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Abstract—In this paper, a new approach is proposed to opti-
mally plan the motion along a parametrized path for flexible joint
robots, i.e., robots whose structure is purposefully provided with
compliant elements. State-of-the-art methods efficiently solve the
problem in case of torque-controlled rigid robots via a translation
of the optimal control problem into a convex optimization prob-
lem. Recently, we showed that, for jerk-controlled rigid robots,
the problem could be recast into a non-convex optimization
problem. The non-convexity is given by bilinear constraints that
can be efficiently handled through McCormick relaxations and
spatial Branch-and-Bound techniques. In this paper, we show
that, even in case of robots with flexible joints, the time-optimal
trajectory planning problem can be recast into a non-convex
problem in which the non-convexity is still given by bilinear
constraints. We performed experimental tests on a planar 2R
elastic manipulator to validate the benefits of the proposed
approach. The scalability of the method for robots with multiple
degrees of freedom is also discussed.

Index Terms—Motion and Path Planning; Optimization and
Optimal Control; Flexible Robots

I. INTRODUCTION

ECENT years have seen an increasing interest in the

use of robotics solutions in a new range of areas, e.g.,
healthcare, inspection and maintenance of infrastructure, agri-
food, and agile production in the context of the Industry
4.0 initiative. These application areas require the robot to
operate and interact efficiently with highly dynamic and un-
structured environments, a complete paradigm shift for robots
typically employed in conventional industrial applications,
e.g., pick-and-place operations in structured, static and isolated
environments. To allow energy efficient solutions and safe
interactions with the environment, researchers have focused
on the development of a new generation of lightweight robots

Manuscript received: September, 11, 2019; Revised December, 7, 2019;
Accepted December, 30, 2019.

This paper was recommended for publication by Editor Nancy Amato upon
evaluation of the Associate Editor and Reviewers’ comments.

This work was supported in part by the European Unions Horizon 2020
research and innovation program as part of the projects ILIAD (Grant
no. 732737) and THING (Grant no. 780883), and in part by the Italian
Ministry of Education and Research in the framework of the CrossLab project
(Departments of Excellence).

1Research Center “Enrico Piaggio”, Dipartimento di Ingegneria
dell’Informazione, University of Pisa, Largo Lucio Lazzarino 1, 56126
Pisa, Italy

alessandro.palleschi@phd.unipi.it

2Soft Robotics for Human Cooperation and Rehabilitation, Fondazione
Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy

3Dipartimento di Ingegneria Informatica, Automatica e Gestionale,
Sapienza Universita di Roma, Via Ariosto 25, 00185 Roma, Italy

Digital Object Identifier (DOI): see top of this page.

Fig. 1. Planar 2R manipulator, powered by two series elastic actuators and
equipped with a soft end-effector.

capable of achieving the necessary level of compliance, i.e.
soft robots. The interested reader can refer to [1] for a survey
about soft robots with deformable bodies, or to [2] for robots
with elastic elements lumped at the joint level.

It is well known that this higher degree of compliance comes
at the cost of a more complex dynamic model and raises
challenges for planning and control. In this work, we focus
our attention on soft robots that use compliant elements in
the actuation of the joints, i.e., flexible joint robots. Because
of the advantages given by the use of compliant elements
for the actuation, e.g., adaptability and resilience, soft robotic
platforms are becoming more and more popular. Some exam-
ples are the quadrupedal robot ANYmal [3] and the humanoid
WalkMan [4]. This spreading has made it necessary to develop
algorithms capable of exploiting these elastic actuation units to
their full potential, in order to guarantee a certain level of per-
formance. In the literature, several works adopt optimal control
methods to exploit the compliance of the actuators, where
the reference trajectory is obtained formulating a constrained
optimal control problem (OCP) [5], and closed-loop trajectory
tracking is performed by nonlinear predictive controllers [6]
or iterative linear quadratic regulators [7].

From the planning point of view, numerical optimization
approaches are potentially able to simultaneously optimize
the trajectory and the impedance of the robot. Recent works,
e.g., [8], [9], have shown that the combination of offline
and online optimization phases may reduce the computational
requirements, allowing online optimal motion planning. These
methods use a trajectory library approach, where a library
of optimal parametric trajectories is generated offline. During
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motion, an online search of the best candidate solution for
the current task parameters is performed, together with a
refinement of the chosen solution.

However, to fully exploit the potential of flexible joint
robots, several challenges have still to be solved. A promi-
nent open problem tackled in this paper is the time-optimal
trajectory planning for flexible joint robots. This problem has
been widely investigated for torque-controlled rigid robots,
with state-of-the-art methods that efficiently solve it through
convex optimization techniques, see, e.g., [10]-[13].

These approaches reduce the complexity of the problem, by
splitting it into two phases. In the first phase a reference path
for the robot is generated, while a second tracking phase is
used to optimize the motion along this path. Recently, we have
shown that the time-optimal trajectory planning problem for
rigid manipulator with joint constraints up to the jerk can be
formulated as a non-convex optimization problem with bilinear
and quadratic constraints [14].

Unfortunately, the existing optimal planning methods are
not suitable for robots with compliant actuation, since they
only consider the link dynamics, neglecting crucial actua-
tion constraints such as the ones on the motors and elastic
torques, which are likely to be violated. Indeed, these planning
algorithms allow to constrain the link motion up to the
acceleration/torque level. Rigid-based design applied to elastic
robots may lead to inaccurate trajectories, a safety stop for the
robot, or, in the worst case, to damage of the elastic actuators.

An extension of these planning algorithms for soft robots is
challenging, since in general it would require the use of a more
complex dynamics, due to the presence of elastic elements.
The increase in complexity might be however balanced by the
capability of guaranteeing a faster and feasible motion.

A possible approach is the one proposed in [15], for
manipulators with only one flexible joint and based on a
combination of flexible and rigid body models. The flexibility
is considered only to smooth away acceleration discontinuities.
Conversely, we present here a time-optimal trajectory planning
algorithm for robots with multiple flexible joints and capable
of considering and satisfying constraints on both the link and
the motor variables.

The main contribution of the paper is the translation of
the minimum-time optimization problem with the inclusion
of the complete dynamics of the flexible joint robot into
a non-convex Nonlinear Programming (NLP) problem. We
show that, by defining a set of suitable nonlinear change of
variables, it is possible to formulate a problem where the non-
convexity is given by bilinear and quadratics constraints only,
which allow, in turn, for an efficient convex relaxation using
McCormick envelopes [16].

To show the benefit and the effectiveness of our approach,
experimental results using a 2R elastic manipulator, see Fig. 1,
tracking a specified Cartesian trajectory are presented, together
with considerations about the scalability of the method for
robots with more degrees of freedom.

II. PROBLEM FORMULATION

The objective is to optimally plan the motion of a flex-
ible joint robot that has to follow a sufficiently smooth

parametrized path, specified for the link coordinates, ¢ =
q(s) € R™, where n is the number of links of the robot. To
formulate the optimization problem we exploit the possibility
to parametrize the motion along a path using a scalar coor-
dinate s = s(t) and its time derivatives, as already presented
in many works, e.g., [10] and [13]. For the rest of the paper
we will use the Lagrange’s notation, i.e., =/, to denote the
derivative of the variable = w.r.t. s and the Newton’s notation,
i.e., &, to denote the time derivatives of the variable x. With
this parametrization, we shall see how it is possible to write the
optimal rest-to-rest trajectory planning problem for a flexible
joint robot subject to constraints on both link and motor
variables as

min [ 1dt

subject to
s(0)=0and s(T) =1
$(0)=0and $(T) =0
5(0) = 0 and (T) = 0
5(0)=0and $(T) =0
5(t) >0
a<als)<a
a<q(s(t) <q
0<0(s(t) <0
0<0(s(t)<0

Te < Te(s(t) < Te
Tm < Tm(s(t)) < Tm
fort € [0, 77,

where ¢ and @ are the vectors of velocities and accelerations
of the links, @ and @ are the vectors of angles and angular
velocities of the motors, while 7, and 7. are the vectors
of the motor and elastic torques, respectively. We use z and
Z to indicate the lower and upper bounds of the variable z,
respectively. For simplicity, the presented formulation consid-
ers constant lower and upper bounds. However, the problem
could still be formulated considering the dependency of the
bounds on the path coordinate. For the sake of clarity, the
time dependency of s and its derivatives and the dependency
on s of the motor torques 7,, the elastic torques 7, the link
coordinates g, the motor position 8 and their derivatives are
omitted for the rest of the paper.

Our formulation is able to use information about the elastic-
ity of the robot including the complete dynamics of the robot
directly into the optimization.

Problem (1) can be reformulated in order to be parametrized
by s defining the change of variables

A . A .
b2 3% o 20 =25,

A A
Ozzzb”:2§7 ag,:b”’:Q

with s = d*s/dt*. It is worth noting that setting $(0) =
$(T) = 0 does not result in a singularity, since also §
and § are equal to zero at the motion boundary instants.
In the open interval ]0,T[, we can assume that $(¢t) > 0,
which will be definitely enforced by the given nature of our
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problem, i.e., a minimum-time optimization problem. Under
this hypothesis, the change of variables is always defined. The
definition of these variables is convenient for the formulation
of the optimization problem as discussed in more detail in
the following, where we present a way to write the inequality
constraints in (1). The reformulation of the objective function
using the path coordinate s is the same as the one proposed
in [11] and [14], and it is not reported here.

A. Inequality Constraints

The proposed formulation permits to introduce constraints
both on the link and the motor variables. Limits on the
velocity and acceleration of the links can be included using
the same formulation presented in [11] and [14], therefore are
not reported here.

In order to write the motor-related constraints in terms of s,
we used the following dynamic model of a robot with flexible
joints presented by Spong [17]

{ M(q)§+C(q.9)q+G(q) + K(qg—0)=0 (2
B0+ K(0—-q)=T1n, (3)
where M, C and G are the link inertia matrix, Coriolis and
centrifugal matrix and gravity vector respectively, K is the
constant diagonal joint stiffness matrix and By, is the constant
diagonal motor inertia matrix.

On the motor side of the flexible transmission, we included
constraints on position, velocity and motor torques, as well as
on the elastic torques, i.e., 7. = K (g — ). From a practical
point of view, in case of constant stiffness, the latter constraint
limits the elastic deflection. This might be useful to reduce the
risk of damaging the elastic elements of the actuation units.

1) Motor Torque Constraints: Equations (2)-(3) can be
manipulated to retrieve the motor torques 7, as a function of
the link variables only. The link dynamics (2) can be written
in terms of s similar to [11]

m(s)s + c(s)s* + g(s) + K(q(s) —0(s)) =0. (4)

Differentiating twice (4) w.r.t. time it holds
2
3z M(@)d+C(g.9)q +Gla) + K(g - 0)) =0,

o ms® +2(m' + )55+ (m” + 5552+ (5)
+(m' +20)82 + "5 +¢"5* +g'5+ K(Gg—0) = 0.
Knowing that @ = B, ' (T, — K(0—q)), K(0—q) = Mg+

Cq+ G and g = q'5 + q"5% we can rewrite (5) as
7= kob™"b + kb + kobb + kab'bt
+hy (b)) + kst + keb® + keb+ kg =
= koB1 + k182 + k253 + k3 fs+
+k4ﬁ5 + k:5a1 + kﬁﬂﬁ + k7b + kg,

where we have defined I' 2 KB_' and

ﬂl £ b///b7 52 £ bl/bl7 ﬁd £ bl/ba ﬁ4 £ b/b7
ﬂ5 £ (bl)27 66 £ 627

and where the
coordinate s

vectors k; are only functions of the path

koém/27 kl ém/4a kQé(m/+c)a
ks = (m” +5¢c)/2, ky = (m/ + 2¢)/4,
ks2g"+ K(q +B,'m)/2, ke 2 ¢,

k:2¢"+K(q"+B.'c), ks2 KB_'g.

With this change of variables, the motor torques are now affine
in the variables 3; and «;, and the torque constraints can be
written as
ITw<koB1 + ki1B2 + k23 + k3fa+ (6)
+kyfBs + ksay + kePs + kb + ks < T'rpp.
2) Motor Position Constraints: Since we want to follow
a specified path for the link coordinates, it is necessary to
constrain the resulting trajectory followed by the motors, to
avoid exceeding their position limits.

Given model (2)-(3) of a series elastic robot, it is possible
to compute the motor angles from (2)

0=q+K ' (M(@)i+Clq,9a+G@). O
Using (7), position constraints can be included using
0<6<80,

S 0<q+kot +kiob+ K 'g<, (8)
where kg and ko are only functions of s, ie., kg =
K 'm/2 kic2 K 'c

3) Velocity Constraints: The velocity of the motors can be
obtained differentiating (7) w.r.t. time. Then, if there exists an
upper bound 6 and a lower bound € on the velocities, it is
possible to write the following inequalities

0<0<9,
S 0<qg+ K '(ms+ (m'+2c)i5+ 55+ ¢'5) <0,
&0 <Vb(g + K (mb"/24 (m' +2c)b /2+
+cb+g') < 6.
We can introduce the following nonlinear change of variables

Br 2 Vb, Bs & b'Vb, By = Vb, Bro £ bVb, and the

inequality can be written as

0 < K187 + k1285 + k13fo + k1aB10 < é, &)

with the following definition of the vectors k;
kin2q+K g, k2 K 'm/2=ko,
kis 2 K '(m'4+2¢)/2=2K 'ky, kiu 2 K 'c.

4) Elastic Torque Constraints: Other than the motor torque,
it is possible to impose limits on the elastic torque of the
system. Indeed, in presence of bounds 7. and T it is possible
to write the following inequality

Te < Te < To,
@TeSK(g_q) <7,
& Te < kisar + kigb+g < 7, (10)

where the vectors k; are again only functions of s, i.e., k15 £
m/2 = kl, klﬁ £ C.
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B. Optimization Problem Formulation

Using (6), (8), (9) and (10) for the constraints, problem (1)
can be reformulated as

1
1
min —ds
m»&vwm»A NG

subject to
I'rm = koB1 + k152 + B3 + ksfPat
+kyfs + ksoy + keBs + kb + kg
b(0) =0and b(1) =0
a1(0) =0and a4 (1) =0
@2(0)4/b(0) = 0 and a(1)1/b(1) = 0

Ollib,agib ,Oégibm

B1 = agb, B2 = asai, Pz = anb, By = a1b (11)
Bs = 2Bz, Bg = a1 B, Bio = b7 (12)
Bs = af, Bs = b2,5? =b (13)

0<b< min (4)°/ (4)”

gﬁq%+qad2§§
0-q— K 'g<koa; +kicp<0—-q—-K'g
0 < k1157 + k12Ps + k1380 + k14610 < 0

Te < ks + kwb <7

The problem is non-convex and with a set of nonlinear
constraints (11)-(13) introduced by the set of variables ;.

C. Numerical Solution

To find a numerical solution for the problem we can use
a direct transcription approach. The path coordinate s is dis-
cretized on [0, 1] with N +1 grid points s =0 < s; <=1 =
sy for j =0,---, N. The functions b(s) and the previously
defined auxiliary functions «;(s) and 5;(s) are modeled by
a finite number of variables, i.e., b; = b(s;), B;; = Bi(s;)
and o;; = «;(s;). The function b(s) is modeled as piecewise
cubic, since it has to be three times differentiable. For each
interval [s;, s;41], we use a cubic Lagrange polynomial that
interpolates b;, bj11, bjyo and bji 3. The structure of the
discretized problem is similar to the one presented in [14],
and it is not reported in its entirety. Some considerations
can be made on the discretization of constraints (13), i.e.,
Bsj = aij, fs; = b7 and B2, = bj, that are non-convex
quadratic constraints, and of constraints (11)-(12)

B1j = asjbj, B2; = azjony, Bsj = ag;bs, Baj = by,
Bsj = az2;Brj, Poj = a1;B75, Broj = bjBr;-

It is known that finding the global optimal solution for
this type of large space optimization problems is, in general,
not trivial. Often spatial Branch-and-Bound (sBB) methods
are employed [18]. These techniques need to solve a relaxed
form of the problem, where the non-convex elements are
substituted by convex approximations [19], to find a lower
bound of the optimal solution. The fact that the non-convex

0.25 Traiecwrs‘v
Start

02 * End

Y (m)

0.2 0.1 0 0.2
X (m)

(a) Desired Cartesian trajectory to be tracked.

-0.1

 q(9) [rac]

0 0.2 0.4 0.6 0.8 1
Path Coordinate

(b) Desired joint trajectory to be tracked.

Fig. 2. Cartesian and joint path to track. The two joints follow the same path,
from —7/4 to /4.

optimization problem can be rewritten using quadratic and
bilinear constraints (11)-(13), as for the problem we presented
in [14], makes it possible to use a convex relaxation provided
by McCormick Envelopes [20]. Indeed, it allows to efficiently
find the solution of the problem by tightening the gap between
the lower bound solution and the optimal one.

ITII. EXPERIMENTAL VALIDATION

In this section, the model of the robot used to plan the
trajectory and the bounds used in the optimization are de-
scribed, together with a comparison of the results with the
ones obtained using different planning techniques.

A. Experimental Setup

The soft robot used for the tests, showed in Fig. 1, is a planar
2R robot, powered by series elastic actuators (SEAs) like the
ones used in [8]. The configuration of the system is defined
with the joint angles q = [q1, q2]7 and with the motor angles
0 = [01,02)T. The stiffness of the two SEAs are K; = 3.7092
Nm/rad and Ky = 2.1392 Nm/rad. Each motor has an inertia
equal to B, = 0.0231 Nms2.

The robot has to follow an assigned path in the Cartesian
space, see Figure 2(a), that has been mapped in a path for the
two joints showed in Figure 2(b). Both the joints follow the
same path, the robot starts with q(0) = [-m/4, -7/4]T
ends with q(T) = [r/4,7/4]T.

The bounds for each link have been set as ¢; = 6 rad/s,
c}z =50 rad/sz, while for the motor we have defined realistic
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0(s) [rad]
°
§
'
6(s) [rad/s)

T(s) [Nm]

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Path Coordinate Path Coordinate

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Path Coordinate Path Coordinate

(a) Planned signals using rigid-based technique R.

0(s) [rad]
6(s) [rad/s)

Tu(s) [Nm]

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Path Coordinate Path Coordinate

0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Path Coordinate Path Coordinate

(b) Planned signals using snap-limited technique IC.

0(s) [rad)
0(s) [rad/s)

Ton(8) [Nm]

0 0.2 0.4 0.6 0.8 1
Path Coordinate

0 0.2 0.4 0.6 0.8 1
Path Coordinate

(c) Planned signals using our algorithm ED.

Fig. 3. From left to right: evolution of the planned motor angles, velocities, torques and of the elastic deflections for the three planning techniques R, IC
and ED. Solid line is the signal, while the dashed lines represent the lower and upper bounds.

bounds for the angles, velocities, torque and the elastic deflec-
tion &, £ ¢;—0;, i.e., 0; = 1.75 rad, 6; = 3 rad/s, 7p, = 3 Nm
and d., = 7 rad. For simplicity, we we have used everywhere
symmetric bounds, i.e., z = —Z, for a constrained variable x.

The objective of the test is to evaluate the behavior of
the elastic robot, in terms of the evolution of the motor
angles, velocities and torques, when the parametrized link
trajectory is used to generate the corresponding trajectories
for the motor angles using (7). These angles are then used as
a feedforward reference trajectory for the motors, which are
position controlled.

In the following, the output of the planning algorithm and
the experimental results tracking the planned trajectory with
the real robot are presented, and we indicate our proposed
approach using the name Elastic Dynamics (ED). Our results
have been compared with those obtained using two different
planning techniques. The first technique, indicated in the
following with the name Rigid (R), is the one presented
in [11]. This method employs only the rigid model of the
robot to plan the trajectory. The second technique, named
Integrators Chain (IC), employs a different formulation
where the complete model of the elastic robot is not used in the
optimization problem but instead considers an extension of the
jerk-limited planning presented in our previous work [14] so
as to include snap constraints. Details about this formulation
are reported in the Appendix. The bounds for the jerk and the

snap have been set as §; = 400 rad/s® and (jlw = 500 rad/s*.

TABLE I
OPTIMAL TIME AND NORMALIZED PEAK VALUES FOR THE PLANNED
MOTOR VARIABLES AND USING THE THREE TECHNIQUES

‘ ‘ T ‘ maxi|9i/§i| ‘ max; 91/51 ‘ max; | Tmi/Tmil ‘
| R [039 | 043 | 83 | 532 |
| IC [ 103 | o045 | 070 | 0.27 |
|ED | 070 | 041 | 10 | 1.0 |

B. Planning Algorithm Results

In this section, the results of the three planning strategies are
reported. The optimization problem has been solved in MAT-
LAB, using SCIP solver provided by YALMIP [21]. Table I
shows the computed optimal time 7', expressed in seconds,
and the peak values for the motor variables, normalized w.r.t.
their maximum values, for the three planning strategies, while
in Fig. 3, the results of the trajectory planning using the
three algorithms are shown. All the signals have been reported
with the path parameter s on the x-axis and the bounds for
each variable are displayed (dashed lines). Observing the data,
we see how using classic rigid-body techniques the resulting
motion of the robot is considerably faster but fails to meet
the limitation on the motor velocities and torques. The snap-
limited approach IC produces a slower motion, although it is
able to satisfy the bounds on the motor variables. On the other
hand, the inclusion of the elastic model at the planning stage
using our approach produces a feasible but faster trajectory
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0(t) [rad]
6(t) [rad/s]

0 0.1 0.2 0.3
Time [s]

Tim(t) [Nm]
7e(t) [Nm]

0.3 o 0.1 0.2 0.3

0.2 .
Time [s] Time [s]

(a) First Joint: From left to right motor angle, velocity, torque and elastic torque. Solid line is the real signal, while dashed is the planned one.

o 0.1 0.2 0.3 o 0.1
Time [s]

0.2 0.3 0.4
Time [s]

“o 0.1 02 03 “o 0.1 02 03

Time [g] Time [s]

(b) Second Joint: From left to right motor angle, velocity, torque and elastic torque. Solid line is the real signal, while dashed is the planned one.

Fig. 4. Real robot tracking the trajectory planned with technique R.

than IC, although slower than the unfeasible one planned
using R. Moreover, as expected for this type of optimization
problems, using ED it can be seen in Fig. 6 that at least
one of the motor velocities or torques takes its maximum or
minimum value, at almost any time during motion (except
for a few initial and final time instants). With respect to ED,
the main limitation of the strategy IC is that one cannot
impose constraints directly on motor velocities and torques.
By constraining instead the link variables up to the snap, we
may limit motor velocities and accelerations below their actual
capabilities. As a matter of fact, the relationship between the
link jerk/snap and the motor velocities/torques is not trivial
in the general case. An incorrect setting of high-order but
purely kinematic bounds on link motion may result in a poorer
performance, for too conservative choices, or to unfeasible
motion for the flexible joint robot, conversely. It is worth
noting in Fig. 5 that motor velocities and torques never saturate
at their bounds when using the IC method; accordingly, the
chosen bounds for jerk and snap were indeed too strict.

C. Real Robot

In Figures 4, 5, and 6 are shown the evolution of the motor
trajectories, velocities and torques and the elastic torques of
the real robot executing the planned trajectories. For IC and
ED, the differences between the planned evolution and the
real one can be explained by differences between the model
used to generate the trajectories and the real system. A possible
source of modeling error is the presence of friction, which has
been neglected in our robot model. In Table II are reported the
trajectory time 7" and the peak values for the motors variables
normalized w.r.t. their upper bounds.

It is worth noting how using R the motors fail to track
the given references and the resulting peak values for the
motor velocities and torques are above the given bounds.
As expected, not including the elasticity of the robot during
planning does not allow to produce feasible trajectories for the

TABLE I
TRAJECTORY TIME AND NORMALIZED PEAK VALUES FOR THE MOTOR
VARIABLES OF THE REAL ROBOT USING THE THREE TECHNIQUES

‘ ‘ T ‘ max; }Gi/§i| ‘ max; 91/51 ‘ max; |Tmi/Tmil ‘
| R 039 045 | 225 | 242 \
| IC | 103 | 045 | 076 | 0.38 \
| ED | 0.70 | 0.45 | 0.99 | 0.98 \

motors, and, as in this case, the resulting motion is different
from the planned one. Using the trajectories planned with IC
and ED the values are instead within the bounds, but with
ED we can obtain a faster motion since we are able to better
exploit the actuation capabilities.

D. Computational Time and Scalability for More Degrees of
Freedoms

The proposed approach has been tested on a 2R robot,
but the formulation can also be extended for more complex
systems. However, the non-convexity of the problem makes
computationally demanding to numerically find the global op-
timum. In this section a brief discussion on the computational
time of the algorithm and the scalability of the method for
more complex robots are reported At the current state, for the
given 2R robot and its bounds, discretizing the path using 150
grid points, using the MATLAB implementation of SCIP as
solver on a Laptop PC equipped with Intel Core 17 Processor
(6x2.20 GHz) and 16 GB DDR4 RAM, it is possible to find
the optimal solution in about 210 s This result clearly shows
how, at this stage, the algorithm can only be used as an offline
planner To demonstrate the feasibility of our approach to more
general robotic systems, we used our algorithm to plan the
trajectory of a 7-DoF flexible joint manipulator, where each
link has to follow the same trajectory presented in Section
III Using the same bounds for the variables and the same
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Fig. 5. Real robot tracking the trajectory planned with technique IC.
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Fig. 6. Real robot tracking the trajectory planned with technique ED.

number of steps to discretize the problem, the algorithm was
able to found a solution in about 270 s, quite close to the
time needed for the 2R robot despite the increased number
of degrees of freedom. This result could be justified by the
particular formulation of the problem and by the form we
used to define constraints, but a more in-depth analysis about
this feature is deferred to future works.

IV. CONCLUSIONS

In this paper, we presented a time-optimal trajectory plan-
ning algorithm for moving a flexible joint robot along smooth
parametrized paths. We have shown that the problem can be
translated into a non-convex NLP with bilinear and quadratic
constraints, and then solved by efficient numerical techniques.
The experimental tests carried out on a 2R manipulator with
SEA actuation demonstrate the effectiveness of the approach,

0 0.2 0.4 0.6 0 0.2 0.4 0.6

Time [s] Time [s]

while dashed is the planned one.

capable of generating feasible and time-optimal reference
trajectories for the robot actuators. Furthermore, we reported
considerations about the scalability of the proposed approach,
presenting results for the trajectory planning on a 7-DoF
robot. Future works will try to extend this approach to robots
powered by variable stiffness actuators (VSAs) and to flexible
link soft robots, a problem that has been already studied, see,
e.g., [22], but still with many open problems.

APPENDIX

In Section III, we compared our approach with a planning
algorithm that considers only constraints on the link coordi-
nates derivatives. By constraining the snap and the jerk of
the links we can limit the velocities and accelerations of the
motors. The importance of including constraints on higher
derivatives of the link coordinates has been already studied
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in the literature, see e.g. [23], but the problem is in general
complex. In our previous work [14] we presented a time-
optimal trajectory planning algorithm considering constraints
up to the jerk. To include snap constraints we can express it
in terms of s

g = q's"W + ¢ (35% 4 45%) + 6”55 + ¢V5L. (14)

Using the change of variables (1) it is possible to write the
jerk and snap equations as

q/ 042\/5/2 + (3/2) q"a1\/5+ q///b\/g

asbq' /2 4+ 2a2bq" + anan q' /4+
+3a% q///4 + 3a1bq”’ + qivbQ.

a =
q®

These equations can be rewritten as a linear combination of a
set of functions 3; as follows

G =4 b1/2+(3/2)q"B2+q" B, (16)
qW=(1/2)q'Bs+2q"Bs + (1/4)q' Bs+
+(3/4) q"Br + 34" Bs + q" o, (17

where we define

B 2 asVb, By 2 arVh, B3 2 0Vb, By 2 asb, B5 £ asb,
Bs £ arag, Br 2 af, Bs £ arb, By £ b7, B0 2 Vb, (18)
With a procedure similar to the one proposed in this work, it

is possible to write the time-optimal rest-to-rest problem with
bounds up to the snap

: b
b(-)ﬁﬁmf,ai(»/o N
subject to
b(0)=0and b(1) =0
a1(0) =0and a1 (1) =0
2(0)4/b(0) = 0 and a(1)/b(1) = 0

o = b/, Qo = b//7 s = b///

B1 = a2B10, B2 = 1510, B3 = bBio, Ba = aszb  (19)
Bs = aab, B = aaa, Pg = b (20
Br=af, o=V, iy =0 @21

0<b<min(d)/(¢)”
4<q'b+q a1/2<q
G<qB+3/2)q"B24+4q"b3,< G
gV < q'81/2+2d"B5 + ' Bs 4+
+(3/4) q"B7 + 39" Bs + " Bo < gV
for s € [0, 1].
The constraints can be divided in differential constraints,

constraints that are linear in the set of variables b, a;, 5; and,
again, a set of bilinear and quadratic constraints.
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