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Abstract Nowadays, business processes are increas-

ingly supported by IT services that produce massive

amounts of event data during the execution of a process.

This event data can be used to analyze the process using

process mining techniques to discover the real process,

measure conformance to a given process model, or to

enhance existing models with performance information.

Mapping the produced events to activities of a given

process model is essential for conformance checking, an-

notation and understanding of process mining results.

In order to accomplish this mapping with low manual

effort, we developed a semi-automatic approach that

maps events to activities using insights from behavioral

analysis and label analysis. The approach extracts De-

clare constraints from both the log and the model to

build matching constraints to efficiently reduce the num-
ber of possible mappings. These mappings are further

reduced using techniques from natural language process-

ing, which allow for a matching based on labels and

external knowledge sources. The evaluation with syn-

thetic and real-life data demonstrates the effectiveness of

the approach and its robustness towards non-conforming

execution logs.
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1 Introduction

Organizations often support the execution of business

processes with IT systems that log each step of par-

ticipants or systems. Individual entries in such logs

represent the execution of services, the submission of a

form, or other related tasks that in combination real-

ize a business process. To improve business processes

and to align IT process execution with existing business

goals, a precise understanding of processes execution is

necessary. Using the event data logged by IT systems,

process mining techniques help organizations to have a

more profound awareness of their processes, in terms of

discovering and enhancing process models, or checking

the conformance of the execution to the specification [1].

Yet, these process mining techniques face an important

challenge: the mapping of log entries produced by IT

systems to the corresponding process activities in the

process models has to be known. A discovered process

model can only be fully understood when the presented

results use the terminology that is known to the business

analysts. It is indeed a common assumption to rely on

prior knowledge of the exact mapping of events to activ-

ities. Unfortunately, such abstraction is very often not

reflected in reality [45]. Among the other motives, such

a mapping is often not existing because (i) the logging

mechanism of IT systems captures fine-granular steps

on a technical level and (ii) the way in which events are

recorded is rarely customizable, especially with legacy

systems.

http://www.lana-labs.com/
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In this paper, we offer means to help the analyst

to identify the mapping between a process model and

events in an event log in a semi-automated fashion.

Defining such a mapping is generally hard to do manu-

ally due to its combinatorial complexity. The approach

presented in this paper leverages insights from behav-

ioral constraints and linguistic analysis to overcome this

complexity. We therefore build on previous work from

[7] and [5], which we extend and for which we provide a

novel integration mechanism. This allows us to substan-

tially reduce the effort for an analyst. Our approach also
informs research into Declare, as it has been mainly

used for the modeling of discovered processes from event

logs [42,20]. More specifically, we devise techniques to

derive Declare constraints from an existing imperative

process model in order to reason about possible matches

between events and activities based on the comparison

of Declare constraints inferred from the event log and

the process model.

In this article we extend our paper [5] both in the

methodology and the evaluation. The Declare-based

matching approach is indeed extended with a label anal-

ysis based on natural language processing. Furthermore,

alternative, relaxed constraints are now included in the

framework, and a comparative analysis of the influence

of different constraints on the result is reported. A case

study based on real life data is also described for evalu-

ating the integrated approach, along with an in-depth

validation of the Declare-based matching approach in

settings where events and activities are both in one-to-

one and one-to-many relationships.

The remainder of this paper is structured as follows.

Section 2 starts by further illustrating the problem with
an example and stating the formal definition of the

mapping problem and the required formal concepts.

Having laid the foundations, the integrated matching

technique is introduced in Section 3. In Section 4, we

first validate our Declare-based matching using an

industry process model collection and simulated event

logs. Second, we evaluate the integrated approach on

real-life data from an industry case study. Related work

is discussed in Section 5 and Section 6 concludes the

work.

2 Problem Statement and Preliminaries

In this section, we motivate our research by the help

of an illustrating example. We then revisit preliminary

concepts of imperative and declarative process modeling

languages. Finally, we discuss the life-cycle of activities.

Table 1: Activity descriptions for the incident process

Activity Description

Incident log-
ging

The first level agent needs to log the details
of the incident and assign the affected person.

Incident clas-
sification

Depending on the logged details, the appro-
priate classification needs to be chosen.

Initial
diagnosis

The assigned 1st level supporter needs to
search through the Configuration Manage-
ment Database (CMDB) for the described
problem and has to detect the configuration
item (CI) that needs fixing.

Functional
escalation

If no solution can be found, the 1st level sup-
porter has to route the incident ticket to the
responsible 2nd level group.

Investigation
and diagnosis

A 2nd level supporter needs to perform a tech-
nical investigation and diagnosis of the re-
ported incident. The solution is reported back
to the 1st level group in a protocol entry.

Resolution
and recovery

Once the solution for the incident is found, it
needs to be logged. If required, the customer
is informed.

Incident clo-
sure

If a new solution has been found, the first
level supported needs to check whether it may
be reused later. If this is the case, the solution
needs to be entered into the knowledge base
(KB). Finally, the incident is closed.

Table 2: Event class names

Abbreviation Complete event name

Person Person added
Details Details logged
Classification Classification specified
CI CI selected
Group Group changed
Comment New comment created
Protocol New protocol created
Solution Solution assigned
KB update KB update performed
Status Status changed

2.1 Motivating Example

Figure 1 depicts the process of incident management

based on the definition found in the IT Infrastructure

Library (ITIL) [11]. The process is executed by two

different roles. The main role is the first level, which is

responsible for logging, classifying and initial diagnosis of

an incident. In case a first level agent cannot resolve the

incident on their own, the incident can be functionally

escalated to a second level agent. In any case, the first

level performs the final resolution and recovery and

closes the incident.

Table 1 provides further details on the activities

contained in the process model in Fig. 1. Such descrip-

tions are often attached in process modeling tools or

separately provided in more detailed work instructions.

The goal of these descriptions is to give a better under-

standing of how the tasks need to be carried out. While

our exemplifying descriptions are rather short, these
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Fig. 1: Process model of an incident process modeled in BPMN with links to the execution data

textual instructions can be very long and comprehensive

in practical settings.

Aside of the process model, Fig. 1 depicts an ex-

cerpt of an event log with six traces. Abbreviations for

the event classes are used in the figure, for the sake

of readability. For example, CI and Solution stand for
“CI selected” and “Solution assigned”, respectively. The

complete mapping of the abbreviations to the full names

is reported in Table 2. In the remainder, we will use

interchangeably the abbreviated or extended version of

the labels. The relation between events and activities

cannot be easily identified using simple string matching,
as the terms used in the event log only rarely occur

in the names of the activities. For instance, the two

event classes “Person added” and “Details given” have

to be related to the activity “Incident logging”. Again,
there are sometimes multiple event classes assigned to

some of the activities. These may be related to life-cycle

transitions of those activities and thereby enable perfor-

mance analysis for these activities. For example, it may

be the case that the first occurring event instance of the

two event classes “Person added” and “Details changed”

marks the start of the activity “Incident logging” while

the last occurrence signals the end. As events are typi-

cally recorded with a timestamp, we can calculate the

duration of the activity “Incident logging” for each case.

The connection of events to the existing model activ-

ities furthermore allows for conformance analysis of the

execution data with respect to the defined model behav-

ior. Conformance analysis of the given example reveals

that the activity “Initial diagnosis” has been skipped in

cases 1 and 6. It could be due either to a fault of the

software system, which did not record the associated

events, or to a non-compliant enactment of the process

by the involved actors. Moreover, the resolution and

recovery may not have been correctly executed in case

1, as there is no documented solution. This information

can be of high value for the improvement of the process

and may be even more important in situations where

the execution of certain activities is required by law.

For models like the one shown in Fig. 1, there are

different formalizations that we discuss in the following.

All formalizations have in common that they specify a

process model M as a tuple containing among others a

set of process activities, which we denote as A.

An IT system that supports process executions typ-

ically records events for each process instance in an
event log [1]. Note that the relation of event instances to

process instances might not be trivial in every practical

setting. There exist approaches relating event instances

to process instances that use event correlation (see [46]).
In this work, we therefore assume that the process in-

stance for each event is given. We abstract events as

symbols of an alphabet E, which is often referred to as

the set of event classes. The set of all finite sequences

of events is denoted as E∗. Each process instance is

represented as a sequence of events and also referred to

as trace t ∈ E∗. For example, [o, p, o, q] is a trace with

four consecutive events and three different event classes,

o, p, q ∈ E. An event log L is a multiset of traces.

Confronted with a process model M and an event

log L, the challenge is to derive the mapping relation

between the activities a ∈ A and the event classes

e ∈ E. In this paper, we assume a 1:N relation as

events are typically on a more fine-granuar level than

activities [56]. Thus, we are looking for the surjective

function Map : E → A that maps event classes to their

corresponding activities.

In the following subsections, we discuss two paradigms

for modeling business processes more in detail, namely
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the imperative one and the declarative one, and the

modeling of activity life-cycles. Imperative and declara-

tive approaches depict the behavior of processes from

two opposite perspectives. The imperative modeling ap-

proach specifies the allowed execution paths for process

instances in a temporal structure. Therefore, behav-

ioral relations between pairs of activities often remain

implicit. For instance, the activity “Investigation and

diagnosis” in Fig. 1 can be executed only eventually

after “Incident classification”. This information can be

derived by checking the unfoldings of the process model,
although it is not explicitly described. On the contrary,

the declarative modeling approach only specifies the

conditions under which activities can (or cannot) be

executed, by means of constraints exerted on single ac-

tivities and sets of activities. Behavioral relations are

thus explicitly modeled, whereas the allowed sequences

of activities enactments must be derived by further rea-

soning on the interplay of the constraints. A declarative

model of Fig. 1 would, e.g., represent that a Precedence

constraint holds true between “Incident classification”

and “Investigation and diagnosis”, but an explicit rep-

resentation of the in-between sequence flows would be

missing.

2.2 Imperative modeling of processes

An imperative process model can formally be defined as

a tuple M = 〈A,G, T 〉, where A is a non-empty set of

activities, G is a set of control nodes, and T ⊆ (A∪G)×
(A∪G) is the flow relation, which connects activities and
control nodes to build a directed graph. In this paper,

we consider the core elements of Business Process Model
and Notation (BPMN) [26] to model imperative process

models in Fig. 1. BPMN is a standard notation for

modeling processes, defined by the Object Management

Group (OMG).1 Activities are denoted as rounded boxes
connected by sequence flows (solid arcs). Control nodes

in BPMN include the so-called gateways, which are

modeled as diamond shapes that split and join control

flows into branches. The XOR gateway (×) models the

exclusiveness of the following execution branches. In

Fig. 1, e.g., the XOR gateway is used to specify that

activities “Functional escalation” and “Investigation and

diagnosis” can be skipped during the enactment of the

process. The AND gateway (+) depicts concurrency, i.e.,

the parallel execution of the branched flow. Information

artefacts are depicted as sheets with the top-right corner

folded. The exchange of such artefacts as inputs and

outputs for activities is depicted by means of dotted

arcs. A complete formalization and description of the

1 http://www.omg.org/

BPMN notation is out of scope for this paper. We refer

the reader to [58,26] for a comprehensive introduction

to BPMN.

2.3 Declarative modeling of processes

Having a process model and an event log, the approach

presented in this paper will use Declare to describe

their behavior. Declare [2] is natively a declarative

process modeling language. It represents workflows by

means of temporal rules.2 Such rules are meant to im-

pose specific conditions on the execution of activities in

process instances. The rationale is that every behavior

in the process enactment is allowed as long as it does not

violate the specified rules. Due to this, declarative mod-

els are said to be “open” in contrast with the “closed”

fashion of classical procedural models [42]. Declare

rules depict the interplay of every task in the process

with the rest of the activities. As a consequence, the be-

havioral relationships that hold among activities can be

analyzed with a local focus on every single activity [34],

as a projection of the whole process behavior on a single

element of it. The rules pertaining a single task can thus

be seen as the task’s footprint in the global behavior of

the process. This characteristic allows us to conduct a

comparative behavioral analysis within the local scope

of activities in the model on the one hand, and events

in the log on the other hand. In contrast, imperative

models do not consent to separate the local perspective

on an activity from the global behavior. This motivates

our choice of the Declare modeling language.

The Declare standard provides a predefined li-

brary of templates, listing default restrictions that can
be imposed on the process control-flow. In particular,

Declare rules are exerted on the execution of activities.

In this paper, we consider a subset of the full Declare

specification that restrict the enactment of one or two

activities, as in [41,22]. For instance, Participation(a)

is a Declare rule expressed on activity a ∈ A. It states

that a must be carried out in every process instance.

Given the activities a, b ∈ A, RespondedExistence(a, b)

constrains a and b, and imposes that if a is carried out,

also b must be carried out at some point during the

process instance execution. Participation(a) expresses

a condition on the execution of a single activity. It is

thus said to be an existence rule, as opposed to re-

lation rules, such as RespondedExistence(a, b), which

constrains pairs of activities. In the following, existence

templates will be denoted as CE , and CE(a) is the rule

2 In literature, they are called “constraints”. Nevertheless,
we prefer not to make use of such term, in order to avoid
the conflict with “constraints” in the context of constraint
satisfaction problems (CSPs).

http://www.omg.org/
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Rule Explanation Cat. Positive and negative examples

Participation(a) a occurs at least once CE(a) X bcac X bcaac × bcc × c
Init(a) a is the first to occur CE(a) X acc X abac × cc × bac
End(a) a is the last to occur CE(a) X bca X baca × bc × bac
RespondedExistence(a, b) If a occurs in the trace, then b occurs as

well
CR(a, b) X bcaac X bcc × caac × acc

Precedence(a, b) b occurs only if preceded by a C→R (a, b) X cacbb X acc × ccbb × bacc
AlternatePrecedence(a, b) Each time b occurs, it is preceded by a

and no other b can recur in between
C→R (a, b) X cacba X abcaacb × cacbba × acbb

ChainPrecedence(a, b) Each time b occurs, then a occurs imme-
diately beforehand

C→R (a, b) X abca X abaabc × bca × bacb

CoExistence(a, b) If b occurs, then a occurs, and viceversa CR(a, b) X cacbb X bcca × cac × bcc
Succession(a, b) a occurs if and only if it is followed by b C→R (a, b) X cacbb X accb × bac × bcca
AlternateSuccession(a, b) a and b if and only if the latter follows

the former, and they alternate each other
in the trace

C→R (a, b) X cacbab X abcabc × caacbb × bac

ChainSuccession(a, b) a and b occur if and only if the latter
immediately follows the former

C→R (a, b) X cabab X ccc × cacb × cbac

NotSuccession(a, b) a can never occur before b C→R (b, a) X bbcaa X cbbca × aacbb × abb
NotCoExistence(a, b) a and b never occur together CR(a, b) X cccbbb X ccac × accbb × bcac

Table 3: Used Declare rules

that applies template CE to activity a ∈ A. Relation

rules will instead be denoted as CR. CR(a, b) applies

template CR to a, b ∈ A. CoExistence(a, b) is a rela-

tion rule expressing that both RespondedExistence(a, b)
and RespondedExistence(b, a) hold true: if a is carried

out, also b must be carried out, and the other way

around. Precedence(a, b) is the relation rule establish-

ing that, if b is carried out, then a must have been

carried out beforehand at least once. Precedence(a, b)

not only imposes that to the execution of b corresponds

an execution of a – as RespondedExistence(b, a) – but it

also requires that the execution of b be preceded by such

execution of a, i.e., it adds a condition over the ordering

of the constrained activities. Therefore, Precedence(a, b)

falls under the category of ordering relation rules. Tem-

plates of such category will be denoted as C→R . Fur-

thermore, by definition we have that if Precedence(a, b)

holds true, then RespondedExistence(b, a) holds true

as well. We thus say that Precedence(a, b) is subsumed

by RespondedExistence(b, a). C→R (a, b) indicates an or-

dering relation rule applied to a, b ∈ A. In particular,

C→R (a, b) always specifies the order in which the occur-

rences of a and b are considered: a first, b afterwards
(henceforth, order direction).

In turn, AlternatePrecedence(a, b) is subsumed by

Precedence(a, b) because (i) the former entails the lat-

ter, i.e., an execution of a must precede b, and (ii) af-

ter the execution of a and of the subsequent b, b can-

not be carried out again, until a is performed again.

The subsumption relation is transitive by definition.

Therefore, AlternatePrecedence(a, b) is also subsumed

by RespondedExistence(b, a).

Finally, ChainPrecedence(a, b) is the last rule along

the “Precedence” subsumption hierarchy as it is even

more restrictive than AlternatePrecedence(a, b): a must

be executed before b and no other task can be car-

ried out between a’s and b’s. Succession(a, b) imposes

that a must precede b, just as Precedence(a, b) does,

but also the other way round: after a, b must be
carried out. AlternateSuccession(a, b) is subsumed by

Succession(a, b). It restricts the condition exerted by

the subsuming rule by stating that a and b must al-

ternate to each other. In turn, ChainSuccession(a, b) is

subsumed by AlternateSuccession(a, b) because it addi-

tionally imposes that no other task can be performed

in-between. NotSuccession(a, b) specifies that once a

is carried out, then no b can be performed after, and

that a cannot precede b. NotCoExistence(a, b) is even

stricter (and as such subsumed), because it imposes that

a and b cannot both be performed in the context of the

same process instance.

The concept of subsumption also applies to the exis-

tence rules. For instance, both Init(a) and End(a) are

existence rules subsumed by Participation(a), because

(i) they both impose that a must be carried out in every

process instance, as per Participation(a), and (ii) they

respectively establish that a must be the first (Init) or

the last (End) activity performed [18].

We remark here that Declare rule templates are

not independent of one another. Indeed, subsumed con-

straints always entail the subsuming ones, as e.g. in the

aforementioned cases of Init(a) and Participation(a)

or ChainSuccession(a, b) and AlternateSuccession(a, b).

Furthermore, constraints such as Succession(a, b) entail

by definition Precedence(a, b). Without loss of gener-

ality, we will thus consider in the following explana-

tory examples the strictest constraints. A subset of the

subsumed and entailed constraints will be optionally

mentioned for the sake of clarity.
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Taking inspiration from the tabular representa-

tion of behavioral relations in [49,50], we formally

define a Declare model MD as a tuple MD =

〈A, CE , CR, εE , εR,B〉, where: A is the set of activities;

CE is the repertoire of existence rule templates; CR is

the repertoire of relation rule templates (we recall here

that ordering relation rule templates constitute a strict

subset of it, C→R ⊂ CR); B is the set of boolean val-

ues true and false; εE : CE × A → B is the evaluation

function over existence rules, specifying whether an ex-

istence rule template holds true, applied to an activity;
εR : CR × A × A → B is the evaluation function over

relation rules specifying whether a relation rule template

holds true applied to a pair of activities.

As said, events are meant to be recordings of the ac-
tivities carried out during the process enactment. There-

fore, we will interchangeably interpret Declare rules

as (i) behavioral relations between activities in a process

model or (ii) conditions exerted on the occurrence of

events in traces. The latter is typical in the context of

Declare mining [42,23]. Notice that it is a different

approach than the former, typically used for Declare

modelling as originally conceived by the seminal work

of Pesic [47]. With a slight abuse of notation, we will

henceforth also consider, e.g., NotCoExistence(o, p) with

o, p ∈ E to specify that events o and p cannot occur in

the same trace.

Table 3 lists the set of Declare rules that form

the base of the behavioral matching presented in the

remainder of the paper. Each Declare rule is assigned

to one of the previously defined categories (i.e., either CE ,

CR or C→R ). For every rule, two examples of complying

traces and two examples of violating traces are provided.
The complete list of Declare rule templates can be

found in [2,23].

In the light of the above, we can analyse some

constraints that are satisfied in the log of Figure 1.

The existence constraints Participation(Person),

Participation(Details), and Participation(Status)

are satisfied, because such events occur in every

trace. End(Status) is satisfied too, because every

trace not only contains a Status event, but also

terminates with that event. Considering the relation

rules, e.g., RespondedExistence(Protocol ,CI ) is satis-

fied. Please notice that this does not hold true for

RespondedExistence(CI ,Protocol), because CI occurs

in the traces of Case 2 and Case 5, whereas no Protocol

is in them. However, a stricter constraint can be

indicated as valid, namely Precedence(CI ,Protocol),

because all Protocol events are preceded by CI –

in the traces where they occur. We can proceed

deeper in the subsumption hierarchy and state that

AlternatePrecedence(CI ,Protocol) is satisfied, because

no other Protocol event occurs in-between. In con-

trast, although Precedence(Details,CI ) is satisfied,

AlternatePrecedence(Details,CI ) is violated in traces

3 and 5. ChainPrecedence(CI ,Group) is also valid in

the log, as well as ChainPrecedence(Group,Comment).

Moreover, ChainSuccession(Comment ,Protocol) is

verified, because the two events always occur in

the same order and one after the other. On the

contrary, ChainSuccession(CI ,Group) is not verified,

because in traces 2 and 5 there is no Group right

after CI , and in trace 3 Group is repeated before
Group. AlternateSuccession(Person,Classification)

is valid in the log, because the latter event always

occurs after the former, without any recurrence

of Person or Classification in-between. This is not

true for Details and Classification, because Details

recurs in-between in traces 1 and 3 – as a conse-

quence, AlternateSuccession(Details,Classification)

cannot be indicated as valid in the log.

AlternateSuccession(Person,Classification) and

AlternateSuccession(Person,Status) are valid instead.

Declare rules that are discovered from event logs

are usually associated to a reliability metric, namely sup-

port [42,23]. Support is a normalized value ranging from

0 to 1 that measures to what extent traces are compliant

with a rule. A support of 0 stands for a rule which is al-

ways violated. Conversely, a value of 1 is assigned to the

support of rules which always hold true. According to the

measurement introduced by the work of [23], the analysis

of a trace t1 = [b, a, c, b, a, b, b, c] would lead to a sup-

port of 1 to Participation(a), 0 to NotCoExistence(a, b),

and 0.75 to Precedence(a, b), as 3 b’s out of 4 are pre-

ceded by an occurrence of a. Considering an event log,

which consists of t1 and t2 = [c, c, a, c, b], the support

of Participation(a) and NotCoExistence(a, b) would re-
main equal to 1 and 0, respectively, whereas the support

of Precedence(a, b) would be 0.8 (4 b’s out of 5 are

preceded by an occurrence of a). [23] provides further

details on the computation of support values for each

rule. Some rules that are not fully supported in the log

of Fig. 1, e.g., are: (i) Init(Person), having a support of

0.83̄, because only 5 traces out of 6 start with that event;

(ii) ChainPrecedence(Details,Classification), having a

support of 0.83̄ too, because only 5 Classification

events out of 6 are directly preceded by Details;

(iii) AlternatePrecedence(Classification,CI ), having a

support of 0.5, because only 3 CI events out of 6 are pre-

ceded by Classification without other CI ’s in-between;

(iv) Precedence(Protocol ,Status), having a support of

0.3̄, because only 2 Status events out of 6 are preceded

by Protocol .

Such a metric is usually utilized to prune out those

rules that are associated to a value below a user-defined
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s1 s3

s2

s4
Start

Skip

Complete

Suspend

Resume
Complete

(a) Model comprising either a skipping of the activity, or
start and completion, with optional intermediate alterna-
tions of suspensions and resumptions

s1 s2
Exec Update

(b) Model depicting the activity execution with further
repeatable refinements

s1 s2 s3
Begin End

(c) Model with beginning and concluding transitions in
sequence

Fig. 2: Examples of activity life-cycle models, depicted

as finite state automata

threshold. The rationale behind the choice of the sup-

port is the balance between (i) the non-frequent be-

haviour that the user does not want included in the

discovered model, and (ii) the amount of noise that

is supposed to affect the log. Indeed, higher thresh-

olds cause the discovered model to retain only those

rules that define the most frequent behaviour. There-

fore, less violations to the rules are permitted in the log.

Such violations could be due to noise in the log though,

in terms of incorrectly recorded events. Referring to

the example of Figure 1, it could be that an incor-

rect registration of “Person added” and “Details logged”

events caused the inverse order of trace 6. However,

such a recording error would make the Init(Person)

and ChainPrecedence(Details,Classification) rules be

discarded anyway with a threshold of 85%.

2.4 Modeling of activity life-cycles

When a process is executed, the activities of the

corresponding process model are instantiated. In this

paper, we consider that activities are not atomic: during

the life-time of an activity instance, the activity instance

traverses different states. There are different life-cycle

models proposed in literature (e.g. [1, p. 101], [58, p.

83ff.]). In this paper, we adopt a simplified version of the

life-cycle model proposed by van der Aalst in [1, p. 101].

There, the activity life-cycle is modeled as a stateful

artifact, evolving from an initial state to a final state by

means of so-called life-cycle transitions. To this extent,

the finite state automaton is the proposed formal

model. Let LCS be a set of states and LT be the set of

activity life-cycle transition labels. An activity life-cycle

model ALM = 〈LCS, lcsI , LCSF , LT, θ〉 is a finite

state automaton that defines the allowed sequences

of life-cycle transitions. θ ⊆ LCS × LT × LCS is the

(labeled) transition relation modeling the allowed life-

cycle transitions in a given state. An activity life-cycle

model has an initial state lcsI ∈ LCS and final states

LCSF ⊆ LCS. Different activities in the process can be

associated to different life-cycle models. Figure 2 shows
three examples of activity life-cycle models. The model

of Fig. 2(a), ALM2(a), has {s1, . . . , s4} as the states

set, s1 as the initial state, singleton {s2} as the final

states set, {Start,Skip,Suspend,Resume,Complete} as

the activity life-cycle transitions, and the following

transition relation: {〈s1,Start, s3〉 , 〈s1,Complete, s2〉 ,
〈s1,Skip, s2〉 , 〈s3,Suspend, s4〉 , 〈s4,Resume, s3〉 ,
〈s3,Complete, s2〉}. Likewise, in Fig. 2(b) the de-

picted model corresponds to automaton ALM2(b)=

〈{s1, s2}, s1, {s2}, {Exec,Update}, {〈s1,Exec, s2〉 ,
〈s2,Update, s2〉}〉. The automaton il-

lustrated in Fig. 2(c) is ALM2(c)=

〈{s1, s2, s3}, s1, {s3}, {Begin,End}, {〈s1,Begin, s2〉 ,
〈s2,End, s3〉}〉.

In the following, we assume that event classes in the

event log reflect the enacted transition in the activity

life-cycle model, i.e., an occurring event corresponds to a

move in the activity life-cycle model dictated by its class.

Considering, e.g., the example of Fig. 1 and assigning

ALM2(c) as the life-cycle model of activity “Functional

escalation”, then event “Group” can represent transition

〈s1,Begin, s2〉, and event “Comment” can correspond

to transition 〈s2,End, s3〉.

3 Integrated matching approach

This section introduces our approach for the mapping of

events to predefined activities of a process model. Fig-

ure 3 shows an overview of the workflow of the proposed

solution with a BPMN-like notation. The three main

steps of the approach are emphasized by bold boxes.

First, a mapping on type level is established between

events and activities. Second, the type-level mapping

is used to transform the event log in such a way that

each event instance is related to its corresponding activ-

ity life-cycle transition. Finally, the event instances are

clustered into activity instances.

During the first step (the matching on the type level)

two different perspectives are taken into account in or-

der to find correspondences between event classes and

model activities: The behavioral and the label perspec-

tives. The adopted techniques are respectively detailed
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Reduce potential
mappings
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process model
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Match activities
and events

on type level
based on
common
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Select
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Assign life-cycle
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Transform
event log
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event instances

to
activity instances
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Sec. 3.2

Match activity life-cycle transitions and events on type level

L P desc(P)

APBO

AEAE'

AE"

LTEM LTEM*

Ł L*

Fig. 3: Overview of the matching approach

in Sections 3.1 and 3.2. They are executed in parallel,

as represented by the AND gateways at the sides. Here,

we reuse and extend previous work from [6,7]. For each

perspective a set of potential event-activity relations is

derived (AE′, AE′′ ⊆ A×E). Both relations are used in

a subsequent filtering step to achieve the correct map-

ping using a questionnaire-driven user interaction. The
outcome (AE ⊆ A×E) associates every event class to

an activity. With such a mapping, the help of the ana-
lyst is requested to annotate to which event classes the

life-cycle transitions can be assigned with respect to the

related activity. Only life-cycle transitions other than

“Start” and “Complete” need to be linked. “Start” and

“Complete” transitions will be discovered automatically

in the last step. The annotation of life-cycle transitions

leads to the mapping relation LTEM ⊆ LT × A × E,

which is then used for the first transformation of the

event log. During the transformation, each event in-

stance is relabeled according to the mapping provided

in LTEM . As we do not require a complete mapping of
event classes to life-cycle transitions, the preprocessed

event log is not yet aware of activity instances. That

is, it is not clear when a new activity instance actually

starts and ends. Therefore, the last step employs a clus-

tering technique that takes so-called activity instance

border definitions as an input from the user (LTEM∗).

These activity instance borders define how to identify

the existence of multiple activity instances. After the

clustering, the final mapped event log L∗ is returned

and can be used with any of the available process mining

techniques. The following sections provide the details

for each of the steps.

3.1 Type-level matching using Declare rules

This section describes how the automated step “Reduce

potential mappings” from Fig. 3 is implemented in or-

der to derive the first set of potential activity event

class relations (AE′). To this end, a constraint satis-

faction problem (CSP) is defined to restrict the pos-

sible mappings of events and activities. A CSP is a

triple CSP = 〈X , D,C〉 where X = 〈x1, x2, . . . , xv〉
is a v-tuple of variables with the corresponding do-

mains specified in the v-tuple D = 〈D1, D2, . . . , Dv〉
such that xi ∈ Di [30]. C = 〈c1, c2, . . . , ct〉 is a t-tuple

of constraints. We use predicate logic to express the

constraints used in this paper. The set of solutions to

a CSP is denoted as S = {S1,S2, . . . ,Sr} where each

solution Sk = 〈s1, s2, . . . , sv〉 is a v-tuple with k ∈ 1..r,

si ∈ Di and such that every constraint in C is satisfied.

To build the CSP, the activities and event labels

need to be mapped to the set of variables and their
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Table 4: Mapping of activities and event labels

domains. Therefore, a bijective function var : E → X is

defined that assigns each event label to a variable with

the natural numbers 1..|A| as domain. Furthermore, a

bijective function val : A→ 1..|A| is defined that assigns

each activity a natural number in the range from 1 to
the number of activities. Table 4(a) and Table 4(b) show

the mapping var and the mapping val for our example.

With the variables and domains defined, the solu-

tions to the CSP reflect all possible mappings between

events and activities. For n activities and m events there

are potentially nm solutions. For the example these are

710 = 282, 475, 249 possible mappings. Yet, this also

includes solutions where not all activities are assigned

to an event or solutions where all events are mapped to

one single activity. As these solutions are not desired, we

first restrict the set of solutions to those that assign each

activity to at least one event. Note that we assume that

the execution of each activity in the process model is

being logged by the supporting IT system. Thus, those

activities that are not recorded are not considered in

the processing. We assume that each event in the given

log relates to exactly one activity in the process model,

whereas one activity can relate to multiple events. Thus,

we are using the NVALUE constraint available in many

constraint problem solvers [30]. This constraint ensures

that each value in the domain of the variables is assigned

at least once. Still, the complexity of the matching prob-

lem remains very high. In the following, we present an

approach to tackle this complexity issue by combining

the information available in the log with knowledge on

the process model structure.

3.1.1 Discovery of Declare rules

In order to reduce the number of possible mappings

between activities and events on type level, we look at

Declare rules describing the behavior of event logs

and process models.

To derive such rules from the event logs, we utilise

the techniques explained in [23]. The approach of [23],

named MINERful, is among the fastest automated dis-

covery algorithms for declarative processes, and is based

upon a two-phase computation. The first one creates

a so-called “knowledge base”. It contains the statis-

tics about the occurrences and positions of events. For

our examples, we again use a log consisting of traces

t1 = [b, a, c, b, a, b, b, c] and t2 = [c, c, a, c, b]. For each

event class, e.g., a and b, the registered information per-

tains the occurrences and positions of the related events.

This information relates to: (i) Events taken singularly

– e.g., the number of traces in which a occurred at least

once in the log (2 in the example), or the number of

times in which b occurred as the first event in the trace

(1 in the example), and (ii) Event pairs in relation to

one another – e.g., the number of b events that occurred

without being preceded by an event of class a in the

same trace (1 in the example).

The second phase is dedicated to the computing of

the rules’ support by querying the knowledge base. In

particular, arithmetical operations on gathered infor-

mation are performed to obtain a value ranging from

0.0 to 1.0 that represents the frequency with which

rules are satisfied in the log. For example, the support

of Participation(a) amounts to the number of traces

where a occurs, divided by the number of traces in the

log (hence, 2/2 in the example, namely 1.0). The support

of Init(b) corresponds to the number of times in which

b occurs as the first event of the traces, again scaled

by the number of traces in the log (1/2 in the example,

hence 0.5). The support of a relation constraint such as

Precedence(a, b) proceeds as follows: First, the number

of b events occurring without a preceding a is scaled by

the number of b’s occurring in the log (1/5, hence 0.2

in the example); thereafter, such quantity is subtracted

to 1.0 (the support of Precedence(a, b) is thus equal to

0.8). The complete explanation of how MINERful works

and the description of the theory behind it can be found

in [23].

We refer to a simulation log as a generated synthetic

event log such that at least one trace is recorded for

each legal path in the process model. In order to infer
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Declare rules from process models, we build upon

the following assumption: The Declare rules that are

satisfied with a support of 100% in the simulation log

reflect the behavior of the original process model [24,

15]. Therefore, we derive the corresponding Declare

constraints as follows. We generate a synthetic event

log using the simulation technique described in [51]. As

said, the simulation log is built so as to contain every

execution path represented as a trace.3 Thereafter we

apply the discovery algorithm of [23] on it to derive

the Declare rules that have a support of 100%.
Because all traces of the simulation log comply with

such rules, and those traces represent all the possible

executions of the model by construction, the rules

inferred from the simulation log are those ones that

hold true in the model. Rules that are not compliant

with the model would not have a support of 100%

because there would be at least a trace in which they

do not hold true. From the process model of the exam-

ple depicted in Figure 1, Init(Incident logging)

is inferred, as well as End(Incident closure).

AlternateSuccession(Incident logging , Incident closure)

is also part of the declarative rules that derive from the

model, because “Incident logging” and “Incident closure”

are respectively the first and the last activity to be

performed, they are not involved in any loops, and other

tasks need to be carried out in-between. Furthermore,

the Participation rule holds true for all activities

but “Functional escalation” and “Investigation and

diagnosis”, which in fact lie on an alternative branch

following an XOR gateway and are thus optional.

We denote the set of Declare rules inferred from

the process model and its simulation log as BM , to distin-

guish them from the set of all Declare rules discovered
from the original event log, namely BL. We classified the

introduced Declare rules into three different categories,

namely existence rules CE , relation rules CR and ordering

rules C→R . We make use of this categorization by handling

all rules that are classified as ordering rules (C→R ) as a

single rule, giving an ordering between between elements

(i.e. either between activities or between events). There-

fore, only the ordering rule with the highest support

is kept for each pair of elements. In the example event

log of Figure 1, e.g., AlternatePrecedence(Person,CI )

and Precedence(Person,CI ) have a support of

66.6̄% and 100.0%, respectively. Therefore, only

Precedence(Person,CI ) is retained. As an ordering rule

may entail other ordering rules, there may be multiple

ordering rules for a pair of elements, of which all rules

obtain the highest support. In such a case, we retain

among those the ones which are not entailed by the

3 Without loss of generality, loops can be unraveled and
treated as an optional path that is traversable multiple times.

other rules, following the approach of [19,41]. In the

following, we use C→R (e1, e2) to refer to the chosen order-

ing relation for a pair of event classes (e1, e2) with the

highest support. Similarly, C→R (a1, a2) is used to denote

a rule on a pair of activities.

Beyond the defined Declare rules, a set of inter-

leaving elements I ⊆ (A×A) ∪ (E × E) is introduced.

In case there is no ordering rule with a support above

β for a given pair of elements, we add the pair to the

set of interleaving elements.

3.1.2 Building of the constraint satisfaction problem

Having the Declare rules from both the model and

the event log as well as the set of interleaving pairs of

events / activities, we can define constraints to reduce
the number of possible mappings between event classes

and activities. To define the constraints described here,

we also took inspiration from a previous study in the
literature by Leopold et al. [39], who devised a collection

of behavioral relations for the semantic matching of

process models.

Starting with the ordering rules, formula (1) provides

the corresponding constraint for rules in C→R . If two event

classes are in an ordering relation and mapped to two

different activities, these activities also have to be in an

ordering relation enforcing the same order direction.

Note that in formula (1) as well as in all upcoming

formulas e1, e2 ∈ E denote two different event classes,

i.e., e1 6= e2. In the same manner, a1, a2 ∈ A denote

two different activities, i.e., a1 6= a2.

C→R (e1, e2) ∧Map (e1) = a1 ∧Map (e2) = a2

=⇒ C→R (a1, a2)
(1)

In the example of Figure 1, e.g., an ordering relation

holds between Person events and the following Status

ones (cf. AlternateSuccession(Person,Status), as seen

in Section 2.3). A mapping that associates Person

to “Incident logging” and Status to “Incident clo-

sure” satisfies the related constraint 1, because it

is also true that an ordering relation rule holds

between “Incident logging” and “Incident closure” (cf.

AlternateSuccession(Incident logging , Incident closure),

as seen in Section 3.1.1). By the same line of reasoning,

also a mapping that associates Person and Status to

“Incident logging” and “Incident classification” would be

correct, considering this constraint alone. The mapping

of Person to “Initial diagnosis” and of Status to

“Incident logging” has to be excluded instead because

it would violate the constraint: It is indeed false that

“Initial diagnosis” has to be executed before “Incident

logging” in the process model.
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Formula (2) adds the constraint for pairs of event

classes that are exclusive to each other and thus, result

in a rule of the type NotCoExistence. Again, such a

pair of event classes can only be mapped to a pair of

exclusive activities or to the same activity.

NotCoExistence(e1, e2) ∧Map (e1) = a1

∧Map (e2) = a2 =⇒ NotCoExistence(a1, a2)
(2)

Regarding the pairs of events that are not exclusive

and for which no ordering rule exceeds the minimum

support β, formula (3) ensures that if a pair of inter-

leaving events is mapped to a pair of activities, these

activities are also in interleaving order.

(e1, e2) ∈ I ∧Map (e1) = a1 ∧Map (e2) = a2

=⇒ (a1, a2) ∈ I
(3)

The category of relation rules (CR) furthermore in-

cludes the CoExistence rule. If two event classes that

are co-existing are matched to two different activities,

these activities should also be co-existing, as defined in

formula (4).

CoExistence(e1, e2) ∧Map (e1) = a1

∧Map (e2) = a2

=⇒ CoExistence(a1, a2)

(4)

Besides the already used Declare rules, there are
further Declare rules that can be leveraged to build

constraints reducing the number of possible solutions.

That is, the Declare approach also makes use of the

rules classified as existence rules (CE). The constraint

introduced in formula (5) ensures that events for which

an Init rule exists, are only mapped to activities for

which an Init rule exists. Formula (6) and (7) work in

the same manner for End and Participation rules.

Init(e1) ∧ Map (e1) = a1 =⇒ Init(a1) (5)

End(e1) ∧ Map (e1) = a1 =⇒ End(a1) (6)

Participation(e1) ∧ Map (e1) = a1

=⇒ Participation(a1) (7)

Considering the example of Figure 1, constraint 6 guar-

antees that “Status changed” can be only mapped to “In-

cident closure”, because they are the only event class and

activity for which End hold true (see Sections 2.3 and

3.1.1). Because “Person added”, “Details logged”, and

“Status changed” are all subject to the Participation

rule in the log, then constraint 7 avoids that they are

mapped to “Functional escalation” or “Investigation

and diagnosis”.

Having the constraint definitions in the propositional

formulas 1-7, a constraint ci, i ∈ 1..|BL| is added to the

CSP for each Declare rule derived from the event log

as per Section 3.1.1. Note that a certain degree of noise

is handled already by accepting behavioral relations and

declarative rules with a support less than 1.0.

3.1.3 Constraints for special cases

In the course of our preliminary experiments with syn-

thetic and real-life event logs, bringing about the studies

reported in this paper, we have noticed that the con-

straints defined in the previous section may be too strict

in some cases due to the fact that not all behavior of a

process is observed equally often. To this end, manda-

tory events as well as interleaving and co-occurrence

relations can play a special role.

First of all, mandatory events may under certain cir-

cumstances also belong to optional activities. Consider

the case where the event “New protocol created”, which

belongs to the optional activity “Investigation and di-
agnosis”, is seen in more than 90% of the traces of the

event log. If the minimum threshold β set is lower than

or equal to the relative observations of “New protocol

created” events, a Participation rule is discovered for

“New protocol created” and formula (7) leads to the ex-

clusion of the correct mapping. We recall here that the
choice of β below 1.0 determines the balance between

the amount of non-frequent behaviour to include in the

whole analysis and the amount of noise to exclude from

it. Therefore, in order to avoid that lower values for the

threshold lead to incorrect mappings in such cases, we

define formula (7) as an optional constraint that can be

omitted.

The same phenomenon also influences constraints

stemming from co-occurrence relations that suffer from

the fact that some behavior is seen more often than

other. If an event stemming from an optional activity

generates a Participation rule, this also leads to the

derivation of co-occurrence relations with all events that

also occur more often than the defined threshold. That

is, there is for example a co-occurrence relation for “New

protocol created” and “Details given”, which belongs to

the mandatory activity “Incident logging”. Yet, in the

model the two activities “Incident logging” and “Investi-

gation and diagnosis” are not in a co-occurrence relation

since the latter activity is optional. Hence, cases where

optional activities are executed almost always lead to

problems with co-occurrence constraints as they disallow

the correct mapping. In order to tackle this problem,

a relaxed constraint definition for co-occurrence con-

straints is introduced in formula (8).
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CoExistence(e1, e2) ∧Map (e1) = a1 ∧Map (e2) = a2

=⇒ ¬NotCoExistence(a1, a2)

(8)

The relaxed co-occurrence constraints defined in

formula (8) forbid two events that are found to be

in a co-occurrence relation to be mapped to two

activities that are exclusive to each other. Thereby,

the basic co-occurrence constraint is relaxed as we

do not require the two matching activities to be in a

co-occurrence relation. This allows us to handle cases

where optional activities are executed very frequently,

while still making use of the co-occurrence relations for

the pruning of unwanted mappings.

Additionally, interleaving relations might not always

be reflected in the execution. To give an example, con-

sider a small change in the incident process example

that makes the activities “Incident classification” and

“Initial diagnosis” concurrent. Yet, the corresponding

event classes “Classification specified” and “CI selected”

are in an ordering relation, because “Classification spec-

ified” always occurs directly before “CI selected”. Such

a situation is still coherent with respect to the model.

Therefore, formula (9) introduces a different handling

of event classes that are in an ordering relation.

C→R (e1, e2) ∧Map (e1) = a1 ∧Map (e2) = a2

=⇒ C→R (a1, a2) ∨ (a1, a2) ∈ I
(9)

If two event classes in an order relation are mapped

to two different activities, these activities have to be

either also in an ordering relation or in interleaving

order. As the newly introduced constraint allows for

more matchings with respect to the ordering relations in

the process model than its base counterpart formula (1),

it is called relaxed ordering constraint. We specifically

introduce this as a different notion to give the analyst

the choice to use the relaxed ordering constraint or the

(basic) ordering constraint. The reason for this choice

is that the relaxed ordering constraint may introduce

quite a number of potential matches that are not wanted,

because every pair of ordered event classes that actually

maps to a pair of activities in ordering relation can now

also map to all pairs of interleaving activities. If it is

known that events belonging to interleaving activities

are also seen in all possible orderings equally often,

one should not use the relaxed ordering constraint, but

rather the constraint defined in formula (1).

Finally, we observed in our validation and evalua-

tion with synthetic and real-life event logs, that the

interleaving constraints are especially sensitive towards

noise. The noise-sensitivity of interleaving constraints

is due to the fact that each ordering relation turns into

an interleaving relation when it is violated too often

to be seen as an ordering relation. Therefore, we make

the interleaving constraints optional and let the analyst

decide whether to use them or not. The interleaving con-

straints should only be left out if a log is known to be

noisy, as the exclusion of constraints typically increases

the number of potential solutions.

3.2 Type-level matching using label analysis

Coming from the behavioral analysis for matching activ-

ities and events on type level, we now turn to a different

perspective: the activity and event labels. In order to
utilize the labels of events and activities, we employ the

label analysis technique introduced in [7]. The technique

is composed of two steps. First, the model activities are

annotated with textual descriptions. These annotations
serve the purpose of enriching the coarse-granular ac-

tivities of the process model with detailed information

that helps to link to events. In modern business process

modeling tools, activities can be connected with more

detailed textual descriptions, such that the annotation

of the activities is readily available. Often, instructions

can also be found in tabular form consisting of columns

for the activity name and the detailed description, as in

our incident process example in Table 1. In the following,

we assume that such a description is available or can be

directly linked to an activity.

In order to effectively use the activity descriptions

for the matching of event classes and activity types, we

have to pre-process the descriptions. As events often

represent some kind of change to an object, we are

especially interested in the objects contained in the

activity descriptions. Therefore, the Stanford Part-of-

Speech (POS) tagger [35,53] is used to filter out these

objects. The POS tagger parses natural text and assigns

each word to its part of speech, e.g., verb, noun, article,

adjective, etc. From these categories we only take into

account words that are nouns or words for which no

real category can be found by the POS tagger. The

latter are most often abbreviations, such as “CI” or

foreign words. Furthermore, all numbers are filtered

out. The goal is to extract potential business objects.

The set of all potential business objects is denoted as

PBO. PBOa ⊂ PBO is the set of potential business

objects pboi ∈ PBOa that unites all potential business

objects for an activity a ∈ A. These objects are extracted

from all activity description ad ∈ desc(a), where desc

is a function mapping an activity to a set of textual

descriptions, as seen in Table 1. Additionally, the labels

of the activities are processed in the same way to extract
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Initial diagnosis 
(INC.3) 

Incident closure 
(INC.6) 

Incident logging 
(INC.1) 

… 

… 

Model 
reference 

Task Description 

INC.1.1 Determine 
affected person 

… log the details of the 
incident and assign the 
affected person … 

… … … 

7.  

INC.3.1 

Select 
configuration 
item 

… has to detect the 
configuration item (CI) 
that needs fixing … 

… … … 

12. 

INC.6.3 

Assess and 
improve 
documentation 

… the solution needs to 
be entered into the 
knowledge base (KB)… 

Case Event Time 

INC12345  Person added  … 

INC12345  …  ... 

INC12345  CI selected  ... 

INC12345  …  … 

INC12345  KB update performed  ... 

INC12345  …  ... 

Fig. 4: Connection of events to activities based on the description and the work instructions

further potential business objects. The activities are

annotated with the derived objects for further processing

in the next phase of the approach. The result of this

phase is an activity annotation relation APBO ⊆ A×
PBO.

This relation is a many-to-many relations since one

activity can be linked to multiple potential business

objects and one potential business object can be asso-

ciated with multiple different activities. Note that the

annotation is not mandatory for each activity. Yet, it

presumably improves the automated matching result

because the textual descriptions are likely to be closer to

the abstraction level of the event log than the activities

in the process model as shown in [7].

Having annotated the activities with their potential

business objects, the next step deals with the derivation

of the activity to event classes relation AE. To this end,

we inspect each combination of event class and activity

name as well as each combination of event class and

activity description for potential correspondences.

In order to check for potential correspondences, we

also derive the objects from the event classes in the same

manner, yielding the relation EPBO ⊆ E×PBO. Each

tuple in APBO is compared to each tuple in EPBO by

comparing the business objects.

As we aim for a high recall, we do not only make

simple string comparisons in order to check the related-

ness of two business objects. Rather, we employ natural

language processing techniques as we explain in the

following. Since we evaluate our approach with process

models and logs written in German, we present exam-

ples that refer to this language and stem from our direct

experience. Nevertheless, the basic techniques are also

available for many other languages, including English.

In particular, we face two potential challenges: word

form variance and compound words. German is a mor-

phological complex language having a high variance in

word forms expressed by many cases and inflections (cf.

[36]). Looking at nouns, for example the word “Buch”

(book) transforms to “Bücher” in the plural form or

to “des Buches” for the genitive case. Regarding com-

pound words, in German these are single words cre-

ated by concatenating several words to a new word,

e.g., “Fach|gruppe” (professional group).

In order to address these two challenges, two tech-

niques from the natural language processing (NLP) area

have been proven beneficial: stemming and word de-

composition [10]. Stemming refers to the reduction of

derived word forms to a common stem, e.g., “Grupp”

for “Gruppe” and “Gruppen”. In the implementation

of our approach we use the stemming functionality of

the Apache Lucene project4. For the decomposition

of compound words, we use a language independent,
lexicon-based approach developed by Abels and Hahn

[3]. It generates possible splittings of words and checks

whether the generated parts are covered in a lexicon.

In our approach we use JWordSplitter, an open source

implementation of this approach with an integrated

German lexicon5.

The actual matching consists of two steps. First, we

conduct a simple string match and second, we decom-

pose the business objects into their smallest semantic

components and compare these with one another. The

comparison of decomposed word parts is done by com-

paring the word stems. In this way we are able to relate

words such as “Fachgruppe” (professional group) and

“Skillgruppen” (skill groups). The result of the described

steps is an automatically provided list of potential ac-

tivity to event class relations on type level (AE′′). An

example of how our technique applies to the example of

Figure 1 is depicted in Figure 4. The linguistic connec-

tions bridging the activity names with the descriptions

and then connecting business objects with events are put

4 See http://lucene.apache.org.
5 See http://www.danielnaber.de/jwordsplitter/.

http://lucene.apache.org
http://www.danielnaber.de/jwordsplitter/
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in evidence by connecting dashed lines. The analyzed

terms are highlighted. From the figure, it can be seen

that the description of “Incident logging” mentions the

need to: “assign the affected person” and person is the

object of the event “Person added”. The same holds for

the object “CI” in “Initial diagnosis” and “CI selected”,

and for “KB” in “Incident closure” and “KB update

performed”.

3.3 Selection of the correct mapping

The integrated approach aims at combining different

approaches for the matching of events and activities

on type level. Therefore, we concurrently generate two

sets of potential activity-to-event-class relations, namely
AE′ and AE′′. The generation of two sets originates

from the insight that different approaches for the type-

level matching vary in terms of coverage with respect

to a final mapping. That is, for some approaches the set
of potential activity-to-event-class relations may not in-

clude all relations required for the final mapping. Look-

ing at the previously introduced type-level matching

approaches that are based on Declare rules, it can

be seen that these are designed to always include the

complete final relations of activities and event classes in

their potential activity-to-event-class relation [5]. This

is due the fact that the approach based on behavior

starts from all possible relations and prunes these re-

lations by eliminating impossible combinations. If the

assumptions made by this approach are fulfilled, the

correct relation is always included in the set of potential

relations. For the label analysis approach this cannot

be taken for granted. The label analysis approach starts

with an empty set and adds those relations that can be

found over the matching of extracted business objects.

It may happen that not all relations of event classes and

activities can be found.

As depicted in Fig. 3, both potential activity-to-

event-class relations serve as an input for the selection

of the correct mapping. The previous section introduced

the approach for the automatic matching of event labels

and activities. While it is rather obvious that the label

analysis may lead to multiple mappings for one event

class, we first discuss why there are often multiple solu-

tions to the defined constraint satisfaction problem that

is built based on Declare rules. From this background

we introduce means to guide the user through the set

of potential mappings returned by the CSP solver and

integrate the results from the label analysis into this

approach.

Consider the trace t1 = [k, l,m, n] and the simple

sequence of activities a and b shown in Fig. 5(a), as-

suming that the log is not noisy. When matching t1

a b

(a) Sequence

a

b

(b) Concurrency

a

b

(c) Choice

Fig. 5: Process model fragments leading to multiple

solutions of the Declare-based matching

and the sequence model, the corresponding CSP returns

three solutions. In all three solutions k is matched to a

and n is matched to b. For l and m it cannot be said

whether they belong to a or b without further knowl-

edge. It may be that both belong to a, or both belong

to b, or l belongs to a and m belongs to b. The only

mapping that can be excluded is that l belongs to b

and m belongs to a at the same time. This is because

from the event log consisting of only t1, the follow-

ing rules are discovered among the others: (i) Init(k);

(ii) End(n); (iii) ChainSuccession(l ,m). The follow-

ing rules are among the ones inferred from the model:

(i) Init(a); (ii) End(b); (iii) ChainSuccession(a, b). Due

to constraints 5 and 6, an acceptable solution is such

that Map (k) = a and Map (n) = b. Because the map-

ping is 1:N for activities and events, it links one activity

to one or more events, but not the other way around.

Therefore, the acceptability of such solutions exclude

that a and b are mapped to any other event. Events

l and m cannot be mapped to b and a, respectively.

Indeed, we have that ChainSuccession(l ,m) holds true

in the event log. If Map (l) = b and Map (m) = a, then

the premise of formula 9 is verified. However, a and

b are not interleaving, because ChainSuccession(a, b)

holds true. On the contrary, ChainSuccession(b, a) does

not. Therefore, the consequent of formula 9 evaluates

to false, whereas its antecedent is true. In turn, this

means that constraint 9 (and, a fortiori, constraint 1) is

violated, hence no solution can map l to b, respectively.

By the same line of reasoning, m cannot be mapped to

b.
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For Fig. 5(b), we consider a log consisting of t1 =

[k, l,m, n] and t2 = [n,m, l, k]. If we want to match

that log to the model shown in Fig. 5(b), actually ev-

ery combination of mappings is possible, except those

where all events are mapped to only one of the ac-

tivities. Indeed, the only rules from the list of Ta-

ble 3 that hold true in the log are Participation for

every event (e.g., Participation(k)), and CoExistence be-

tween each event and any other (e.g., CoExistence(k , l),

CoExistence(k ,m), CoExistence(k ,n), . . . ). The same

holds for activities a and b. As a consequence, only
constraints like 7 and 4 are in the resulting CSP.

For the matching with the process model depicted

in Figure 5(c), we add a trace to the aforementioned

example log, henceforth consisting of t1 = [k, l,m, n],

t2 = [n,m, l, k] and t3 = [p, q, r, s]. In this case the

CSP returns two solutions: Either every event in the set

{k, l,m, n} belongs to activity a and every event in the

set {p, q, r, s} to b, or the other way around. This is due

to the fact that the NotCoExistence rules between every

element of the first set and any element of the second

one hold true in the log (e.g., NotCoExistence(k , p),

NotCoExistence(k , r), NotCoExistence(q , p), . . . ). The

rule NotCoExistence(a, b) is inferred from the model.

Therefore if, e.g., k and l were mapped to a and b

respectively, this would contradict constraint 8 (and, a

fortiori, 4).

Such ambiguous mappings, i.e., cases in which the

CSP has multiple solutions, cannot be automatically re-

solved and require a domain expert to elect the mapping

for the concerned events and activities. Nonetheless, this

decision can be supported by the mapping approach. To

aid the analyst with the disambiguation of multiple po-

tential mappings, we introduce a questioning approach,

which is inspired by the work of La Rosa et al. [52]: The

user is guided through the configuration of a process

model using a questionnaire procedure. The analyst is

presented one event label at a time along with the pos-

sible activities to which this event label can be mapped.

Once the analyst decides which of the candidate activi-

ties belongs to the event label, this mapping is converted

into a new constraint that is added to the CSP. Consec-

utively, the CSP is solved again. In case there are still

multiple solutions, the analyst is asked to make another

decision for a different event label. This procedure is

repeated until the CSP yields a single solution. The goal

is to pose as few questions to the analyst as possible. To

achieve this goal, we look into all solutions and choose

the event label that is assigned to the highest number

of different activities. Notice that the order of the se-

lection influences the efficiency of deriving the single

solution. By selecting the event that is related to the

highest number of activities over all solutions, we aim

at striking out the highest number of wrong mappings

in each iteration. Thereby, the efficiency is improved.

Effectiveness is instead not influenced by the order of

selection.

We use the relation AE′′ as a filter when presenting

the activities between which the analyst has to choose. In

case an event class e is mapped to multiple activities over

all relations contained in the base relation AE′, the ana-

lyst has to inspect which of these multiple activities are

correct mappings. Having both relation AE′ and AE′′,

the analyst will only be presented the activities that

have a mapping to event class e in both relations. We

denote the set of activities potentially mapped to event

class e in the base relation as A′e = {a′e | ∃ (a′e, e) ∈ AE′}.
Similarly, the derived activities for e contained in the fil-

ter relation are denoted as A′′e = {a′′e | ∃ (a′′e , e) ∈ AE′′}.
The set of presented activities for event class e is defined

as A∗e = A′e ∩A′′e .

Due to the fact that the relation AE′′ may not con-

tain the correct mapping, it can happen that also A∗e
does not contain the correct matching activities for

event class e. Therefore, the analyst can indicate that
there are missing matches. Consequently, a new set of

activities is presented from which set the analyst can

complete their choice. This second set of activities is

defined as A∗∗e = A′e \ A′′e and contains only those ac-

tivities found in a relation to event class e in A′e. As it

holds that A′e = A∗e ∪ A∗∗e , the correct activities have

to be contained in the two presented sets. By splitting

the set of activities that an analyst has to inspect, the

selection step is made easier as less information has to

be processed at the same time.

Once a decision on the final mapping is made, the

user can annotate the relations between event classes and

activities with a transition life-cycle, namely the phase

that the occurrence of the event characterizes within

the enactment of the activity. The starting and ending

transitions are not required to be specified, because they

will be automatically detected in the subsequent phase.

3.4 Transformation and activity instance clustering

Having defined the procedure to build a CSP and it-

eratively resolved any ambiguities, the next step is to

use the selected solution of the CSP as mapping Map

to transform the event log. Mapping Map is used to

iterate over all traces in the event log and replace each

event ei with the activity returned by Map(ei).

Having mapped all event instances to the life-cycle

transitions of their corresponding activity type, the sub-

sequent step is to define how to assign events belonging

to the same activity to different activity instances. As
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there might be multiple activity instances for one activ-

ity in a process instance, i.e., in a loop, criteria to map an

event to an activity instance are required. To this extent,

we adopt the technique detailed in [7]. The user specifies

the so-called instance border conditions, discriminating

between events belonging to two or more instances of

the same activity. Instance borders can be also defined

over any attributes attached to an event. Having this

information, the traces of the preprocessed event log

where all event instances are mapped to their corre-

sponding activity are iterated through. A tree-based
incremental clustering algorithm known from classical

data mining is used [59] to assign events to different

activity instances. The first and the last event of a clus-

ter are assigned the “Start” and “Complete” transition,

respectively. The events in-between are assigned the life-

cycle transitions indicated by the user in the previous

step. Further details on the adopted technique and on

the instance clustering algorithm are provided in [6].

The transformed event log can then be used as an

input for any process mining technique.

4 Validation and evaluation

In this section, we will present the results from our vali-

dation and evaluation. Section 4.1 provides the details

of the validation and evaluation setup that we have

chosen. In Section 4.2 we validate the introduced De-

clare approach with synthetic event logs derived from

a real-life industry process model collection. We inspect
and outline the different influences of certain constraints

that have been introduced for special cases. We report

on an industry case study for the integrated approach in

Section 4.3 and finally, discuss shortcomings and future

work in Section 4.4.

4.1 Validation and evaluation setup

For the purpose of evaluation, we implemented the intro-

duced approach for the matching of events and activities

in the ProM framework6. All plug-ins that have been de-

veloped for the evaluation of the concepts introduced in

this paper can be found in the publicly available ProM

package “Event2ActivityMatcher”7. Figure 6 depicts

a FMC Block diagram8 that gives an overview of the

6 See http://processmining.org/prom/start.
7 The source code is available in the subversion repos-

itory at https://svn.win.tue.nl/repos/prom/Packages/

Event2ActivityMatcher.
8 Fundamental Modeling Concepts (FMC) is a modeling

notation where Block diagrams are used to illustrate compo-
sitional structures as a composition of collaborating system
components. For an introduction into FMC see [38].

Type-level matching plug-in

Behavioral matching plug-in

Label-basedmatching plug-in

Instance-level matching plug-in

Object pool

Petri nets

Process
descriptions

Event Logs

Mappings

Fig. 6: FMC Block diagram of the implemented ProM

plug-ins with inputs and outputs.

implemented ProM plug-ins. The mandatory inputs for

the type-level mapping plug-in are an event log and a

Petri net. Optionally, a process description, which can be

used by the label analysis approach, may be provided.

Both the label analysis and the Declare approach

are implemented as separate plug-ins to make them

independently usable. The type-level plug-in provides

a configuration screen to choose between the different

mapping approaches and provides the capabilities for

their integration. The first configuration screen of the

type-level plug-in is shown in Fig. 7. Note that this

plug-in also supports the use of the replay approach

and the behavioral profile approach introduced in [8]

and [9]. Yet, both approaches only support one-to–one

mappings.

Fig. 7: Configuration screen for the type-level mapping

plug-in.

In order to evaluate the introduced concepts, we have

conducted both a validation of the Declare approach

http://processmining.org/prom/start
https://svn.win.tue.nl/repos/prom/Packages/Event2ActivityMatcher
https://svn.win.tue.nl/repos/prom/Packages/Event2ActivityMatcher
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using synthetic data, and a case study with real-life data

from a large German outsourcing company. The label

analysis approach had previously been evaluated using

two case studies that highlighted its effectiveness [7].

The goal of the validation is to assess (1) the effec-

tiveness and (2) the efficiency of the Declare approach.

By effectiveness, we mean the ability to derive the cor-

rect mapping. With efficiency, we refer to the necessary

effort in terms of manual work. Furthermore, (3) the

robustness towards noise and (4) the performance of the

approaches shall be evaluated.

In order to measure (1) the effectiveness of the ap-

proaches, we evaluate whether the correct mapping can

be retrieved within a reasonable time frame. Looking

at (2), the efficiency, we quantify the manual work by

counting the questions an analyst has to answer in order

to arrive at the final mapping. The underlying idea is

that users are most likely going to perceive the burden

of the time spent when they are actively involved and

requested to answer questions. Owing to this, we assume

as a basic metric the number of asked questions. We

acknowledge that this estimation disregards how diffi-

cult it is for users to reply to such questions in terms of

mental effort. This limitation is due to practical reasons:

The effort would indeed vary from case to case, and

depend on the experience of the analyst with the data

at hand. The robustness towards noise (3) is evaluated
by generating five different event logs for each process

model with increasing levels of noise. For each process

model, one event log with 1000 traces is simulated us-

ing the simulation technique provided by [51]. These

noise-free event logs serve as a base to generate noisy

event logs by randomly applying different noise patterns
to a fraction of the traces. The noise patterns refer to

the shuffling, duplication and removal of events. In this

way, we produce five event logs for each process, each

having different amounts of traces affected by noise,

namely: (1) 0% (no noise), (2) 25%, (3) 50%, (4) 75%,

and (5) 100%.

In order to evaluate the handling of different abstrac-

tion levels, event logs were generated by simulating the

enactment of process activities through event generators.

Such event generators simulate a simple activity life-

cycle model containing a start and a complete life-cycle

transition. We chose three different event patterns that

can be mapped to such a life-cycle model based on the

process instantiation patterns introduced by Decker and

Mendling in [14]. Figure 8 depicts the different chosen

patterns. Figure 8(a) shows a simple model with one

start and one end transition (“Start” and “End” events),

demonstrating a typical pattern found in many systems.

For each activity assigned to this event model, a start

and an end transition are generated for each execution

s0 s1 s2
Start End

(a) Sequence of Start and End events

s0

s1

s2

s3

Start1

Start2

End

End

(b) Two alternative Start events, one End event

s0

s1

s2

s3

s4

s5

Start1

Start2

Start2

Start1

End

End

(c) Two concurrent Start events, one End event

Fig. 8: Different event models used to generate events.

of that activity. The second event model, depicted in

Fig. 8(b), generates for each execution either an event
“Start1” or an event “Start2” and always an “End” event.

Thus, there are two alternative starts for such an ac-

tivity, e.g., it could be started by an incoming mail

or by a telephone call. The event model presented in

Fig. 8(c) also has two different start transitions, but in
contrast to the model in Fig. 8(b), both start events
always occur with no restriction on their order. For the

simulation of the process models, each activity is ran-

domly assigned to one of these three event models, or

it is left as is, generating only a single event. Again,

all generated event logs contain 1,000 traces and are

limited to 1,000 events per trace as a stop condition for

process models containing loops.

All experiments were conducted in a cluster environ-

ment where each matching experiment was assigned 6

Gigabytes of main memory and 4 CPU cores running at

2.93 GHz. This reflects the processing power of a typical

desktop machine these days. For each experiment, a

timeout of ten minutes had been set, after which the

experiment was terminated if the constraint satisfaction

problem was not yet solved. Basing upon the experimen-

tal results of [20,24], we have set the default threshold

for the minimum support of discovered Declare rules
to 90%.

The set of business processes used for the validation

of our work on matching approaches using Declare
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rules stems from the BIT process library, Release 2009,

which has been analyzed by Fahland et al. in [29] and

is openly available to academic research. The process

model collection contains models of financial services,

telecommunications, and other domains. The models

are real-life process models that have been anonymized

to make them available for research.

The BIT process library is separated into five groups

of process models: A, B1, B2, B3, and C. Of these

groups, B1, B2, and B3 contain different versions of the

same models created at different points in time, with

B3 incorporating the latest versions [29]. Therefore, we

only use the process models from groups A, B3, and
C. In the further process of our evaluation we will not

distinguish between these three groups.

Finally, we also removed all process models that only

contain a single activity, because matching is trivial in

such a case. After applying all of the described filtering

steps, 442 models remain and are used for the evalua-

tion of our behavioral approaches. From these models,

two sets of event logs were generated. One set reflects

the one-to-one setting for which simple simulation has

been used. The other set contains event logs on a lower
abstraction level, created by using the aforementioned

event generation patterns. Both sets contain 2,210 event

logs each (442 models times 5 noise levels).

For the evaluation of the integrated approach on

real-world data, we conducted a case study with a large

German IT outsourcing provider and analyzed the pro-

cess of managing standard changes, which is part of the

change management process defined by the IT Infras-
tructure Library (ITIL). The process is supported by

an IBM Tivoli Change and Configuration Management

Database9 from which we extracted a log containing

364 traces with 5,194 event instances of 14 different

event classes. The corresponding process model contains

seven activities that are further detailed with activity

descriptions from a work instruction document.

4.2 Validation of the Declare-based type-level

matching

For the validation of the Declare-based type-level

matching, we inspect different configurations for the
approach in order to assess the influence of different

constraints. We define a basic configuration, which does

not include constraints from interleaving relations and

does not use the relaxed mapping for ordering and co-

occurrence relations. Next, we define five different con-

figurations that are all based on the basic setting. Con-

9 See http://www-01.ibm.com/software/tivoli/

products/ccmdb/features.html.

straints stemming from interleaving relations are added

in the interleaving configuration. We exclude participa-

tion constraints in the no participation configuration.

The relaxed co-occurrence and relaxed ordering config-

urations use the relaxed definition of the respective

constraints. The last configuration is a combination of

the already defined configurations but leaves out the

interleaving constraints. Hence, it is called all but inter-

leaving.

4.2.1 Effectiveness – one-to-one setting

Basic

Interleaving

No participation

Relaxed co−occurrence

Relaxed ordering

All but interleaving

0 500 1000 1500 2000 2210
Number of correctly matched event logs

Noise level
0 25
50 75
100

Fig. 9: Declare approach: Number of correctly solved
matchings in a one-to-one setting for different noise

levels.

Starting with the effectiveness, Fig. 9 shows for each

configuration how many event logs could be successfully

matched to their corresponding process models on type
level. The figure separates the event logs by their noise

level. It can be seen there are only minor differences

between most of the configurations. The majority of

configurations is able to correctly solve 93–95% of all

matchings. Only the interleaving configuration scores

low, with 45% correct matchings. Figure 9 reveals the

main problem of the configuration with constraints stem-

ming from interleaving relations: it cannot deal with

noise levels above 25%. The reason for this is that with

increasing noise, less order relations reach the minimum

support and therefore less order constraints are created.

These relations are not seen as order relations anymore

and are rather interpreted as interleaving relations, thus

resulting in conflicting constraints.

Overall, the relaxed ordering and the all but inter-

leaving configuration score highest with 95% correctly

solved mappings.

Figure 10 sheds light on the reasons for incorrect

mappings. We drill down to the specific types of con-

straints that were pushed into the constraint satisfaction

problem. Besides the conflicting interleaving constraints

http://www-01.ibm.com/software/tivoli/products/ccmdb/features.html
http://www-01.ibm.com/software/tivoli/products/ccmdb/features.html
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Fig. 10: Declare approach: Number of not correctly

matched event logs in the one-to-one setting (all noise

levels).

in noisy event logs, also constraints stemming from or-

der relations lead to problems in the matching. For

all but the top two configurations, around 5% of the

matchings cannot be solved correctly due to wrong con-

straints stemming from order relations. The conflicts

stem from interleaving activities for which their corre-

sponding events show a dominant ordering. That means

that two events that could potentially occur in any order

are seen almost always in the same order. These wrong

constraints can be resolved by employing the relaxed

mapping for ordering relations. Hence, the relaxed order-

ing and all but interleaving constraints do not contain

any incorrect order constraints.

In a similar way as the ordering constraints, also the

co-occurrence constraints suffer from dominant behavior

in the event log. Here, the root cause lies in optional ac-

tivities that are executed in a dominant fashion, i.e., they

are present in almost all cases. In the simulated data,

this happened only for the event logs of one process and

is resolved by using relaxed co-occurrence constraints.

Figure 10 reveals that there are cases that cannot be

solved due to computational resources shortage. It can

be seen that the number of cases with computational

resource shortage decreases when additional constraints

from interleaving relations come into play. On the con-

trary, the number of cases with computation issues in-

creases when constraints are relaxed. While not using or

relaxing certain constraints removes conflicts that pre-

vent the correct mapping, it comes at the price of higher

computational effort as the search space grows. If a pro-

cess can be solved or not with a certain configuration,

heavily depends on the structure of the process and on

the characteristics of the event log. A deeper analysis re-

vealed that processes with a high degree of concurrency

often lead to computational resources shortage.

●
●

●

●

●

1

2

3

4

5

0 25 50 75 100
Noise level

M
ea

n 
nu

m
be

r 
of

 q
ue

st
io

ns

Configuration
● Basic Interleaving

No participation Relaxed co−occurrence
Relaxed ordering All but interleaving

Fig. 11: Declare approach: Mean number of questions

for each configuration.

4.2.2 Efficiency – one-to-one setting

In order to assess the efficiency, we measured the mean

number of questions that had to be asked for each con-

figuration and each noise level, as depicted in Fig. 11. In

those cases in which noise was not injected or involved

25% of traces, the data shows that all configurations

result in a similar mean number of questions ranging

from 1.1 to 1.32 with relaxed ordering scoring best. For

all noise levels above 25%, the number of questions

increases for all configurations. Still, almost all configu-

rations behave very similarly with a steady increase of

one question on average. Only the interleaving configu-
ration requires significantly more questions. From the

results gathered for the effectiveness (Section 4.2.1), it

is known that the interleaving configuration is not able

to solve many mappings for event logs with noise levels

above 25%. For those cases the maximum number of

questions, i.e., one question for each event class, has to
be asked.
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Fig. 12: Declare approach – basic configuration: Num-

ber of questions per event class for each noise level in

one-to-one setting.

As none of the configurations shows a statistically

significant advantage over all the others, we will use the

basic configuration for our further analysis. Figure 12

depicts the number of required questions relative to the
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number of event classes for the basic configuration. The

share of mappings that could be performed completely

automatically is 62% of all cases with a noise level below

50%. For 14–15% of all cases with less than 50% noisy

traces one question for at most every fourth event class

(low manual effort) is required. Another 10% of the cases

with a noise level below 50% could be matched with

medium manual effort, i.e., with at most one question

for every second event class. Summing this up, 86–87%

of all cases with a noise level below 50% could be solved

with at most medium effort with the basic configuration.
Looking at the share of event logs for which a complete

manual mapping is required, only 9–10% of all event

logs with less than 50% noisy traces are left completely

to the analyst.

●●●●●●●● ●●●●●● ●● ● ●● ●●●● ●●●●● ●●● ●● ●●● ● ●● ●●● ●●●

●

2−5

6−10

11−15

16−20

21−25

0 2 4 6
Number of questions

N
um

be
r 

of
 e

ve
nt

 c
la

ss
es

Fig. 13: Declare approach – basic configuration: Num-

ber of questions per event class for correctly matched

event logs without noise in one-to-one setting .

Changing the perspective of the analysis to the num-
ber of event classes contained in an event log, Fig. 13

inspects all event logs without noise and divides the

event logs by their number of event classes into five

categories. For each category a box plot for the required

number of questions is shown. For event logs with up

to five event classes, the Declare approach runs fully

automatically for almost all cases. For the category of

six to ten event classes, half of the cases are handled

without a question. For all other categories, 50% are

matched automatically. Notably, there is no linear in-

crease in the number of questions with growing numbers

of event classes. This shows that especially larger event

logs profit from the introduced reduction technique.

4.2.3 Robustness – one-to-one setting

With respect to the robustness towards noise, Figures

9–12 already provide insights on how the effectiveness

and efficiency of the Declare approach change with

increasing noise in the event logs. Regarding the effec-

tiveness, Fig. 9 revealed that all configurations except

the interleaving one are very robust towards noise.

Concerning the efficiency, the Declare approach

proves to be stable only until a noise level of 25%. Be-

yond this level of noise, the efficiency drops down. The

approach is still able to handle in a completely auto-

mated way 17% of the event logs in which every second

trace contains noise. Overall, the Declare approach is

still helpful for 70% of the event logs with 50% of noise

and out of these it handles 76% with at most medium

effort. With three quarters of the event logs containing
noise, efficiency drops again. Nevertheless, even with all

traces containing noise, the Declare approach is still

helpful for 50% of the event logs.

4.2.4 Performance – one-to-one setting
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Fig. 14: Declare approach – basic configuration: Dura-

tion of the matching depending on the number of event

classes in one-to-one setting without noise (without out-

liers).

Turning to the performance of the Declare ap-

proach, Fig. 14 depicts how long the matching takes

depending on the number of event classes in the event

log. For the group with the fewest event classes, the ba-

sic setting requires less than about ten seconds for half

of the matchings. The 0.75 quantile lies at 13 seconds.

With increasing number of event classes, the duration

of the matching increases almost linearly. For the event

logs with up to 20 event classes, the median lies around

one minute, but cases my take up to more than two

minutes. Still, we believe that this is fast enough for the

one time undertaking of the type-level matching.

4.2.5 Effectiveness – one-to-many setting

Turning to the one-to-many setting, Fig. 15 provides the

results for the measurement of the effectiveness. While

the overall pattern looks very similar to the one seen for
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the one-to-one setting (Section 4.2.1), there is a visible

difference in the overall number of event logs that can

be matched correctly. For the one-to-many setting the

maximum number of correctly matched event logs over

all noise levels is 1544, which is 70% of all 2210 event

logs. This is 25 percentage points less than what could

be handled in the one-to-one setting. It can be seen that

effectiveness slightly decreases for all configurations with

increasing noise. Without noise, the most effective con-

figuration is the relaxed ordering configuration, which

correctly maps 76% of all noise-free event logs.
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All but interleaving

0 500 1000 1500 2000 2210
Number of correctly matched event logs

Noise level
0 25
50 75
100

Fig. 15: Declare approach: Number of correctly solved

matchings in one-to-many setting for different noise

levels.

Analyzing the root causes for the decrease in effec-

tiveness, Fig. 16 reveals that most of matchings cannot

be solved due to computational resources shortage. Be-

sides that, the same root causes that were discovered

in the one-to-one setting also apply in the one-to-many

setting. While the impact for almost all constraint types

stays the same, the number of cases that cannot be

matched due to wrong order constraints doubles in the

one-to-many setting.
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All but interleaving
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Number of not correctly matched event logs
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Order constraints Interleaving constraints
Co−occurrence constraints Participation constraints
Resource shortage

Fig. 16: Declare approach: Number of not correctly

matched event logs in the one-to-many setting (all noise

levels).

4.2.6 Efficiency – one-to-many setting

Bringing the focus to the efficiency, Fig. 17 depicts the

mean number of questions for each noise level and every

selected configuration. In contrast to the one-to-one set-

ting, one can observe more distinct differences between

the configurations in the one-to-many setting. Again,

the interleaving configuration performs worst for high

noise levels. Yet, it outperforms all other configurations

for lower noise levels. Looking at the ranges in which the

average number of questions lies, it can be observed that

these are higher than those for the one-to-one setting,

which one would expect. Overall, the mean numbers of

questions range between seven and nine for lower noise

levels and go up to eleven questions on average for the

highest noise level.
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Fig. 17: Declare approach: Mean number of questions

for each configuration in the one-to-many setting.

The relative view of number of questions per event

class is given in Fig. 18. Only very few event logs can be
processed completely automatically (1% of the event logs

with low noise levels). However, with at most medium

manual effort 38–39% of the event logs with noise level

zero and 25 can be matched. Again, the small noise

level helps in getting rid of incorrect ordering relations

and therefore the approach performs better for these
event logs than for logs that are noise-free. Overall, it

can be observed that the approach is helpful for 70–72%

of the event logs with no or few noise insertions, which

again is still the majority of those event logs. Yet, with

increasing noise the efficiency shrinks.
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Fig. 18: Declare approach – basic configuration: Num-

ber of questions per event class for each noise level in

one-to-many setting.

The influence of the number of event classes in an

event log is studied in Fig. 19. In the one-to-many setting

the differences between the five categories become more

distinct. First, one can observe an increase in the number
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of questions with a growing number of event classes. Yet,

this development is turned around for logs with more

than 16 event classes. Here, a slight decrease can be

seen. Looking at event logs with 16 to 20 event classes,

only at most six questions are required for half of the

event logs whereas at most seven questions are required

for half of the event logs with 11 to 15 event classes.
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Fig. 19: Declare approach – basic configuration: Num-

ber of questions per event class for correctly matched

event logs without noise in one-to-many setting .

4.2.7 Robustness – one-to-many setting

Coming to the robustness towards noise, we can again

use the insights already provided during the analysis of

effectiveness and efficiency. From Fig. 18 it can be seen

that there is a slight increase in the number of matchings

for which the approach is useful when there is a small

amount of noise in the event logs compared to when no

noise is present. From the noise level of 50% upwards,

this number constantly decreases until there is only a

share of 21% for which the behavioral profile approach

helps the analyst. Overall, this development is very

similar to that observed in the one-to-one setting, yet,

on a much lower order of magnitude and with steeper

decrease of effectiveness and efficiency with higher noise

levels.

4.2.8 Performance – one-to-many setting

Looking at the performance in the one-to-many setting,

Fig. 20 shows the box plots for the matching durations

for the introduced categories of event classes. Again,

the duration increases with a growing number of event

classes. Yet, this time the growth rate is worse than

linear. Nonetheless, with less than ten seconds for the

vast majority of the smallest category and less than

two minutes for majority of the largest event logs, the

performance seems to be reasonably good.
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Fig. 20: Declare approach – basic configuration: Dura-

tion of the matching depending on the number of event

classes in one-to-many setting without noise (without

outliers).

4.3 Evaluation of the integrated approach

The first steps in the integrated approach are formed

by the concurrent creation of the two potential activity

event class relations. From these two relations, the one
created by the Declare-based approach is used as

base relation, while the other one produced by the label

analysis approach is used as a filter relation.

Starting with the results for (1) the effectiveness of

the integrated approach, we concentrate on the creation

of the base relation, because this relation is the critical

element, that is, if and only if such relation contains the

correct mapping, the approach can effectively solve the
matching. We therefore assess which configuration of the

behavioral approaches is able to solve the matching cor-

rectly. In order to do this, the process manager provided

a manual mapping that serves as gold standard, against

which we check whether the derived type-level mapping

is correct or not. If it is not correct, we determine the

constraints that are conflicting with the gold standard

mapping.

Two configurations of the Declare-based approach

do not contain any wrong constraints and are there-

fore able to solve the CSP. All other configurations fail

due to twelve incorrect co-occurrence constraints. The

reason for this is that there is one optional activity in

the standard change process model for which event in-

stances of one of the corresponding event classes are

almost always present. This event class represents the

final measuring of time taken and belongs to an optional

quality assurance activity. As this time measurement

is performed in almost every case, co-occurrence rela-

tions are derived with all event classes for which we also

almost always see their event instances. That is, event

instances belonging to mandatory activities. Nonethe-

less, these co-occurrence relations do not exist in the

process model since the quality assurance activity is
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optional and therefore is not part of any co-occurrence

relation.

With the two configurations relaxed co-occurrence

and all but interleaving, the integrated approach can

be successfully applied. We will therefore proceed with

these two configurations and turn to the analysis of

(2) the efficiency. Both configurations lead to the same

single question. The one event class for which the analyst

needs to decide the mapping activity can potentially

belong to every activity. That is, the user is presented

all seven activities of the process model to choose from.

Yet, in the integrated approach, these seven activi-

ties are filtered using the potential activity event class

relations derived by the label analysis approach. An ex-

tensive evaluation of the label analysis approach alone

has been provided in [7], where the change management

process is also analyzed. We refer the reader to [7] for a

detailed assessment. The relation derived from the label

analysis contains only two matching activities for the

event class in question. Due to the very good recall of the

label analysis approach, which is 86% for the standard

change process, the correct activity is contained. There-

fore, only two activities need to be presented to the user,

which is a substantial decrease from the seven activities
that the independent Declare-based approach would

have to present.

Finally, we turn to the inspection of (3) performance

and (4) robustness to noise.

Regarding the performance of the integrated ap-

proach for type-level matching, we measured the re-

quired time until the first question is posed to the user.

The Declare-based approach took around 40 seconds

to solve the initial CSP. The label analysis approach

took about 30 seconds to deliver the potential activity

event relations, thus turning out to be a bit faster, but

quite similar. As both approaches run in parallel, the

time to wait until the first user interaction amounts to

40 seconds. As the type-level matching only needs to be

conducted once, we believe this to be reasonably fast

enough.

As we are looking at a real-life event log from an IT

system where the designed process model is not enforced,

it is very likely that the event log contains some behavior

that is not specified by the process model. In order to

inspect the amount of noise contained, we calculated

the constraint-relative behavioral profile conformance

metric introduced by Weidlich et al. [57]. For the prepro-

cessed event log of the standard change process an over-

all constraint-relative behavioral profile conformance of

91.87 is achieved. This proves that the filtered event log

still contains noise, which is successfully handled by the

integrated approach.

4.4 Discussion and future remarks

In the light of our experimental results, the Declare-

based approach showed overall a good performance, es-

pecially with regards to resilience to noise. It requires in

most of the cases only little manual intervention. Still,

there are some processes that could not be handled,

mainly due to massive parallelism and resulting mem-

ory shortage. Future work should investigate how these

processes can be handled or, at least, automatically

identified.

It is our plan to investigate how the approach can

be extended to support N:M relations, namely cases in

which a single event class can be related to multiple

activities – e.g. events representing shared functionalities.

In the N:M case, the already very large search space

for the matching problem grows drastically and other

techniques might be necessary to handle this.

Moreover, we plan to include further perspectives in
the creation of a CSP – for example, by including roles

from the organizational perspective. One could use the

results of organizational mining or existing knowledge

about the roles that are assigned to the users of an IT

system to formulate further constraints. Such constraints

could, for example, allow only mappings between events

and activities that share the same executing role. When

multiple IT systems are involved in the execution of a

process, the knowledge about (i) which IT system sup-

ports which activity, and (ii) which event stems from

which IT system could be used to generate further con-

straints. Also information on how control-flow routing is

done could be integrated to retrieve further constraints.

To this end, for example, decision tables could be lever-

aged to limit the number of activities to which an event

class can potentially map.

To enhance the accuracy of the label-based matching,

we will investigate how to exploit the inclusion in the

analysis of the semantic relationships of used words, such

as synonyms, hyponyms, and hypernyms. The idea is to

find the connection of event and activity labels also when

they do not share any stems, yet refer to concepts in the

same field. For the automatic analysis, lexical databases

such as WordNet [43] or BabelNet [44] are available.

Previous studies exploiting the detection of semantic

relationships between labels have been demonstrated

successful among others in the fields of process models

matching [39] and similarity measuring [27], as well as

for the detection of lexical ambiguities within process

models [48].

Experimental studies on the sensitivity of Declare

rules to noise have demonstrated that the semantics

of the rules have an impact on the decrease of their

support in proportion to errors in the recorded traces
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[24,21]. We will therefore analyse to what extent the

support threshold can be adjusted depending on the

singularly involved rules, in order to reduce the effect

of misrecorded events on the outcome of the discovery

phase.

Recent advances in the automated discovery of declar-

ative processes have shown promising results when ap-

plied to branched Declare [16,17]. Branched Declare

allows the specification of rules that link the occurrence

of an activity to the occurrence of multiple other ones.

An example is Precedence({a, b} , c), stating that ac-
tivity c must be preceded by a or b. Arguably, such

an extension of standard Declare provides a richer

expressive power, which can in turn help us improve

the accuracy of the behaviour-based mappings between

activities and events. Therefore, we aim at integrating

the existing branched Declare mining techniques with

our approach in our future work.

Finally, we remark here that the process modelling

notation here considered is BPMN. BPMN has a rich

expressiveness also due to the availability of a plethora

of advanced constructs, including intermediate events,

exception flows, event-based exclusive choices, and more

[26]. Such advanced elements could contribute to better

identify discriminative patterns in event logs that we

could exploit to our matching purposes. We will thus in-

vestigate how to extend our analysis taking into account

more complex constructs of the BPMN specification.

5 Related work

Related research can be subdivided into approaches

working on event logs and approaches working on pro-

cess models. Looking at approaches focusing on event

logs, there are several ones aiming at the abstraction

of events to activities. Günther et al. introduce in [31]

an approach that clusters events to activities using a

distance function based on time or sequence position.

Due to performance issues with this approach, a new

means of abstraction on the level of event classes is

introduced by Günther et al. in [33]. These event classes

are clustered globally based on co-occurrence of related

terms, yielding better performance but lower accuracy. A

similar approach introducing semantic relatedness, N:M

relations, and context dependence is defined by Li et al.

in [40]. Another approach that uses pattern recognition

and machine learning techniques for abstraction is in-

troduced by Cook et al. in [13]. Together with the fuzzy

miner, Günther and van der Aalst present an approach

to abstract a mined process model by removing and

clustering less frequent behavior [32]. While all these

approaches aim at a mapping of events to activities,

they are designed to automatically construct activities

and not to match events to activities that have already

been defined a-priori. In [7] and [8], approaches that aim

at the mapping of events to pre-defined activities are in-

troduced. Nevertheless, the approach in [7] still required

much manual work as the precision of matchings is not

sufficiently high. In contrast, the approach presented

in this paper requires only very little manual effort to

match events to pre-defined activities. The approach

presented in [8] only works with 1:1 relations between

events and activities and requires pre-processing for 1:N

relations. Furthermore, it is only able to capture behav-
ior from traces that can be replayed on the model. This

is resolved by the work of this paper.

Another branch of related approaches working on

event logs are those dealing with event correlation to

group events belonging to the same process instance, as

e.g. the work by Perez et al. in [46]. Yet, these approaches

work on a more coarse-grained level as they focus on the

relation to process instances rather than to activities. In

fact, we assume that the correlation of events to process

instances is either already given, or can be established

by an approach like [46].

Our work is also related to automatic matching for

process models. While matching has been partially ad-

dressed in various works on process similarity [25], there

are only a few papers that cover this topic as their

major focus. The work on the ICoP framework defines

a generic approach for process model matching [55].

This framework is extended with semantic concepts and

probabilistic optimization in [39,37]. Further, general

concepts from ontology matching are adopted in [28].

The implications of different abstraction levels for find-

ing correspondences is covered in [54]. Recently, various
approaches have been proposed and tested in the Process

Model Matching Contests 2013 and 2015 [12,4]. How-

ever, all these works focus on finding matches between

two process models, not between events and activities.

6 Conclusion

In this paper we introduce a novel technique for the

mapping of events to activities, which can be used as a

preprocessing step to enable business process intelligence

techniques (e.g., process mining). The approach uses

Declare rules derived from existing business process

models and from event logs generated by IT systems

to establish a connection between conceptual process

models and operational execution data. Event and ac-

tivity labels as well as existing process descriptions are

leveraged using natural language processing to further

narrow down the search space for the mapping. Thereby,

the manual effort to preprocess an event log for anal-

ysis is significantly reduced. The key contribution of
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this approach is the establishment of a relation between

events and a given set of activities in a process model

obtained by using (1) behavioral knowledge captured by

Declare rules and (2) semantical knowledge entailed

in labels and external process descriptions. As a result,

mappings from events to activities can be obtained not

only in a one-to-one fashion, but also in single-to-many

relations. As shown by the conducted evaluation, the

newly introduced matching technique performs well and

requires little manual intervention. It also reveals to be

robust towards noise.
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