transition towards new energy configurations, such
as self-generation and self-consumption schemes and peer-to-peer selling of the self-
produced energy. Combining solar power generators and battery storage is one of the most
common ways of reaching self-sufficiency in residential buildings by increasing the grid
independence of individual households. Due to their cost and growth perspective, battery
storage coupled to photovoltaic (PV) generation systems have reached a good level of
competitiveness and market penetration in many European countries and they will
increase as more such systems become available. In this thesis a battery energy storage

systems (BESS) coupled with grid-connected rooftop-mounted residential photovoltaic



generation is analyzed. The multi apartment building is located in Civitavecchia (Rome),
central Italy, with ten households living in rent at a subsidized price and it is covered by
the energy retrofit intervention and building renovation plan set by “Civitavecchia
SMART-A.T.E.R.” project aiming to convert the old buildings in new Near Zero Energy
Buildings (NZEBs) and to create energy communities. The aim of this thesis is to optimize
the sizing and the operation of the battery energy storage system so as to maximize the
households’ self-consumption and minimize their electricity bill, whilst ensuring the
correct charge-discharge cycles scheduling strategy in order to assure better performance
and a longer lifetime of the batteries. To this end, a multi-objective mixed-integer linear
programming (MILP) formulation is proposed and it is solved by CPLEX. The battery
sizing and operational parameters, in terms of number of batteries and
charging/discharging operation mode, are included in the optimization problem and a
penalty coefficient is imposed to limit the number of batteries needed. Collected and
estimated data of potential photovoltaic production and households” demand profiles are

used to optimize the battery storage system using hourly dataset for different seasons.



Highlights

e Mixed-integer linear program based scheduling of a residential PV/storage system in

a multi-apartment building.

e Applied to real consumption data of 10 residential families with a view to

maximizing collective self-consumption.

e Mathematical formulation of the problem with specific constraints for optimal

battery charging/discharging profile.

e Comparative analysis for different battery parameters and charging/discharging

assumptions.

e Profitability assessment of the battery storage system comparing different scenarios.
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Introduction

The electricity market is a particularly complex system, both for the extreme diffusion and
engineering variety of infrastructures and for the presence of a very delicate regulatory
system, since it must maintain the balance between sources and uses of a precious resource
such as energy. Furthermore, it is a system in which configurations and infrastructures are
constantly evolving, they have undergone and continue to undergo profound
transformations [1]. The recent changes in the national energy system resulting from the
rapid widespread of renewable sources, primarily photovoltaic and wind power, are
reflected today in the need to implement new "smart" management and operation methods
that actively involve all phases of generation, distribution and consumption of energy, in
order to ensure high reliability and safety standards. In particular, the growing impact of
non-programmable renewable sources penetration has entailed a series of criticalities in
short-term operational planning of the Italian power system [2]. Moreover, the gradual
phase-out of fossil-fuel power plants, with a view to shutdown of each coal-fired power
generating unit by 2025 [3], has the effect of reducing essential grid services such as the
voltage and frequency regulations and congestion management services. There is therefore
an obvious need for new decentralized, flexible and balanced energy systems. In particular,
the decreasing cost of energy storage and the increasing penetration of renewable energy
technologies as distributed generation embedded in the consumption centres is leading to
fundamental changes in the role of energy consumers, giving rise to openings for new
entrants to the electricity market, the so-called “prosumers”, because they both consume
and produce electricity. The prosumers and their assets (decentralised production and
storage systems, demand response, electric vehicles, etc.) have the potential to interact with
each other and with the local distributor or the utility grid and to be aggregated forming a
Local Energy Community (LEC) at distribution level [4]. In this context, residential districts
can be considered as the first core for energy communities, aiming at providing active grid

support by increasing grid reliability, flexibility, and resiliency, as outlined in the European
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Directive 2018/2001 on the promotion of the use of energy from renewable sources [5].
Investments for the promotion of energy efficiency and the use of energy from renewable
sources in buildings, on one hand, and the increasing deployment of customer-level energy
storage systems equipped with Internet of Things (IoT) technologies, such as sensors and
devices for smart metering, on the other, are therefore identified as the key factors in
enabling the energy communities development [6]. Distributed smart storage systems in fact
can be installed behind the meter in parallel to local loads; this allows to bring energy
flexibility in a community by reducing average peak load and increasing self-consumption
of local renewable energies not only at an individual household, but especially at an
aggregated community level [7]. Moreover, the possibility of exploiting renewable energy
sources and moving towards energy self-sufficiency at community level also represents a
key measure to tackle energy poverty by ensuring a free access to the electricity market for
all people within the community, including for example tenants of social housing or

multiple-occupancy buildings.

In particular, in this thesis a multi apartment building with ten households living in rent at
a subsidized price is considered as case study with the purpose of optimizing the battery
storage coupled to photovoltaic generation system, both in terms of sizing and dispatching,

with a view to maximizing the households’ self-consumption.

The thesis is structured in the following way: Chapter 1 provides a detailed analysis of the
current regulatory framework for energy self-consumption and gives a comprehensive
overview of existing projects of energy storage system integration in residential buildings
enabling residents of multi apartment buildings to commonly use electricity generated by a
PV system. In Chapter 2 some preliminary concepts on optimization using Mixed-Integer
Linear Programming are reported. Chapter 3 presents the state of the art on linear
programming-based optimization for operational scheduling of energy storage systems and
describes the reasons behind the application of the solution algorithm proposed in this
work, with particular attention to formulating the batteries charging/discharging control

strategy as the most important constraint to the optimization problem. Chapter 4 is focused
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on the application of the approach proposed in Chapter 3 to the case study. Finally, Chapter
5 investigates the benefits of energy storage system integration in residential buildings

equipped with solar power generators from energetic and economic perspective.
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Chapter 1

Background and motivation

1.1 The European energy transition

Energy systems in Europe are going through a process of profound transformation that will
bring important changes to the way we fuel our cars, heat our homes and power our
industries [8]. The growing share of renewable and decentralized generation, the
progressive increase in energy efficiency along the whole energy value chain, the increasing
need for flexibility in the energy system, the emergence of the consumers as active players
in the energy system and the appearance of new network users are the main changes
affecting the way in which energy producers, operators, regulators and consumers interact
in an increasingly complex market towards a sustainable energy system with reduced
greenhouse gas emissions, industrial development leading to growth and jobs and lower
energy costs for the EU economy [9]. These ongoing changes are leading to an increased
attention on energy storage systems across the entire energy value chain as illustrated in

Figure 1 [10].

Large scale energy storage Community energy storage
(pumped hydro, compressed air) (community and residential)
A A A A A
v v o \ \
Consumers
LT » Generation » Transmission . , Distribution  , Prosumers
sources
Prosumagers
A A
v v
Distributed energy storage
(utility-scale)

Figure 1 — Implementing energy storage at different scales in the energy system chain [10].
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Among the several ways and scales energy storage systems can be implemented, the need
for residential and community energy storage (CES) systems is expected to grow in the
future in line with the increasing local energy initiatives and distributed energy resources
(DERs) penetration as well as to meet increasing demand for flexibility and self-sufficiency
of citizens and local communities [10]. On the other hand, the significative decreasing cost
of worldwide residential PV systems over the last decade, as shown in Figure 2 [11], is
expected to contribute positively towards self-consumption models and new cost-

containment opportunities for energy consumers.
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Figure 2 — Residential PV system price development over the last decade [11].

In particular, amongst residential consumers, new behavioural patterns are emerging
ranging from rooftop solar PV coupled with battery energy storage systems owned by
individual households or third parties, to collective self-consumption at building scale, up

to Energy Communities [12].
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1.2 Collective self-consumption and energy communities: overview of new
and emerging approaches

With the “Clean Energy for all Europeans” package, published in November 2016, the
European Union has introduced new provisions on the energy market design and
frameworks for new energy initiatives. Specifically, the renewable energy and the electricity
market directives open the way for new types of energy initiatives aiming at, in particular,
the empowerment of smaller actors in the energy market as well as an increased decentral
renewable energy production and consumption (“presumption”) through new concepts of
collective self-consumption and energy communities, allowing citizens to collectively
organize their participation in the energy system [13]. Basing on the objectives set by the
Clean Energy Package, different new self-consumption scenarios can be imagined

overcoming the individual self-consumption concept, such as [14]:

- Collective self-consumption at building and block scale: collective self-consumption at
building scale has been developed as an alternative to the self-consumption at
consumer scale for buildings with a large number of users, such as large multi-
apartment buildings or office buildings with many different companies, in order to
make several electricity consumers located in one single building benefit from the
electricity produced by a common PV system. Self-consumption at building scale
requires no specific system design as this does not require the connection of several
small PV systems to each single private electricity grid, as in the case of individual
self-consumption, but only one single PV system with consumption data split among
several electricity consumers. This split of consumption data among users is called
“Virtual Metering” meaning that, in this case, physical infrastructures such as wires
and meters are replaced by data. Figure 3 shows the self-consumption scheme at
building scale, where blue indicates the PV system, green the private low voltage

grid and red the public distribution grid.
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Figure 3 — Collective self-consumption at building scale [14].

Two possible configurations are delineated in this case for the system: the direct
connection to the public distribution grid or the connection to a private grid. In the
former case, all energy consumers and the PV system are directly connected to the
public distribution grid with a meter installed and controlled by the local
Distribution Network Operators (DNO). The local DNO is in charge of reading the
PV production meter and splitting the energy production data among energy
consumers of the building. Each energy consumer has its own conventional energy
supplier that bills an amount of energy corresponding to the energy consumption
measured by the physical meter of the DNO minus the share of the energy
production indicated by the virtual meter provided by the DNO. In the latter case,
instead, each energy consumer and the PV system are connected to a private grid
(building micro-grid) with private sub-meters. This micro-grid is also connected to
the public distribution grid at one single point with one specific meter installed and
controlled by the local DNO. Viewed from the grid, the building is therefore
considered as one single grid user. In this option, the facility manager is in charge of
billing each energy consumer for their energy consumption, which is composed of
PV energy and energy supplied to the micro-grid by a conventional energy supplier

[14]. Figure 4 illustrates in detail the two connection schemes.
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Figure 4 —Self-consumption at building scale with public (left) and private grid (right) [14].

Public distribution grid

Similarly, the considerations given for the collective self-consumption at building
scale can be extended to a block scale: here the area is enlarged to more than one
building (including neighbouring buildings via direct lines) and correspondingly
more actors are involved [13].

- Energy communities: the Clean Energy Package has introduced energy communities
concept into European legislation. Behind the different definitions listed in the
european directive for closed distribution systems, community energy storage, renewable
energy communities and energy communities of citizens [15], the main idea is that a group
of consumers may join and cooperate together in the form of integrated community
energy systems, providing environmental, economic or social community benefits
for the members or for the local areas where they operate, rather than financial
profits. In particular, the members of the energy community will participate in the
generation of energy from renewable sources, storage, distribution and supply of
electricity with significant cost savings and providing different energy services for
the system operators, such as balancing and flexibility. As illustrated in Figure 5, the

households are the basic units of these energy communities [16].
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Figure 5 — Conceptual design of an integrated community energy system [15].

Any energy deficit or surplus at the community level can be purchased or sold to
other communities or market agents through the national grid. Different options
exist for energy sharing, such as peer-to-peer (P2P) exchanges through blockchain
technology, in order to improve the community self-consumption. P2P energy
sharing provides options for prosumers to trade energy within the neighbourhood
through local buying and selling. Figure 6 shows the architecture of P2P energy
sharing in a community, with N customers VB of which have individual PV battery
systems installed. An entity named “P2P Energy Sharing Coordinator (ESC)” is used
to achieve an aggregated control of the individual battery systems, i.e. managing
batteries from a community’s perspective so that the self-consumption of the
aggregated generation is maximized. The P2P ESC also coordinates between
customers and provides P2P sharing services, i.e. assuring the power balance and
payment balance. When the community has insufficient energy, the P2P ESC
purchases electricity from the grid, and when the community has surplus energy, the

P2P ESC sells electricity to the main grid [17].
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Figure 6 — P2P energy sharing in a community managed by an ESC [17].

1.3 Overview of European regulatory framework

On 21 December 2018 a substantial part of the long-awaited Clean Energy Package (CEP)
has been published in the Official Journal of the European Union, notably the EU Renewable
Energy Directive 2018/2001 (the “RED II”), the Energy Efficiency Directive 2018/2002 as well
as the EU Climate Action Governance Regulation 2018/1999. These directives establish a
common framework of measures to promote energy efficiency within the European Union
in order to ensure that the Union's 2020 headline targets on energy efficiency of 20% and its
2030 headline targets on energy efficiency of at least 32,5% are met and pave the way for
turther energy efficiency improvements beyond those dates. New concepts, such as “jointly
acting renewables self-consumer’ or ‘prosumers’, together with ‘renewable energy
communities’, have been addressed for the first time in EU legislation with the objective of
facilitating the involvement of (household) consumers in renewable energy deployment. In
particular, Article 21 and Article 22 of EU Directive 2018/2001 promote and facilitate the
development of renewables self-consumption and renewable energy communities,
respectively. End customers are now explicitly entitled to become ‘prosumers’, which
means that they can generate, store and consume renewable energy as well as sell the excess
production and participate in the applicable support scheme, without losing their rights and
obligations as end customers connected to the grid and without being faced with

20



discriminatory or disproportionate procedures and charges. Prosumers must also be

entitled to engage jointly and create energy communities. In several countries, a regulatory

framework according to the Clean Energy Package is under discussion or preparation or in

very early stage, while in some EU member states the discussion and first implementation

of collective self-consumption and energy communities schemes is ongoing. Table 1

describes the legislative framework on collective self-consumption for different European

countries [15], [16].

European Legal Frameworks for Collective Self-Consumption
Austria
Collective self-generation has been introduced into the Austrian Green Electricity
Act and the Austrian Electricity Act in 2017.
Key points: A collective self-generation system produces electricity to cover the
energy demand of a group of jointly acting renewable self-consumers, precondition
are smart meters. Excess electricity is fed into the grid based on a contract signed
with an energy supplier. Each participant can choose his/her own supplier to cover
the demand that is not met by the self-generation system and each customer is billed
separately for the energy consumed from the grid.
France
With the Ordinance n° 2016-1019 of 27 July 2016 relative to the self-consumption of
electricity, the system of self-consumption has been reformed introducing also the
concept of collective self-consumption. Following a consultation process, the
Commission de Regulation de I'Energie adopted a decision regulating network
tariffs for collective self-consumption.
Key points: The law allows collective self-generation of customers situated under
the same MV/LV transformer. The possibility to increase this perimeter is currently
under debate in parliament. The law states that all participants must be part of a
same legal person, that represents the community. The law does not specify what

this legal entity should be. In practice, it is often an ad hoc association. The
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community is in charge of attributing the energy produced locally to each
participant. Consumption is then billed on an individual basis. The part that is not
self-produced is billed the standard way by the supplier, taxes included, and the
part that is self-produced is paid for according to the contract that links the self-
consumers together, taxes included. Each supplier also recovers the network bill of
its own customers, including the part for the use of the local network by locally
produced energy.

Germany
In July 2017 the tenant electricity model (in German, also translated as ‘landlord-to-
tenant electricity supply model’) was formalised by the German government with a
dedicated subsidy framework for this model set out in an amendment to the German
renewable Energy Act (EEG) 2017.
Key points: Landlords who have photovoltaic installations on the roofs of their
buildings receive remuneration when they sell the electricity thus generated to their
tenants. However, as no grid fees need to be paid for this electricity, the
remuneration is much lower than when the electricity is fed into the grid. This new
rule increases the supply of landlord-to-tenant electricity and bring the energy
transition into the cities. Tenants will still be able to freely choose their electricity
suppliers.

Greece

The new law 4513 has been voted by the Greek Parliament and published on January
23, 2018. Citizens, municipalities and small and medium-sized local businesses are
encouraged to directly participate in energy projects, with priority being given to
Renewable Energy Sources.
Key points: The law defines 'energy communities' as civil law partnerships with the
exclusive aim of promoting the social economy, encouraging solidarity and
innovation in energy, responding to energy needs, promoting energy sustainability
in the production, storage, self-consumption, distribution and supply of energy and

increasing energy efficiency in final consumption on the local and regional level.
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Members of energy communities may be individuals, public and private law legal
entities and/or local authorities of the seat of an energy community or its plant. The
law, regulates, that energy communities are, as a rule, non-profit organizations, but
will be entitled to receive certain financial incentives and distribute profit if they
have at least 15 members, or 10 in case of islands with population below 3.100
inhabitants, 50% of which are individuals.

Luxembourg
Proposed modification of the electricity markets law is currently under debate in
parliament.
Key points: The draft law foresees two types of communities: local communities,
consisting of customers and generators situated behind the same MV/LV
transformer and “virtual communities”, consisting of any final customers and
generators. The legal form is not specified, only that it needs to be a moral person
specifically created for this purpose. This is to ensure that the participation is truly
voluntary.

Spain

The Royal Decree 244/2019 was published on 6% of April; it regulates the
administrative, technical and economic conditions of self-consumption of electrical
energy and implies a profound reform of self-consumption in Spain.
Key points: According to this new law, several consumers will be able to join the
same generation installation and communicate individually to the distributor as the
person in charge of the reading, the same agreement signed by all the participants
that collects the criteria for the distribution of self-consumption.

Switzerland
In January 2018 Switzerland has introduced an innovative regulatory framework for
collective self-consumption which could be applied to any distributed energy
technology.
Key points: The new legislation improves significantly the possibilities for collective

self-consumption and requires every DSO to approve it. It will be allowed to extend
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self-consumption to neighbouring buildings, as long as their land is contiguous and
that the public grid is not used (one single grid connection). The consumers that
group together will be treated as one single consumer (internal metering will be
under the responsibility of the group) for the DSO and can have access to the free

electricity market (additional strong incentive).

Table 1 - Reference legislative framework for collective self-consumption in European
countries [15], [18].

1.4 Collective PV self-consumption in multi-apartment buildings best
practices

Heidelberg Energiegenossenschaft eG (Germany)

Heidelberger Energiegenossenschaft eG (HEG) is a student energy cooperative founded in
2010. Currently HEG has 200 cooperative members and has invested over 1.000.000 € in 12
citizen owned solar-power plants for a total power of 700 kW,. HEG has managed to
successfully develop an innovative collective self-consumption scheme that allows tenants
of apartment buildings to purchase electricity cheaper than what they would pay for
purchasing electricity from the grid. This is achieved via a combination of on-site
production of energy with PV, self-consumption of this energy and supply of residual
energy from the grid. This innovative business model has been tested with 116 tenants of
the “Neue Heimat” Cooperative Family Home, situated in Nuflloch in Germany near
Heidelberg with 7 PV systems for a total power of 445 kWy [14]. The metering infrastructure

implemented in cooperation with the local DNO is shown in Figure 7 for the measure of:

* Energy produced by the PV system (regular meter owned by HEG - blue circle in Figure
7);

* Energy consumed by each energy consumer (regular meter owned by HEG - green circles

in Figure 7);
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* Residual energy supplied by HEG from the grid or the excess of energy injected into the

grid by HEG (two-way meter owned by the local DNO - green rectangle in Figure 7).

* Energy consumed by energy consumers that do not want to be supplied by HEG but by
any another energy supplier (regular meters owner by the local DNO and “virtual” meters
located at the grid connection point with consumption data subtracted from the total energy

consumed by HEG - black circles in Figure 7).

Meter for PV-production

51T o0600e

Solar customer meters
meter point f----4 _j&---===========-=n-

[ 2-way-meter J

Non-customer meters

Power grid

Figure 7 - Innovative metering infrastructure used by HEG for the collective self-

consumption of PV [14].

The total investment cost supported by HEG for the PV system was 525.000 € (1,18 €/Wy).
Tenants can choose to buy the energy from HEG at a rate of 25.4 c€/kWh plus a monthly fee
of 6.95 € given that this price is guaranteed for 20 years. This energy is a mix of the energy
produced by the PV system (30%) and the energy imported from the grid (70%). The excess
of energy produced is injected into the local grid and sold at a feed-in tariff. In this case,
HEG becomes a real small-scale utility, which requires specialized expertise such as meters

management and maintenance and energy billing to costumers.

Apartment building in der Lavaterstrafie, Wien (Austria)

The recent amendment to the Austrian national energy law has opened the way for
collective self-consumption in apartment buildings. The apartment building in der
Lavaterstrafie represents one of the first examples of collective self-consumption, in which
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the electricity generated by the photovoltaic plant is addressed to the consumers according
to their energy needs. Users who have chosen to purchase solar electricity (this option, in
fact, does not constitute an obligation for the consumers) pay 11 c€/kWh, with a saving of
around 30% compared to network tariffs. These advantageous tariffs have made it possible
to convince as many as 47 apartments out of 69, thus equal to 70% of the families in the
building, to join the purchase of photovoltaic electricity. It is an even more interesting result
when you consider that they are only tenants. The scheme adopted is dynamic: PV
production is divided among the families according to their instantaneous needs, in order
to maximize the self-consumption rate. In the example in Figure 8 the energy destined to
consumer 4 that, at the moment does not have any need, is therefore redistributed between

the users 2 and 3, thus allowing to have a 100% self-consumption [19].
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Figure 8 — Collective self-consumption dynamic scheme [19].
The CommUNITY project in Brixton, London (United Kingdom)

Residents of a block of flats in Brixton are pioneering a community energy trading project
that will enable them to trade solar energy with each other. In February 2019, in fact,
Energy’s Research & Development department of French electric utility EDF with

Repowering London and UCL’s Energy Institute have launched an energy sharing project
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in the UK., with the aim to increase residents” consumption of local low-carbon energy
while reducing their overall costs. The CommUNITY project will enable Brixton residents
at Elmore House to access electricity generated from a solar PV system on the block’s roof,
store it in a battery and trade with one another (peer-to-peer) using blockchain technology.
The platform, managed via an app, allows residents in urban areas to source their energy
from local renewables and either use their own allocation of energy or trade it with their
neighbours. Under current regulations, customers cannot buy from, or sell to, other
consumers but delivery of the project has been made possible as part of a special regulatory
sandbox, which allows the consortium to work outside the current regulatory framework

[20].

1.5 Towards the lifting of legal barriers in the Italian context

The existing legislation in the Italian framework is characterized by the current absence of
specific regulation on prosumers and energy communities as the competences on
production, transmission and distribution of energy are shared between the state and the
regions [21]. At the moment self-consumption between third parties based on sub-metering
and energy exchange is forbidden. Therefore, it is not possible to share electricity within an
energy cooperative and to set up a renewable energy community in the same multi-
apartment building. Buildings, in fact, may own local electricity generation plants dedicated
to supply only shared areas loads, such as elevator and lighting of common areas. This is a
barrier not just to solar on multi-family residential buildings but also shopping centres,
multi occupancy office buildings and business parks [22]. However, there seems to be a
strong political will to better enable collective forms of prosumerism in the near future. By
the end of 2019, in fact, national governments are expected to deliver their national energy
and climate plans (NECPs) containing objectives, policies and measures showing how they
aim to meet their 2030 renewables, energy efficiency and greenhouse gas targets. These have
to include objectives, policies and measures to support collective self-consumption and

renewable energy communities [23]. On the other hand, in Italy there are historical
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cooperatives, which have their own grid and function as autonomous systems. Their
existence provides a ‘case study’ of collective forms of self-consumption and inspiration for
future communities [21]. In particular, good practice examples of legislative proposals
foreseeing that residential consumers living in a single apartment block or located in the
same commercial or shared services site should be considered as being an individual
prosumer, are coming from different Italian regions, as discussed in detail in the next
paragraph. In such a context, financial incentives policies for solar PV energy and the
widespread roll out of smart meters for the accurate metering and billing of the solar
electricity, will represent a key enabler for future multi-occupancy PV business models. In
this thesis a building with several different consumption points is expected to turn out to be
a best practice of collective self-consumption in the social housing context. The connection
with the public grid will be through just one meter and the families will be equipped with

smart meters.

1.6  Regional regulations on collective self-consumption and energy
communities

Piedmont Region

Piedmont is the first Italian Region to have energy communities by law. The Regional Law
12/2018, that represents the first regional law for the constitution of energy communities in
Italy, has been presented on 24" July 2017 and unanimously approved on July 25, 2018 by
the Commission for Economy, Industry and Energy of the Regional Council [24]. The law
in question is based on the Italian National Law 28" December 2015, n. 221 “Environmental
law to promote green economy measures and to limit excessive use of natural resources”
which assumes that “as part of their sectoral legislation, the regions regulate the
organization of the Oil Free Zones, with particular regard to the technological innovation
applied to electricity generation from renewable energy sources and to sustainable
development through low environmental impact systems” [25]. The Regional Law 12/2018
identifies energy communities as homogeneous territorial areas that, in order to overcome
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the use of fossil fuels, produce and exchange energy generated from renewable sources,
promoting measures of energy efficiency and energy savings. Energy communities can
enter into agreements with the national electricity, gas and water authority in order to
optimize the management, use and costs of energy distribution; they must also draw up an
energy balance and an energy plan that identifies actions for the reduction of energy
consumptions [26]. Despite the lack of regulation in this field, there are already some Italian
cases of energy communities and cooperatives, mostly in the Alpine territory, that benefit
from the local production of energy from renewable sources and from the energy exchange
between stakeholders, but they don’t have the authorisation by Terna, the Italian leading
electricity transmission grid operator, to constitute themselves as a distributor, and they are
also quite small (about 15 thousand users or less). The new Piedmontese energy community,
on the other hand, includes 25 towns surrounding Pinerolo (Torino) and it stretches for over
one thousand three hundred square kilometres with a population of around 150,000; the
aim of the project is to meet the energy needs of the territory by exploiting solar,
hydroelectric and biomass/waste-sourced energy and it could become a pilot project for
other Italian regions as well. However, the project still has many technical and regulatory
obstacles to overcome, first of all the development of an agreement with the Italian
Regulatory Authority for Energy, Networks and Environment (ARERA) allowing the access
to and use of the national electricity transmission system for the energy distribution within

the community.
Apulia Region

Apulia is the first Italian region to establish the “regional energy income”. The Regional
Law n. 42, approved on August 9%, 2019, provides that the Region is responsible for the
purchase and installation of renewable energy production systems supplied as loan for use
to poor families and multi-apartment buildings, with the dual purpose of promoting
renewable energy sources and combatting poverty [27]. The selection criteria for the

beneficiaries are the following;:
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- With regard to the households, firstly the neediest families, the most numerous families

and young couples shall be favoured;

- With regard to the condominium buildings, a specific score will be assigned depending,

for example, on the number of housing units in the building.

The energy produced from renewable sources can be self-consumed by the users for their
own energy needs, while the surplus will be fed into the national grid and the proceeds will

be invested in the installation of new PV plants.

Furthermore, following the example of Piedmont Region, Apulia has adopted the Regional
Law n. 45 in order to economically support the development of energy communities by
granting financial contributions depending on the specific features of the different
territories in order to give preference to the most disadvantaged areas. Both public and
private entities can participate in the energy community by adopting generation from
renewable sources and storage systems such as to ensure a minimum 60% of energy

produced annually from renewable sources for self-consumption.
Lombardy Region

In April 2019 Lombardy Region launched the pilot project, supported by the Electric System
Research (RSE) on a mandate from the Ministry of Economic Development, to establish the
tirst 100% Renewable Energy Community (REC) in the municipality of Tirano (Sondrio).
The community consists of 192 prosumers and produces both electric and thermal energy

from solar and woody biomass plants [28].

However, the most significant initiative undertaken by the Lombardy Region will begin in
2020 in collaboration with RSE and with the involvement of ARERA and TERNA [29]. The
idea is to aggregate the existing residential PV battery systems, including the extra-small
plants, to create a “virtual” power plant that can participate and enable secondary
regulation in the Dispatching Services Market (MSD). Lombardy has the highest percentage
of installed solar energy systems, approximately 15,2% of all 822.000 PV systems installed
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in Italy (data from GSE, 2018). It is estimated that 2.700 residential users with small PV and
storage systems will be part of the project, and their number is about to grow thanks to the
financing measures promoted by the Region in favour of citizens installing storage systems.
Each plant will be supplied with a smart gateway that uses artificial intelligence algorithms
to properly exploit the advantages of the residential batteries for balancing the network in
real-time, without additional costs or changes in consumption habits from the users. In
particular, it will be essential the presence of an “aggregator” with the task of aggregating
the small plants until they reach 1 MW of power so that they are eligible to participate in
the Dispatching Services Market. TERNA will provide a refund of € 30.000/MW-year in
favour of the aggregator, which can pay back the investment required and share the profits
with the users. The project can be considered as a first step towards the Aggregate Virtual
Mixed Units (UVAM) in the residential sector, that are expected to become a key factor in

grid services provision.
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Chapter 2

Optimization problems and Linear Programming
techniques

2.1 Introduction to Optimization

For almost all the human activities there is a desire to deliver the most, seen as the maximum
profit or the maximum efficiency, with the least, in terms of minimum initial investment
and operational cost. The concept of optimization has therefore great significance in both
human affairs and the laws of nature which is the inherent characteristic to obtain the best
or most favorable (minimum or maximum) result under given circumstances [30]. In
particular, optimization is one of the most powerful tools in design and process integration.
Therefore, the study of design optimization is of essential help in the human activity to
create optimum design of products, processes and systems, subject to various mathematical,
physical, environmental and technical restrictions, such as material and energy balances,
process modeling equations, thermodynamic requirements, etc. [31]. For example, in
design, construction, and maintenance of any engineering system, engineers have to take
many technological and managerial decisions at several stages. The ultimate goal of all such
decisions is either to minimize the effort required or to maximize the desired benefit. Since
the effort required or the benefit desired in any practical situation can be expressed as a
function of certain decision variables, optimization can be defined as the process of finding
the conditions that give the maximum or minimum value of a function. It can be seen from
Figure 9 that if a point x* corresponds to the minimum value of function f(x), the same
point also corresponds to the maximum value of the negative of the function, —f(x). Thus
without loss of generality, optimization can be taken to mean minimization since the
maximum of a function can be found by seeking the minimum of the negative of the same

function [32].
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Figure 9 - Minimum of f(x) is same as maximum of —f(x) [32].
In addition, the following operations on the objective function will not change the optimum
solution x* as shown in Figure 10:
1. Multiplication (or division) of f(x) by a positive constant c.

2. Addition (or subtraction) of a positive constant c to (or from) f(x).
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Figure 10 - Optimum solution of c¢f (x) or ¢ + f(x) same as that of f(x) [32].
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The constraints are inherent part of the real world problems and they have to be satisfied to
ensure the acceptability of the solution. There are always numerous requirements and
constraints imposed on the designs of components, products, processes or systems in real-
life engineering practice, just as in all other fields of design activity. Therefore, creating a
feasible design under all these diverse requirements/constraints is already a difficult task,
and to ensure that the feasible design created is also ‘the best’ is even more difficult [30].

There is no single method available for solving all optimization problems efficiently. Hence
a number of optimization methods have been developed for solving different types of
optimization problems. The optimum seeking methods are also known as mathematical
programming techniques and are generally studied as a part of operations research. Operations
research is a branch of mathematics concerned with the application of scientific methods and
techniques to decision making problems and with establishing the best or optimal solutions.
The beginnings of the subject of operations research can be traced to the early period of
World War II. During the war, the British military faced the problem of allocating very
scarce and limited resources (such as fighter airplanes, radars, and submarines) to several
activities (deployment to numerous targets and destinations). Because there were no
systematic methods available to solve resource allocation problems, the military called upon
a team of mathematicians to develop methods for solving the problem in a scientific manner.
The methods developed by the team were instrumental in the winning of the Air Battle by
Britain. These methods, such as linear programming, which were developed as a result of
research on (military) operations, subsequently became known as the methods of operations

research [32].

2.2 Applications of optimization to industrial engineering problems

The ever-increasing demand to lower production costs and to minimize wastes of time,
materials, energy, and other resources, has prompted researchers and industry to look for
rigorous methods of decision making, such as optimization methods, to design and produce
products both economically and efficiently in a highly competitive economic environment
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[32]. For such reason, optimization, as a powerful modelling and problem solving
methodology, has become of substantial importance for the competitiveness of any
industrial system and nowadays represents a basic research and decision making tool
successfully applied in a wide range of practical problems arising in virtually any sphere of
human activities, including sciences, biomedicine, engineering, energy management,
aerospace research, telecommunications and finance [33]. Optimization is the process of
choosing the tradeoffs between different factors in the “best” way, in order to achieve
desirable outcomes. The notion of “different factors” means that there are different possible
solutions, and the notion of ‘achieving desirable outcomes” means that there is an objective
of seeking improvement on how to find the best solution. In fact, in an optimization
problem, different candidate solutions are compared and contrasted, which means that
solution quality is fundamental [33]. The application of optimization in engineering has a
very long history. In particular, two special classes of optimization problems, linear least
squares and linear optimization problems, have been widely used in a tremendous number
of application areas, such as transportation, production planning, design and data fitting.
Since 1990, the appearance of algorithms and software for convex optimization has
motivated people to apply convex optimization models in several new areas, such as
automatic control systems, signal processing, communications and networks, product and
shape design, electronic circuit design, data analysis and modelling, statistics and financial
engineering [34]. The application of convex optimization in engineering enables engineers
to design and solve problems more efficiently. In recognition of the contribution of
optimization to engineering, S.S. Rao wrote: “Optimization is now viewed as an
indispensable tool of the trade for engineers working in many different industries,
especially the aerospace, automotive, chemical, and manufacturing industries.” [32]. In
particular, optimization theory finds ready application in all branches of engineering in four

primary areas [35]:
1. Design of components or entire systems

2. Planning and analysis of existing operations
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3. Engineering analysis and data reduction
4. Control of dynamic systems

A broad range of engineering problems can be defined as optimization problems, such as
production planning, resources allocation, process design, process synthesis and analysis,
transportation, logistics, production scheduling, telecommunications networks, energy
systems integration, etc. Figure 11 highlights some prominent fields of applications
including electrical engineering, defence related application, civil engineering related

applications, automation, medical, industry, surveillance and agriculture [36].

Medical

3%

Surveillance
Industry 22~ Chemical

Automation 2% 2%

Figure 11 - Trend with respect to engineering application [36].

As concerns the energy sector, modern energy grid systems incorporate not only traditional
electrical systems but also renewables such as wind and solar photovoltaic. In order to
optimize the electric load requirements, generators, transmission and distribution lines, and
storage must be taken into account. At the same time, costs must remain sustainable for
profits. In such a context, mathematical programming, especially linear programming,
provides a method to optimize the electric power system design and can be used to optimize
load-matching or to optimize cost. It allows for matching the electric load in the shortest

total distance between the generation of the electricity and its demand over time [37]. Linear
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programming, in fact, because of its rigorousness, flexibility and extensive modeling
capability, has become one of the most widely explored methods for energy scheduling

problems, providing a valuable tool to the energy industry [38].

2.3 Statement of an Optimization Problem

All optimization problems can be presented by some standard form. In particular, each
optimization problem contains an objective function f(x) that needs to be minimized. An

optimization problem can be stated as follows [39].

Find
x = (x1,x%, ..., x™)
which minimizes
fx)

subject to the constraints

gix) <0
forj=1,...., m and

[i(x)=0

forj=1,...., p.

The variable x is called the design vector, f(x) is the objective function, g;(x) are the
inequality constraints and [;(x) are the equality constraints. The number of variables n and
the number of constraints p + m need not be related. If p + m = 0 the problem is called an

unconstrained optimization problem.
Various terms are in general used for optimization problems [40], these are:

Decision variables and design vector

Any real-world system can be described by a set of variables that control the output of the
system. Some of these quantities are imposed by the environment and can be viewed in the
optimization process as preassigned parameters, while others are variables over which the
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decision maker has control. The latter are usually input to the model and can be changed by
the decision maker with the aim of revising the response of the system. They are called

design or decision variables and are collected in the design vector x.

Identifying and prioritizing key decision variables

The objective function generally depends on lots of variables. However, all variables are not
equally important during the optimization process. Based on the Pareto ranking of effects
on objective function, the key decision variables are chosen. The sensitivity of the objective
function to changes in the variables is the key factor for deciding important variables.
Variables with high sensitivity may be considered as decision variables, whereas less

sensitive variables may be ignored.

Limits of decision variables
Every decision variable has some upper and lower limits. Theoretically, some variables may
reach infinity (e.g., time, length); however, in the optimization process, it is possible to limit

them to certain practicable values.

Design Constraints

Constraints are additional relations between the decision variables and process parameters
other than the objective function. In practice, the decision variables cannot be selected
arbitrarily, but have to satisfy certain requirements and limits. These restrictions are called
design constraints. Design constraints may represent limitation on the performance or
behavior of the system or physical limitations and can be expressed in the form of equality
or inequality. Consider, for example, an optimization problem with only inequality
constraints, i.e. g;(x) < 0. The set of values of x that satisfy the equations g;(x) = 0 forms a
hypersurface in the design space, which is called constraint surface. In general, if n is the
number of decision variables, the constraint surface is an n — 1 dimensional surface. The
constraint surface divides the design space into two regions: one in which g;(x) < 0 and

one in which g;(x) > 0. The points x on the constraint surface satisfy the constraint
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critically, whereas the points x such that g;(x) > 0, for some j, are infeasible, i.e. are

unacceptable, as shown in Figure 12.

Figure 12 - Feasible region in a two-dimensional design space. Only inequality constraints
are present [39].

Objective function

The classical design procedure aims at finding an acceptable design, i.e. a design which
satisfies the constraints. In general, there are several acceptable designs that satisfy the
constraints, and the purpose of the optimization is to single out the best possible design.
Thus, a criterion has to be selected for comparing different designs. This criterion, when
expressed as a function of the design variables, is known as objective function. Objective
function (also known as “cost function”) is therefore the mathematical expression,
describing the correlation between the decision variables and process parameters, that must
be optimized. There are many types of objective functions, often specified by physical or
economical considerations, like profit from the process, cost of production, error during
curve fitting/parameter estimation, minimization of environmental impact etc. However,
the selection of an objective function is not trivial, because what is the optimal design with
respect to a certain criterion may be unacceptable with respect to another criterion. Typically
there is a trade off performance—cost, or performance-reliability, hence the selection of the

objective function is one of the most important decisions in the whole design process. If
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more than one criterion has to be satisfied it will become a multiobjective optimization
problem, that may be approximately solved considering a cost function which is a weighted

sum of several objective functions.

Given an objective function f(x), the locus of all points x such that f(x) = ¢ forms a
hypersurface. For each value of c¢ there is a different hypersurface. The set of all these
surfaces are called objective function surfaces. Once the objective function surfaces are
drawn, together with the constraint surfaces, the optimization problem can be easily solved,
at least in the case of a two-dimensional decision space, as shown in Figure 13. If the number
of decision variables exceeds two or three, this graphical approach is not viable and the

problem has to be solved as a mathematical problem.
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Figure 13 - Design space, objective functions surfaces, and optimum point [39].

2.4 Classification of Optimization Techniques

Optimization problems can be classified in several ways [32]. Some possible classification

schemes can be made based on:

* Existence of constraints: Under this category optimizations problems can be classified

into two groups:

(i) Constrained optimization problems, which are subject to one or more constraints.
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(ii)

Unconstrained optimization problems, in which no constraints exist.

* Nature of the design variables: There are two broad categories in this classification:

(i)

(ii)

Parameter or static optimization problems, in which the objective is to find a set of
design parameters that makes a prescribed function of these parameters
minimum or maximum subject to certain constraints.

Trajectory or dynamic optimization problems, in which the objective is to find a set of
design parameters that are all continuous functions of some other parameter that

minimizes an objective function subject to a set of constraints.

e Physical structure of the problem: Based on the physical structure, optimization

problems are classified as:

(i)

(ii)

Optimal control problems, which are mathematical programming problems
involving a number of stages, where each stage evolves from the preceding stage
in a prescribed manner. They are defined by two types of variables: the control or
design and state variables. The control variables define the system and controls
how one stage evolves into the next. The state variables describe the behavior or
status of the system at any stage. The problem is to find a set of control variables
such that the total objective function (also known as the performance index, PI)
over all stages is minimized, subject to a set of constraints on the control and state
variables.

Non-optimal control problems, which are not optimal control problems.

* Nature of the equations involved: This classification is very useful from a computational

point of view since many predefined special methods are available for effective solution of

a particular type of problem. Based on the nature of equations for the objective function and

the constraints, optimization problems can be classified as:

(i)

Linear programming problems, in which the objective function and all the

constraints are ‘linear” functions of the design variables.
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(i)  Nonlinear programming problems, in which one or more functions among the
objectives and constraint functions are nonlinear. This is the most general form of
a programming problem and all other problems can be considered as special cases
of the nonlinear programming problems.

(iii)  Geometric programming problems, in which the objective function and constraints
are expressed as polynomials.

(iv)  Quadratic programming problems, which are the best behaved nonlinear
programming problems with a quadratic objective function and linear constraints
and are concave (for maximization problems). They can be solved by suitably

modifying the linear programming techniques.

* Admissible values of the decision variables: Depending upon the values permitted

for the design variables, optimization problems can be classified as:

(1) Integer programming problems, when some or all of the design variables are
restricted to take only integer (or discrete) values.

(i)  Real-valued programming problems, in which it is sought to minimize or maximize
a real function by systematically choosing the values of real variables from within

an allowed set that contains only real values.

* Deterministic nature of the variables: Under this classification, optimization problems

can be classified as:

(i) Stochastic programming problems, when some or all the design variables are
expressed probabilistically (non-deterministic or stochastic).
(i)  Deterministic programming problems, in which all the design variables are

deterministic.

* Separability of the functions: Based on this classification, optimization problems can be

classified as:

42



(1) Separable programming problems, when the objective function and the constraints
are separable. A function is said to be separable if it can be expressed as the sum
of n single-variable functions.

(ii) ~ Non-separable programming problems, when the objective function and the

constraints are not separable.

* Number of objective functions: Under this classification, objective functions can be

classified as:

(1) Single-objective programming problems, in which there is only a single objective
function.
(i)  Multi-objective programming problems, in which there are more objective functions

to be minimized simultaneously.

Table 2 lists some of the most common traditional optimization methods among the
mathematical programming, stochastic and statistical techniques, respectively, together to
the more recent ones. As regards the latter, the modern optimization methods, also
sometimes called nontraditional optimization methods, have emerged as powerful and
popular methods for solving complex engineering optimization problems in recent years.
These methods include genetic algorithms, simulated annealing, particle swarm
optimization, ant colony optimization, neural network-based optimization, and fuzzy
optimization. The genetic algorithms are computerized search and optimization algorithms
based on the mechanics of natural genetics and natural selection. The simulated annealing
method is based on the mechanics of the cooling process of molten metals through
annealing. The particle swarm optimization algorithm mimics the behavior of social
organisms such as a colony or swarm of insects, a flock of birds, and a school of fish. The
ant colony optimization is based on the cooperative behavior of ant colonies, which are able
to find the shortest path from their nest to a food source. The neural network methods are
based on the immense computational power of the nervous system to solve perceptional
problems in the presence of massive amount of sensory data through its parallel processing

capability. The fuzzy optimization methods were developed to solve optimization problems
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involving design data, objective function, and constraints stated in imprecise form involving

vague and linguistic descriptions [32].

Mathematical programming or Stochastic process Statistical methods

optimization techniques techniques

Calculus methods Statistical decision theory =~ Regression analysis

Calculus of variations Markov processes Cluster analysis, pattern recognition
Nonlinear programming Queueing theory Design of experiments

Geometric programming Renewal theory Discriminate analysis (factor analysis)
Quadratic programming Simulation methods

Linear programming Reliability theory

Dynamic programming

Integer programming

Stochastic programming

Separable programming
Multiobjective programming
Network methods: CPM and PERT
Game theory

Modern or nontraditional optimization techniques

Genetic algorithms
Simulated annealing

Ant colony optimization
Particle swarm optimization
Neural networks

Fuzzy optimization

Table 2 - Methods of Operations Research [32].

In this thesis a scheduling problem is addressed by the applying the Mixed-Integer Linear

Programming technique.

2.5 Linear Programming and Mixed Integer Linear Programming problems

A general Linear Programming (LP) problem has the following formulation [41]:

n
min Z Cij
j=1
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Where n,n,,m,m,, are known constant scalars; c = ¢j € R™ and b = b; € R™ are known

vectors; A = a;; € R™™

is a known matrix. While the vector x = x; € R" represents the
decision variables for which an optimal value needs to be found. For LP problems variables
are supposed to be continuous and they can assume every value within a continuous interval.

This formulation can be used for every optimization problem with a linear objective

function and where constraints are expressed by linear equations or inequalities.

An Integer Linear Programming problem (ILP) is a variation of the Linear Programming
problem (LP) which contains a further constraint that imposes that every variable will be an
integer one.

xj integer
j=1...n

A Mixed Integer Linear Programming problem (MILP) is a generalization of LP and ILP
where just a subset of variables are restricted to be integers while other variables are allowed

to be non-integers.

xj integer
jES
Sc{1..n}
A special case is the 0-1 Integer Linear Programming, in which variables are binary.
x; € {0,1}

j=1...n
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Both ILP and MILP problems can be solved and they are practically solved by using
branch—and-bound algorithms where a continuous relaxation of the problem is iteratively
solved by removing the integer constraints. The idea is to subdivide the whole problem into
a set of sub-problems of progressively decreasing dimensions that can be more easily
solved, according to a divide-and-conquer strategy. In particular, the original problem is
splitted into branches of sub-problems as a rooted tree, as illustrated in Figure 14. Each node
in the rooted tree is considered as a new integer linear programming optimization problem.
Based upon the upper and lower estimated bounds of the optimal solution, each branch is
checked. The branch will be discarded in case of not producing a better solution than that

found by the algorithm in the previous step [42].
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Figure 14 - Diagram explaining the main concept of branch-and-bound algorithm [42].

Throughout more than 50 years of existence, Mixed Integer Linear Programming theory and
practice have been significantly developed, and MILP is now an indispensable tool in
business, engineering and management science for supporting managerial decisions [43].
Through allowing for the use of integer or binary variables, a wide range of problems can

be modeled as MILP in many application areas, such as [44]:
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Capital Budgeting: in a typical capital-budgeting problem, the investment decisions
might be to choose among possible plant locations, to select a configuration of capital
equipment, or to settle upon a set of research-and-development projects. Often the
problem can be modeles as a go—no-go integer program, where the decision variables
are taken to be x; = 0 or 1, if the jth investment is rejected or accepted, respectively.
Warehouse Location: in modeling distribution systems, decisions must be made
about tradeoffs between transportation costs and costs for operating distribution
centers. In such cases generally binary variables y; = 0 or 1 are applied in order to,
for example, identify if warehouse i is opened or not.

Scheduling: the entire class of problems referred to as sequencing, scheduling, and
routing are inherently integer programs. In particular, the energy sector offers a wide
range of applied problems where ILP and MILP can be successfully applied to
facilitate the decision making process and to analyze the state of the art of some
technologies, making sensitivity analyses on the most interesting parameters
involved. The most important problems that can be studied through ILP and MILP
in the energy sector are related to energy production and energy dispatching, such
as the optimal plants management, scheduling and location and the optimal energy

distribution along optimized energy networks [41].

2.6 Non-Linear Programming problems

Although numerous applications can be treated as linear programs, there are many
examples of nonlinear systems in the real-world applications in which nonlinearities, in the
form of either nonlinear objective functions or nonlinear constraints, are crucial for

representing an application properly as a mathematical program [45].

A general Non-Linear Programming problem (NLP) aims at finding the optimal values of

x = (X1, %, ... x,) in such a way that:

min f(x)
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gix)<b;, Vi=1.m
x=0

Where f(x) and g;(x) are known functions of the n decision variables [41].

There are many different classes of nonlinear programming problems, depending on the

characteristics of the f(x) and g;(x) functions, such as [46]:

e Unconstrained optimization problems: they have no constraints, so the objective is
simply to maximize f(x) over all values of x = (xy, X ... Xp,).

e Linearly constrained optimization problems: characterized by constraints that
completely fit linear programming, so that all the g;(x) constraint functions are linear,
but the objective function f(x) is nonlinear.

e Quadratic programming: a special case of linearly constrained optimization
problems; they again have linear constraints, but now the objective function
f (x) must be quadratic.

e Convex programming: it covers a broad class of problems that actually encompasses
as special cases all the preceding types when f(x)is a concave function to be
maximized. The assumptions are that f(x) is a concave function and each g;(x) is a
convex function. These assumptions are enough to ensure that a local maximum is a
global maximum. If the objective were to minimize f(x) instead, the first assumption
would change to requiring that f(x) must be a convex function, since this is what is
needed to ensure that a local minimum is a global minimum.

e Separable Programming: it is a special case of convex programming
with additional assumption that all the f(x) and g;(x) functions are separable
functions. A separable function is a function where each term involves just a single
variable, so that the function is separable into a sum of functions of individual

variables.
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e Nonconvex Programming: it encompasses all nonlinear programming problems that
do not satisfy the assumptions of convex programming. In this case there is no
assurance that a local maximum also will be a global maximum.

e Geometric Programming: the objective function and constraint functions are of the
form of: g(x) = ¥, ¢;P;(x), where P;(x) = xf“x?"z WXy fori=1,2,..,N.Insuch
cases, the ¢; and a;; typically represent physical constants, and the x; are design
variables. When all the c¢; coefficients in each function are strictly positive, the
functions are generalized positive polynomials now called posynomials and the objective
function is to be minimized by applying a convex programming algorithm.

e Fractional Programming: the objective function is in the form of a ratio of two

functions: maximize f(x) = % The most straightforward approach to solving a
2

fractional programming problem is to transform it into a linear programming

cx+cqy
dx+dy’

problem, when f(x) has the linear fractional programming form: f(x) = where

¢ and d are row vectors, x is a column vector, and co and doare scalars.

In general, non-linear problems are intrinsically more difficult to solve and there is no
standard method available for solving these problems; hence ad hoc algorithms have been
created and are used for different types of nonlinear problems. In particular, some of the

greatest criticalities in solving nonlinear problems are [47]:

- itis hard to distinguish a local optimum from a global optimum;

- the optimal solution is not restricted to extreme points, but it can occur at an interior
point of the feasible region, on the boundary of the feasible region, which is not an
extreme point, or at an extreme point of the feasible region;

- there may be multiple disconnected feasible regions;

- different starting points may lead to different final solutions;

- it may be difficult to find a feasible starting point;

- itis difficult to satisfy equality constraints and to keep them satisfied;

- there is no definite determination of the outcome;
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- there is a huge body of very complex mathematical theory and numerous solution
algorithms;

- itis difficult to determine whether the conditions to apply a particular solver are met;

- different algorithms and solvers arrive at different solutions and outcomes for the
same formulation;

- different but equivalent formulations of the model given to the same solver may
produce different solutions and outcomes;

- using the available non-linear solvers can be complex.

The most common way of dealing with nonlinear programming problems is to try to
linearize the problem by applying some linear approximation techniques and then use one

of the many available linear programming solvers [48].

2.7 Linear reformulation of nonlinear programming problems

In the last decades the research carried out to solve more and more complex problems has
followed two main directions: first, an improvement of the solvers and algorithms, taking
also into account the increasing power of computers. Second, the way to model problems
[49]. Concerning the formulation of the problems, several different formulations may share
the same numerical properties (feasible region, optima) though some of them are easier to
solve than others with respect to the most efficient available algorithms [50]. Therefore, in
cases that the formulation of a problem is not the best for a given solver, starting from the
tirst formulation, one tries to modify it in order to obtain an alternative model, called
reformulation, which is better in terms of possibility of exploiting alternative and more
efficient solvers and computational time needed to obtain the optimal solution. For instance,
if a nonlinear problem can be reformulated as a linear one, one may take advantage of
powerful solvers which are usually more robust than the nonlinear ones [49]. Being able to
cast the problem in the best possible formulation is therefore a crucial aspect of any solution
process [50].

50



In the literature, different definitions of reformulation are presented, such as [49]:

Sherali’s reformulation [51]: A reformulation of an optimization problem P (with objective
function fp) is a problem Q (with objective function fo) such that there is a pair (o,7) where o
is a bijection between the feasible region of Q and that of P, and T is a monotonic univariate

function with fo=t(fr).

This definition is really strict, excluding from the class of reformulations all the cases where

there does not exist a bijection ¢ between the feasible region of the reformulated problem Q

and that of the original one P.

Audet’s reformulation [52]: Let Pa and Ps be two optimization problems. A reformulation
B(-) of Pa as Ps is a mapping from Pa to Ps such that, given any instance A of Pa and an
optimal solution of B(A), an optimal solution of A can be obtained within a polynomial

amount of time.

In this case the definition excludes nonpolynomial time reformulations, which could be

carried out in a reasonable amount of time, and it includes all the polynomial time

reformulations even if very slow in practice. Moreover, there is no guarantee of preserving

local or global optima.

Liberti’s reformulation (also called auxiliary problem) [53]: Any problem Q that is related
to a given problem P by a computable formula (Q, P) = 0 is called an auxiliary problem (or

reformulation) with respect to P.

Starting from the latter definition, reformulations can be classified in four different types

[49], [50]:

exact or opt-reformulations: Q is an exact reformulation (or opt-reformulation) of P if each

local optimum | € L(P) corresponds to a local optimum I’ € L(Q) and each global optimum g
€ G(P) corresponds to a global optimum g'€ G(Q).
Opt-reformulations are auxiliary problems that preserve all optimality properties.

They are defined by considering local and global optima. A local reformulation
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transforms all optima of the original problem into optima of the reformulated
problem, although more than one reformulated optimum may correspond to the
same original optimum. A global reformulation transforms all global optima of the
original problem into global optima of the reformulated problem, although more
than one reformulated global optimum may correspond to the same original global
optimum. Opt-reformulations can be chained (i.e. applied in sequence) to obtain
other opt-reformulations.

narrowings: Q is a narrowing of P if each global optimum g’ € G(Q) corresponds to a global
optimum g € G(P).

Narrowings are auxiliary problems that preserve at least one global optimum. They
come in specially useful in presence of problems exhibiting many symmetries: it may
then be the huge amount of global optima that is preventing a search from being
successful. All opt-reformulations are a special case of narrowings; narrowings can
be chained to obtain more complex narrowings. Chaining an opt-reformulation and
a narrowing results in a narrowing.

relaxations: Q is a relaxation of P if F(P) € F(Q), and considering minimization problems P
and Q where fr and fq are respectively their objective functions, then Vx € F(P), fo(x) < fe(x).
In other words, a problem Q is a relaxation of P if both the feasible region of P is
contained into the feasible region of Q and the objective function of Q provides better
(or equal) value than the objective function of P when evaluated in the points of the
feasible region of P. Loosely speaking, a relaxation of a problem P is an auxiliary
problem of P with fewer constraints. Relaxations are useful because they often yield
problems which are simpler to solve yet they provide a bound on the objective
function value at the optimum. The “fundamental theorem” of relaxations states that
relaxations provide bounds to the objective function. Opt-reformulations and
narrowings are special types of relaxations. Relaxations can be chained to obtain
other relaxations; chaining of relaxations with opt-reformulations and narrowings
results in other relaxations. There are different kinds of relaxations. For instance the

elimination relaxation takes place when we simply drop some constraints (as in the
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continuous relaxation for integer problems, where the integrality constraints on the
variables are dropped). In the surrogate relaxation a set of constraints is replaced by
a linear combination of them. In the Lagrangian relaxation a set of constraints is
removed from the model but the objective function is modified in order to penalize
solutions which does not respect these constraints.

approximations: Q is an approximation of P if there is a countable sequence of problems Qk

(for k € N), a positive integer k” and an auxiliary problem Q* of P such that: (a) Q = Qx; (b)
for all expression trees f* € O(Q*) there is a sequence of expression trees fr € O(Qx) that
represent functions converging uniformly to the function represented by f*(c) for all c* = (e¥,
s*, b*) € C(Q¥) there is a sequence of constraints cx = (ex, sk, bx) € C(Qx) such that: (i) the
functions represented by ex converge uniformly to the function represented by e*; (ii) sk = s*
for all k; (iii) bx converges to b.

Approximations are auxiliary problems dependent on a numerical parameter, which
approximate as closely as desired other auxiliary problems for some limiting value
of the parameter. Since approximations can be defined for all types of auxiliary
problems, we can have approximations to opt-reformulations, narrowings,
relaxations and approximations themselves. In general, approximations have no
guarantee of optimality, i.e. solving an approximation may give results that are
arbitrarily far from the optimum. In practice, however, approximations manage to
provide solutions of good quality. Opt-reformulations, narrowings and relaxations
are special types of approximations. Chaining approximations and other auxiliary

problems yields an approximation.

In general, not all reformulations are equally good; some desirable properties are: using a

small number of auxiliary variables, having a small number of positive quadratic terms (as

an empirical measure of sub-modularity) or capturing the underlying structure of the

original nonlinear problem [54].

In this thesis some different linearization techniques are used in the development of solution

procedure for the purpose of constructing an equivalent linear mixed integer representation

of the problem. They are described in more detail in Chapter 4.
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Chapter 3

Linear Programming applications in residential storage
systems: a case study

3.1 Literature review on LP and MILP applications for battery storage
systems optimization

Optimization methods in the field of energy efficiency and energy management is a
popular research area. A vast number of publications address the topic of optimization of
PV and storage systems focusing on two main aspects: component sizing and operation
strategies [55]. In this context applications of linear mixed integer linear programming are
important since they provide an efficiently-solvable model for these complex problems
[56]. With regard to the sizing problem, for example, [57] proposes a mixed integer
programming formulation to obtain the optimal capacity of the battery energy storage
system in a power system, minimizing the cost of battery in the first case investigated and
the imported power in the second case. Similarly, in [58] and [59] an optimal approach for
sizing of an integrated hybrid system including PV panels, wind turbine, and battery is
presented, using as the most important criterion the unit cost of electricity energy and
different operational costs such as maintenance, emission and battery costs, respectively.
On the other hand, lots of works have been published on batteries scheduling and
operation strategies using LI and MILP techniques. [60] and [61] use linear programming
to define an improved dispatch operation for PV/energy storage system in a group of
households and in a microgrid of multiple buildings, respectively, with the aim to reduce
the overall costs by minimizing the individual amount of power purchased from the grid,
while [62] obtains the best storage operation patterns considering a trade-off between not
only energy purchase, but also feed-in remuneration and battery aging. Also, in [63] and

[64] a MILP optimization model has been developed to maximize FiT revenue streams for
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a grid connected PV generation system considering different electricity pricing schemes
and Net-Energy-Metering (NEM) policies. In a more complex residential system with
different energy conversion units, such as a cogeneration fuel cell, a heat pump, a boiler,
photovoltaic panels and solar thermal collectors combined with energy storage devices,
consisting of a battery and a hot water tank, a linear program is developed to determine
the optimal investment and drive down total yearly energy costs and CO2 emissions while
meeting space heat, hot water and electricity needs [65]. Similarly, in [66] the optimal
operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a
mixed-integer linear programming, including the maintenance, operation cost and the
generation measurement and control. On a larger scale, [67] and [68] propose a LP
optimization method to solve the optimal scheduling problem and dispatch the distributed
energy resources within a microgrid including a battery energy storage system with the
dual objective function of economics and peak-shaving in the first case and operating costs
minimization and self-consumption promotion in the second case. Furthermore, some
works, such as [69], [70] and [71] develop LP models considering battery degradation
processes and battery state of health, respectively, to derive suitable charging patterns to
prolong battery lifetime. For further information reference should be made to review of
literature on optimal sizing and operation of energy storage systems in [72] and [73]. In
this thesis the optimization of a PV/BESS operation is addressed with the purpose of
minimizing energy imported from and exported to the grid while focusing on the
mathematical formulation of the most important batteries constraints, such as depth of
discharge requirements, state of charge limitations, charge and discharge rates, and

charging/discharging optimal profiles.

3.2 Degradation of battery lifetime and need for optimal management

An important question, especially in applications with long system lifetimes, like PV

systems, and where the battery share of the overall systems’ life cycle cost is significant, is
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to maximize the battery lifetime as much as possible, by properly managing its charging
and discharging schedule [74]. In general, the overall lifetime of a battery can be
approximated based on two parameters, the calendar lifetime L{* and the maximum
number of full battery cycles until decommissioning L3, ©, differing depending on the battery
chemistry (lead-acid, lithium-ion, nickel-based, sodium-based, saltwater, flow batteries,
etc.). A full cycle refers to a sequence of discharge-charge operations that starts and ends
with a fully charged battery [70]. Calendar lifetime tends to dominate in systems where
batteries are used infrequently or at very low currents, whereas cycle life is often used for
regularly cycled applications. In addition, another metric can be used: the total amp-hours
(Ah) of charge processed is a useful measure of life when batteries are used frequently but
with irregular or incomplete cycles [75]. The battery lifetimes are depending on a variety of
environmental and operation parameters, such as chemical substances and therefore battery
type, temperature, depth of discharge (DOD), charging and discharging rate, state of charge
when stored, etc. In particular, some impact factors on battery performance and aging can
be influenced by the operation strategy and especially by the charge conditions. In
engineering and design, experts are working to get a better understanding of usage patterns
causing battery degradation with the aim to improve battery management systems and
thermal control, increasing cycle life and allowing deeper discharge, thus decreasing the
cost per usable kWh [76]. It is found that each battery type has a specific set of restraints and
conditions related to its charging and discharging optimal regime. For example, nickel
cadmium batteries should be nearly completely discharged before charging, while lead acid
batteries should never be fully discharged. Furthermore, the voltage and current during the
charge cycle will be different for each type of battery. Various phenomena, in fact, take place
at the electrode/electrolyte level during charging and the method in which a battery is
charged can significantly alter its efficiency and safety [77]. Therefore, it is important to
select the battery type according to the specific application field. Some of the most common

battery technologies for household applications are [78], [79]:

- Lead-acid (LA) batteries: lead-acid chemistry uses a lead-based grid submerged in

an acidic electrolyte. LA batteries are one of the oldest forms of energy storage and
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are known for being dependable and inexpensive, with low self-discharge and
relatively low capital cost, which are their most prominent benefits when compared
to other cells. However, LA batteries suffer from limited cycle life and are inefficient
when it comes to charge and discharge when compared to other chemistries. LA
batteries can be flooded cell type or valve regulated type. In flooded batteries the
electrodes are completely submerged in the electrolyte. During charging of flooded
batteries to full state of charge, hydrogen and oxygen gases produced from water by
the chemical reaction at negative and positive plates passes out through vents of the
battery. Flooded batteries need to be refilled regularly as the electrolytes evaporate
during charging. The Valve Regulated Lead-Acid (VRLA) batteries can be “sealed”
and use valves to regulate off-gassing. They can be further separated into two
categories: absorbed glass mat (AGM) and gel. AGM batteries hold the electrolyte in
its glass mats and use only enough liquid to keep the grid wet. Gel batteries use a
thick silica-based gel as its electrolyte base. AGM batteries perform better in colder
temperatures, while gel batteries work better in warmer temperatures when there’s
less chance for the thick paste to freeze.

Sodium-based batteries: these batteries use salt—sometimes saltwater —to produce
long-duration power. Salt-based cells can be completely drained to zero charge
without damaging the system. Sodium batteries are not flammable or explosive and
can function in a wide temperature range.

Nickel-cadmium (Ni-Cd) batteries: in Ni-Cd batteries positive electrode is made up
of cadmium and the negative electrode by nickel hydroxide separated by nylon
separators immersed in potassium hydroxide electrolyte. These batteries are
characterized by higher energy and power density, and better cycle life than lead-
acid batteries and are temperature tolerant. Ni-Cd batteries present memory effect,
which degrades the battery capacity according to its usage, and high values of self-
discharge. Memory effect is the process of remembering the depth of discharge in the
past. If the battery is discharged to 25% repeatedly, it will remember it, and if the

discharge is greater than 25%, the cell voltage will drop as shown in figure 15. To
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recover the full capacity the battery, it should be reconditioned by fully discharging

and then fully charging once in few months.
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Figure 15 - Memory effect of Ni-Cd battery [78].

Nickel-metal hydride (Ni-MH) batteries: they are considered an improvement over
the Ni-Cd batteries, safer and less susceptible to memory effect issues. Additionally,
they have a higher energy and power density than Ni-Cd. Despite these advantages,
they are expensive than Ni-Cd and overcharging damages the batteries easily. Also,

they suffer from high self-discharge and low coulombic efficiencies.

Lithium-ion (Li-ion) batteries: Lithium-based energy storage systems are
overwhelmingly the most common storage technology used within the solar market.
These batteries are characterized by the transfer of lithium ions between electrodes
during charge and discharge reactions. In particular, the lithium electrode reacts with
the electrolyte creating a passivation film during every discharge and charge
operation, with damages for the battery in case of overcharging. This is compensated
by the usage of thick electrodes. Because of this fact and their need for battery
management systems to monitor voltage and temperature, lithium-ion batteries are
more expensive than other chemistries. The benefits of lithium-ion, though, include

long cycle life, greater energy density, high charge and discharge efficiency and
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wider operating temperature range over conventional lead acid batteries and Ni-Cd,
but they are prone to self-discharge. There are many different types of lithium ion
batteries that are primarily distinguished by their cathode materials. Even with the
same cathode types, the choice of anode materials, electrolyte solvents, separators
and nanomaterial additives strongly influences performance. The most common
lithium-based battery types are: lithium polymer (PLiON), lithium cobalt oxide
(LCO), lithium manganese oxide (LMO), lithium iron phosphate (LFP), lithium
nickel manganese cobalt oxide (NMC), lithium nickel cobalt aluminum oxide (NCA)

and lithium titanate (LTO).

Table 3 summarizes the main characteristics, while Figure 16 compares in detail the energy

densities of the different solar rechargeable battery types [80], [81].

Type Energy Density  Energy Efficiency Power Density = Cycle Life  Self Discharge
(Wh/kg) (%) (W/Kg) (Cycles) (%/Month)

Lead-Acid  30-40 70 - 90 180 200-2000 3-4

Li-Ion 100 - 250 75-90 1800 500-2000 5-10

Li Polymer 130 -200 70 3000 >1200 4-8

Ni-MH 30-80 70 250 - 1000 500 - 100 30

Ni-Cd 40 - 60 60 - 90 140 - 180 500-2000  10-15

Na$S 150 80 - 90 120 - 150 2500 -

Table 3 - Comparison of key characteristics of different rechargeable battery technologies

[80].
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Figure 16 - Comparison of energy densities and specific energy of different rechargeable

batteries [81].

Furthermore, numerous chemistries and novel technologies are being developed for the
solar storage, such as silicon-based, room-temperature sodium sulfur (RT-NaS), proton,
graphite dual-ion, aluminum-ion, nickel-zinc, potassium-ion, salt-water, paper-polymer

and magnesium batteries.

Depending on the reactions of electrochemical processes, performances and lifetime of the
different battery chemistries can be more or less seriously affected by several factors. In
general, battery performance highly depends mainly on [82]:

e Temperature: while most manufacturers designate a large operating temperature
margin from -30 °C to +55 °C, the optimal operating temperature is much smaller and
pronounced life fade can be experienced at the extremes. For lithium-ion batteries
high temperatures accelerate aging side reactions within a battery cell. Conversely,
low temperatures cause lithium plating to occur on the anode while charging the
battery, as shown in Figure 17. Additionally, cell temperature affects battery power
output at extreme points such that high powered charging or discharging at very

high or low temperatures would generate a diminished response. An optimal

60



operating temperature which minimizes degradation of both of these effects can be

found, however it is chemistry specific.

Effect on Life Fade

Temperature (C)

Figure 17 - Generalized thermal effects for lithium-ion batteries [82].

State of Charge (SOC) and Depth of Discharge (DOD): the state of charge indicates
battery charge as a fraction of the initial capacity, while the depth of discharge refers
to the capacity discharged as a fraction of the initial capacity and it is treated as a

complement of SOC, as shown in Figure 18.
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Figure 18 - The battery cycle working principle, SOC and DOD [83].

Lithium ion batteries show a strong dependency on the absolute state of charge and

cycle life is mainly determined by how deeply the battery is used, i.e., DOD. In
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particular, the higher the SOC of the cell, the higher the Li ion concentration at the
surface of the anode and, therefore, the higher the rate of the side reaction.
Furthermore, high states of charge cause a change in volume of the active material
and therefore mechanical stress. From this understanding it is clear that cycling from
a lower average SOC will cause less degradation than cycling at a higher average
SOC. This is important when considering DOD effects as well since cycling the
battery with identical cycle depth ASOC but at different cycling regimes (e.g.
between 100% SOC and 20% SOC or between 80% SOC and 0% SOC) can lead to
deviations in lifetime by a factor of 3 and more. Higher DOD cycling results, in fact,
in greater mechanical stresses applied to the cell due to volumetric changes which
cause cracking of the Solid Electrolyte Interface (SEI) layer, i.e. the passivating layer
on the anode surface formed by the reaction between the anode and electrolyte,
lithium exfoliation, isolation of active electrode material, and contact loss at each
current collector. The cyclic aging is typically defined by means of a Woehler diagram
that correlates the number of performable cycles to the ASOC of the cycle. It gives the
maximum number of cycles a cell can drive till the end of life, given the cycle depth.
An example of such a Woehler diagram is shown in Figure 19. The Woehler diagram

is usually given by the cell manufacturer [74].
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Figure 19 - Example of Woehler Curve [74].
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e Charge Rate (C-rate): The C-rate is an expression of charge or discharge current
which is normalized to battery capacity. In lithium-ion batteries high currents
contribute to an increased SEI layer growth at the anode, which both decreases
actively available lithium and increases resistive behavior. Furthermore, high C-rates
can cause SEI mechanical fracture due to particle cracks during battery cycling
especially at low temperatures. Additionally, high currents generate more ohmic
heating which in turn increases battery temperature and contributes to the resultant
temperature effects. The amount of ohmic heating will also depend on the cell
internal impedance. Finally, C-rate is known to affect charge efficiency with lower C-

rates being more efficient following a non-linear trend.

Figure 20 provides a general overview of various degradation mechanisms for lithium-ion
batteries depending on the main factors influencing battery degradation (temperature, SOC,

C-rate, DOD) [82].
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Figure 20 - Degradation mechanisms for lithium-ion batteries acting at the cathode (purple

boxes) and anode (green boxes) [82].
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In this thesis the above key factors impacting battery degradation have been considered by

imposing constraints on model parameter values. In particular, the charging and

discharging processes for a generic battery energy storage system have been formulated

given the following constraints:

The state of charge of each battery must be respected to its upper and lower
limitations, SOCmax and SOCnmin respectively, to protect the storage system from
overcharging and overdischarging, that represent prominent degradation
mechanisms reducing battery capacity in day to day activities and causing early cell
tailure. Therefore, the model has been formulated so that when the battery SOC
reaches SOCnmin, it stops discharging, and similarly, when the battery SOC reaches
SOCmax, it stops charging.

Each battery is forced to follow a full charging/discharging profile between SOCnmin
and SOCmax, i.e. it can not be discharged until it reaches SOCmax and vice versa. This
constraint is intended to avoid partial cycles and the superposition of micro cycles
with frequent changes of the direction of the battery current. Actually, for some
battery chemistries, such as floaded lead acid batteries, cycling a battery between two
partial states-of-charge soon can have a negative impact on the battery wear and
lifetime, causing sulfate crystal formation and severe electrolyte stratification [70].
The two constraints above stated ensure that for each battery the recommended DOD
for optimal performance is respected.

Finally, a specific constraint forces each battery to respect the recommended
maximum continuous charge/discharge rate in order to avoid high charge and

discharge currents.

3.3 “SMART-A.T.E.R.” project for Civitavecchia municipality

The agency for public residential buildings (Azienda Territoriale per I’'Edilizia Residenziale

Pubblica, A.T.E.R.) is a public body involved in public residential housing and working on
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promoting and restoring buildings in the municipality of Civitavecchia, province of Rome.
“SMART-A.T.E.R.” project has the objective to develop the first national smart community
within the public residential housing, mainly through, firstly, exploiting renewable energy
sources. In particular, the energy produced by renewable sources will be fed into the grid
and drawn depending on the energy needs of the different users within the community. The
aim is to comply with European legislation promoting the renewable energy sources and
the regional law on urban regeration and building recovery [84], but it is also and above all
to guarantee environmental and economic benefits for the less well-off households. Indeed
it has been estimated that a family living in A.T.E.R. rental housing pays on average 630-
900 €/year electricity bill, compared to approximately 93 €/year for the apartment rental, as

shown in Figure 21 (data elaborated by A.T.E.R. Civitavecchia).
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Figure 21 — Annual expenditure on apartment rental and electricity for an

average family in Civitavecchia (data elaborated by A.T.E.R. Civitavecchia).

Within the real estate owned by A.T.E.R. Civitavecchia 40 buildings, for a total of 493

residential units, have been selected for the project.

In particular, the project aims at developing a micro energy community for each residential

complex by creating a smart interconnected network for power and information data
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transmission employing innovative technological solutions and advanced systems for
renewable-source energy production and distributed energy storage. Specifically, at
building level, each apartment can be considered as a node of the network and the key

components of the whole system are:

1. Renewable energy sources: photovoltaic systems will be installed on the common
areas of the building, such as terrace, rooftop and shelters.

2. Storage systems: battery energy storage systems will be situated in appropriate
technical rooms and other common areas of the building.

3. Home energy devices: each apartment will be equipped with smart meter load
disaggregation systems, allowing to extract individual power signatures for different
appliances and monitor consumption data in real time in order to create an energy
profile for each user.

4. Management and control system: the platform will process data coming from all the
nodes, forecast the power demand of each user and consequently regulate the flow

of energy.

Similarly, the individual building will be interconnected to the others to create a larger
energy community. The project, besides securing cost savings for the families by increasing
energy self-sufficiency, will led to increase the profitability of ATER by selling the surplus
energy to the grid, and it is therefore candidate to become a best practice case at national

level. Further details on the project can be found in Appendix A.

3.4 System layout

As part of the more far-reaching “Civitavecchia SMART A.T.E.R.” project, this thesis focuses
on the application example of collective self-consumption in the multi-apartment building
located in Via Navone 23, Civitavecchia. The proposed case study investigates, in fact, an

optimization method for sizing and scheduling the battery energy storage system for solar
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PV system integration in the building, with the purpose of maximizing the collective self-
consumption for the families living in it and ensuring the correct charge-discharge cycles
scheduling strategy for the batteries. Table 4 summarizes the main parameters and
specifications describing the key elements of the systems, i.e. the PV plant, the batteries and
the users, respectively. In particular, a 20 kW solar rooftop PV system has been considered,
as provided for in the proposed project for the building in question. A storage system has
been proposed consisting of more batteries with 4 kWh of rated capacity each. Initially, 10
generic rechargeable batteries have been assumed and subsequently corrected in
accordance with the optimization model results; in fact, a penalty coefficient is imposed
within the model in order to maximize the households’ self-consumption with the lowest
number of batteries. Lastly, households” demand profiles have been estimated for typical

days in different seasons for the ten families living in the building.

PV system parameters

Site Civitavecchia (Rome)
PV peak power 20 kWp
Installation type residential grid-connected solar rooftop
PV technology crystalline silicon cells
Installation parameters Plane tilt 35°, Azimuth 0° (facing South)
Average annual sum of global irradiation | 1990 kWh/m?
Average annual electricity production 28400 kWh
Battery storage system parameters
Battery capacity 4 kWh
Number of batteries (initial assumption) 10
Battery chemistry Lithium-ion

Battery minimum state of charge (SOCmin) | 20%
Battery maximum state of charge (SOCmax) | 80%

Initial state of charge 3,2 kWh

Depth-of-discharge (DOD) 80%

Charge rate 2 kW/h

Discharge rate 2kW/h

Cycle lifetime 3000 cycles
Households’ consumption data

Number of families 10

Total Annual electricity consumption 39 MWh

Maximum demand power during Summer | 10,3 kW

Table 4 — Summary of technical input parameters for the optimization model.
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More details on collected and estimated data of hourly potential PV production, and typical
households” demand profiles are provided in the next paragraphs, respectively. For the
purposes of simplicity, the inverter has been assumed to be lossless, therefore it is not shown
in the table. The main battery specifications are based on literature data; the roundtrip
efficiency in the simulation has been taken as 100% in order to reduce the computational
complexity of the model, while still providing acceptable results.

The logic of operation of the model is the following: the solar PV power is utilized onsite to
meet the variable households” power demand at every moment. When there is excess
power, it is prioritized by storing the power in the batteries first, until the batteries reach
the maximum state of charge (SOCmax). In particular, among the different batteries inside
the battery pack, only the batteries that are charging or are at the minimum state of charge
(SOCnmin) can contribute to storing the excess power. Lastly, any surplus PV power is then
exported to the grid. Similarly, the batteries are employed to backup to meet the demand, if
the demand is not met by the PV system. Therefore, when PV power is not sufficient for
meeting the households” power demand, the batteries are used to supplement the power
requirements. In particular, among the different batteries inside the battery pack, only the
batteries that are discharging or are at the maximum state of charge (5OCmax) can contribute
to provide the required power. Lastly, when the SOC of the batteries falls below SOCuin, the

required power is imported from the grid. Schematic of the system is shown in Figure 22.

Self-consumption

l PV system
Gnid supply

Battery discharge &l
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Battery charge Grid feed-in

Battery storage
system

Figure 22 — Overall schematic of the system illustrating the direction of the power flows.
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The implemented charging/discharging control strategy of batteries aims to prolong their
lifetime; missing or inadequate battery management, in fact, may seriously affect the health
of the batteries by shortening their lifetime. There are lots of stress factors, such as the
“memory effect”, that have a negative impact on the batteries performance and lifetime;
they can vary dependent on battery types, but in general, the depth of discharge (DOD)
represents one of the most important parameters influencing a battery lifespan and it should
be adequately taken into account. Therefore, an optimal management system is urgently

needed.

3.5 Data collection

3.5.1 Solar electricity generation estimation

To simulate the operation behaviour of PV systems, time series of meteorological data are
required. For this investigation measurements from the European Commission Joint
Research Centre - Photovoltaic Geographical Information System (PVGIS), located in Ispra,
Italy, are used [85]. The measured values refer to Civitavecchia, a central-Italy town located
on the Tyrrhenian Sea, 60 kilometres north-west of the center of Rome, as illustrated in

Figure 23 [86].
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Figure 23 - Location of Civitavecchia in Italy [86].
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The measurement data of solar irradiation on the horizontal and 35° inclined plane, as well
as the air temperature, are available as one hour average values from the year 2007 until

2016; monthly averages values are reported in Table 5 [85].

Month Hx H,: H@B5) DNI Ip: DI/G To T2an Nbop

Jan 1830 3180 3150 2820 64 047 99 9.7 296

Feb 2960 4630 4600 4240 58 038 95 9.1 253

Mar 4360 5630 5610 4870 45 040 11.8 113 199

Apr 5680 6300 6300 6040 30 033 144 138 83

May 6980 6840 6870 7260 17 030 173 16.8 7

Jun 7720 7140 7190 8320 8 026 216 21.0 2

Jul 7850 7460 7500 8870 12 022 245 240 0

Aug 6840 7270 7290 7970 25 024 249 243 1

Sep 5080 6280 6270 6000 40 032 220 214 5

Oct 3530 5100 5080 4460 53 040 186 18.2 63

Nov 2150 3620 3590 3210 62 044 150 146 213

Dec 1660 3100 3070 2850 67 046 114 11.2 269

Year 4730 5550 5550 5580 36 031 168 163 1391

Hi: Irradiation on horizontal plane (Wh/m?/day)

Hope: Irradiation on optimally inclined plane (Wh/m?/day)
H(35): Irradiation on plane at angle: 35deg. (Wh/m?/day)
DNI: Direct normal irradiation (Wh/m?/day)

Lopr: Optimal inclination (deg.)

D/G: Ratio of diffuse to global irradiation (-)

Tp: Average daytime temperature (°C)

T2an: 24 hour average of temperature (°C)

Npop: Number of heating degree-days (-)

Table 5 - PVGIS estimates of long-term monthly averages solar irradiation [85].

Basing on the data above, the estimation of the hourly power output from a given PV
installation can be calculated; it is estimated for a fixed PV system with a nominal power of

20.0 kW. The main information about the installation is available in Table 6 [85].
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PV system data

Location: 42°06'00" North, 11°48'0" East, Elevation: 0 m a.s.l.
Solar radiation database used: PVGIS-CMSAF
Nominal power of the PV system: 20.0 kW

PV technology: crystalline silicon cells

Inclination: 35°
Orientation: 0° (South)

Mounting position: building integrated
Estimated losses due to temperature and low irradiance: 14.3% (using local ambient temperature)

Estimated loss due to angular reflectance effects: 2.6%
Other losses (cables, inverter, dirt, etc.): 14.0%

Combined PV system losses: 28.2%

Table 6 — PV system specifications and calculation parameters [85].

The average electricity production values aggregated on monthly basis are shown in Table

7 and Figure 24 [85].

Month Ea Em Ha Hn
Jan 46.80 1450 3.07 95.2

Feb 68.20 1910 4.56 128

Mar 80.80 2510 5.51 171

Apr 89.90 2700 6.23 187
May 94.70 2940 6.69 207

Jun 98.00 2940 7.03 211

Jul 101.00 3150 7.37 229

Aug 97.90 3040 7.10 220

Sep 86.30 2590 6.17 185

Oct 71.20 2210 4.95 154

Nov 52.90 1590 3.57 107

Dec 45.40 1410 3.03 93.9
Yearly average 77.8 2370 5.45 166
Total for year 28400 1990

Ea: Average daily electricity production from the given system (kWh)
Em: Average monthly electricity production from the given system (kWh)

Ha: Average daily sum of global irradiation per square meter received by the

modules of the given system (kWh/m?)

Hw: Average sum of global irradiation per square meter received by the

modules of the given system (kWh/m?)

Table 7 — PVGIS estimates of average monthly solar electricity generation [85].
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Figure 24 - Average monthly electricity production from the given PV system (kWh) [85].

3.5.2 Electricity consumption data

For the demand data in this study, the electricity bills for the past three years have been
exploited for each family in order to estimate typical values of expected average
consumption level. Table 8 shows annual electricity consumption for the ten households,
calculated as the average over the period 1st January 2016-31st December 2018, with the
detail of the distribution for different time slots. In particular, Time slot F1 runs from 8 A.M.
to 7 P.M., from Monday to Friday, excluding national holidays; Time slot F2 runs from 7
AM. to 8 AM. and from 7 P.M. to 11 P.M., from Monday to Friday and from 7 A.M. to 11
P.M. on Saturday; Time slot F3 runs from midnight to 7 A.M. and from 11 P.M. to midnight,
from Monday to Saturday and all day on Sunday and national holidays, as defined by the
Italian Regulatory Authority for Energy, Networks and the Environment (ARERA) [87].
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Household F1 F2 F3 TOTAL
[kWh] | [kWh] ' [kWh] | [kWh]

n.1 1509 1369 1593 4472
n.2 714 1224 996 2934
n.3 974 1166 1750 3890
n. 4 1281 1356 2466 5103
n.5 1366 1868 1978 5212
n. 6 1029 1047 1211 3287
n.7 656 1283 1300 3239
n. 8 2258 1307 1245 4810
n.9 1016 1153 1401 3570
n. 10 443 1076 1291 2810

Table 8 - Annual electricity consumption by household expressed in kWh. Average values
for the period 2016-2018, with the detail of Time Slots F1, F2, F3. Data resulting from

electricity bills.

Table 9 reports the monthly average electricity consumption data by household and time
slot and Figure 25 is a graphical representation of monthly totals for the whole building,

calculated as the sum of the individual household consumption.

Houschold| January | February | March April May June July August | September | October | November | December

repBReBREBRREBRRBREBREBRREBREPEBREREB[R[ERBFREREB]|
n.l  |150 120 129[153 129 140[116 129 118 78 80 118[ 97 97 101| 97 102 115225 196 255{157 139 190| 85 90 108 91 92 76120 95 117|140 101 128
n.2 51105 87] 39 96 75| 42126 69 45114 87 48 93 75| 48 90 75\ 75 90 84105 93102 60 93 84| 72 114 78 63 111 72| 66 99 108
n.3 84 75123\ 77 78 Ll6f 88 98 143| 74 89 144 83 107 14| 74 110 144| 86 132 189| 95 117 189| 75 108 146| 83 101 123{ 86 84 131| 75 69 158
n4 111 95218 93 101 170105 114 201] 81 83 174{104 98 185|126 147 227137 177 285{141 159 264|111 126 209|107 101 174| 83 77 165| 84 81 197
n.5  |120 184 226[112 190 148]140 178 158|104 144 176[120 142 156|108 134 140{150 142 164{102 80 78| 98 134 120|102 184 184|130 185 206 80 168 222
n.6 98 92105 83 83 80 76 92 87| 67 76 95| 77 77 8| 70 60 94|123 105 119123 122 133[ 80 90 111| 69 84 83( 85 83 88| 78 84 129
n.7 46112104 44 98 84| 40 116 108| 54 106 122 60 110 18| 60 109 96| 70 104 11¢[ 70 104 116 64 104 108| 60 110 96{ 38 112 96| 50 98 134
n8 213107 114213 123 940235 139 93195 114 122{229 130 104]120 61 90[120 61 90[200 114 107|126 91 90|211 122 102{211 122 102184 125 139
n.9 95 95126 87 99 104f 86 105 111| 70 85 114| 82 90 108| 70 87 111| 99 110 14¢[ 95 103 127| 70 93 105| 83 95 101 93 94 110| 83 91 157,
n10 | 62102 140 42 100 112] 27 88 113) 21 76103 19 73 99| 16 74 106| 16 86 113 18 88 74| 19 95 76| 49 99 101f 93 95 111| 60 99 144

Table 9 - Monthly electricity demands by household and time slot, expressed in kWh. Data

resulting from electricity bills.
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Figure 25 - Monthly total electricity demands of the building by time slot, expressed in

kWh. Data calculated from electricity bills.

Based on monthly consumption data it has been possible to calculate daily values and then
estimate average hourly demand profiles for weekdays and weekends during the four
seasons. In particular, for the evaluation of the hourly profiles, statistical data based on
literature reports and dwellings characteristics have been considered. In fact, instantaneous
power demand for a single house can greatly vary through time and it can be very different
for different families depending on households’ lifestyle and habits. There is, however,
evidence of common patterns in electricity load profiles throughout residential sector.
Figure 26, for example, shows average hourly demand profile for a typical working day and
weekend in different seasons. These data have been collected from a research study
conducted by Electric System Research (Ricerca sul Sistema Energetico - RSE), on a sample
of 1.200 Italian families statistically significant for number and stratification, monitored over

a period of 2 years [88].
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Figure 26 — Average hourly demand profiles in kW for a working day (left) and weekend

(right) for a typical Italian family. Data resulting from a RSE research study [88].

It may, in general, be noted that the graphic representation of a domestic electricity load
profile is mainly defined by its morning load, its evening load and its mid-day loads. The
over-night load shape is defined by the low level of use in this period, as most occupants
are inactive during their sleeping hours [89]. In many cases, though, the electricity load
profile may differ from the typical domestic trend because of the impact of variable tariffs
on the energy behaviour of individual end-consumers, that are incentivized to shift
appliance operation to the late evening or the weekend when the electricity costs are more
advantageous (Time Slot F2 and F3, respectively). The effect of these behavioural trends can
be observed in Figure 25 that shows the percentage of energy consumption for different
time slots. In the case of this study, in fact, most families have variable-price electricity

contracts, as shown in Table 10, that provides the most important dwellings and households

characteristics.
Household Dwelling Household Number of Occupancy High energy- Electricity
type type occupants pattern consuming supply
appliances contract
n.1 Flat Family with two 4 Always occupied Air conditioner Fixed tariff
teenage children
n. 2 Flat Young couple 2 Evenings, weekends - Variable tariff
without children
n.3 Flat Single person 1 Evenings, weekends | Electric water heater = Variable tariff
under 65
n. 4 Flat Family with one 3 Always occupied Air conditioner Variable tariff
children
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n.5 Flat Family with two 4 Always occupied Electric water heater | Variable tariff
children
n. 6 Flat Family with one 3 Always occupied Air conditioner Variable tariff
teenage children
n.7 Flat Young couple 2 Evenings, weekends - Variable tariff
without children
n. 8 Flat Family with 4 Always occupied Electric water heater, Fixed tariff
grandparents Air conditioner
n.9 Flat Couple over 65 2 Always occupied Air conditioner Variable tariff
without children
n. 10 Flat Single person 1 Evenings, weekends - Variable tariff
under 65

Table 10 - Dwellings and households characteristics for the case study considered.

Therefore, the estimates of the hourly demand profiles have been made on the basis of

typical literature trends appropriately adjusted in accordance with the real consumption

data for the different time slots, for every family and for every month. Figure 27 shows the

resulting hourly demand profile, aggregated for all the families investigated, for a typical

weekday and weekend throughout the four seasons.
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Figure 27 — Resulting hourly demand profile in kW for a working day (left) and weekend

(right), aggregated for all the families, throughout the four seasons.
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Chapter 4

Mathematical Formulation of the problem

4.1 Decisional Variables

Two sets of continuous non-negative variables a(t) > 0 and f(t) = 0 VteT are defined to
represent the amount of energy respectively bought and sold in each time slot t. In order to
identify how many batteries have to be installed, a set of the binary variables y;(t) € {0, 1}
VieB is introduced, equal to 1 if battery i is used and 0 otherwise. Two additional sets of
continuous non-negative variables SL(t) =0 and 65(t) >0 VteT,VieB represent the
quantity of energy respectively got from each battery i, to satisfy the energy demand in each
time slot ¢, and gave to each battery i utilized in the system to recharge it. Moreover the
binary variables c'(t) € {0,1} VteT, VieB are defined to describe the state of each battery i
in each time slot ¢, equal to 1 if the battery can be recharged at time slot t and 0 otherwise.
The set of continuous non-negative variables A'(t) > 0 VteT, VieB represent the energy level
of each battery i in each time slot t. Moreover, the two sets of binary variables f!(t) and F(t)
for each time slot t and for each battery i are used to define the minimum and maximum
battery level state: f(t) is equal to 1 if battery i at time slot ¢ is not at minimum energy level
and 0 otherwise, Fi(t) is equal to 1 if battery i at time slot # is not at the maximum energy
level and 0 otherwise. Finally, the sets of binary variables zi(t) and zi(t) are introduced to
correctly define the number of batteries recharging cycles represented by the integer
variable Nc' for each battery i. In particular, variable zi(t) for each battery i and each time
slot t is equal to 1 if between time slot -1 and ¢t the battery reaches the minimum energy
level and 0 otherwise; variable z:(t) for each battery i and each time slot f is equal to 1 if

between time slot t-1 and ¢ the battery reaches the maximum energy level and 0 otherwise.
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4.2 Parameters

The input parameters of the model are represented by: (i) the set T of time slots in which the
time window under consideration is divided, (ii) the demand of energy d(t) in each time slot
t, (iii) the solar panel energy p(t) in each time slot t, (iv) the minimum energy level for each
battery A, (V) the maximum energy level for each battery A4, (vi) the maximum energy
amount of recharge in each time slot ¢ for each battery i, A;;4,, (vii) the maximum number
of recharging cycles for each battery Nc,,,, and (viii) the penalty k related to number of

used batteries.
4.3 Objective Function

The objective function of the problem is the minimization of: (i) the total amount of energy
bought and sold during the time window under consideration and (ii) the number of
batteries used in the system, multiplied by an appropriate penalty factor empirically
determined. Indeed, the goal is maximizing the households' self-consumption but taking

into account also the sizing problem of the battery system.

minZ(a(t) +B@) +k Z Vi D

teT i€EB
4.4 Problem constraints

In each time slot t in which the energy demand is greater than or equal to the solar panel
energy availability, the potential deficit of energy is the amount 8} (t) that will be required
to the batteries, as defined by constraints (2). Similarly, in each time slot ¢ in which the
energy demand is less than the solar panel energy availability, the surplus of energy is the

amount &5(t) usable for recharging the batteries, as stated by constraints (3).
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Z SE(®) <d(®) —p(t) VEeT:d(t) =p(t) )

iEB

Z SL(0) < p() —d(t) VteT:d(t) <p(o) )
i€B
Constraints (5) and (4) impose that the potential deficit and the surplus of energy are equal
to zero respectively when the demand is less than and when the demand is greater than or

equal to the solar panel energy availability.

L) =0 VieB,VteT:d(t) <p(t) (4)

S5(t) =0 VieB,VteT:d(t)=p(t) (5)

Always distinguishing between time slots in which the energy demand is greater than or
equal to the solar panel energy availability and slots in which, on the contrary, the energy
demand is less than the solar panel energy availability, equations (6) and (7) define the
relation between demand d(t), solar panel energy availability p(t) and, respectively, energy
taken from the batteries 8§ (t), if available, and energy given for recharging the batteries
SL(t), if they can be recharged. Indeed, as introduced in Section 4.1, the variables c'(t)
represent the state of each battery i in each time slot t and they are equal to 1 if the battery

can be recharged at time slot t and 0 otherwise.

d(D) = p(t) + alt) + Z Si(6) - (1—ci(t)) VEET: d(t) = p(t) (6)
d() =p(H) — f(O) = ) 85D c'(5)  VEeT: d(®) <p(®) @)
iEB
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Obviously, as the aim is maximizing the self-consumption, the quantity of energy sold is
equal to 0 if the solar panel production is not sufficient to satisfy the demand, constraints
(8), and the quantity of energy bought is equal to 0 if the demand can be completely satisfied

with the solar panel production, constraints (9).

B)=0 VteT: d(t) =p(t) (8)

a(t) =0 VteT: d(t) <p(t) 9)

Constraints (10) and (11) set the initial status of the battery system: the energy level of each
battery at time slot 0 is equal to the maximum energy level A,,,, and thus, the initial value
of the binary variable c'(t), representing the state of each battery (if it can be recharged or

not), is equal to 0.

A(0) =AM Vi€EB (10)

c'(0)=0 VieB (11)

Moreover constraints (12) and (13) guarantee that the energy level of each battery ranges

between the minimum and maximum energy level.

A(t) = Apin, VIEB, tET:t>0 (12)

A(t) <Apay VIiEB, te€T:t>0 (13)

It is also assumed that the recharge and the discharge of each battery is not instantaneous
but there is a maximum amount of energy that the battery can take from or give to in one

time slot, constraints (14) and (15).

M) —2A(t—1)<Ay,ge ViEB, te€T:t>0 (14)
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A() —2A(t—1) = —A,u, ViEB, teET:t>0 (15)

Logic constraints (16) and (17) permit to correctly set the values of the binary variable yi for
each battery i: if the energy level of a battery becomes less than the maximum level A,,,, at

least once, this implies that the battery is used in system.

M- Yi 2 (Amax _Ai(t)) VieB (16)
Vi < ) (Amax —A'(t)) Vi€EB (17)

The energy level of each battery i in each time slot t is expressed by means of constraints
(18), (19) and (20). More in details, if the energy demand is less than the solar panel energy
availability, the battery level at time slot ¢ is equal to the battery level at the previous time
slot plus the amount of energy gained recharging, if the battery can be recharged. Indeed, it
is assumed that each battery can be recharged only if it reached the minimum energy level.
On the contrary, if the energy demand is greater than the solar panel energy power, the
battery level at time slot ¢ is equal to the battery level at the previous time slot minus the
energy given to satisfy the residual demand, if the battery can be used. Indeed, it is assumed
that a battery can be used to give energy to the households only if it is not recharging.
Finally, if the energy demand is equal to the solar panel energy availability, the battery level

does not change.

) =2t —1)+85(t) - ci(t— 1)
VieEB, teT:t>0 A d(t)<p(t) (18)

A =2(t-1) -8, - (1 —ci(t—1)
Vi € B, teT: t>0 A d(t) >p(t) (19)
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A(t) =2(t—1) Vi€B, teET:t>0 A d(t) =p(t) (20)

In order to correctly set the values of the binary variables f*(t) and Fi(t) as function of the
energy level of the batteries A'(t), the logic constraints (21)-(24) have been added to the

formulation.

i) < (A4(t) — Apin) ViEB, teT (21)
A(t) = Apin) <M - fi(t) VieB, t€T (22)
Fi(t) € (Mg — A(t)) VieB, t€eT (23)
(Appax — AH(t)) <M -Fi(t) YVieB, t€T (24)

The additional logic constraints (25)-(30) are then introduced to set the values of the binary

variables c'(t) as function of the binary variables f!(t) and F'(t).

ci(t)Sci(t—1)+(2— fi(t)—Fi(t)) i€B, teT:t>0 (25)
ci(t) Zci(t—l)—(Z— fi(t)—Fi(t)) i€B, tET:t>0 (26)
ct(t) =1—f(t) i €B, teT:t>0 (27)

cl(t) <1+ fi(t) i €B, teET:t>0 (28)
ci(t)=—F(t) ieB, teT:t>0 (29)

ci(t) < Fi(t) i €B, teET:t>0 (30)
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Moreover, logic constraints (31)-(38) permit to explicit the binary variables ziH(t) and Zi(b),
as function of the binary variables f!(t — 1) and F'(t — 1), introduced to count the number

of batteries cycles.

A-—f)-A—-f(t—1)<zi(t) ViEB, te€T:t>0 (31)
(1-Fi(t))—(1—F(t—1)<zi(t) VieB, te€T:t>0 (32)
Z2®) < fi)+fi(t—1) VieB, te€T:t>0 (33)
Z2®) <1+ (fi(t—1) —fi(t)) Vi€EB, te€T:t>0 (34)
Z2@®) <2—-(fi(t—1)+fY(t)) ViEB, teT:t>0 (35)
z5(t) < Fi(t) + (Fi(t — 1) ViE€B, teET:t>0 (36)
zZi(t) <1+ (Fi(t—1)—Fi(t)) VieB, teT:t>0 (37)
z5(t) <2 — (Fi(t — 1) + Fi(t)) Vi€B, teET:t>0 (38)

Constraint (39) defines the number of battery cycles for each battery i as the half of the times
in which the battery reaches the maximum and the minimum energy level. Indeed, it is

assumed that a battery cycle consists in one complete discharge and one complete recharge.
Nct = Sier. 0 (20(t) +25(0)) /2 Vi€ B (39)

Finally, constraint (40) imposes that the number of battery cycles for each battery i is not

greater than a given maximum number of cycles Nc, 4.

Nc! < Ncpy ViEB (40)
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4.5 Linearization of the non-linear constraints

The formulation presented in Section 4 is a mixed integer non-linear programming model
due to the presence of the constraints (6), (7), (18) and (19). Non-linear constraints increase
the model complexity making the problem challenging to be solved. Thus, to overcome this
issue, the procedure to linearize the product between a continuous and a binary variable
(Adams1990) can be adopted. In order to perform the linearization of constraints (6), (7),
(18) and (19), for each i € B and for each t €T : t > 0, the following two continuous

variables can be defined:
vi(t) = 85(t) - (1 —c'(t — 1)) and wi(t) = 65(t) - ci(t — 1)

By means of these new variables, constraints (6), (7), (18) and (19) can be write in the

equivalent form:

d(e) = p(t) + alt) + Z vi(t) VEET: d(t) = p(t) (41)
d(t) = p(t) — B(t) — Z wi(t) VEeT: d(t) < p(t) (42)

At) = 24t — 1) + wi(t)
Vi € B, teT:t>0 A d(t) <p(t) (43)

A = 2t = 1) —vi(t)
Vi € B, teT:t>0 A d(t) >p(t) (44)

with the additional constraints

vi(t)<M-c(t—1) VieB, teT:t>0 (45)

vi(t) <8L(t) VieB, teT:t>0 (46)
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Vi) =85 —(1— c(t—1))'M VieB, te€T:t>0 (47)

Constraints (45), (46) and (47) guarantee that v'(t) is equal to 0 if c¢*(t — 1) is equal to 1 and

that v'(t) is equal to &4 (t) if c'(t — 1) is equal to 0.

wit)<M-ci(t—1) VieB, teT:t>0 (48)
wi(t) < 8i(t) VieB, teT:t>0 (49)
wit) = 8(t)—(1— ci(t—1)M VieB, te€T:t>0 (50)

Analogously constraints (48), (49) and (50) state that w'(t) is equal to 0 if c¢'(t — 1) is equal

to 0 and that w'(t) is equal to SL(t) if ci(t — 1) is equal to 1.
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Chapter 5

Results and discussion

5.1 Experimental results under different scenarios

In this section the obtained results for a selection of different scenarios are summarized. In
particular, the optimization model has been run on typical weekly energy consumption and
PV electricity production data during different seasons comparing two different

configurations, specifically with or without constraints for batteries charging/discharging.
5.1.1 Autumn

During a typical Autumn week, the total electricity consumption of the ten families living
in the building has been estimated to be 792,7 kWh, with a solar PV electricity generation of
590,5 kWh. Two configurations have been considered: in the former the constraints force the
batteries to charge and discharge between SOCmin=20% = 0,8 kWh and SOCmax= 80% = 3,2
kWh with a charge/discharge rate of 0,5C = 2 kWh and preventing the battery can be
discharged until it reaches SOCmax and vice versa; in the latter, on the other hand, the
constraints are removed, so that the batteries can charge and discharge between SOCmin =
0% =0 kWh and SOCmax =100% = 4 kWh with a charge/discharge rate of 1C = 4 kWh without
forcing them to follow any specific charge/discharge profile. Table 11 summarizes the most

significant results in the two cases investigated.
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Case a): charging/discharging constraints Case a) Case b)
Case b): no charging/discharging constraints

Total energy demand by families 792,7 kWh | 792,7 kWh
Total energy produced by PV system 590,5 kWh | 590,5 kWh
Number of batteries needed 6 9

Average number of charge/discharge cycles | 7 5,6

Total self-consumed PV energy 327 kWh 327 kWh
Total energy from batteries discharge 1152 kWh | 262,4 kWh
Total energy to batteries charge 100,8 kWh | 226,4 kWh
Total energy imported from the grid 350,5 kWh | 203,3 kWh
Total energy exported to the grid 162,7 kWh | 37,14 kWh
Share of PV to self-consumption 55,37% 55,37%
Share of PV to batteries charge 17,06% 38,33%
Share of PV to the grid 27,55% 6,29%
Share of demand met by PV 41,25% 41,25%
Share of demand met by batteries 14,53% 33,10%
Share of demand met by the grid 44,21% 25,65%

Table 11 — Autumn week main results.

The comparison between case a) and case b) reveals that the model tends to use more
batteries when the charging/discharging constraints are removed because the use is more
convenient. It can be observed, in fact, that in case b) the total energy from batteries
discharge and to batteries charge increases more than proportionally with increasing
number of batteries than in the case a). The reason for this is that the increasing number of
batteries provides greater benefits in terms of energy imported from and exported to the
grid, significantly exceeding the penalty coefficient added to the model in order to minimize
the number of batteries. Figure 28 shows the most important resulting power profiles and
battery charging/discharging scheduling, comparing the two different cases; the plot

focuses only on 48 hours for a better visualization.
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Figure 28 — Autumn power profiles and battery charging/discharging scheduling results.

5.1.2 Spring

Results obtained for the Spring week are very similar to the Autumn results. In this case the
energy produced by PV system is higher while the families energy demand is lower than
the Autumn case, ensuring a higher share of demand met by PV. The number of batteries
needed is equal to the Autumn case, as well as the total energy from batteries discharge and

the total energy to batteries charge, corresponding to a full exploitation of the storage system
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significant results obtained for a typical Spring week.

Case a): charging/discharging constraints Case a) Case b)
Case b): no charging/discharging constraints

Total energy demand by families 712,16 kWh | 712,16 kWh
Total energy produced by PV system 679,2kWh | 679,2 kWh
Number of batteries needed 6 10

Average number of charge/discharge cycles | 7 5,6

Total self-consumed PV energy 3155 kWh | 315,5 kWh
Total energy from batteries discharge 1152 kWh | 280,87 kWh
Total energy to batteries charge 100,8 kWh | 240,87 kWh
Total energy imported from the grid 281,5 kWh | 115,81 kWh
Total energy exported to the grid 262,95 kWh | 122,87 kWh
Share of PV to self-consumption 46,44 % 46,44 %
Share of PV to batteries charge 14,84 % 35,46 %
Share of PV to the grid 38,71 % 18,09 %
Share of demand met by PV 44,29 % 44,29 %
Share of demand met by batteries 16,17 % 39,44 %
Share of demand met by the grid 39,52 % 16,26 %

Table 12 — Spring week main results.
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capacity with 6 batteries. Even in this case count the considerations given for the Autumn

results on the comparison between case a) and b). Table 12 and Figure 29 show the most
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Figure 29 - Spring power profiles and battery charging/discharging scheduling results.

5.1.3 Summer

Summer is the period with the highest energy demand by families, but also with the greatest
energy produced by PV system, ensuring a share of self-consumption of 62%. Because of
the high energy need for the families, the model uses more batteries than the previous cases.
In particular, in the case b) the model can significantly reduce the total energy imported
from the grid and exported to the grid with only two more batteries respect to the case a). It
is important to specify that the average number of charge/discharge cycles in the case b) has
been calculated considering only the full cycles between SOChmin = 0% and SOCmax = 100%,
but the batteries may also present lots of partial cycles in the case b). Table 13 and Figure 30

illustrate the main results for a typical Summer week.

Case a): charging/discharging constraints Case a) Case b)
Case b): no charging/discharging constraints

Total energy demand by families 1060,6 kWh | 1060,6 kWh
Total energy produced by PV system 770,6 kWh | 770,6 kWh
Number of batteries needed 8 10

Average number of charge/discharge cycles | 7 6,1
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Total self-consumed PV energy 478,11 kWh | 478,11 kWh
Total energy from batteries discharge 153,6 kWh | 291,67 kWh
Total energy to batteries charge 134,4 kWh | 251,67 kWh
Total energy imported from the grid 428,8 kWh | 290,80 kWh
Total energy exported to the grid 158,10 kWh | 40,83 kWh
Share of PV to self-consumption 62 % 62 %

Share of PV to batteries charge 17,44 % 32,66 %
Share of PV to the grid 20,51 % 5,30 %
Share of demand met by PV 45 % 45 %

Share of demand met by batteries 14,48 % 27,5 %
Share of demand met by the grid 40,44 % 27,42 %

Table 13 — Summer week main results.
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Figure 30 — Summer power profiles and battery charging/discharging scheduling results.
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5.1.4 Winter

During a typical Winter week the highest gap between the energy demand and the energy
produced by PV system is observed. Contrary to what one might expect, the model prefers
to import energy from the grid rather than using the batteries. The most likely reason for
this trend is that it could never find a way to charge the batteries since the PV power is
always considerably lower than the families demand. Therefore, in this case the penalty
coefficient minimizing the number of batteries prevails on the benefits provided from the
installation of the storage system more than in all previous cases. The most important results

are summarized in Table 14 and illustrated in Figure 31.

Case a): charging/discharging constraints Case a) Case b)
Case b): no charging/discharging constraints

Total energy demand by families 958,9 kWh | 958,9 kWh
Total energy produced by PV system 293,9 kWh | 293,9 kWh
Number of batteries needed 0 1

Average number of charge/discharge cycles | 0 4

Total self-consumed PV energy 253,8 kWh | 253,8 kWh
Total energy from batteries discharge 0 kWh 23,51 kWh
Total energy to batteries charge 0 kWh 19,51 kWh
Total energy imported from the grid 705 kWh 681,5 kWh
Total energy exported to the grid 40,10 kWh | 20,59 kWh
Share of PV to self-consumption 86,35 % 86,35 %
Share of PV to batteries charge 0 % 6,64 %
Share of PV to the grid 13,64 % 7 %

Share of demand met by PV 26,47 % 26,47 %
Share of demand met by batteries 0 % 2,45 %
Share of demand met by the grid 73,53 % 71 %

Table 14 — Winter week main results.
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Figure 31 — Winter power profiles and battery charging/discharging scheduling results.

Finally, Figure 32 and Figure 33 summarize the overall results for the different typical weeks
during the four seasons in both cases a) and b), in terms of demand coverage and
exploitation of energy produced by PV, respectively. In particular, in the first case the

percentage of energy from PV, batteries and grid covering the families demand has been

93



calculated on total energy need, while in the second case the percentage of PV to self-
consumption, to batteries charge and to the grid has been calculated on the total energy

produced by the PV system.
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Demand coverage (b)
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Figure 32 — Share of demand coverage by PV, batteries and grid.
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PV exploitation (a)
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Figure 33 — Share of PV to self-consumption, to batteries charge and to the grid.

As evident in the figures, the removal of charging/discharging constraints obviously allows
to reduce the total energy imported from and exported to the grid, although generally with
a greater number of batteries needed and without taking the necessary precautions on
charging/discharging strategy to prolong battery lifetime. Focusing on case a), the Summer
week reveals the best results in terms of exploitation of batteries and minimization of

purchase and sale of energy.
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5.2 Model results performance

Despite very restrictive constraints imposed on the batteries charging/discharging strategy,
however, a preliminary economic assessment underlines significant benefits in terms of
energy and costs savings achieved through the batteries storage system exploitation. Table
15 compares the energy imported from and exported to the grid with and without the
batteries energy storage system. Results relate to a typical week during the four different
seasons. In particular, the comparison between the results obtained in the two different
cases, with or without the storage system, also represents an indirect measure of the
performance of the optimization model. The removal of the objective function, i.e. the
minimization of energy imported from and exported to the grid, from the optimization
model implies, in fact, that the model will not use the batteries. It represents the easiest

feasible solution to find and it will be considered as the worst-case scenario.

Autumn Spring Summer Winter
Case a): with BESS
Case b): without BESS a) b) a) b) a) b) a) b)
Total energy imported from  350,5 465,71 281,5 396,7 428,8 582,5 705 705
the grid [kWh] +33% +41% +36%

Total energy exported to the | 162,7 | 263,53 | 262,95 | 363,7 158,10 292,5 40,10 40,10
grid [kWh] +62% +38% +85%

Table 15 — Week results on energy imported from and exported to the grid with and

without the batteries energy storage system.

The Winter week presents the same results in both cases because, as described above, the
high gap between the energy demand and the energy produced by PV system stops the
model from using batteries, also having them available, because there would never be a way

to charge them.
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Conclusions and future research

In this thesis the optimization of an energy storage system operation has been presented
and a mixed-integer linear programming model has been implemented with the aim to
define an appropriate energy management model and a resolution approach for the optimal
control and scheduling operation of a solar PV plant coupled with a battery energy storage
system in the context of residential collective self-consumption. In particular, a building
with ten apartments owned by a social housing public entity is equipped with a 20 kW
grid-connected PV, for the purpose of household demand reduction, thus allowing
subsequently the reduction of the total electricity cost for the families. For this system layout
an energy storage system with ten batteries has been thought to maximize the local use of
PV generated power. Different types of constraints have been taken to prolong the life of
the batteries since inappropriate operational patterns can result in increasing degradation
processes. The mathematical representation based on MILP method has been run with
hourly time resolution over a week period for different seasons. However, continuous time
models could be investigated by performing longer simulations using a full year of data
with the help of a higher computational power and a sensitivity analysis could be performed
to identify the battery parameters most impacting on the global results of the system.
Moreover, there is several potential directions to extend the future research in this field and
alternative optimization models can be considered for future work. For instance, the
individual batteries could be modeled as a virtual community storage system, or power can
be transferred among the households in a neighborhood. Furthermore, the objective
function could be modified taking into consideration the financial incentives for consumers
and the variable electricity sale and purchase pricing schemes. In particular, from this point
of view, a new control strategy distributing the charging and discharging processes basing
on the variable purchasing and sale electricity costs could be investigated in order to
maximize the total savings for each charge-discharge cycle. It represents the most

interesting future development of the present work.
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Appendix A: Il Progetto “Civitavecchia SMART-A.T.E.R.”
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Premessa

La legislazione adottata dall’'UE stabilisce che la quota di energia da fonti rinnovabili deve
rappresentare almeno il 32% del consumo finale lordo dell’'UE entro il 2030. La Legge
Regionale 18 Luglio 2017, n. 7 "Disposizioni per la rigenerazione urbana e per il recupero
edilizio", gli obiettivi fissati nel VII Programma Europeo d'azione per l'ambiente e
nondimeno la Energy Roadmap 2050, fissano una vera e propria tabella di marcia che
delinea le strategie per la rigenerazione urbana e la riqualificazione del tessuto edilizio
esistente. Partendo da tali riferimenti, I'A.T.E.R. del Comprensorio di Civitavecchia intende
perseguire sempre di piu la realizzazione di progetti per il recupero e la rigenerazione
urbana, promuovendo altissimi standard di edilizia in termini di ecosostenibilita e di
sviluppo innovativo. Per trovare le risorse necessarie a garantire tale politica, 'A.T.E.R. sta
sviluppando e sviluppera, sempre di piu, la ricerca di finanziamenti terzi attraverso la
partecipazione a specifici bandi europei, nazionali e regionali e ricorrendo alle fonti di
incentivazione previste per l'efficientamento energetico e la produzione di energia da fonti

rinnovabili.
Obiettivi del progetto “SMART-A.T.E.R.”

L’A.T.ER. del Comprensorio di Civitavecchia gestisce il patrimonio dell’edilizia
residenziale pubblica; il progetto “SMART-A.T.E.R.” ha come obiettivo sviluppare la prima
smart communitiy nazionale nell’ambito dell’edilizia residenziale pubblica, rendendo
energeticamente autosufficienti tutti gli immobili del proprio patrimonio, utilizzando
energia da fonti rinnovabili. La realizzazione della smart community prevede che I'energia
elettrica prodotta dagli impianti fotovoltaici che verranno realizzati venga condivisa fra
tutte le utenze coinvolte. Questo meccanismo sara attuabile perché tutta ’energia prodotta
verra immessa in rete e prelevata in base agli specifici fabbisogni energetici delle singole
unita abitative. Lo scopo e quello di garantire vantaggi ambientali ed economici alle
famiglie, grazie ad un accordo con una societa di dispacciamento che gestira tutti i contratti
e offrira I'’energia ad un prezzo calmierato (coerente con i canoni di locazione) rispetto alle

tariffe applicate dagli enti fornitori di energia elettrica. Allo stato attuale, infatti, da
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un’attenta analisi effettuata dall’A.T.E.R. del Comprensorio di Civitavecchia sulle spese di
locazione e le spese per l'energia elettrica, sostenute dai propri inquilini dell’edilizia
sovvenzionata, e emerso che la spesa energetica pesa fortemente sul bilancio delle famiglie
interessate. Un inquilino A.T.E.R., infatti, a fronte di una spesa annua di € 93,00 per il canone
di locazione, puo arrivare a pagare, per 'energia elettrica, una spesa annua compresa tra €
630,00 e € 900,00, a seconda del fabbisogno famigliare. Oltre ai notevoli vantaggi economici
per le famiglie, il progetto descritto generera altresi un aumento della redditivita aziendale
per effetto della vendita di energia, ammortizzando il costo dell’investimento, il tutto

attraverso un’attivita sicura e compatibile con gli obiettivi europei.
Architettura del sistema proposto

In un contesto dove fenomeni come la decarbonizzazione, la decentralizzazione, la
digitalizzazione e la democratizzazione dell’energia sono immersi in un mondo sempre piu
denso di tecnologie all’avanguardia per la micro-generazione distribuita e per I'accumulo
di energia, si inquadrano ed emergono i maggiori fabbisogni e le migliori opportunita di
digitalizzazione delle reti energetiche. In particolare, il progetto intende sviluppare una
vera e propria rete intelligente, composta da tanti piccoli nodi (smart building), che
consente, non solo, il trasporto di energia dal produttore al consumatore, ma la
realizzazione di nuovi modelli di routing allo scopo di ottimizzare la distribuzione delle
informazioni energetiche determinando, quindi, in anticipo le richieste di energia,
convogliando i flussi laddove servono ed imparando dalle abitudini di consumo di ogni
singola unita abitativa. Ogni smart building sara, pertanto, un nodo della rete e sara
costituito dalla sperimentazione di sistemi evoluti ed ecosostenibili per la produzione da
fonti rinnovabili e per I'accumulo di energia elettrica. Gli archi che collegano i singoli nodi
della rete non saranno costituiti dai semplici collegamenti energetici ma da nuove forme di
cablaggio che portano con sé nuovi flussi di comunicazione (energy information data) che
viaggeranno tra produttori, consumatori e viceversa (prosumer); essi trasporteranno nuove
informazioni in grado di far interoperare sistemi informatici diversi ma con gli stessi

obiettivi: gestire con migliore efficienza i picchi di richiesta, evitare interruzioni di elettricita
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(resilienza), ridurre il carico dove necessario e arbitrare 1’energia verso 1’autoconsumo o
verso il mercato. Nell’architettura della nuova rete energetica, assimilabile al concetto di
internet delle cose, si parla, infatti, di internet dell’energia o Energy Cloud, tutte le unita
abitative di uno smart building saranno dotate di dispositivi intelligenti per la raccolta dei
consumi periodici e delle abitudini di consumo, grazie ai quali tutti i building interconnessi
tra loro, ricevono e inviano informazioni sulla gestione dell’energia e traggono vantaggio
da questo scambio di informazioni. Ogni building costituira quindi una micro energy
community dove sara garantita la fornitura di energia elettrica e sara possibile accedere alla
produzione di energia elettrica da fonti rinnovabili e lo stoccaggio intelligente della stessa,
il tutto con minori costi e, ovviamente, minore emissione di gas ad effetto serra. Inoltre, ci
sara notevole flessibilita per ogni consumatore nella gestione del proprio fabbisogno
energetico, soprattutto, relativamente al consumo di energia che potra variare in base al
periodo dell’anno o, addirittura, in base all’orario della giornata. In particolare, dal punto

di vista delle soluzioni tecnologiche e dei sistemi impiegati si avra che:

1) verra attrezzato il locale tecnico del building con un cabinet contenente un sistema di

accumulo modulare;
2) verra integrato o realizzato un sistema fotovoltaico;

3) ogni unita abitativa sara dotata di sistemi di contabilizzazione e disaggregazione dei
carichi energetici (home energy device) capaci di raccogliere le informazioni di consumo in
modalita near real time, identificare le tipologie di elettrodomestici collegati e rilevare e

correlare le abitudini di consumo;

4) verra realizzata una piattaforma per la gestione ed il controllo dei flussi di energia e
di tutte le interazioni elettroniche ed informatiche con le risorse energetiche della rete e di

tutti i nodi costituenti la stessa.

La piattaforma sara costituita da un sistema locale per il controllo dell’energia e da un

sistema di supervisione centrale, entrambi basati sui pit moderni paradigmi di
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progettazione e su architetture aperte ed interoperabili. In particolare, la piattaforma

consentira:

a) tramite un modello cloud-based, di controllare, monitorare tutti gli energy device
afferenti al building allo scopo di assicurare efficienza, automazione, security, comfort ed

health;

b) di ottimizzare 'utilizzo di sistemi degli storage distribuiti (sia residenziali che mobili
forniti da eventuali veicoli elettrici in ricarica nel building), integrandoli con i profili e le
previsioni di consumo dell'utente specifico, i prezzi di mercato dell'energia elettrica e la

gestione delle tecnologie «demand-side»;

Q) di raccogliere i profili di consumo di ogni singola unita abitativa e di garantire il
routing intelligente dell’energia consentendo, in tempo reale ed in modo dinamico, la

democratizzazione della stessa e gli obiettivi di ogni singolo utente o building.

d) di arbitrare, tramite un sistema intelligente, i consumi, la produzione e I'accumulo di
energia, ottimizzandone I’autoconsumo e I'immissione nella rete secondo le politiche costo

efficacia e secondo funzioni obiettivo configurabili;

e) I'uso <<smart> dei building energy device utilizzando un pattern architetturale <<if
this then do that» cioe ottimizzando I'interazione tra i device e la piattaforma cloud in modo

tale da gestire i bisogni dell'utente in maniera facile ed intuitiva;

f) di suggerire gli interventi di manutenzione in modo reattivo e predittivo da effettuare

sugli apparati controllati;

g) di rendere <<pluggable>> qualsiasi device implementando tutte logiche open di

interoperabilita dei DER;

h) di costruire una Building Energy Network in grado di interoperare con altre

eventuali Energy Community allo scopo di poter gestire isole off-grid;

i) di gestire la digital experience grazie una graphical user interface basata sul modello

«mobile first» spingendo l'utilizzo di mobile native apps;
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)] di garantire 'affidabilita ai black-out e la resilienza del building grazie ad algoritmi

e modelli di interazione tra sistemi di produzione e di accumulo dell’energia;

k) di creare modelli di gamification atti a responsabilizzare gli utenti nell'uso delle
risorse energetiche tramite giochi di competizione in cui ogni utente dell’'unita abitativa

partecipa condividendo le informazioni sui propri consumi;

1) di applicare e sperimentare i nuovi paradigmi della cyber security applicate sia alle

reti energetiche che alle reti informatiche.
La convenzione con il DIMA

L’A.T.E.R. del Comprensorio di Civitavecchia si avvale della preziosa collaborazione con il
DIMA, Dipartimento di Ingegneria Meccanica ed Aerospaziale dell’Universita degli Studi
di Roma “La Sapienza” attraverso un accordo di ricerca finalizzato allo svolgimento di
attivita inerenti l'efficientamento energetico del patrimonio immobiliare dell’Ente e lo
studio di tecnologie innovative ad elevata sostenibilita energetica ed ambientale. Nella
fattispecie, il DIMA si occupa dell’assistenza ante-operam alla progettazione degli
interventi di efficientamento energetico, della definizione del mix ottimale di tecnologie e
del supporto nella verifica dei requisiti per la predisposizione delle richieste al GSE,
andando di volta in volta ad identificare le migliori opportunita di incremento
dell’efficienza energetica e soprattutto di risparmio dei costi di gestione degli inquilini

A.T.ER.
Fattibilita tecnico-economica dell’intervento

All'interno del patrimonio di proprieta dell’A.T.E.R. del Comprensorio di Civitavecchia,
sono stati individuati circa 40 fabbricati con 493 unita abitative. Le analisi effettuate hanno

portato a definire il seguente scenario:
- Utenze coinvolte: n°493;

- Consumo annuo stimato delle utenze: 2.500 kWh * 493=1.232.500 kWh/anno;
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- Costo di acquisto totale dell’energia elettrica stimato delle famiglie: 1.232.500 kWh * 0,25

€/kWh = € 308.125,00;

- Costo per unita abitativa stimato per la spesa di energia elettrica = € 625,00/Anno (costo

che puo variare in virtu dei diversi fabbisogni energetici).

Scenario previsto per la produzione di energia elettrica da fonti rinnovabili:

- Irraggiamento medio del territorio di 1.250 kWh/kWp;

- Potenza totale impianti fotovoltaici stimati sui fabbricati: 934,82 kWy;

- Produzione annua totale impianti fotovoltaici installati: 1.168.525 kWh/anno.

- Costo di acquisto totale dell’energia elettrica dalla societa di dispacciamento: 1.232.500

kWh * 0,18 €/kWh = € 221.850,00;

- Costo per unita abitativa stimato per la spesa di energia elettrica da fonti di energia

rinnovabile = € 450,00/ Anno;
- Risparmio annuo per ogni unita abitativa: € 175,00/Anno (circa il 33% per ogni famiglia);

- Ricavi A.T.E.R. per vendita a societa di dispacciamento: 1.168.525 kWh * €/kWh 0,10= €

116.852,5.

I dati sono riassunti nella tabella di seguito.

indirizzo abitazioni FVIp1l FVIp2 indirizzo abitazioni FVIp1 FVip2
N° kWp kWp Ne° kWp kWp
terrazzo tettoie terrazzo tettoie
Via Buonarroti 5 11 15,5 24 Via Navone 10 11 26,5 45
Via Buonarroti 11 12 15,5 24 Via Navone 12 8 26,5 45
Viale G. Baccelli 69 9 17,25 25,9 Via Navone 14 11 26,5 45
Viale G. Baccelli 73 9 17,25 25,9 Via Navone 16 7 26,5 45
Viale G. Baccelli 75 10 17,25 25,9 Via Navone 18 9 26,5 45
Viale G. Baccelli 77 10 17,25 25,9 Via Navone 20 9 26,5 45
Viale G. Baccelli 79 9 17,25 25,9 Via Navone 22 7 26,5 45
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Viale G. Baccelli 83 10 17,25 25,9 Via Navone 19 9 26,5 45
Viale G. Baccelli 85 18 20 Via Navone 21 9 26,5 45
Viale G. Baccelli 87 18 20 Via Navone 23 10 20 28
Via XVI Settembre 13 15 25,5 37,95 Via Navone 25 12 20 28
Via XVI Settembre19 13 28,98 41,4 Via Navone 27 12 20 28
Via XVI Settembre 20 17 41,4 57,96 Via Navone 29 12 20 28
Via XVI Settembre 23 16 18,28 27,9 Via Navone/Cerruti 79,7
Via Navone 9 6 26,5 45 Via Labat 4 39 472 472
Via Navone 13 10 26,5 45 Via Labat 6 40 51,75 63,8
Via Navone 15 10 26,5 45 Via Frezza 3 38 51,75 63,8
Via Navone 17 8 26,5 45 Via Falda 10 21 40
Via Navone 6 8 26,5 45 Centrale idrica 57,96

Via Navone 8 8 26,5 45

TOTALE 493 934,82 1490,11

Copertura finanziaria del progetto

Per la copertura finanziaria dell'intero progetto I' A.T.E.R. chiedera un contributo europeo

sulle risorse disponibili per la Regione Lazio e di un finanziamento bancario a tasso

agevolato. L'utilizzo del contributo permettera di non gravare sul Bilancio dell’Ente e al

contempo di generare un beneficio economico e finanziario. Qui di seguito vengono

riportati i costi dell'investimento. Ai valori attuali, tali costi vengono stimati, arrotondati,

come previsti al momento della elaborazione del progetto esecutivo e che, da parte

dell’Ente, si ritiene saranno mantenuti senza lievitazione fino al termine dei lavori: €

2.500.000,00, cosi suddivisi:

Quadro Generale Spese
(cifre arrotondate)

Acquisto materiali

Installazione e messa in opera

Lavori e pratiche amministrative

COSTO TOTALE INTERVENTO

Importo

€ 1.500.00,00
€ 750.000,00

€ 250.000,00
€ 2.500.000,00
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Il piano di copertura finanziaria prevede:

- un contributo a fondo perduto da reperire nei fondi europei (piano Juncker) pari al

50% dei costi: € 1.250.000;

- un finanziamento a tasso agevolato garantito dalla BEI: 50%, pari ad € 1.250.000.
Il periodo per il completamento del progetto e previsto entro la fine dell’anno 2019.
Conclusioni

La Regione Lazio e parte sostanziale del “Piano Verde” per rilanciare 1'Italia, che vede come
protagonisti proprio le Regioni e gli Enti locali, puntando sulla valorizzazione del territorio
e sull'uso efficiente delle risorse. Nondimeno la Regione Lazio da anni opera, tra 'altro,
intensamente sul tema dell’efficienza e sul risparmio energetico delle strutture pubbliche
residenziali, mentre gli Enti preposti ad operare su tali strutture, come la A.T.E.R. del
comprensorio di Civitavecchia, da tempo hanno recepito i modelli di sostenibilita ed
attivano anche politiche ambientali ed energetiche nella loro gestione. La realizzazione di
questo progetto rappresenterebbe, oltre ad una best practice nazionale, il consolidamento e
la prosecuzione di una politica regionale finalizzata alla realizzazione di un modello di
edilizia sostenibile, basata sulla sostenibilita ambientale. Con tale progetto si mira a
diminuire i consumi di energia, migliorare la qualita della vita degli inquilini e soprattutto
a promuovere e applicare modelli di finanziamento innovativi finalizzati al rilancio

dell’economia locale e dell’Ente.
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Appendix B: Overview of IBM ILOG CPLEX Optimization
Studio solver

The proposed model is mathematically formulated and solved using Optimization
Programming Language (OPL) syntax provided by IBM ILOG CPLEX Optimization Studio
[90]. IBM ILOG CPLEX Optimization Studio is an analytical decision support toolkit for
rapid development and deployment of optimization models using mathematical and
constraint programming. It combines an integrated development environment (IDE) built
on the Optimization Programming Language, through programmatic APIs, or alternatively
through third-party modeling environments with the powerful Optimization Programming
Language and high performance ILOG CPLEX optimizer solvers. The CPLEX solver is used
to mathematically program and solve the engineering problems like inventory, capacity
planning, scheduling and facility location, providing optimal solution to the problem in a
reasonable computational time. The CPLEX CP Optimizer component is a second-
generation constraint programming (CP) engine for automatically solving detailed
scheduling problems, as well as certain combinatorial optimization problems that cannot be
easily linearized and solved using traditional mathematical programming methods; it has
been used for job-shop scheduling and shown as a proven tool for small and medium size

problems [91].

Detailed Scheduling Problems in OPL

Detailed scheduling can be seen as the process of assigning start and end times to intervals,
and deciding which alternative will be used if an activity can be performed in different
modes. Scheduling problems also require the management of minimal or maximal capacity
constraints for resources over time. CPLEX CP Optimizer features are specially adapted to

solving detailed scheduling problems over fine-grained time [92].

A scheduling model has the following format in OPL:

e Data structure declarations
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e Decision variable declarations
e Objective function

e Constraint declarations

OPL provides specialized variables, constraints and keywords designed for modeling

scheduling problems.

In particular, a typical scheduling problem is defined by:

e A set of time intervals—definitions of activities, operations, or tasks to be completed,
that might be optional or mandatory;

e A set of temporal constraints —definitions of possible relationships between the start
and end times of the intervals;

e A set of specialized constraints —definitions of the complex relationships on a set of
intervals due to the state and finite capacity of resources;

e A cost function—for instance, the time required to perform a set of tasks, cost for
some optional tasks of non execution, or the penalty costs of delivering some tasks

past a due date.

Scheduling constraints

CP Optimizer in OPL provides a number of specialized constraints for scheduling [92],

such as:

- Precedence constraints - Common scheduling constraints used to restrict the relative
position of interval variables in a solution. These constraints are used to specify when
one interval variable must start or end with respect to the start or end time of another
interval. A delay, fixed or variable, can be included. For example, a precedence
constraint can model the fact that an activity 4 must end before activity b starts
(optionally with some minimum delay z).

- Cumulative constraints - In some cases, there may be a restriction on the number of
intervals that can be processed at a given time, perhaps because there are limited

resources available. Additionally, there may be some types of reservoirs in the problem
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description (cash flow or a tank that gets filled and emptied). These types of constraints
on resource usage over time can be modeled with constraints on cumulative function
expressions. A cumulative function expression is a step function that can be
incremented or decremented in relation to a fixed time or an interval.

Sequence decision variable and no overlap constraints - A scheduling model can
contain tasks that must not overlap, for example, tasks that are to be performed by a
given worker cannot occur simultaneously. To model this, two constructs are used: the
sequence decision variable and the noOverlap scheduling constraint. Unlike
precedence constraints, there is no restriction on relative position of the tasks. In
addition, there may be transition times between tasks.

Alternative and span constraints - Provide important ways to control the execution
and synchronization of different tasks. An alternative constraint between an interval
decision variable a2 and a set of interval decision variables B states that interval a is
executed if and only if exactly one of the members of B is executed. In that case, the two
tasks are synchronized. A span constraint between an interval decision variable a and
a set of interval decision variables B states that interval a spans over all intervals present

in the set. Some examples are shown in Figure 34 for alternative and span constraints,

respectively.
a) _n Example: o ‘ b) Example: span (a, (b1..bn]) ;
alternative (a, [bl..bn]):
I where b, is the first present
XORY o | interval in the set

a and b;are executed
Fm——m—mmm simultaneously. No
| % I other intervals are executed
— I
|

a starts together with b, and ends together with b,,
Intervals b; and bs are not executed.

Time
Figure 34 - Example of alternative (a) and span (b) constraints [92].

Synchronize constraints — A synchronization constraint between an interval decision
variable a and a set of interval decision variables B makes all present intervals in the set

B start and end at the same times as interval g, if it is present.
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Appendix C: IBM ILOG CPLEX Code

In this section the most significant parts of the code are reported by way of example.

/*objective function*/

minimize

(sum(t in Time: Demand[t] >= PVPower[t]) Buy[t] /* bought quantity
*/

+

sum(t in Time: Demand[t] < PVPower[t]) Sell[t] /* Sold quantity
*/

+

sum(i in Batteries) Flag[i]*200*card(Time) /*penalty for used

batteries */

/* constraints forcing the satisfaction of the demand at every time

*/

forall(t in Time: Demand[t] >= PVPower([t]) {
Demand[t] == PVPower[t]+Buy[t]+sum (i in Batteries) x[1][t];
Sell[t] == 0;
}
forall(t in Time: Demand[t] < PVPower [t]) {
PVPower [t] == Demand[t]+Sell[t]+sum (i in Batteries)
ylilltl;
Buy[t] == 0;

/* constraints for the batteries charging and discharging */

forall (i in Batteries, t in Time: (t > 0) && (Demand[t] < PVPower

(tl))
ct: Chargel[i] [t] == Chargel[i] [t-1] + y[i][t];
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forall(i in Batteries, t 1in Time: (t > 0) && (Demand[t] >
PVPower[t]))
ct2: Chargel[i] [t] == Chargel[i] [t-1] - x[i][t];
forall(i in Batteries, t in Time: (t > 0) && (Demand[t] ==
PVPower[t]))
Charge[i] [t] == Chargel[i] [t-11];

/* constraints defining if the battery is charging or discharging

*/

forall(i in Batteries, t in Time: t > 0){

cl[il[t] <= c[i][t-1] + (2-MinFlag[i][t]-MaxFlag[i][t]):
cl[ill[t] >= c[i][t-1] - (2-MinFlag[i][t]-MaxFlag[i][t]):

c[il[t] >= 1 - MinFlag[i][t];
c[il[t] <= 1 + MinFlag[i][t];

c[il[t] >= -MaxFlagl[i][t];
c[i]l[t] <= MaxFlagl[i][t];

/* constraints required to make the problem linear */

forall (i in Batteries, t in Time: t>0) {
ylil[t] <= M*c[i][t-1];
yv[i] [t] <= DiffChargeP[i][t];
v[i]l[t] >= DiffChargeP[i][t] - (l-c[i][t-11)*M;
x[1][t] <= M*(l-c[i][t-11);
x[1][t] <= DiffChargeN[i][t];
x[1][t] >= DiffChargeN[i][t] - (c[i][t-17)*M;
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