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Abstract 
 

Microalgae are a very versatile microorganism that have the ability to modify their 

biomass composition under controlled condition in order to accumulate products having 

applications in several sectors. The aim of this thesis work is the analysis and modelling of 

both microalgal growth and production of high added-value metabolites, focusing also on 

their extraction and purification. An outdoor 10 bubble column photobioreactors (PBRs) 

pilot plant for the cultivation of two microalgae named Tetradesmus obliquus and 

Graesiella emersonii, covering a 9 months cultivation period (March 2017-December 

2017), has been installed and operated. All collected data (as microalgal growth rate, 

outdoor parameters and initial cultivation’s conditions) have been used to develop an 

empirical model for prediction of microalgal growth in photobioreactors at specific 

outdoor conditions, using Principal Component Analysis and Partial Least Squares 

regression method, obtaining acceptable outcomes for both responses: microalgal specific 

growth rate (µ) and maximum productivity (Pmax). Concerning microalgal metabolism, also 

a new mathematical model able to represent in a simple way the accumulation of 

metabolites inside microalgae, focusing on the carbon partitioning process between 

triacylglycerides (TAG) and starch during nitrogen starvation in phototrophy, has been 

developed, obtaining high R-Squared values as index of model’s goodness of fitting. A 

future application of these models can be found in the MEWLIFE European project, in 

which Bio-P has a role as partner, since this project has as aim the production of 

microalgal biomass in an integrated phototrophic and heterotrophic cultivation system 

using preconcentrated olive oil wastewaters (OMWW) as carbon source. As a completion 

of the microalgal process treatment, a study of the downstream processes for the extraction 

(using supercritical CO2) and purification of the high added value metabolites (with 

molecular distillation) has been carried out, developing a feasibility study also from the 

economical point of view. As regard the supercritical CO2 the best extraction conditions in 

terms of operative variables have been: T = 60°C, P = 250 bar and SSR = 5 h−1 with a daily 

amount of the desired products equal to 147 kg and OPEX = 561.7 k€/year and CAPEX = 

2717.9 k€/year. Regarding the molecultar distillation process, the best operating conditions 

have been found at T = 128 °C and P = 0.33 Pa, obtaining OPEX = 498.23 k€/year and 

CAPEX = 2387.4 k€/year.  
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Chapter 1. Introduction 

 
1.1 Microalgae: An overview 

 
Microalgae are photosynthetic organisms able to grow in a wide watery environments such 

as oceans, pounds, rivers, lakes and also inside wastewaters. They can live and grow in a 

wide range of pH, temperature, salinity and light intensities, alone or in symbiosis with 

other organisms. (Khan et al., 2018) 

Microalgae, according to their characteristics, are divided into Groups, Classes and Orders, 

the main examples of which are given in the Figure below (Fig. 1). 

                        

 

Fig. 1   Simplified algae classification (Enamala et al., 2018). 

 

Microalgae can modify their internal composition only changing their cultivation 

conditions (Mazzelli et al., 2018a), accumulating thus different kind of metabolites in form 

of lipids, carbohydrates, proteins, etc. These products have different applications, from 

biofuel and energy production (Bahadar and Khan, 2013; Raheem et al., 2018) to 

pharmaceutical (Panis and Carreon, 2016), nutraceutical (Patel et al., 2019) and animal 

dietary ones (Díaz et al., 2017). In order to maximize the economic aspects of microalgal 

cultivation and metabolites’ production a biorefinery approach must be adopted. This 

biorefinery concept is similar to the traditional petroleum one, the principal difference is in 

terms of raw materials (biomass or crude oil) and technology employed. These designs 

usually attempt to obtain the maximum product output (in terms of quality and profit) from 

a single raw material source (Chew et al., 2017). The main bottleneck of a biorefinery 
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approach is the separation of different fractions without causing harm to the other 

fractions; this can be overcome through the use of simple, low energy consumption, cost 

effective and scalable separation processes (see paragraph 1.7). Nowadays, the 

increasingly presence of this model in industrial scale allows the biorefineries to increase 

the development of new processes, putting on market new products having microalgae as 

raw material. Focusing on the principal high-added value metabolites discussed in this 

work,  PUFA  fatty  acids  (DHA  &  EPA)  have  a  global  market  value  of  over  700  

Million  US$/annum  followed  by  β-carotene  with  261  Million US$/annum,  then  

comes  astaxanthin  with  a  market  value  of  240  Million  US$/annum,  closely  followed  

by  lutein  with  a  market  value  of  233  Million  US$/annum  and  finally  phyco-

biliproteins  with  a  value  of  just  over  60  Million  US$/annum.  The  global  demand  

for  carotenoids  is  still  expected  to  in-crease  further  to  1.8  billion  US$  by  the  end  

of  2019  (Bhalamurugan et al., 2018). As regards the process scalability, in addition to 

technical issues, the main objective to be achieved for microalgal cultivation in order to 

make the process competitive, is the reduction of production cost. 

Generally, for any reduction in production cost, it is necessary to reduce labor by 

implementing extensive automation while reducing the depreciation cost by simplifying 

the equipment used and increasing the production capacity. Indeed, increasing production 

capacity to 200 t/year by means of an adequate scale-up of the process with a reduction in 

manpower to 1 person/ha and avoiding the use of expensive equipment such as freeze 

dryers and sterilization units, the production cost could be reduced to $16/kg vs $89/kg at 

the small scale (Acién et al., 2017a).  

In Fig. 2 the analysis of production costs related to the production of Scenedesmus 

almeriensis using tubular reactors scaled up to 3.8 t/year., is shown.  

Fig. 2  Analysis of production costs related to the production of Scenedesmus almeriensis using tubular 

reactors scaled up to 3.8 t/year (Acién et al., 2017a).  
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It’s visible that, for a production capacity of 3.8 t/year, the main contributory factors to 

production cost are depreciation and labor accounting for 94% of the total production cost. 

All of these issues bring to the necessity of studying in an accurate way all the phases 

occurring in the microalgal treatments, as it has been done in this study, trying to optimize 

them in order to reduce costs. In addition to the process engineering solutions related to 

find the best conditions (in terms of operative variables, equipments’ size and type and 

energy/mass balances) for microalgae cultivations, a focusing on their metabolism has to 

be carried out in order to maximize the desired outputs with less waste of resources. In this 

work all of these themes will be discussed, starting from the optimization of microalgal 

cultivation, thanks to the development of two different models having as aim the 

estimation of both microalgal growth and metabolites production, and ending with a 

feasibility study of a downstream process able to extract and purify the desired high-added 

value products. 

 

1.2  Microalgal metabolisms  
 

Nowadays, since all microalgae are photosynthetic organism and most of them are very 

efficient in conversion of solar energy into biomass and useful products (i.e. lipids for 

biofuels), the most common way of microalgal cultivation is the photoautotrophic one. 

During photosynthesis microalgae are able to fix inorganic carbon (under CO2 form) by the 

usage of light as energy vector that is converted into ATP and NADPH used in turn to feed 

Calvin cycle, which is responsible for CO2 fixation. However, in this complex carbon 

metabolism there is a common denominator, the C3 pool, composed by 3-

phosphoglycerate (3PG) and glyceraldehyde 3-phosphate (GAP) (see Fig. 3). This fixed 

carbon can be converted into reserve products, which can be grouped into the four major 

microalgal constituents: microalgal biomass (is the biomass produced during nitrogen 

replete conditions), free fatty acids and triacylglycerols (TAG), starch and other functional 

products (proteins and nucleic acids and also glycolipids and phospholipids that constitute 

the structural materials). Since without the addition of external carbon source in the culture 

medium photosynthesis is the only mechanism that manage the algal metabolism, a tight 

control of the reactions involved is necessary to understand the downstream metabolic 

pathways in the chloroplast (Johnson and Alric, 2013). 
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Fig. 3   A simplified phototrophic metabolism in green microalga (Jaeger et al., 2014). 

 

A feasible alternative for phototrophic cultures, restricted to a few microalgal species, is 

the use of heterotrophic cultivation in the absence of light (dark fermentation), replacing 

the atmospheric CO2 fixation with organic carbon sources dissolved in the culture media. 

The basic composition of the heterotrophic cultures medium is similar to the autotrophic 

one, with the only exception of organic carbon addition (Tsavalos and Day, 1994).  

     
    Fig. 4  Heterotrophic metabolism in a microalgal cell (Morales-sa et al., 2014). 

 

The use of carbon sources, including acetate, glucose, lactate and glycerol, requires several 

enzymatic systems for the execution of several actions inside the cell (transport, activation 
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trough phosphorylation, energy generation through substrate-level and/or respiration, etc. 

(Fig. 4). The heterotrophic approach, differently from autotrophic, uses only one kind of 

bioreactor (fermentor), such as those used for pharmaceutical industry or beverages. 

Furthermore, the heterotrophic cultivation brings to significant reduction in costs of 

operations and daily maintenance. Another significant benefit of heterotrophy is the 

possibility to obtain high densities of microalgae cells, providing an economic feasibility 

for large scale cultivation (Perez-Garcia et al., 2011). Mixotrophic growth regime is a 

variant of the heterotrophic growth regime, where CO2 and organic carbon are 

simultaneously assimilated and both respiratory and photosynthetic metabolism operates 

concurrently (Pagnanelli et al., 2014).  

 

1.2.1 High-added value products 

 

Even if the microalgal biomass application for biofuel production is seen as an attracting 

alternative to conventional sources, today this application seems to be economically not 

feasible (Enamala et al., 2018; Markou and Nerantzis, 2013). Microalgae, as said before, 

have the ability to modify their biomass composition under controlled conditions, 

accumulating metabolites having applications in several sectors (Borowitzka, 2013).  

 
Fig. 5  Content of different metabolites in relation to various stress factors in selected microalgal species 

(Markou and Nerantzis, 2013). 

 

The main microalgal compounds that might be of particular interest are lipids, 

carbohydrates, proteins and pigments (carotenoids, etc.). In Fig. 5 the content of the main 

carotenoids, lipids or carbohydrates in relation to various stress factors in selected 

microalgal species are shown. As regards microalgal lipids, the industrial interest is 

focused on mainly to fatty acids as eicosapentaenoic acid (EPA) and docosahexaenoic acid 

(DHA), and some other high-value fatty acids (omega-3, omega-6, γ-linolenic acid etc.). 

These lipids, respect to those used for biodiesel production (neutral lipids including 

triacylglycerides (TAGs)) (Kim et al., 2013), have a different target market (Tocher et al., 

2019). Beside lipids, also carbohydrates are a very interesting source for several 

application, moving from bio-plastics  

(mainly in the form of starch) (Zeller et al., 2013) to bioethanol production (Ho et al., 

2013). The major form of carbohydrates that is accumulated is starch, and it can be defined 

as transitory energy storage (TES) metabolite produced both phototrophically or 
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heterotrophically; it is degraded by glycolysis process after stressful conditions (or during 

night) in order to produce energy to carry out specific microalgal metabolic pathways (see 

subparagraph 1.2.2) (León-Saiki et al., 2017). A strain of Tetraselmis suecica was reported 

to accumulate between 11% and 47% of its dry weight (DW) as starch in nutrient replete 

vs deplete conditions (Barkia et al., 2019). Furthermore, besides lipids and carbohydrates, 

when microalgae are cultivated under stress conditions can accumulate specific secondary 

metabolites (such as carotenoids, vitamins etc.), which are high-added value products for 

cosmetic, food or pharmaceutical sector (Borowitzka, 2013; Panis and Carreon, 2016; 

Varela et al., 2015). Secondary metabolites do not play a role in growth and cellular 

division, like primary metabolites do, and are typically formed during the end or near the 

stationary growth phase. 

 

1.2.2 Central Carbon Metabolism: a focus on Carbon Partitioning 

between lipids (TAG) and carbohydrates (starch) 

 

Microalgal metabolism is so flexible and complex that it is not easy to carry out a complete 

description of the interconnections between the metabolic pathways. There are, however, 

example of constraints that govern central carbon metabolism in Chlamydomonas 

reinhardtii, revealed by compartmentalization and regulation of the pathways and their 

relation to key cellular processes such as cell motility, division, carbon uptake and 

partitioning (Johnson and Alric, 2013). In this thesis the study and modelling are based on 

metabolic pathways common between microalgal species in phototrophic cultivation, 

focusing the attention to the carbon partitioning process between TAG and starch. Notably, 

TAGs are produced mainly under conditions of physiological stress and in particular under 

nitrogen starvation (Breuer et al., 2012). During nitrogen starvation, not only TAG 

accumulation is induced, indeed other biomass constituents, such as starch, are produced 

simultaneously in a continuously changing ratio; this equilibrium between starch and TAG 

production is controlled by carbon partitioning mechanism (Breuer et al., 2014). Starch 

serves as a primary storage 

compound, since the electrons required per unit of biomass are lower compared to TAG 

and proteins, which are more reduced than carbohydrates.  
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                                      (a)                                                                        (b) 
Fig. 6 Experimental trends of TAG and starch content found in literature, showing the non-monotonous 

behavior of starch and the monotonous behavior of TAG justified by carbon partitioning between these two 

metabolites. (a) (Breuer et al., 2014) (b) (Breuer et al., 2015a). 

 

Generally, starch is accumulated at the beginning of starvation with a higher rate than TAG 

(Adesanya et al., 2014; Breuer et al., 2015b, 2014; Zhu et al., 2014), showing a first 

increase until it reaches a maximum value and, after a certain period depending on 

cultivation conditions, decreases on the contrary of TAG that shows a monotonous trend 

(see Fig. 6). As regards TAGs, they are produced in order to protect the cell against the 

damage induced by adverse growth conditions, serving as an electron sink and avoiding the 

formation of reactive oxygen species (ROSs), such as H2O2 or superoxides, that can cause 

damage to the cell (Breuer et al., 2014). The main factor that regulate TAG and starch 

accumulation is the presence of nitrogen inside culture medium; indeed, only during 

nitrogen starvation microalgae stop to duplicate, moving their metabolism to accumulation 

of the aforesaid reserve compounds (Droop, 1968), reaching TAGs content up to 50% (% 

DW or g/g) and about 40% for starch (see Fig. 6). Indeed, during nitrogen starvation 

photosynthesis and carbon assimilation continue for a certain period, but the 

photosynthetic efficiency progressively decreases and the microalgae shift their 

metabolism on the production of nitrogen-free storage molecules such as TAG and starch, 

degrading them afterwards in order to obtain the necessary energy to carry out the 

metabolic pathways for their survival. 

 

1.3 Microalgal cultivation methods 

 

Microalgae cultivation reflects the versatility and complexity of these microorganisms, 

showing a wide variety of solutions always keeping as common goal the optimization of 

biomass or metabolites production. In order to carry out the microalgal phototrophic 

cultivation, several kinds of reactors have been studied until today. On large scale, algae 

can be cultured in open ponds, presenting low investment and operating costs and can be 

constructed on nonagricultural lands but they can be easily contaminated (Acién Fernández 

et al., 1999).  
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Fig. 7   Advantages and limitations of microalgal phototrophic cultivation system (Gupta et al., 2015). 

 
To overcome the disadvantages of using open cultivations, numerous closed photo-

bioreactors (PBRs) of various volumes and shapes have been designed (Abiusi et al., 2014; 

Cicci et al., 2015; García Camacho et al., 1999). To sum up these considerations, in Fig. 7 

a comparison between the various phototrophic solutions is showed. Microalgae can 

growth and accumulate useful products also without light, working in so-called dark 

fermentation (heterotrophy), employing thus the ability of some of them to grow using 

organic carbon source (sugar). The production of microalgae in fermenters has proven to 

be a very successful route to commercialization (see Fig. 8). 

 
Fig. 8   Commercial fermentation plant for microalgae production. (Barclay et al., 2013). 
 

Fermentation represents a long-established type of production process, both in equipment 

design and operation, with a high level of control on the process that make simple the 

optimization of the cultivation conditions and therefore also of the cell growth and 

metabolites production. The closed nature of fermentor also makes it easier to maintain a 

monoculture of the desired strain, particularly under axenic conditions, which facilitate the 

use of the algae in food sector. In addition to classical axenic conditions also studies about 
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fed-batch strategy to produce microalgal biomass under non-axenic conditions have been 

proposed (Di Caprio et al., 2019). Another advantage of fermentation is the achievement of 

higher cell densities (>100 g L-1) respect to phototrophic one, reducing many of the 

problems related to recovering cells from the dilute cell concentrations (0.5-2 g L-1), which 

are generally found in outdoor ponds. 

 

1.3.1 Outdoor Cultivation: parameters affecting microalgal growth 

 

In this subparagraph a focus on the phototrophic cultivation, and in particular on the 

outdoor systems, is carried out. As said before, microalgal autotrophic cultivation can be 

performed in indoor or outdoor systems; the outdoor cultivations are nowadays carried out 

in open ponds or in closed photobioreactors with different geometries and dimensions, 

making possible to choose the best solution individually. Each attempt to cultivate algal 

biomass in this way has to face principally with problems of light amount and distribution, 

but also with temperature variations and contaminations from competitive microorganisms 

(Acién et al., 2017b). Contaminations can be reduced using closed reactors that give the 

possibility of maintaining a strict control of operating variables, reaching generally higher 

productivities. Light intensity and duration are two of the major limiting factors in 

microalgae cultivation, directly affecting microalgal photosynthesis mechanism, 

influencing thus biomass yield and their intracellular composition (Krzemińska et al., 

2014). Light amount varies inside the culture, reducing its value with the increase of 

reactor’s light path (diameter, width, etc.) or culture density. Indeed, the main objective 

and also limiting factor of a phototrophic cultivation is the introduction of sufficient light 

amount (artificial or natural) in order to allow microalgal growth up to dense populations 

(Mata et al., 2010). At very low and very high light intensities microalgae cannot grow 

efficiently, indeed at very high light intensities photoinhibition effects occur, meanwhile at 

low light intensities problems of photolimitation arise (Sforza et al., 2014).  

Thus, optimal light intensity needs to be determined experimentally in each case in order to 

maximize CO2 assimilation and to reduce the photoinhibition as much as possible. In 

addition to light, temperature is also an important limiting factor for growing algae in both 

indoor or outdoor systems. Many microalgae can tolerate  temperature increases or 

decreases, but diverging the optimum temperature by only 2 or 4  °C may lead to culture 

loss (Steyer, 2013). Moreover, overheating problems may occur in outdoor systems, 

making it necessary to use cooling systems to keep temperatures below 28-30 °C (Mazzelli 

et al., 2018a). Generally, temperature in microalgae cultures mainly increases due to the 

absorption of heat by radiation from the sunlight source; the optimal temperature for 

microalgae growth ranges from 20°C to 35°C, although some mesophilic species can 

tolerate up to 40°C (Acién et al., 2017b). Furthermore, also pH, mixing and nutrients’ 

supply have to be controlled in order to optimize the microalgal outdoor cultivation. The 

optimal pH ranges from 7.5 to 8.5, since the biomass productivity strongly decreases at pH 

above 9.0 (Acién et al., 2017b). For mixing optimization, a sufficient turbulence of 

microalgae cultures reduces the gradient of nutrients in the culture broth, avoiding thus cell 

sedimentation in the system and forcing cells to move between dark to light zones, 
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enhancing photosynthesis. As regards nutrients, their correct dosage and supply avoids that 

the cultivation works at limiting conditions in which cell productivity decreases. On the 

contrary, as already described in the previous paragraph 1.2, working under nutrient 

stressful conditions (i.e. nutrient starvation) allows the accumulation of the desired 

metabolites (starch and lipids). Consequently, the correct nutrient amount and supply 

procedure have to be carefully chosen in accordance with the purpose of the cultivation 

that will be carried out. 

 

1.4 Microalgal growth modeling 

 

In last two decades an increasing number of scientists have tried to predict microalgal 

growth and metabolites production under transient conditions of light intensity and 

temperature using empirical models (Blanken et al., 2016; Katsuda et al., 2000) or semi-

empirical models (Bernardi et al., 2017; Klok et al., 2013). The classification of these 

various types of models is very difficult and depends on what is necessary to be 

investigated. With respect to light modeling and its connection to microalgal growth, there 

is a differentiation based on the models' ability to take into account light gradients (Acién 

Fernández et al., 1997), light cycles (Quinn et al., 2011; Solimeno et al., 2017) and also 

physical phenomena (as scattering) that occur in outdoor cultures.  

Indeed, this differentiation brought to formation of three macro groups for photosynthesis 

models: 

 

o Type I models: They are able to predict the growth rate as a function of the 

incident light and the average light intensity, considering cultures inside the 

reactor in a well-mixed condition. 

o Type II models: They calculate the overall productivity as the sum of local 

productivity inside the reactor volume, without considering short light cycles. 

o Type III models: They consider the rate of photosynthesis as sum of the 

individual algae cell rates of photosynthesis that are function of their ‘light 

story’ (i.e. the light intensity experienced by an algae cell over time as it moves 

in the system). 

 

In the compartmental model developed in this thesis (paragraph 2.4) only Type I models 

are considered, assuming thus well-mixed conditions inside the reactor with the growth 

rate depending on the averaged light intensity inside the culture volume. As regards 

temperature, the modeling approaches can be divided into coupled and uncoupled, 

depending on whether the models take into account or not the potential interdependence of 

light and temperature on growth (Béchet et al., 2013). Predictive power of such models is 

usually achieved with the usage of large number of parameters that are hardly relatable to 

physical or chemical phenomena (Baroukh et al., 2017; Figueroa-Torres et al., 2017; 

Marsullo et al., 2015; Ryu et al., 2018; Solimeno et al., 2017). These problems inevitably 

affect the model validation for an end user that want to apply it to different outdoor 
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conditions respect to those used in the model development. For these reasons, there is a 

need to develop models that an end user would be easily able to handle and adapt, without 

losing accuracy (A. Mazzelli et al., 2019a). 

Another models’ classification, based on the cultivation limiting factors is resumed below: 

One limiting factor 

Light saturating conditions: 

• Balance growth approximation 

• Monod-like models 

• Droop like model   

Light depending growth (unsaturated 

light conditions): 

• Empirical models 

• Mechanistic models  

More limiting factors  

• Structured models or 

compartmental models (also 

called in this work as 

“metabolic models”) 

• Mechanistic models (River 

Water Quality Model) 

 

This latter classification will be used as reference in this paragraph and in the following 

one (paragraph 1.5). In particular in these two paragraphs only models related to those 

developed in this study will be discussed. 

 

1.4.1 Monod-like and Droop-like models 

 

Generally, the Monod-like methods are widely used to model nutrient limitation and 

primary productivity in water bodies, offering a straight-forward approach to simulate the 

main processes governing eutrophication and allowing the proper representation of many 

aquatic systems. The Monod approach is simpler because it directly relates growth with 

available nitrogen and phosphorus in the culture medium. However, it ignores the 

phenomenon of luxury uptake, where nutrients are acquired and stored at levels well 

beyond the immediate demand for growth (see Fig. 9). By drawing on internal nutrient 

reserves, microalgae can grow at nearly maximum rates during periods of nutrient 

depletion. The Droop method relates algae and plant growth to their internal nutrient 

levels, or cell quotas, and the minimum cell quotas, which are the internal nutrient 

concentrations below which growth ceases (see Fig. 10). This method allows nutrient 

luxury uptake to be taken into account, but it is more complex from a computational 

standpoint. The Droop method requires the mass balance of the internal nutrient pool to be 

calculated, considering the contributions from nutrient uptake from the water column, and 

the losses through demand and growth. The relative computational complexity required by 

the Droop method delayed its implementation in compartmented and dynamic water 

quality (see subparagraph 1.4.2). 
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Fig. 9 Examples of Monod-like models used to estimate the specific growth rate in different conditions 

(Béchet et al., 2013). 

 

Fig. 10 Examples of a Droop-like model used to estimate cell growth and luxury uptake(Lemesle and 

Mailleret, 2008). 
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1.4.2 Compartmental Models (Metabolic Models) 

 

As described in previous subparagraph 1.4.1, physiological models try to describe the 

dynamic behavior of photosynthetic cells, trying to simulate the actual mechanisms that is 

involved in the cells’ growth. One promising modeling framework is based on Dynamic 

Flux Balance Analysis (DFBA) (see subparagraph 1.5.2). A DFBA model formulation is 

the integration of genome-scale metabolic models with mass conservation laws applied to 

the extracellular environment (Mahadevan et al., 2002). Indeed, this sort of models are 

used not only to model the photosynthetic mechanisms inside microalgae, but also to 

model the metabolic pathways occurring inside the cells in all kinds of cultivations 

(phototrophy, heterotrophy, mixotrophy), in order to simulate the metabolites 

accumulation. In the simple Flux Balance Analysis (FBA), models are based on the 

assumption that the intracellular reaction network has reached a quasi-steady state 

(balanced-growth assumption). Initially in the DFBA development was assumed that the 

intracellular dynamics were faster than extracellular dynamics such that the quasi-steady 

state approximation for the FBA model remained valid. For organisms that undergo to 

fluctuations of cultivation conditions (e.g. nutrient depletion or repletion), this assumption 

is not justifiable because dynamic intracellular accumulation and consumption are essential 

in the metabolism of the cells.  

Fig. 11 Formulation of a FBA problem (Orth et al., 2010). 
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For this reason, the DFBA formulation was modified with the addition of intracellular 

dynamic states. In Fig. 11, for a better clarity, a schematic formulation of a generic FBA 

problem is shown. Initially in the FBA studies only Chlamydomonas reinhardtii was 

generally chosen as a representative of algal species, due to its versatile and complete 

metabolism. Afterwards, other species have been used as reference for this method: e.g 

Synechocystis (Shastri and Morgan, 2005) or Chlorella sorokiniana (Baroukh et al., 2017). 

The reconstructed metabolic network of C. reinhardtii consists of 458 metabolites and 484 

metabolic reactions. Almost half of the metabolites included in the network are present in 

the chloroplast, which is a result of the large number of reactions localized to the 

chloroplast (212 out of 484). The cytosol acts as the 'hub' of transport for metabolites as 

well as the polymerization location for most macromolecules; as a result, roughly one third 

of the metabolites in the model are localized there. Another significant portion of reactions 

in the model function as intracellular transporters, which indicates the high 

interconnectivity between the compartments.  As example of FBA, the Baroukh et. al work 

(Baroukh et al., 2017) based on the dynamic metabolic modeling of heterotrophic and 

mixotrophic microalgal growth on fermentative wastes, is presented. Indeed, in Baroukh 

work, not only photosynthesis mechanism is studied, but also the uptake of an external 

organic carbon source is investigated for a more complete analysis. In Fig. 12 the central 

carbon metabolic network, reconstructed by Baroukh, is shown. In particular, the central 

carbon metabolic network is composed of photosynthesis, the glyoxysome, citric acid 

cycle, glycolysis, carbohydrate synthesis, pentose phosphate pathway, lipid synthesis, 

oxidative phosphorylation, protein, DNA, RNA, chlorophyll and biomass synthesis.  

 

Fig. 12 Central carbon metabolic network of a unicellular microalga decomposed into three sub-networks 

presented in Baroukh’s model (Baroukh et al., 2017). 

 

During photosynthesis, inorganic carbon (CO2) is assimilated using light energy to produce 

a 3-carbon sugar glyceraldehyde 3-phosphate (GAP). In the glyoxysome, the acetate and 
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butyrate are degraded to Acetyl-CoA, which is then transformed to succinate (SUC) thanks 

to the glyoxylate cycle. SUC and GAP are then used as primary precursors to produce 

precursor metabolites and energy via the Tricarboxylic Acid (TCA) cycle for protein, 

DNA, RNA, carbohydrate and lipid synthesis. The metabolic model described by Baroukh 

is based on the Dynamic Reduction of Unbalanced Metabolism (DRUM) previously 

developed by the same author (Baroukh et al., 2016). DRUM approach defines the sub-

networks (visible in Fig. 12) as metabolic functions and take into account cellular 

compartments; indeed, the metabolites situated at the junction between the sub-networks, 

can therefore have dynamics of accumulation and depletion. Each sub-network is then 

reduced to macroscopic reactions (MRs) using Elementary Flux Mode analysis (EFM). In 

Fig. 13 the Elementary Flux Mode (EFM) applied to the schematization of Fig. 12, listing 

also the macroscopic reactions with their rates (kinetics), is figured.  

Fig. 13 Definition and reduction of sub-networks formed from metabolic reactions of Chlorella sorokiniana 

for heterotrophic and mixotrophic growth presented in Baroukh’s model (Baroukh et al., 2017). 

 

Finally, for the model’s resolution, the dynamics of the 172 fluxes in the metabolism can 

be derived from a system of 14 differential equations comprising 14 metabolites and 5 

macroscopic reactions representing 3 compartments. The dynamic model has 10 degrees of 

freedom, and each degree is represented by a parameter that needs to be calibrated. In 

order to estimate the parameters reducing the risk of local minima, several optimizations 

were performed with random initial parameters.  

Fig. 14 Comparison between the model and experimental data for Chlorella presented in Baroukh work 

(Baroukh et al., 2017) 
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Even if the results obtained from the model are very similar to experimental data (see Fig. 

14), this approach remains always too complex and not handy for a final user. 

 

1.4.3 Mechanistic models  
 

Since in this thesis work, a model for prediction of microalgal growth in photobioreactors 

at specific outdoor conditions using multivariate statistic has been developed, some 

examples of models available in literature with the same aim are presented in this 

subparagraph. In particular, these examples are the newest representatives of other similar 

or older models available in literature. Mathematical models give the opportunity to study 

simultaneous effects of several factors affecting microalgal growth in outdoor cultivation 

(see subparagraph 1.3.1) and allow prediction of microalgal production. As previously 

described, in order to optimize one factor influencing the microalgal cultivation, the other 

factors are kept at optimal conditions in order to avoid limiting or inhibitory effects. In this 

way the developed model will depend only on single factor such as light intensity 

(Darvehei et al., 2017), temperature (Béchet et al., 2017), nitrogen (Tiwari et al., 2019) and 

photoinhibition effects (Bernardi et al., 2017), without considering also factors’ 

interactions. In literature, models of increasing complexity with two or more factors are 

few (Béchet et al., 2013; Breuer et al., 2013). As recent example of microalgal growth 

prediction model in outdoor cultivation, the Solimeno et. al work is presented (Solimeno et 

al., 2017). The model is applied to a similar raceway pond system and is based on the 

River Water Quality Model 1 (RWQM1) of the International Water Association 

(Vanrolleghem et al., 2001), selected because considers microalgal activity. The 

conceptual schematization of the model is shown in Fig. 15.  

 

Fig. 15 Schematization of Solimeno et al. model (Solimeno et al., 2015). Microalgae are represented by 

green ellipse, substrates by rectangles, gaseous species by triangles and species depending on algal activity 

by diamonds and circles. Other nutrients (e.g. phosphorus) and micronutrients are not limiting factors.  

 

This figure shows that microalgae grow with light, consume substrates (i.e. carbon and 

nitrogen) and release oxygen; in particular the model considers microalgae growing inside 

wastewaters. For this reason, the other nutrients (e.g. phosphorus) and micronutrients are 

not considered as limiting factors because they are usually highly available in wastewater. 
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Ass result of microalgal activity, hydroxide ions concentration and pH increase. Increasing 

pH displaces the equilibrium of the carbon species towards the formation of carbonates. In 

darkness, endogenous respiration and inactivation of microalgae release carbon dioxide, 

the concentration of hydrogen ions increases and pH decreases. By decreasing pH, the 

carbon equilibrium shifts and carbonate turns into bicarbonate, which can be used as 

substrate again in the presence of light. Furthermore, in Fig. 16 the mathematical 

description of the model’s processes, in terms of process rate, is resumed. It is visible in 

Fig. 16 that the increase of microalgae biomass (processes 1a and 1b) per unit of time 

(growth rate) is expressed as the product of their maximum specific growth rate (μALG) by 

their concentration at that point (XALG), by substrate functions (in the form of Monod 

functions) that limit or inhibit their growth and by two corrective factors (ηPS and fT,FS), 

that are respectively the photosynthetic and the thermic-photosynthetic factor. 

These latter factors are used to model the temperature and light effects on photosynthesis 

and consequently on growth.  

Fig. 16  Mathematical description of the processes used in Solimeno et al. model (in terms of processes rates) 

(Solimeno et al., 2017). 

 

In Fig. 17 the equations related to fT,FS and ηPS are shown; in particular the photosynthetic 

factor (ηPS) takes into account the effects of light intensity (I) and excess of oxygen (SO2) 

on photosynthesis and therefore on microalgal growth (fL is the light factor and fPR the 

photorespiration factor). The photosynthetic reactions follow the state model described in 

Wu model (Wu and Merchuk, 2001) in which PSUs inside microalgae are present in three 

different states: resting (x1), activated (x2), and inhibited (x3) (see subparagraph 1.4.1).  

Fig. 17  Equations used to describe temperature and light effects in the model introduced by Solimeno et al. 

(Solimeno et al., 2017). 
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The state in which microalgae can grow is x2, indeed in Fig. 17 is visible that fL=x2. As 

regards temperature, the thermic photosynthetic factor (fT,FS) takes into account the effects 

of temperature on microalgae growth and also on endogenous respiration and inactivation 

processes (see Fig. 17). In order to solve this model, in Fig. 18 the calculation of the 

reaction rate for each component of the model (ri) is showed in the red-bordered sum, 

where i is the number of components and j is the number of processes, ρj is the reaction 

rate for each process j and vi,j is the stoichiometric coefficient.  

 

Fig. 18  Matrix of stoichiometric parameters that relates processes and components through stoichiometric 

coefficients (Solimeno et al., 2015).  

 

Note that microalgae grow with both carbon dioxide (SCO2) and bicarbonate (SHCO3) (ρ1a 

and ρ1b) and in the matrix of stoichiometric parameters (Fig. 18) only the reaction rate of 

carbon dioxide is affected by microalgae growth because the concentration of bicarbonate 

is already in chemical equilibrium with it. 

Another example, completely different from the previous one, of microalgal growth 

prediction model in outdoor cultivation is represented by Huesemann et al. model 

(Huesemann et al., 2016), applied to an open pond system. The conceptual scheme of this 

model is shown in Fig. 19. 

 

Fig. 19 Conceptual scheme of the microalgal growth prediction model introduced by Huesemann et al. 

(Huesemann et al., 2016).  
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Particularly, in this model light and temperature are assumed to be as key and 

instantaneous determinants of microalgae growth and productivity, and that no other factor 

(such as nutrients, CO2, and mixing) limits or inhibits growth. Furthermore, also pH 

remains constant via feed-back controlled CO2 addition. In Fig. 20 the principal equations 

used to develop this model are resumed. 

 

Fig. 20  Equations used to describe microalgal growth in outdoor open-pond cultivation in the model 

introduced by Huesemann et al. (Huesemann et al., 2016).  

 

It is visible that the specific growth rate depends only on two factors: light and 

temperature. As regards light (I) a simple Beer–Lambert's law, for a given biomass 

concentration (B), is used to describe light penetration inside the culture volume at each 

defined height (z). Particularly, the culture volume is discretized into n equal volume 

layers orthogonal to the incident light and the biomass concentration in each layer is 

assumed to increase exponentially from B(t) to B(t + Δt), as visible in Fig. 20. In 

particular, this light model falls within the Tipe I definifition described in paragraph 1.4. It 

is assumed that individual cells respond instantaneously to the new light conditions as they 

enter each successive volume layer and that they exhibit the corresponding experimentally 

determined specific growth rate for that particular light intensity. In this model also the 

scattering phenomena is taken into account, since in Beer–Lambert's law the light 

attenuation coefficient (ksca) is used. Since overnight biomass loss due to dark respiration 

can have a significant and negative effect on biomass productivity, in this model also the 

biomass loss rate (μdark), in the absence of light, is calculated as a function of temperature 

(T) and of averaged light intensity (Iavg) to which the cells are exposed in the mixed pond 

culture. Moreover, since both μ and μdark,, in addition to light (I or Iavg), are influenced from 

temperature, in this model the dependence f(T,I) is added and considered strain-specific 

and to be determined experimentally prior to running the model. In particular the 

measurements of the specific growth rate (μ) as a function of incident light intensity and 

temperature were determined as a function of temperature in dilute, light-sufficient, 

exponentially growing shaker flask batch cultures placed on a thermal gradient incubator 

(8 temperatures, ranging from ca. 13 to 45 °C).   

As last example a dynamic model, developed by Marsullo et al. (Marsullo et al., 2015), of 

microalgae outdoor cultivation in flat panel photobioreactors is presented.  
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 Fig. 21  Model structure presented by Marsullo et al. (Marsullo et al., 2015). 

 

Even this model is completely different from the previous and includes all physical and 

chemical quantities that mostly affect microalgal growth. The equation of the microalgal 

specific growth rate is influenced by: CO2 and nutrients concentration in the water, light 

intensity, temperature of the water in the reactor and by considered microalgal species. The 

schematization of this model can be found in Fig. 21. The mass and energy produced by 

this cultivation system are calculated by the mathematical model through time-dependent 

mass and energy balances as visible in Fig. 21, where the inputs and outputs of the model 

are indicated. In this model a dynamic approach for the resolution of energy and mass 

balances was preferred to a steady state analysis since the laws describing the outdoor 

microalgal growth are time dependent and a dynamic model gives a deeper and more 

accurate evaluation of microalgae production and energy consumption over the time 

period. Mathematically the model is constituted by a differential algebraic equations 

system, converted into a set of algebraic equations by finite differences (backward) 

approximation. Some of the differential equations depend on one another, making 

impossible to solve them in a sequential logic: it is, therefore, necessary to solve them 

altogether as a system. A peculiar characteristic of this model is its application to two 

different microalgae species, considering thus the species as input parameter to add in the 

model. Differently from other models that consider only weather or position’s conditions 

for the outdoor model’s development, in Marsullo model also the “composition of the inlet 

water” and the “operating strategy” are added as input. In particular this latter parameter is 

divided in two different strategies: if the objective consists in searching the hydraulic 

retention time (HRT) required to reach a certain microalgae concentration in the reactor, 

the initial and the final microalgae concentrations are to be supplied as input information to 

the model. If the HRT is fixed along the whole time period, then the input data will be the 

initial concentration and the HRT, leaving the final concentration in the reactor free to 

change. 
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In Fig. 22 the equations for growth rate (rgA) are resumed. In particular XA is the mass 

concentration of microalgae and μA is the specific growth rate depeding, in addition to 

nutrients, also on light intensity factor (fI) and on temperature factor (fT). In this model, 

only nitrogen is taken into as limiting factor and the presence of micro nutrients have not 

been introduced. For all parameters’ definition see the corresponding reference (Marsullo 

et al., 2015).   

 

Fig. 22  Equations used to describe microalgal growth in outdoor flat panel cultivation in the model 

introduced by Marsullo et al. (Marsullo et al., 2015).  

 

Focusing only light modeling, in Marsullo’s model a detailed description of light influence 

on microalgae growth in outdoor cultivation is reported, as visible in Fig. 23 where the 

equations used to model light’s effects are shown.  

Fig. 23  Equations used to describe light behavior in outdoor flat panel cultivation in the model introduced by 

Marsullo et al. (Marsullo et al., 2015).  

 

Also in Marsullo model the Lambert–Beer’s law is used to model the overall light gradient 

in the culture volume (I (y,z,t)), integrating it in order to find a mean value of irradiation 

for whole culture inside the reactor at a given time t. In this model, also the dependence on 

sunlight changing position during the day is considered, using a geometrical parameter for 
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direct radiation (Gdirect), depending on solar incidence angle (θ) and on solar zenith angle 

(θz). Furthermore, also the dependence on light scattering (Gdiffuse), and light reflection (Rs 

and Rp) are considered in the model.  

As last point, in Fig. 24 the mass and energy balance equations used in the model are 

represented. Even in this case, for all parameters’ definition see the corresponding 

reference (Marsullo et al., 2015).   

Fig. 24  Mass and energy balance equations used in the model introduced by Marsullo et al. (Marsullo et al., 

2015).  

 

In Fig. 24 both nutrient and microalgal mass balances are included, indeed M is the 

concentration of the respective component in the bioreactor and M* is the saturation 

concentration of the associated dissolved element.  

1.5 Models for prediction of metabolites accumulation  
 

For the same reason of subparagraph 1.4.3, since in this thesis work a model for prediction 

of metabolites accumulation inside microalgal cells in phototrophy has been developed, 

some examples of models available in literature with the same aim are presented in this 

subparagraph. The common feature of these models is the intent to understand and 

simulate the influence of factors (nutrients inside culture medium, light, temperature, etc.) 

on microalgal growth and on metabolites accumulation, in order to optimize a specific 

feature of the cultivation process (trying for example to maximize the starch production 

respect to lipids). In order to achieve these goals the developed models available in 

literature show different levels of complexity and accuracy, moving from empirical 

(Bekirogullari et al., 2017; Bernard et al., 2016; Kumar et al., 2016; Olivieri et al., 2014; 

Ryu et al., 2018), that with a proper parameters’ fitting give good results and are more easy 

to handle, to structured models based on more complex but accurate metabolic flux balance 

analysis (MFBA) (Baroukh et al., 2017; Breuer et al., 2015a; Fachet et al., 2014; Flassig et 

al., 2016). Generally, as basis of the metabolites’ accumulation empirical modeling, during 

stress conditions due to nitrogen starvation, the equations based on Droop model are used 

(Droop, 1968; Mairet et al., 2011). In particular, amongst all models of this type available 

in literature, there is a lack in simulation (in handy but also accurate way) of the entire 

starch trend, describing also the decrease phase of its intracellular quota (see Fig. 6). 

Moreover, focusing of empirical models, they are developed mainly for phototrophic 

cultivations with few applications to mixotrophy, (Deschênes et al., 2015; Figueroa-Torres 

et al., 2017) but none of them is applied or switchable to heterotrophy (dark fermentation). 

On the opposite side, even if rigorous models can be applied to all cultivations type, they 

are not handy and require high computational costs for a final user with a large number of 

parameters to estimate.  
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One aim of this thesis work, well described in the following sections, is thus the 

development of a model easy to handle and to adapt to the specific cultivation condition, 

having at the same time a firm metabolic structure that guarantees good results in terms of 

predictive accuracy. 

 

1.5.1 Empirical models  
 

In this subparagraph an overview on empirical and semiempirical models used to model 

products’ accumulation inside microalgae is resumed. As has been done in subparagraphs 

(1.4.1-1.4.3) some representative examples of what is available in literature is presented, 

focusing only on metabolites’ modeling without considering the other cultivation’s 

parameters (light, temperature, pH, etc.) as done in previous paragraph. As first example, 

the Bernard et al. (Bernard et al., 2016) work is presented. In particular, the cited article is 

not the last and only work available in literature, since other studies have been done by this 

author on this topic (Baroukh et al., 2017; Béchet et al., 2017; Bernard, 2011; Bougaran et 

al., 2010; Mairet et al., 2011). 

In Fig. 25 the schematization of the metabolic pathways developed in the Mairet et al. 

work (Mairet et al., 2011), used also in the cited Bernard work (Bernard et al., 2016), is 

shown. 

Fig. 25 Representation of the carbon flows used in Bernard et. al model (Bernard et al., 2016). 
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In particular the functional compartment (f) includes the biosynthetic apparatus (proteins 

and nucleic acids) and the structural material (mem- branes mainly made of glycolipids 

and phospholipids). Furthermore, the storage pool is divided into a sugar reserve 

compartment (g) and a neutral lipid reserve compartment (l). In Fig. 25 the model’s carbon 

flows start with the carbon (CO2) uptake that is first transformed in sugars and after in 

functional products and lipids. This behavior is different from the assumption of the 

compartmental model presented in this thesis work (paragraph 2.4) and from results 

available in literature (Fig. 6), in which the simultaneous starch and lipids production with 

different rate is showed. In Fig. 26 the principal equations used to model the desired 

metabolites’ accumulation/production in Bernard model, as intracellular quotas, are 

represented.  

Fig. 26 Equations used in Bernard et. al model for the representation of metabolites’ accumulation inside 

microalgal cells(Bernard et al., 2016).  

 

Similarly, to the compartmental model of this thesis (paragraph 2.4), in Bernard work the 

nutrient uptake and biomass growth are uncoupled processes and the nutrient are taken up 

by the microalgae to make cellular nitrogen (n) with a rate ρ(s), where s is the nitrogen 

available in the culture medium. Furthermore, is visible in Fig. 26 that the specific growth 

rate µ(qn) is in line with the Droop modelling approach (Droop, 1968), where µ∞ and Q0 

represent respectively the theoretical maximum growth rate and the minimum nitrogen 

quota allowing growth. In addition to Droop, the specific growth rate defined in Bernard 

model µ(qn, I, θ) depends also on light (I) and on pigments’ amount(θ); the dynamics of 

this latter (θ)̇  are visible in the equations of Fig. 26 (for the definition of all parameters and 

equations used in Bernard model, see the cited work (Bernard et al., 2016)). Since this 

model is applied on chemostat cultivation conditions, the starch trends are not taken into 

account since they are not comparable with conditions used in the model described in 

paragraph 2.4.  

Another example of empirical compartmental modeling is constituted by Figueroa-Torres 

work (Figueroa-Torres et al., 2017) applied to a mixotrophic cultivation. In Fig. 27 the 

model scheme is represented. This work, differently from Bernard is focused on kinetic 

modelling of starch and lipid formation during mixotrophic, nutrient limited microalgal 

growth. Furthermore, differently from the model developed in this thesis, the 
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interconversion between starch and lipid is not present in Figueroa-Torres model. Indeed, 

the model is not able to simulate the non-monotonous starch trend, occurring inside 

microalgae after a certain period of nitrogen starvation. 

 

Fig. 27 Model schematization proposed by Figueroa-Torres et. al (Figueroa-Torres et al., 2017) 

 

The reason of this behavior is also due to the model structure that don’t calculate the 

products’ dynamics as quotas (with exception of nitrogen quota qn) but as concentration  

(g L-1), as visible in Fig. 28 where the model equations are resumed (for the definition of 

all parameters and equations used in Figueroa model, see the cited work (Figueroa-Torres 

et al., 2017)). 

Fig. 28 Principal equations used in Figueroa-Torres et. al model for the representation of metabolites’ 

accumulation inside microalgal cells (Figueroa-Torres et al., 2017).  

 

In Fig. 27-28 can be seen that, due to the mixotrophic metabolism, the specific growth rate 

depends on nitrogen (as Droop model), on light (I) but also on substrate’s (Acetate=A) 

concentration inside the culture medium. Furthermore, starch concentration is not 

influenced by lipids but only by the amount of active biomass (x*); also the nitrogen uptake 

inside the cell depends on both extracellular nitrogen and acetate concentrations. In 

general, in this model a significative number of parameters (31) and equations are used to 

simulate the microalgal mixotrophic metabolism and products’ accumulation, requiring 
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first a sensitivity analysis, that reduced to 27 the parameters used in the model, and after a 

double optimization step with Simulated Annealing (SA) algorithm and Successive 

Quadratic Programming (SQP) method. All these steps make the model cumbersome and 

complex. 

As last example, the model introduced by Ryu et. al (Ryu et al., 2018) is described.  

In Fig. 29 a summary of the metabolic pathways described in the model is shown. 

 

Fig. 29 Model schematization proposed by Ryu et. al (Ryu et al., 2018). 

 

Fig. 29 is similar to that presented by Bernard with but with some differences.  

Indeed, in this model is assumed that the nutrients’ uptake from bulk to cellular phase via 

cell membrane is splitted in two: one is connected to the carbon source (CO2) with an 

uptake rate of ρC and the other depends on nitrogen concentration uptake with a rate ρn. 

This division is visible also in the equations represented in Fig. 30, in which a new variable 

µC, constituted by the carbon partitioning rate, is added to the classical µn of Droop. This 

variable depends in turn on carbon partition rate due to membrane lipids (m) and to storage 

lipids (s). 

Fig. 30 Principal equations used in Ryu et. al model for the representation of metabolites’ accumulation 

inside microalgal cells (Ryu et al., 2018).  

 

Differently from Figueroa-Torres’ model, in this case the metabolites dynamics are 

calculated considering intracellular quota but without succeeding in representation of non-

monotonous starch trend (see Fig. 31), even in presence of a large number of parameters 

used to make the model more accurate. 
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Fig. 31 Ryu model’s results in terms of metabolites quota dynamics. (Ryu et al., 2018). 

 

1.5.2 Structured models (Metabolic Flux Balance Analysis) 

 

In this subparagraph an application of rigorous modeling for the representation of 

metabolites accumulation inside microalgal cells is presented. As anticipated in 

subparagraph 1.4.2, the Flux Balance Analysis and its improvement Dynamic Flux Balance 

Analysis (DFBA) are a powerful and complex techniques able to simulate the metabolic 

pathways inside microalgal cells in all types of cultivations, focusing on both growth and 

metabolites accumulation. As application of DFBA in a phototrophic cultivation, aimed to 

model the high added value products storage, the Flassig et al. model (Flassig et al., 2016) 

is presented. The DFBA model developed in that work consists of two main components, a 

metabolic model of the microalga (Dunaliella salina) and a dynamic model of the 

photobioreactor environment. The simulated dynamic state variables are: the biomass 

concentration on dry weight basis X, the extracellular nitrate concentration CNO3 and the 

intracellular metabolites, which are the chlorophyll fraction of total biomass ωChl, the β-

carotene fraction of total biomass ωCar, and the nitrogen cell quota ωN. In this model since 

a genome-scale metabolic network reconstruction for D. salina was not available, the 

metabolic network reconstruction of the green fresh water alga Chlamydomonas 

reinhardtii is used as model basis. As first consideration, the light energy available for 

photosynthesis (𝐸̅𝑥) is assumed to depend on chlorophyll fraction with an efficiency η 

visible in Fig. 32, where the principal equations used to define the main metabolic fluxes 

are shown. 
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Fig. 32 Principal equations representing the exchange fluxes proposed in Flassig et al. model (Flassig et al., 

2016).  

 

As representative of the exchange fluxes’ equations shown in Fig. 32, a quick explanation 

for the nitrate metabolization flux is carried out. The rate at which the internal nitrate 

storage is metabolized, is denoted by 𝜈𝑁𝑂3,𝑚𝑒𝑡; as with all other exchange fluxes, the sign 

convention implies that a negative value indicates a consumption of nitrate. The lower 

bound on nitrate metabolization rate is given by 𝜈𝑁𝑂3,𝑚𝑒𝑡
𝐿𝐵 , visible in Fig. 32 and the 

maximal flux value 𝜈𝑁𝑂3,𝑚𝑒𝑡,𝑚𝑎𝑥 is considered as a model parameter. The metabolization is 

inhibited as the nitrogen cell quota ωN reaches its minimal value ωN,min. Furthermore, it is 

assumed that no nitrate is synthesized through this flux and therefore the upper bound of 

the nitrate metabolization flux is set to zero. The other boundaries are referred to 

chlorophyll and carotenoids accumulation’s fluxes (for additional information, see the 

reference work (Flassig et al., 2016)). 

In Fig. 33 the equations used to model the photobioreactor’s dynamic are resumed.  

Fig. 33 Equations representing the dynamic of a flat-plate photobioreactor proposed in Flassig et al. model 

(Flassig et al., 2016).  

 

It is visible in Fig. 33 that Droop model is used to represent limitation of nitrogen due to 

internal accumulation. The model, as the one developed in this thesis work (see paragraph 

2.4), promotes the idea that growth depends on the stored intracellular pool of nutrients 

(mainly on nitrogen) and not directly on the extracellular concentration. On the other side, 
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respect to the model of paragraph 2.4, it requires high computational cost (due to the high 

number of reactions/fluxes considered) and a large number of parameters to be optimized. 

 

1.6 Multivariate models 

 

Since in this work an empirical model to predict microalgae growth in outdoor cultivation 

system, using multivariate statistics, is implemented to overcome the problems of complex 

mathematical models (see further paragraphs), a brief introduction to these methods used 

for similar applications is carried out. In particular, the multivariate statistical projection 

methods PCA (Principal Component Analysis) and PLS (Partial Least Square) are used for 

this purpose. PCA and PLS were initially used in process control for their ability to 

compress multidimensional data, extracting from them useful informations by projecting 

these data into a low-dimensional space having as new reference system the principal 

components (Härdle and Simar, 2015). In particular, for algae production both techniques 

have been used to analyze the water chemistry conditions in three wastewater stabilization 

ponds with excessive algae growth and fluctuating pH, finding correlations between 

variables (pH, temperature, light, dissolved oxygen, etc.) and developing a multivariate 

regression model for pH as a dependent variable (Wallace et al., 2016). Other similar 

applications were used to study and identify correlations between different algal species 

present in Lake Wingra (Allen and Koonce, 1973) and also to illustrate the influence of 

environmental variables on phytoplankton composition in the Vaal River (van Vuuren and 

Pieterse, 2005). Unlike previous works, in this paper an innovative use of PCA 

and PLS methods is developed, not only to reduce data redundancy but also to predict 

microalgal growth in a specific period of the year with defined weather and cultivation 

conditions. Further informations about these two methods are reported in the Materials and 

Methods section (paragraph 2.3). 

 

1.7 Microalgal downstream processes 

Nowadays, as anticipated in subparagraph 1.2.1, the interest in molecules with high added 

value arising from bio-sources is constantly growing. In this context microalgae can 

represent a valid alternative for their various interesting compounds, moving from lipids to 

starch and pigments, depending on cultivation conditions. The presence of these high-

added value compounds has increased the need of implementation of new microalgal 

growth models (A. Mazzelli et al., 2019a; Mazzelli et al., 2018b), reactor configurations, 

but also simulations of the subsequent extraction processes (A Mazzelli et al., 2019; A. 

Mazzelli et al., 2019b). These high added value compounds are extracted by classic 

(Cartens et al., 1996; Ferrell and Sarisky-Reed, 2010) or innovative solvents (Cicci et al., 

2018), that in the most cases are toxic and need to work with high temperatures, causing 

thus thermal degradation of the extracted biomolecules (Mercer and Armenta, 2011). For 

these reasons the scientists’ attention is moving toward the use of green solvents and 

between them supercritical CO2 (sCO2) is catching on ever more. sCO2 is the most used 

supercritical fluid because of its skill to reach the supercritical state (31.1°C at 73.8 bar) at 
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temperature close to the Standard Ambient(25 °C), allowing to extract heat-sensitive 

compounds without degrading them (Sapkale et al., 2010). In order to sell the extracted 

molecules, such as fatty acids and carotenoids, from the oily phase it is necessary to carry 

out a fractionation of the microalgal oil coming out from the extraction step. The most used 

separation technology in the chemical industry doing this is represented by distillation (Liu 

and Jobson, 1999; Ponce et al., 2015) including also the vacuum distillation (Andrzej 

Gòrak and Zarko Olujic, 2014; Treybal R.E., 1980). The main problem of this technology 

is that the column’s bottom will work at temperature too high for the preservation of the 

thermosensitive molecules such as those found in microalgal extracted oil (Ketenoglu and 

Tekin, 2015). Moreover, at each stage of the column, the vapor liquid equilibrium is 

reached, and this implies too high residence times. Due to these reasons, conventional 

distillation techniques are not suitable for fractionation of the oil extracted from 

microalgae. Molecular distillation, or short path distillation, is generally accepted as the 

safest method to separate and purify thermally unstable compounds (Fregolente et al., 

2010; Wang et al., 2009). Specifically it is a special type of very high vacuum distillation 

(between 0.001 and 0.01 mbar), where the distance between evaporation and 

condensation’s surface that the molecules have to cross is smaller than their mean free path 

(defined as the average distance traveled by a particle between two successive collisions) 

(Lutisan and Cvengros, 1995). In this work, in addition to models for prediction of 

microalgal growth and metabolites accumulation, a study of the downstream processes for 

the extraction (using sCO2) and purification of the high added value metabolites (with 

molecular distillation) has been carried out. For this reason, in the following subparagraphs 

a focus on the methodologies investigated for microalgal downstream treatment is 

resumed. 

 

1.7.1 Supercritical CO2 extraction 
 

The supercritical fluids’ extraction is a process that allows the extraction of one or more 

components (such as lipids), from a matrix (such as a microalgae) with the usage of 

supercritical fluid as solvent. Generally, a component is in a supercritical state when it has 

higher pressure and temperature than the critical point (Pc, Tc). In Fig. 34 the regions of 

temperature and pressure in which a given substance (in this case CO2) is present as solid, 

liquid and gas, are depicted.   
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Fig. 34 Phase diagram for carbon dioxide. Beyond the critical point carbon dioxide becomes a supercritical 

fluid, with a state having properties of both gas and liquid (Leitner, 2000).  

 

It can be noticed, that the balance between the gas and the liquid starts at the triple point, a 

in which the gaseous and liquid phases are no longer distinguishable. 

The transition from these two different phases (gas and liquid) to a single phase 

(supercritical) is even more evident in the figure below (Fig. 35), always referred to CO2. It 

is clear that initially the two phases are separated from a meniscus. With the increase in 

temperature and pressure the difference between these two phases, however, is less 

evident, and the meniscus, although still visible, is always less defined. Finally, when 

supercritical conditions are reached there is no distinction between two phases and the 

separation meniscus is no longer visible. The main characteristic of supercritical fluids is 

that they have properties specific to gases and other liquids. They have, for example, a 

density similar to that of liquids, while viscosity and diffusivity are closer to those of 

gases. Due to its lower viscosity, a supercritical fluid is able to penetrate more deeply in 

the microalgal matrix containing the desired substances. This, in addition to the high 

diffusion, typical of gases, allows these fluids to spread more easily through solids than 

conventional organic solvents (Herrero et al., 2006). 

Fig. 35 Pictures of a variable volume view-cell with a transparent sapphire window showing the phase 

transfer of CO2. (A) vapor-liquid phase equilibrium; (B) vapor-liquid phase equilibrium with an increased 

temperature; (C) the densities of the liquid and vapor phases are more and more similar and finally (D) the 

Critical Point is reached and the two phases are no longer distinguishable. In D the CO2 reached the 

supercritical state (Cunico and Turner, 2017).  
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However, since supercritical fluids’ density is similar to that of liquid, their activity as 

solvent is very similar and can be adjusted by controlling pressure and temperature. 

Indeed, one of the main feature of a supercritical fluid is the possibility to modify 

appreciably its density by changing pressure and/or temperature, changing consequently 

also its solubility. 

Focusing on CO2, it has several interesting features that are listed below: 

• It is not toxic for human health, differently from most of the organic solvents (for 

example chloroform) 

• It is not flammable 

• It is odorless 

• From the chemical point of view it is an inert, so extracted components’ 

isomerization, oxidation or hydrolysis are avoided 

• Being a gas is in normal condition, it is easily separable from the solute when the 

extraction process is finished (Abbas et al., 2008). 

• Has a highly competitive cost compared to normal organic solvents 

• It can be recycled, resulting in cost savings for both solvent and energy 

• CO2 recirculation applied to the industrial processes do not alter the environmental 

balance 

• It is generally recognized as harmless and classified as a GRAS product (Generally 

Recognized As Safe) by American Food and Drug Administration (FDA) and 

European Food Safety Authority (EFSA) 

• CO2-based processes do not contribute directly to the greenhouse effects and 

therefore global warming. Indeed, CO2 generated by other industrial processes, 

such as production of ethanol, ammonia, and hydrogen can be used as solvent, thus 

respecting the principles of green chemistry (design of products and processes that 

minimize the use and generation of hazardous substances to man and the 

environment) (Desimone and Desimone, 2014). 

• Due to its not-polar nature, sCO2 cannot be used by itself for polar molecules’ 

extraction. 

 

Regarding the last point of the list, in order to increase process selectivity and solubility of 

polar compounds in CO2, small amounts of other solvents, usually co-solvents or 

modifiers, may be added. The modifier selection, as well as the proportion with which it is 

used, usually 5-10 %, should be carefully selected in order to optimize the extraction 

(Sanchez-Camargo et al., 2017). Surely the addition of a modifier, such as ethanol, 

improves the solvation characteristics of supercritical CO2 but, nevertheless, part of the co-

solvent tends to remain in trace in the product, removing the advantage of supercritical 

CO2 by extracting completely solvent-free products (Sapkale et al., 2010). In addition to 

the extraction of high-added value products, sCO2 finds numerous applications, such as 

(Manjare and Dhingra, 2019): 
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• Extraction of essential oils from plants 

• Extraction of aromas and fragrances from natural products 

• Caffeine extraction from coffee and tea 

• Extraction of nicotine from tobacco 

• Fractionation of crude oil 

• Removal of solvent residues from waste and decontamination of soils 

• Removal of impurities from powders of pharmaceutical excipients 

 

As practical example, in Fig. 36 a sCO2 extraction pilot plant is showed. For a more 

detailed description of the process used in the work see paragraph 2.5. 

Fig. 36 Example of a sCO2 extraction pilot plant (www.separeco.it) 

. 

 

  

1.7.2 Molecular distillation separation 
 

As anticipated before, for highly thermolabile components separation, such as those 

studied in this work, it is necessary to resort to distillation methods that use very high 

vacuum. Typically for very high vacuum distillations are used two types of evaporators: 

 

• Thin film evaporators or Thin Film Evaporator (TFE) 

• Evaporator Short Path (SPE) (is the molecular distiller considered in this study) 

 

These devices, although they have a similar design, are differentiated by specific 

characteristics that distinguish them. 

 

Thin film evaporators (Fig. 37) are equipment used for separation of compounds requiring 

an operating pressure between 1 and 100 mbar (Ketenoglu and Tekin, 2015). Consists of a 

cylindrical or conical evaporator coated with a heating jacket fed with a warm fluid, such 

as oil thermal or condensing steam. The feed is shaken by a rotor, forming on the walls of 
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the heating surface a thin film with a typical thickness equal 0.5 mm. The action of the 

rotor blades creates in the interface with the surface heating a region of turbulence that 

improves both the heat and mass transfer. 

 
Fig. 37 Scheme of a Thin Film Evaporator (TFE) (Ketenoglu and Tekin, 2015). 

 

It can be seen from the figure above (Fig. 37), that between the condenser and the 

vacuum machine, which can be represented both by a steam ejector or by a vacuum pump, 

there is no other element. Indeed, in TFE the fundamental role is covered by the rotor, 

having the task of stabilizing the liquid film on the evaporating surface in order to obtain 

high vaporization rates. The action of the rotor must therefore prevent breakages in the 

film. Moreover, the action of the centrifugal force induced by the rotor itself, which 

presses the film on the heating surface, prevents the phenomenon of reverse evaporation. 

Reverse evaporation is constituted by formation of a vapor film between the heating 

surface and the evaporating film, which could lead to undesirable thermal insulation effects 

(Komori et al., 1988). 

On the other side, the Short-path evaporators (SPE) are equipment used for separation of 

compounds requiring an operating pressure which can reach 0.001 mbar. Unlike TFE, the 

condenser is located inside the cylinder surrounded by the heating shirt, as can be seen in 

Fig. 38. 
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                    Fig. 38 Scheme of a Short Path Evaporator (SPE) (Ketenoglu and Tekin, 2015). 

 

Pursuant to this configuration, SPE is also known as a Molecular Distiller. Molecular 

distillation is a distillation process in which the distance between the evaporator surface 

and the condenser surface is less than the mean free path of molecules (defined as the 

average distance traveled by a particle between two successive collisions) (Lutisan and 

Cvengros, 1995; Shi et al., 2007). Molecular distillation is recognized as the safest method 

for the separation of components with low relative volatility and high boiling points 

(Lutisan and Cvengros, 1995). This technique works in fact with variable operating 

pressures, typically, between 0.1 Pa and 1 Pa. Pressure less than 0,1 Pa would not allow the 

formation of a condensed phase, while pressures above 1 Pa would not allow good 

evaporation and thus a good separation (Stephan, 1992). The feed is fed at the top of the 

equipment and is distributed, thanks to the action of a rotor, in a thin film along the entire 

surface of the evaporator, equipped with a heating jacket. The film thickness is function, as 

well as the feed flow rate and the speed of the rotor, also of the viscosity of the fluid. Due 

to heat provided by the jacket, the more volatile components leave the film surface and 

reach the cooling surface, condensing. The liquid is then enriched with less volatile 

components and is collected on the bottom of the evaporator. In particular, the residue is 

collected in an inclined ring at the bottom of the cylinder and discharged through the 

bottom nozzle. Similarly, the distillate is collected at the bottom of the condenser. Since 

the distance between evaporating surface and condensing surface is less of the average free 

path of molecules, the more volatile components have to make a very short path, reaching 

the condenser without any delay. This condition is not verified in the 

in the case of traditional distillation processes, where vapor-liquid equilibrium is reached. 

This feature of short path evaporators make the residence times very short in the order of 

few seconds and suitable for separation of highly thermolabile components (Hickman, 

1947). In general, the free mean path (λ) is defined as:  

λ =
RT

√2πd2NAP
(Eq. 1) 

 

The parameters appearing in the previous report have the following meaning: 
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• R is the universal gas constant 

• T is the operating temperature in K 

• d indicates the diameter of the molecule  

• NA is the Avogadro number 

• P is the operating pressure in Pa 

 

By placing the condensation surface at a distance from the evaporation surface less than λ, 

the collision of molecules, rising from the liquid film before reaching the condensing 

surface, is avoided. If particles collided, a certain percentage of molecules would fall into 

the liquid film, thus decreasing the evaporation rate and efficiency of the separation. At 

pressures of the order of 0.001 mbar, the average free path of molecules is about 5 cm. 

Even if in every distillation process the driving force of separation is represented relative 

volatility between the components of the feed mixture, in molecular distillation process a 

second phenomenon occurs. In fact, when lighter molecules leave the liquid film and are 

condensed on the cooling surface, the liquid film gets depleted of more volatile 

components. This mechanism triggers a diffusion driving force, determined by a gradient 

of concentration between hot and cold zones that improves the separation. 

 

 

1.8 MEWLIFE (LIFE17 ENV IT/000180) European Project 

 

A real application of the models developed in this thesis work, described in the following 

paragraphs 2.3 and 2.4, can be found in the European Project named MEWLIFE in which 

Bio-P has a role as partner. In this paragraph a description of the project is carried out. The 

MEWLIFE (acronim that stands for MicroalgaE biomass from phototrophic-heterotrophic 

cultivation using olive oil Wastewaters) is a LIFE project that aims to demonstrate the 

environmental benefit and economic feasibility of an innovative approach to produce 

microalgal biomass in an integrated phototrophic and heterotrophic cultivation system 

using preconcentrated olive oil wastewaters (OMWW) as carbon source for growing algae, 

thus contributing to waste reuse and valorization. The duration of the project is 36 months 

(01/07/2018 start date – 30/06/2021 end date).  

 

Fig. 39 MEWLIFE logo. 
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The project has three main objectives: 

 

1) Re-using and valorizing wastewaters from olive oil production: wastewaters from 

olive oil plants are used as carbon source for algae cultivation, thus increasing biomass 

productivity, limiting the costs associated with nutrients input, and at the same time 

treating wastewaters by reducing the initial organic load of recalcitrant compounds 

(polyphenols) (PPs). These wastewaters, largely diffuse in the whole Mediterranean 

Basin, cannot be treated in conventional biological depuration plants due to the toxic 

effect of antioxidants (PPs) on active sludge. In order to overcome the limit of seasonal  

availability of olive oil waste, a pretreatment of these wastewaters is included giving an 

organic-rich concentrate to be used in microalgae cultivation during the whole year. 

2) Producing microalgal biomass: dried microalgae suitable for applications in 

nutraceutics but also exploitable in bio-plastic field. Microalgae formulations are 

already in the market in different countries (Japan, China, USA, Germany) for feed and 

food applications with an annual turnover of 80 million of US$. The biomass produced 

in the MEWLIFE project will be tested for nutraceutical applications by potential 

stakeholders evaluating the benefit due to cultivation using antioxidant-rich medium. In 

addition, samples of fractions extracted from the biomass (starch and other 

carbohydrates and lipid fraction) will be tested for the production of biopolymers, as 

alternative source to crops.  

3) Reduce cost associated with algae cultivation: the proposed integrated cultivation 

system (small phototrophic section for inoculum production + extended heterotrophic 

section for biomass production) will allow reducing at minimum level the costs 

associated with the algae cultivation in large scale applications, which is mainly due to 

the high investment costs for photobioreactors. By limiting the first step of algae 

cultivation in the phototrophic system just to the production of the inoculum needed for 

the next heterotrophic section, a reduction of the capital costs associated with large 

scale photobioreactors system will be achieved. 

 

A simplified scheme of the entire process is presented in Fig. 40 

 

The prototype related to microalgal treatments is composed of the following units (that will 

be discussed in paragraph 2.7): 

 

• Upstream unit: phototrophic growth (photobioreactor volume: 600 L) and dark 

fermentation (reactor volume: 6 m3 divided in two fermenters of 3m3). 

• Downstream unit: algal biomass harvesting, dewatering and packaging. 
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Fig. 40 MEWLIFE simplified process scheme. 

 

Fig. 41 B3 action in which Bio-P is leader and in which the models developed in this work can find an 

application. 

 

As can be seen in Fig. 41, the main action in which Bio-P is responsible is B3, dedicated to 

both microalgal cultivation (in photototrophy and heterotrophy) and downstream 

processes. Its precisely in action B3 in which the models developed in this work (see 

paragraph 2.3 and 2.4) can be applied and validated with the experimental data coming out 

from the running pilot (see subparagraphs 2.7.1 and 2.7.2). Indeed in this action, all of 

three main objective described above have to be reached and to help this achievement the 

models described in the following paragraphs could be used. The multivariate model could 

be applied to phototrophic cultivation, knowing thus how much time would be necessary to 

reach the desired concentration in a specif part of the year. The multivariate study could be 
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also applied to heterotrophic cultivation in order to analyze the principal factor influencing 

microalgal dark fermentation, finding also useful correlations between them. On the other 

side, the compartmental model applied to heterotrophy will permit to reach two important 

results, prediction of time needed to reach a fixed output concentration (at a certain glucose 

or OOMWW and Nitrate concentration; see paragraph 2.7) but also the estimation of the 

desidered metabolites quotas, accumulated during nitrogen starved conditions.  

Furthermore, it could be useful to analyze the effect of changing OOMWW composition or 

concentration on microalgal growth. With few modifications it could be applied also for 

the estimation of starch accumulation inside microalgae, showing when to stop cultivation 

in order to maximize its quota depending on OOMWW concentration. Moreover, Bio-P 

(represented by myself) collaborated to the design of the entire prototype, supporting the 

partners responsible of Basic Process Design (Technosind) and Detailed Engineering 

(NextChem). In particular, Bio-P designed the 3 m3 fermentors in all of their parts, 

supporting NextChem in the procurement and relations with suppliers (see subparagraph 

3.9.1); this design collided with some technical issues related to the available space for 

pilot installation (see Fig. 42). Furthermore, also for the packages related to phototrophic 

cultivation and downstream (centrifuge and spray dryer), Bio-P gave to Technosind and 

NextChem all the parameters needed to define the equipments’ design to be provided for 

the chosen suppliers, supporting also in this case the procurement phase on the technical 

point of view.  

Fig. 42 Area identified in Bio-P/NextChem site for the installation and operation of both phototrophic and 

heterotrophic pilot plant. 
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Chapter 2. Materials and Methods 

 
2.1 Outdoor cultivation in the pilot plant  

In this work two different algal strains named Tetradesmus obliquus and Graesiella 

emersonii were selected and cultivated in an outdoor photobioreactors (PBRs) pilot plant 

(Di Caprio et al., 2016; Mazzelli et al., 2018a) during 1 year of operation. Each inoculum 

was prepared using local tap water (ACEA, 2017) in place of distilled water (Di Caprio et 

al., 2017, 2015). The pilot plant was installed in Rome (Italy) at the Bio-P s.r.l. site (N 

41°55' 5" E 12°35' 35"); it was fitted with 10 bubble column photobioreactors (divided into 

two parallel lines called line 1 and line 2) with an operative volume of 21 L each (internal 

diameter = 14 cm, height = 150 cm), anchored to a metal support structure and equipped 

with three sampling points placed approximately 40, 80 and 120 cm from the ground (Fig. 

43).  

Fig. 43 Working pilot plant installed in Bio-P srl site (N 41°55' 5" E 12°35' 35"). 

 

They were spaced from each other approximately 30 cm and the lines were placed at a 

distance of 1.5 m each other with an orientation of 140° respect to the magnetic north (SE 

direction), minimizing thus the shading effects caused by the near building. Each reactor 

was connected to air (for mixing purposes) and to CO2 lines (for pH control). The air flux 

was generated by a membrane compressor (AIRMAC 40W) (see further paragraphs for 

more detailes). Furthermore, when foaming problems occurred, 1-2 ml of antifoam were 

added in order to avoid self-diluition process due to the superficial adhesion on the 

reactors’ top. 
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2.1.1 Aeration & Mixing 

A membrane compressor (AIRMAC 40W), having a nominal flowrate of 120 L min-1 at a 

pressure of 0.2 Kgf cm-2, was used to ensure proper aeration and suspension mixing. In 

order to dehumidify the air fed into the circuit, a glass column (Ø 3.5 cm, h 30 cm) 

containing silica gel was placed after the compressor, thus limiting humidity condensation 

in the line. 10 rotameters (FLOW METER), equipped each with a control valve, were 

installed to regulate the flowrate of air sent to each reactor; each flowmeter had a flow 

range between 0 and 5 NL min-1.  

 

A toroidal sparger (Ø 13 cm) was designed and manufactured ad hoc and positioned at the 

bottom of each reactor, connected to the aeration system with non-return valves (Ø 6x4 

mm) in order to prevent backflow of water. The sparger has been designed with holes (Ø 

0.5 mm) spaced from each other about 1-2 cm, ensuring a better mixing and diffusion of 

oxygen and CO2 inside the reactor (Fig. 44).  

Fig. 44 Toroidal sparger designed and manufactured ad hoc for culture aeration and mixing. 

 

The choice to make this system was forced, because the porous stones initially used inside 

the reactors were subjected to clogging problems due to the microalgal adhesive deposits. 

Furthermore, even the toroidal spargers showed this problem, but they needed less frequent 

maintenance, indeed their unclog was carried out only with the usage of pressurized water. 

 

2.1.2 Control system 

 

In order to ensure the monitoring of PBRs’ process parameters such as pH and 

internal/external temperature, the installation of probes connected to a feedback control 

system with a PC graphical interface, was provided. The computer program LABVIEW 
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red in input temperature and pH signals coming from the two temperature’s probes 

WE711-42-IM / PT 100 and two pH probes WQ420 (made by SIM INSTRUMENTS) and, 

based on the desired set-points, controlled the opening of the on/off valves placed at the 

battery limit of the pilot plant. Both pH and temperature were controlled only for their high 

values. Indeed, pH was controlled with injection of pure CO2 when it exceeded pH=8 in 

order to moderate the basicity of microalgal cultures, whereas the temperature was 

controlled with a water spray cooling system during hot days in order to avoid the 

overcoming of its set-point T=30° C. In particular, only one of the two temperature probes 

was connected to the cooling system, controlling thus the internal reactor temperature, 

while the other probe was positioned outside the reactor in order to monitor the external 

temperature; a justification of this set-up is resumed in paragraph 3.2. A schematic 

representation of the control system used in the pilot plant is resumed in Fig. 45. 

 

Fig. 45 Schematic representation of the pilot plant with the control system used during the experiments. 

 

2.1.3 Cooling system 

In order to control the maximum temperature reached in the PBRs during summer period, 

as anticipated in the previous subparagraph, a cooling circuit with tap water was designed 

and installed in the pilot plant. It consisted of a Polyethylene (PE) collector pipe (PN6, Ø 

16 mm) placed above the supporting structure with as many outputs as the number of the 
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reactor. From each outputs of the collector a perforated ring (Ø 17 cm), with the same 

design of the spargers, was connected and positioned at the top of each reactor. These 

perforated rings worked as water spray cooling system that, with evaporation of the falling 

water film along the reactor surface, cooled the culture volume and kept the temperature at 

set point (Fig. 46). A normally closed remote controlled solenoid valve ensured the water 

supply for the cooling circuit, while a manual valve allowed the adjustment of the water 

flow. At the lowest point of the circuit a ball tap, acting as emergency release valve, was 

placed: in case of high pressure in the loop its connection would jumped out, reducing thus 

the system pressure.  

 

Fig. 46 Active water spray cooling system. 

 

 

2.1.4 CO2 injection system 

As regards pH and the maintaining at its set-point (pH=8), an automatic system for the 

supply of pure CO2 through cylinders pressurized at 50 bar was set up, optimizing thus the 

growth conditions. The cylinders were placed in a security cage with a steel platform 

raised from the ground and protected from weathering. To obtain a pressure suitable for 

being injected in the line, a BEHRINGER pressure reduction panel with double gauge and 

manual releasing device, able to reduce the pressure up to 5 bar, was installed at the 

cylinders’ output. This first decrease in pressure was followed by an additional disc 

reducer, placed before the CO2 injection into the reactors, reducing the pressure to 1.4 bar. 

Once CO2 was passed through the second reducer, at 0.4 barg, it was conveyed into two 

normally closed solenoid valves connected to a feedback control system (subparagraph 

2.1.2), and mixed into the air by Y-connections, measuring also its flow rate with dedicated 

flow-meters. 
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2.1.5 Culture medium preparation 

Application of microalgal cultivation in large-scale requires the reduction of expensive 

resources. It is therefore necessary to use tap water, for the formulation of culture media, 

instead of distilled water used in laboratory-scale cultivations. This choice can lead to 

reduction of growth efficiency due, for example, to the higher concentration of Ca++ ions in 

tap water (Di Caprio et al., 2017). The culture medium was prepared according to the 

quantities listed in Tab. 1 for the macronutrients and in Tab. 2 for the micronutrients. Once 

prepared a 1 L solution for each nutrient, an amount of that (210 mL) was inserted inside 

each reactor with also a volume of microalgal inoculum (the amount of this will be 

specified in the following subparagraphs) and made up to the PBR mark (21 L) with tap 

water.  

 

Chemical 

compound 

Amount needed (g) for 

preparation of 

1 L of stock solution 

Amount (mL) to 

be added in each 

21 L reactor 

Nutrient’s concentration  

(g L-1) reached inside each 

21 L reactor 

NaNO3 35 210 0.35 

K2HPO4 3.05 210 0.031 

MgSO4 · 7 H2O 7.5 210 0.075 

CaCl2 · 2 H2O 3.6 210 0.036 

Citric Acid 0.6 210 0.006 

Ammonium 

ferric citrate 
0.6 210 0.006 

EDTA 0.1 210 0.001 

Na2CO3 2 210 0.02 

Tab. 1 Macro-nutrient used for culture medium preparation. 

 

 

Chemical compound 
Amount needed (mg) for preparation of 

1 L of Stock solution 

H3BO3 61.0 

MnSO4 · 5H2O 169.0 

ZnSO4 · 7H2O 287.0 

CuSO4 · 5H2O 2.5 

(NH4)6Mo7O24 · 4H2O 12.5 

Tab. 2 Micro-nutrient used for culture medium preparation. 
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2.1.6 Growth monitoring 

During each experiment, when a certain concentration was reached (1-3 g L-1), the 

microalgal suspension was collected and sent to a 95 L h-1 bucket centrifuge (Raw Power 

Centrifuge). An aliquot of the concentrated suspension was used for the subsequent 

inoculum. In order to monitor the microalgal growth trends, knowing thus when to stop the 

cultivation, two different methodologies were used: 

 

• Direct cell count by optical microscope 

• Dry weight measurement 

The cell count was performed using the Thoma-Zeiss chamber (Fig. 47).  

                                          

   Fig. 47 Thoma cell counting chamber (http://insilico.ehu.eus/counting_chamber/thoma.php). 

 

This counting chamber has a large central square (with a 1 mm2 area) that can be seen 

entirely with an optical microscope at 10x (in our experiments a MOTIC EF-NPLAN 

model was used). This central square, in turn, is divided into 16 medium squares (visible 

with a 40x objective), each of them composed by 25 small squares (9 of them are divided 

in half). Once the sample is put under the coverslip, the cell suspension reaches a height of 

0.1 mm.  

Considering these data related to one of the large squares, the volume will be:  

                                       1 x 1 x 0.1 = 0.1 mm3 = 10-4 mL. 

The count was done by counting the number of cells that fall within the 16 squares present 

in the four larger squares along the diagonal; the number of cells obtained was multiplied 

by four, indicating the number of cells that were stochastically positioned in the entire area. 

The following formula was used to obtain the concentration (106cells mL-1): 

N =
∑ni
V

∗ 106 (Eq. 2) 

Where: ni are the number of cells counted inside the squares and V is the total volume of the 

squares considered in the count.  

http://insilico.ehu.eus/counting_chamber/thoma.php
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As regards dry weight measurement, it was done by filtration of a known volume (10 mL) 

of the microalgal sample (as aqueous suspension) through a glass microfiber filter having 

pores with a diameter of 0.70 μm (VWR), by means of a vacuum pump (Vacuubrand MZ 

1C). The sampled algal suspension had to be pre-treated in order to remove any precipitated 

salts. Pretreatment was carried out with 1 mL of sodium acetate buffer solution (at 40 g L-1) 

and hydrochloric acid 37% (w/w) added drop by drop until reaching pH=4.7.  

The filter was weighed on the analytical balance in this order: 

 

- Before filtration, after a preliminary drying phase (10 minutes) at 105°C 

- After filtration (Fig. 48), always preceded by a drying phase (40 - 60 minutes) at 

105°C  

Finally, the difference between the two weight measurements gave the biomass dry weight 

(g) that divided by the volume of the sample (10 mL) gave the concentration in g L-1. 

Fig. 48 Dry weighed samples obtained after the drying phase (40 - 60 minutes) at 105°C. 

 

2.1.7 Outdoor factors’ monitoring 

Temperature and light were the two principal outdoor factors considered and monitored in 

this work. Temperature’s monitoring and control has been explained before (subparagraph 

2.1.2 and 2.1.3), the collection of temperature data was easily carried out extracting them 

directly from LABVIEW software during each experiment both for internal and external 

temperature. As regards light, the illuminance (Lux) was measured every day (at 10 am, at 

2 pm and at 5.30 pm) by using a luxmeter (LM-8000, LT-Lutron) and transformed to the 

corresponding value of Photosynthetic Photon Flux Density (PPFD) (μE m-2 s-1) through 

multiplication with the conversion factor (0.0185) for sunlight light source (A. Instrument, 

2019). Every measure was taken at three points of each reactor, at different heights from 

the ground: at the bottom (20 cm), at a middle height (80 cm) and at the top (140 cm). 

Light measurements at the bottom and middle were normalized with respect to light on the 

top, being always lower than this value. This procedure was justified by a preliminar 

statistical study (see paragraph 2.2) carried out in order to understand how to collect data. 

Futhermore, as reference of light fluctuations, light was also measured at a fixed point not 

affected by any shadowing (named as “unshaded reference point”).  
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2.1.8 Effect of nutrients and inocolum concentration 

In addition to the external factors described above, also the effect of NaNO3  (NaNO3init  in 

g L-1) and initial inoculum concentration (Cinit in g L-1) on biomass growth were studied. In 

particular, these initial conditions were varied during the first experiments in order to know 

which was the best initial condition to use (subparagraph 3.1.6). The Cinit values 

investigated in the experiment were 0.1 g L-1 and 0.3 g L-1. As regards the nitrate 

concentrations, assumed as main nutrient to be monitored for the reasons described in 

paragraph 1.5, the values investigated in the experiments were: 0.175 g L-1, 0.35 g L-1 and 

0.7 g L-1 (see Results and Discussion section). 

 

2.2 Preliminary Statistical Studies 

 

In order to define a clear data collection protocol to follow during all the experiments, a 

preliminar statistic analysis of the effects of several factors which could have influenced 

temperature and light’s measurements was investigated.  

In particular, for light studies two ANOVA tests were carried out, considering for each one 

two factors with replicates: 

 

1) The analyzed factors were: “position along the axis of each reactor” and “reactors’ 

position inside the plant”. Measures taken at different days were considered as 

replicates. 

2) The analyzed factors were: “time of measurements' uptake (part of the day)” and 

“time of measurements' uptake (different days)”. Measures taken on different 

reactors were considered as replicates.  

 

 

Considered Factor Data collection’s procedure 

Position along the axis of each 

reactor 

Measurements were taken at three positions 

(Top, Medium, Bottom) 

Reactors’ position inside the plant 
Measurements were taken on each reactor of the pilot 

plant 

Time of measurements' uptake 

(during the day) 

Measurements were taken three times  

(10 a.m., 2 p.m. and 5:30 p.m.) for each working day 

Time of measurements' uptake 

(different days) 
Measurements were taken at different days 

Tab. 3 Light factors vs. Data collection. 
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In Tab. 3 factors hypothesized to influence the measures are resumed, together with the 

explanaitions of how measures were taken. 

For temperature, a paired t-test analysis was conducted comparing thus internal and 

external temperatures in time. Data were divided in three time intervals: temperature 

increment, internal temperature constant (system control active) and temperature 

decrement. For all analyses a value of  α=0.05 was choosen and Microsoft Office Excel 

software was used for calculation. 

 

2.3 Multivariate Statistical Model 

 

In the present study two multivariate methods, PCA and PLS respectively, were used, 

firstly to investigate the effects of variables on microalgal growth, and then to develop an 

empirical model for growth estimation using MINITAB and OriginPro (OriginLab 

Corporation) software. In this paragraph a short resume of PCA and PLS methods is 

carried out. Considering a data matrix X with m rows and n columns, where the rows 

correspond to samples (or replicates) and column correspond to variables (Eq. 3), PCA will 

project the X matrix, by means of the projection matrix P, on an smaller dimensional 

subspace with new object coordinates contained in the matrix T (Eq. 4). 

 

                                                     Variables  

 Sample (replicates)     X𝑚,𝑛 = (

x1,1 x1,2 ⋯ x1,n
x2,1 x2,2 ⋯ x2,n
⋮ ⋮ ⋱ ⋮

xm,1 xm,2 ⋯ xm,n

)                                          (Eq. 3) 

 

T = XP (Eq. 4) 

 

E = X − TP′ (Eq. 5) 
 

 

The columns in T, t, are called score vectors and the rows in P, p, are called loadings 

vectors. Vectors t, and p are orthonormal, and the deviations between projections and 

the original coordinates constitute the residuals' matrix E (Eq. 5) (Härdle and Simar, 2015). 

PCA, thereby, is able to find a new basis (new directions) that best express data set, as 

linear combination of the original basis, overcoming the data varability and making visible 

informations that weren't visible before (correlation between variables, observation 

clustering, outliers, etc.). Generally, with variable dimensions higher than 2 it is necessary 

to use the Covariance matrix (Eq. 6) to identify variable redundancy, i.e. when a variable 

gives similar information of another variable causing some distortions and anomalies in the 

results. 

CX ≡
1

n − 1
XXT (Eq. 6) 
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Mostly, the Correlation matrix (Eq. 7) is preferred to the Covariance one (Eq. 6), because 

each variable (especially those with different units of measures) is scaled to a null average 

and to unit variance. 

Ri,j ≡
Ci,j

√Ci,i Cj,j
        with i, j = 1, … . , p (Eq. 7) 

 

 

Mathematically, PCA is based on a diagonalizazion of CX, minimizing thus the redundancy 

measured by covariance and yielding score and loading vectors corresponding to 

eigenvalues in descending order. The eigenvalue order represents the information 

contained in them, meaning that the first eigenvalue (related to Principal Component 1) is 

the most important because contains the most useful informations relating to the specific 

problem, being thus the most important. The other Principal Components contain less 

informations compared to PC1 and the latest mainly comprises noise.  

The Partial Least Square (PLS) is insead a regression method that can be considered an 

evolution of PCR (Principal Component Regression), because the principal components 

used are derived not only from the predictor set (X) but also from the responses (Y).  

PLS is different from PCR because it uses actively the response data during the statistical 

analysis, balancing in a better way, the informations inside both Y and X, avoiding those 

big predictor variations for PCA that are, however, useless for prediction. It also gives 

more exhaustive answers even in the presence of less detailed data in which PCR can 

fail. The PLS model can be considered to consist of outer relations (X and Y considered 

individually) and an inner relation (linking X to Y). The first (outer) relation for X 

coming from PCA (Eq. 8) is applied to the Y calculation (Eq. 9). 

X = TP′ +  E =∑thph
′ + E (Eq. 8) 

Y = UQ′ +  F =∑uhqh
′ + 𝐹 (Eq. 9) 

Notably, U, Q and F in Eq. 9 have respectively the same meaning of T, P and E in Eq. 8. 

The model's intention is to describe Y as well as is possible and hence to make ‖F‖ as small 

as possible and, at the same time, get a useful relation between X and Y. The second 

relation (inner) can be seen at Eq. 10 and symbolizes the relationship between Y and X 

with their corresponding scores: 

uh = bhth (Eq. 10) 

where 𝑏ℎ is the regression coefficient vector. 
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2.3.1 Multivariate input and output model values 

Unlike previous works, in this paper an innovative use of PCA and PLS methods was 

developed, not only to reduce data redundancy but also to predict microalgal growth in a 

specific period of the year with defined weather and outdoor cultivation conditions.  

Inputs (variables for PCA and predictors for PLS) and required outputs (responses for 

PLS) are summarized in Tab. 4. Internal and External terms refer to the positions of the 

probes relatively to the reactors; furthermore the “averaged” terms are referred to the 

variables' collected data, averaged over all their values for each experiment.  

The values of specific growth rates were obtained as: 

 

μ =
1

x

dx

dt
(Eq. 11) 

 

Where x is the microalgal concentration values (g L-1) obtained during the exponential 

growth phase. The productivity calculated at Cmax, was obtained as: 

 

Pmax =
Cmax − Cinit
tmax − tinit

(Eq. 12) 

Tab. 4 Input and Output values of the model. 
 

Where Cmax and Cinit are respectively the maximum observed biomass concentration (g L-1) 

reached in each experiment and the biomass concentration (g L-1) at the beginning of each 

experiment; likewise tmax and tinit are respectively the time at which the maximum observed 

biomass concentration was reached and the experiment start time (time zero). 

Consequently, Pmax is not referred to the final/total productivity that is actually related 

to the batch duration. 

 

 

 

 

Input Values Output Values 

Daily Illumination Time (h) 

Specic Growth Rate: µ (d-1) 
Microalgal Inoculum Concentration: Cinit (g L-1) 

NaNO3 Initial Concentration: NaNO3init (g L-1) 

Maximum Internal Temperature Averaged: Timax avg(°C) 

Maximum External Temperature Averaged: Temax avg(°C) 

Productivity calculated at Cmax: 

Pmax (g L-1d-1) 

Minimum Internal Temperature Averaged: Timin avg(°C) 

Minimum External Temperature Averaged: Temin avg(°C) 

Photosynthetic Photon Flux Density: PPFD (µE m-2 s-1) 
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Experiment Period of 2017 Notation 

A 02-March/14-March March I 

B 21-March/31-March March II 

C 4-April/14-April April 

D 19-April/10-May April-May 

E 15-May/22-May May 

F 20-June/07-July June-July 

G 10-July/27-July July 

H 22-September/17-October Sep-Oct 

I 27-October/22-November October-November 

L 24-November/22-December Nov-Dec 

Tab. 5 Experiments' Periods during 2017. 

 

The experimental data, collected from the installed outdoor pilot plant (see paragraph 2.1), 

covered a 9 months period (March 2017-December 2017) and to each experiment (totally 

10) was assigned a label (A-L) for a better clarity. In Tab. 5 the experiments with the 

corresponding label and the period in which were conducted are resumed. All the 

cultivations periods were ended when the microalgae showed a decrease of their growth 

rate due to nutrients depletion.  

                                     

2.4 Model for the estimation of metabolites accumulation  
 

One the aims of this thesis is the development of a new mathematical model able to 

represent in a simple way the microalgal metabolites accumulation, focusing on carbon 

partitioning process between TAG and starch (see subparagraph 1.2.2). As basis of the 

metabolites accumulation during stress conditions due to nitrogen starvation, the equations 

based on Droop model were used (Droop, 1968; Mairet et al., 2011). In order to reduce the 

model complexity, the number of the equations and parameters were kept at a minimum 

value without losing the rigor of a structured model. Indeed, the equations used were based 

on the metabolism pathways typical of microalgae (see paragraph 1.2), without having to 

resort to complex methods requiring high computational costs and low usability for a final 

user. Indeed, the model presented in this work, assumes that growth rate and metabolites’ 

accumulation depend on nitrogen concentration uptaked by microalgal cells. Differently 

from other works presented in literature, the model of this thesis was applied only to 

nitrogen starvation phase, focusing on interconversion between TAGs and starch 

molecules, without considering molecules produced during nitrogen replete 

conditions(Bernard et al., 2016; Mairet et al., 2011). The main feature of this model, 

differently from what is present in literature (Bekirogullari et al., 2017; Bernard et al., 

2016; Figueroa-Torres et al., 2017; Ryu et al., 2018), is the simulation of starch conversion 

in TAG after a certain period of nitrogen starved cultivation. Furthermore, the model 
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presented in the following subparagraphs was applied to phototrophy but was built to be 

easy to handle and also easy re-usable for other cultivations conditions (such as 

heterotrophy) with only few changings to do, without the need to use complex models 

specific to phototrophy and not easy editable (Breuer et al., 2015a).  

 

2.4.1 Data used for model design 

Before starting to describe the model’s structure, an introduction to data used for the model 

development is carried out in this subparagraph. As said before, the aim of this work is to 

model the carbon partitioning between starch and TAG molecules and also starch 

transformation in TAG after a certain period of nitrogen starvation in order to simulate its 

non monotonous trend. In order to do that, several experimental data found in literature 

were used for the validation of the new developed model related to phototrophic conditions 

(Adesanya et al., 2014; Breuer et al., 2015b, 2014; Zhu et al., 2014). In Tab. 6 the 

informations extracted from the cited article, with the corresponding authors, were 

resumed. From all the extracted data from the articles presented in Tab. 6, only those 

referred to the nitrogen starvation period were used in the new developed model, using as 

time zero the beginning of nitrogen starvation phase (See Results and Discussion section).  

Tab. 6 Informations obtained from articles available in literature whose data are used for validation of the 

developed metabolic model. 

 

Corresponding 

Author 

Microalgae 

Used 

Cultivation 

Conditions 

Reactor Configuration 

and Geometrical 

Dimensions 

Incident Light 

Intensity (I0) 

Adesanya et al., 

2014 

Chlorella 

vulgaris 

Phototrophy 

(Indoor 

Cultivation) 

Glass flask assumed 

planar 

Reactor depth z=0.3 m 

17.44 W m-2 

(Fluorescent 

Lamp) 

Breuer et al., 2014 
Scenedesmus 

obliquus 

Phototrophy 

(Indoor 

Cultivation) 

Flat Panel 

Photobioreactor 

Reactor depth z=0.02 m 

109 W m-2 

(White Cool 

Fluorescent 

LED) 

Breuer et al., 

2015b 

Scenedesmus 

obliquus 

Phototrophy 

(Indoor 

Cultivation) 

Flat Panel 

Photobioreactor 

Reactor depth z=0.02 m 

218 W m-2 

(White Cool 

Fluorescent 

LED) 

Zhu et al., 2014 
Chlorella 

zonfingiensis 

Phototrophy 

(Indoor 

Cultivation) 

Cylindrical 

Photobioreactor 

Diameter d=0.05 m 

32.7 W m-2 

(White Cool 

Fluorescent 

Lamp) 
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As additional information, the units of measure of the Incident Light Intensity (I0) in W m-2 

shown in Tab. 6 were calculated multiplying the values obtained (from the cited research 

articles) in Photosynthetic Photon Flux Density (PPFD) in µE m-2 s-1 with the correction 

factor related to cool white fluorescent lamp source (0.218) (Environmental Growth 

Chambers, 2014). Furthermore, considering only nitrogen starved condition, the biomass 

was assumed to be constituted by the sum of lipids (in forms of TAG), carbohydrates (in 

form of starch) and proteins; those last were assumed to remain constant at value that had 

at the starting of the nitrogen deplete cultivation without nitrogen release from cells to the 

culture medium. The initial protein content (g L-1) was calculated based on considerations 

of Breuer et. al (Breuer et al., 2012), multiplying the initial biomass concentration (g L-1) 

by the average protein content of functional biomass; this latter was estimated by dividing 

the average nitrogen content of functional biomass (0.09 g g-1) by an average nitrogen 

content in protein assumed equal to 0.16 g g-1, obtaining an initial protein averaged content 

per unit of biomass of about 0.5625 g g-1. With this consideration was possible to calculate 

the nitrogen quota in terms of N multiplying the average nitrogen content of functional 

biomass per the NaNO3 concentration extracted from the plots in the reference articles. 

Furthermore, for the calculation of starch and TAG quotas in terms of C, the total C 

content per unit of biomass was calculated; in order to that the C content for starch (0.45), 

for lipids (0.76) and for proteins (0.4) were estimated and multiplied with the quotas of 

these components experimentally measured and plotted in the works listed in Tab. 6. These 

modified data, in terms of units of measure, were used for the model validation. 

 

2.4.2 Model Structure 

Fig. 49 Schematic representation of the model’s carbon pathways used to describe the accumulation of the 

desired products during nitrogen starvation inside a microalgal cell. 

 

In Fig. 49 the schematization of the developed model is represented, showing the carbon 

pathways used to simulate the accumulation of starch and TAG during nitrogen starvation 

inside a microalgal cell.  It is visible that the reactions regarding the passage from Free 

Fatty Acids (FFA) to TAG, both due to conversion of C3 molecules and to starch 

degradation, were not included in the model because were assumed faster respect to other 

Chloroplast 

Cytosol 
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reactions (Mairet et al., 2011); furthermore, FFA quota were considered too small to 

analyze their variations (Guschina and Harwood, 2009). In this model the reactions related 

to starch and TAG production, due to carbon partitioning of the fixed carbon molecules 

(C3) from CO2, were assumed to start simoultaneausly in parallel but with a different rate 

represented by the partitioning coefficient 𝛂 (g[C] g[C]-1) between 0 and 1. Moreover, in 

this model also the interconversion of starch to TAG was represented, simulating thus the 

phenomenon that occurs inside microalgae after a certain period of nitrogen starvation and 

making it dependent on the internal starch quota qg (g[C] g[C]-1) and on the partitioning 

coefficient β (g[C] g[C]-1). In general, the quota for a generic component i presented in the 

model is defined as: 

qi =
i

x
(Eq. 13) 

Where i is the concentration (in terms of g[C] L-1 or g[N] L-1) of the generic component 

and x is the concentration (in terms of g[C] L-1) of the biomass.  

With this definition the quota of nitrogen (qn), starch (qg) and TAG (ql) were introduced in 

the model in order to analyze their intracellular content variation. Furthermore, in order to 

pass from the concentration (g L-1) to the elemental concentration (g[C] L-1 or g[N] L-1), all 

the data were modified consequently (see the subparagraph 2.4.1). In accordance with the 

kinetic equations showed in Fig. 49, the variation of the biomass and of the desired 

components can be resumed by the following equations:  

dx

dt
=  µx (Eq. 14) 

 
dn

dt
= 0     (Eq. 15) 

dg

dt
= αµx − βqgx (Eq. 16) 

dl

dt
= (1 − α)µx + βqgx (Eq. 17) 

Based on Eq. 13, the quota dynamics for a generic component can be written as:  

 

dqi
dt

=
d(i x⁄ )

dt
=
1

x2
x
di

dt
−
1

x2
i
dx

dt
=
1

x

di

dt
−
1

x
µi (Eq. 18) 

Following the Eq. 18, the quota dynamics of the desired components were defined in the 

equations below: 

dqn
dt

= −
1

x
µn = −µqn (Eq. 19) 

dqg

dt
=
1

x
(αµx − βqgx ) −

1

x
µg = µ(α − qg) − βqgx (Eq. 20) 

dql
dt

=
1

x
((1 − α)µx + βqgx ) −

1

x
µl = (1 − α − ql)µ + βqg (Eq. 21) 
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The implemented ODE system was thus: 

 

{
 
 
 

 
 
 
dx

dt
=  µx                                  

dqn
dt

= −µqn                          

dqg
dt

= µ(α − qg) − βqg    

dql
dt

= (1 − α − ql)µ + βqg 

(Eq. 22) 

 
In particular this parametric ODE system was solved in Matlab using the ode45 function 

for non-stiff differential equations (for the parametric resolution technique used in the 

model development see subparagraph 2.4.4).  

 

 

2.4.3 Specific growth rate and light modeling 

As regards the specific growth rate (µ) the following mathematical expression was used: 

     

       µ = µm (1 −
qnmin
qn

)(
I̅

KI + I̅
)        (Eq. 23) 

 

Where µm is the theoretical maximum growth rate (d-1) and qnmin is the minimum nitrogen 

quota (g[N] g[C]-1) allowing microalgal growth. Moreover, I ̅(W m-2) is the light irradiance 

averaged over the geometry of the reactor used and KI (W m-2) is the half saturation 

parameter for the light distribution model.  Indeed, in this model, besides the dependence 

of the specific growth rate on the intracellular nitrogen quota defined by Droop model 

(Droop, 1968), also the dependence on light irradiance was considered with a simple 

Monod-like function. The necessity of using a light model for µ definition was justified by 

the experimental conditions of the data used for model validation, in which light was a 

limiting nutrient influencing thus the specific growth rate. In order to describe the light 

penetration inside the culture medium, the Lambert–Beer law was used as a first 

approximation because it could easily estimate light attenuation in simple photobioreactor 

configurations like the ones used in the examined works. Furthermore, as additional 

simplification, the collected data were referred to diluted cultures; therefore, light 

scattering phenomena, that could influence the light distribution in dense culture systems, 

were not included in the light model. The Lambert–Beer equation is resumed below: 

 
       I = I0e

−σxy   (Eq. 24) 

 

Where I0is the incident light intensity in W m-2 (the values of which can be found in Tab. 

6), σ is the mass extinction coefficient (m2 kg-1), x is the biomass concentration (g[C] L-1) 

and y is the characteristic dimension of the considered reactor (m). About σ , it is a 

measure, at a given wavelength, of how strongly a microalga can attenuate light; this is 
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thus dependent on the microalga used in the phototrophic cultivation. In our case σ was 

assumed to be equal to 200 m2 kg-1 (Ogbonna et al., 1995) for Graesiella species, using the 

value found in literature related to Chlorella due to the morphological similitudes of these 

two microalgae. For the same reason, since for Tetradesmus the mass extinction coefficient 

values were not available in literature and since its morphology is similar to that of 

Monodus subterraneus (Liu and Lin, 2005), the σ of this last equal to 214 m2 kg-1 (Bosma 

et al., 2008) was applied for Tetradedesmus. In order to calculate the specific growth rate 

µ, the average light irradiance had to be defined. In this work was assumed that the 

individual microalgal cells were exposed to the same light intensity equal to its averaged 

value across the culture volume (paragraph 1.4). This assumption is reasonable for well-

mixed cultivation systems and for low cell density cultures; these conditions describes well 

those found in the works listed in Tab. 6. For a generic culture volume, the mean irradiance 

can be calculated as:   

 

       I̅ = ∫
I(V)

V
dV 

V

(Eq. 25) 

 

In particular for a simple planar geometry of thickness L, the mean irradiance is:  

 

       I̅ = ∫
I0e

−σxz

L
dz = 

L

0

I0
σxL

(1 − e−σxL)   (Eq. 26) 

 

As regards a cylindrical geometry with radius R, the averaged irradiance can be found with 

integration by parts: 

  

I̅ = ∫
I0e

−σxr    

πR2H
2πrHdr =

R

0

2I0
R2σ2x2

−
2I0e

−σxR

Rσx
(1 +

1

Rσx
) (Eq. 27) 

 

2.1.2 Parameter Estimation  

In order to solve the parametric ODE system shown in Eq. 22 it was necessary to estimate 

the parameters 𝛂, β, qnmin, µm, KI. In particular qnmin (g[N] g[C]-1) value was found from the 

qn data plotted in the works listed in Tab. 6. Indeed, in this work the estimated parameters 

were only 4 (𝛂, β, KI, µm), differently from other models available in literature which use a 

large number of parameters in order to increase the accuracy, becoming too much complex 

and very little handy. The Simulated Annealing Constrained method was used to find the 

best set of parameters that fit data extracted from each reference work, using as function to 

optimize the Residual Sum of Squares (deviations of predicted values from experimental 

data); in this way the developed code will solve the parametric ODE finding at the same time 

the best set of parameters that minimize the difference between experimental and predicted 

data. The Simulated Annealing method can solve both unconstrained and bound-constrained 

optimization problems but in this work lower boundary were used, avoiding thus 

mathematically acceptable but unrealistic results. Indeed, as lower bound null values were 
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used for each parameter because they couldn’t be physically negative; as regard upper 

bounds, no limitations were applied. Simulated Annealing method was chosen for the 

presence of several local minima in which other classical optimization algorithms available 

in Matlab, used to solve nonlinear curve-fitting problems in least-squares sense (e.g nlinfit, 

lsqnonlin, nlinfit), could be trapped.  

2.5 Supercritical CO2 extraction modeling 

 

In this paragraph the model developed to describe the sCO2 extraction process of high 

added value metabolites from microalgal matrix is explained. Chlorella vulgaris was the 

microalga chosen, differently from other literature works (Follegatti-romero et al., 2009; 

Taher et al., 2014), as extraction matrix and lipid source for its wide range of fatty acids 

(from 16 to 22 carbon atoms such as oleic acid, omega-3eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA)) and carotenoids (lutein and astaxanthin) that can accumulate 

in specific growth conditions (Přibyl et al., 2013). Furthermore, this microalga is 

morphologically very similar to Graesiella emersonii used in the experiments described 

above, both as internal composition and geometry. In particular, the Sovová simplified 

model (Sovová, 2005), coupled with other models used for the estimation of the principal 

physical properties of sCO2 (solubility (Chrastill, 1982), density (Brunner, 1994) and 

viscosity (Heidaryan et al., 2011) was applied to Chlorella matrix and to its lipidic 

molecules considered singularly. Indeed, in this model the metabolites were studied and 

modeled singularly and not as a pseudo-component “oil”, differently from other literature 

works, in order to analyze their affinity inside the sCO2 (such as diffusivity) and to define 

the best extraction conditions in terms of operative variables (mainly pressure and 

temperature) that also allow the extraction and separation of carotenoids (residue stream) 

from fatty acids (extract stream), preserving their bioactive properties. The model’s results 

were used to implement a simulation of the designed process, calculating the daily amount 

of the extracted products and estimating also Operating Expense (OPEX) and Capital 

Expenditure (CAPEX) (see subparagraphs 3.7.4).  

 

2.5.1 Microalgal composition 

Chlorella vulgaris, as said before, was the microalga chosen for the extraction simulation 

and similarly to Graesiella, can grow in both photoautotrophy or heterotrophy and, 

depending on nutrients’ limitation (mainly nitrogen), it can store more a product (lipids) 

than another (proteins or carbohydrates). In Tab. 7 a “simplified” Chlorella composition on 

dry weightbasis (%DW) is represented; this list was based on values found in literature for 

the principal components of interest present in the microalga (Adamakis et al., 2018; 

Damergi et al., 2017; Gouveia et al., 1996). 
Specifically, the palmitic acid was chosen as representative of fatty acids with 16 carbon 

atoms, since it is present in highest concentration. The same considerations were done for 

oleic acid (fatty acids with 18 carbon atoms) and for the others components representing 

bothomega-3 and carotenoids’ classes. 
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Tab. 7 Chlorella composition on dry weight used in the extraction model. 
 

2.5.2 Sovová’s simplified model for sCO2 extraction 

In this work the simplified version of the “Broken and Intact Cell Model” developed by 

Sovová (Sovová, 2005) was used, describing the whole process with realistic results 

without requiring the knowledge of numerous parameters necessary in the complete model. 

Furthermore, this model is suitable for our scope because it describes exactly the structure 

of the microalgal particle with broken cells as a result of the pre-treatment.  

According to this model, in the particle there are two distinguishable regions (see Fig. 50): 

 

• A region where broken cells are present, located near the particle’s surface  

• A region where intact cells are present, located in the inner part of the particle 

 

Cell rupture or not is the result of pre-treatment to which the natural matrix is undergone. 

The mass transfer, in the two previously mentioned regions, is described differently. In the 

region near the surface where the broken cells are present, internal resistance to mass 

transfer is neglected and is the resistance to mass transfer in the external film is controlling 

the transport. The free solute in the broken cells easily passes from the particle to the 

solvent. As a result, extraction at this stage is fast, with a steady rate of progress. This 

the first extraction period. At the end of this period, the oil, now present inside the intact 

cells, passes first into the broken cells and finally into the solvent. Transfer, in this case, is 

controlled by the resistance to internal mass transfer, such as occurs in the diffusive model; 

the extraction is slow and is typical of the final phase of the extraction process. 

Fig. 50 Simplified representation of mass transfer from microalgal matrix using sCO2 as solvent. 

 

Components Mass fraction (%DW) 

Palmitic acid 0.14 

Oleic acid  0.15 

EPA  0.06 

DHA 0.13 0.13 

Lutein  0.08 

Astaxanthin  0.06 

Carbohydrates  0.17 

Proteins  0.21 

Solute Solvent SolventSolute Solute 

Broken cell Broken cell  Intact cell 
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In particular, this simplified version is built on two equations describing the extraction 

yield (e) in two periods (a fast one and a slower one) without considering the transition 

phase during which the solute from the broken cells continues to be extracted while the 

extraction of the same begins from intact cells. The equations for both periods used in this 

work are: 

 

       e = tys [1−e
− 
1
θf] q                     for t ≤ t1 (Eq. 28) 

 

    e = cu [1−(1 − G)e
− 
t−t1
ti ]           for t > t1 (Eq. 29) 

 

Where: 

• e is the extraction yield expressed as the ratio of the extract mass and the mass of 

microalgae loaded into the reactor (gextracted product gmicroalgae
−1) 

• q is the specific flow rate, that is the ratio between the solvent flow rate and the 

mass of microalgae loaded into the reactor (min−1) 

• t1 is the extraction time at the end of the first period defined as e(t1) = Gcu (min) 

• θf is the external mass transfer resistance 

• ti is the characteristic time of mass transfer in the solid phase, function of the 

internal diffusivity (min) 

• cu is the asymptotic value of extraction yield (gextracted product gmicroalgae
−1) 

• ys is the Solubility of each component in sCO2 (gproduct gsCO2
−1) 

• G is the initial fraction of solute in open cells. 

 

In Eq. 28 and Eq. 29 reported above, the dependences of the extraction yield (e) on 

solubility (ys) and on the asymptotic value of extraction yield (cu) are reported. Among the 

various parameters present in the previous equations θf appears (Eq. 30), that is the external 

mass transfer resistance. This unknown parameter can be defined as the ratio of tf (fluid 

phase mass transfer’s characteristic time) and of the tr (residence time). 

 

       θf =
tf
tr
=
dpqρs

kf6ρf
                   (Eq. 30) 

 

Where ρs and  ρf are respectively the Solid and Fluid density (kg m-3). 

In order to calculate the external mass transfer coefficient (kf), the dimensionless numbers 

Sh, Re, and Sc were used. In the case of mass transfer using sCO2 as solvent with 

microalgal particles assumed spherical (with a diameter dp), the Sherwood number (Sh) 

was calculated by the following expression (Taher et al., 2014): 

 

     Sh = 0.13Re1.4Sc0.75                    (Eq. 31) 

 

Known Reynolds (Re) and Schmidt (Sc) numbers, it was possible to calculate kf: 
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    kf =
Sc D12
dp

                    (Eq. 32) 

 

where D12 is the lipids’ diffusivity in sCO2 (m
2 s−1). 

The parameters used in these equations, and listed in Tab. 8, were obtained from 

calculations based on literature values (Lin, 1985) and from contact with extractor’s 

suppliers.  

 

 

Tab. 8 Parameters used for extraction modeling. 
 

In Tab. 9 the diffusivities values of each soluble compounds in sCO2 at T = 60°C and  

P = 250 bar (see the optimized conditions obtained in the Results and Discussion paragraph 

3.7) are listed; these values were obtained by a regression of literature data at P and T 

different from those used in the modeling (Funazukuri et al., 2003; Rezaei and Temelli, 

2000). 

 

Tab. 9 Diffusivities of soluble compounds in sCO2 present in Chlorella at T = 60 °C and P = 250 bar. 
 

As can be seen in Tab. 9, the carotenoids are not present because at the optimized process 

conditions, and without any co-solvent added to CO2, they have a very low solubility 

(approximated to zero) in sCO2 as confirmed by literature (Macìas-Sànchez et al., 2008; 

Mendes et al., 1995; Safi et al., 2013). The carotenoids will be thus separated from fatty 

acids without any further purification steps, being part of the residue stream together with 

proteins and carbohydrates. 

 

 

 

Parameter Value 

dp  0.4*10−5 m 

𝜺 0.36 

ti 51.5 min 

ρs 1554 kg m−3 

dR 0.7 m 

G 0.41 

Parameter Diffusivity (×10−9m2s−1) 

Palmitic acid 4.3 

Oleic acid 4.1 

EPA 6.8 

DHA 6.4 
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2.5.3 Models for physical properties 

In each sCO2 extraction model, especially for the Sovová one, there are three physical 

properties that have to be taken into account in detail: the components’ solubilities in sCO2 

(ys), the density of sCO2 phase (ρf) and the viscosity of sCO2 (µv). These physical 

properties for both solvent and solute were based on literature data with experiments done 

in a range within which the conditions used in the modeling fall. In particular also the 

parameters used in each model to describe solubility, density and viscosity were related to 

the specific conditions used in the modeling. In this work, for solubility calculation the 

Chrastil model was used (Chrastll, 1982), requiring the smallest number of parameters 

compared to others present in literature (Adachi and C.-Y.Lu, 1983; del Valle and 

Aguilera, 1988) and giving similar results. According to this model, the solubility was 

described with the following expression (Eq. 33), where k,a,b are thermodynamic 

parameters. 

 

    ys = ρ𝑓
𝑘exp(

𝑎

T
+ 𝑏)            (Eq. 33) 

 

The analysis of each target component present in the microalgal matrix, considered 

singularly, permitted to study their extraction yield (based on their affinity to sCO2) and to 

choose the slower one for the extraction process. As regards density (influenced by 

pressure and temperature), it directly affects the components’ solubility in sCO2 and 

requires an equation able to describe its behavior in a wide range of process conditions. 

Simple equations of state were not able to estimate density very accurately over a large 

interval of pressure and temperature; indeed, to better represent the data, multi-parameter 

equations of state are required. Between several models present in literature, the most 

suitable for our case can be found in the Bender equation of state (Brunner, 1994): 

 

P = RTρ
f
+ Bρ

𝑓
2 + Cρ

𝑓
3 + Dρ

𝑓
4 + Eρ

𝑓
5 + Fρ

𝑓
6 + (G + Hρ

𝑓
2)ρ

𝑓
3exp(−a20ρ𝑓

2)    (Eq. 34) 

 

This equation calculates the pressure as a function of temperature and density using 20 

parameters, fitted on property data, with the aim to find the constants B, C, D, E, F, G, H 

(Tab. 10). The Bender equation of state was considered a good compromise between 

simple and more elaborate equations and it has a high reliability in homogeneous fluids in 

supercritical state, particularly for well-known compounds as CO2 with a low acentric 

factor (Ghazouani et al., 2005).  
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Tab. 10 Parameters used in Bender's equation. 
 

In addition to these two variables there is the sCO2 viscosity and for its calculation the 

following formula was used (Heidaryan et al., 2011): 

 

µv =
A1+ A2ρf+ A3ρ𝑓

2+ A4(ln(T))
2+ A6(ln(T))

3

1+ A7ρf+ A8 ln(T)+ A9(ln(T))
2

 (Eq. 35) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 11 Parameters used in the viscosity equation. 
 

This viscosity is a function of both sCO2 density and the extractor temperature. Moreover, 

the coefficients shown in Eq. 35 were taken from the reference paper (Heidaryan et al., 

2011) (Tab. 11). 

Parameter Value Parameter Value 

𝐚𝟏 0.22488558 a11 0.12115286 

𝐚𝟐 0.13717965*103 a12 0.10783386*103 

𝐚𝟑 0.14430214*105 a13 0.43962336*102 

𝐚𝟒 0.29630491*107 a14 -0.36505545*108 

𝐚𝟓 0.20606039*109 a15 0.19490511*1011 

𝐚𝟔 0.45554393*10-1 a16 -0.29186718*1013 

𝐚𝟕 0.77042840*102 a17 0.24358627*108 

𝐚𝟖 0.40602371*105 a18 -0.37546530*1011 

𝐚𝟗 0.40029509 a19 0.11898141*1014 

𝐚𝟏𝟎 -0.39436077*103 a20 0.50*10-1 

Parameter Value 

𝐀𝟏 -1.146067*10-1 

𝐀𝟐 6.978380*10-7 

𝐀𝟑 3.976765*10-10 

𝐀𝟒 6.336120*10-2 

𝐀𝟓 -1.166119*10-2 

𝐀𝟔 7.142596*10-4 

𝐀𝟕 6.519333*10-6 

𝐀𝟖 -3.567559*10-1 

𝐀𝟗 3.180473*10-2 
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2.5.4 Extraction modeling and simulation 

All of the equations listed in paragraph 2.5 were used for developing a simulative 

extraction model using MATLAB and giving results in terms of extraction yield (against 

time). Furthermore, the effects of the principal operative variables (temperature, pressure 

and Solvent to Solid Ratio=SSR) on the extraction yield were evaluated (see paragraph 

3.7). The optimization of these variables is crucial not only for the extraction from the 

microalgal matrix, but also for the preservation of the biological activity of the target 

metabolites. Working at these optimized conditions assures also to keep the carotenoids 

with a very low solubility (approximated to zero) in sCO2 and to avoid further purification 

steps, having already done the principal separation of carotenoids (residue) from fatty acids 

(extract). The results obtained from the model were used to develop a simulation of the 

extraction process, with the help of the software Aspen Plus, calculating and optimizing 

the number of working cycles with aim of increasing productivity. The composition of the 

inlet stream to the extractor is reported in Tab. 7; in particular, carbohydrates were 

simulated as starch and the proteins were represented by the leucin, since it is the more 

synthesized in Chlorella. Since lutein and astaxanthin were not available in ASPEN 

databases, it was necessary to add them with the corresponding .mol files. Once that the 

molecular structure was available, the basic thermo-physical properties for both pure 

components were estimated using NIST (National Institute of Standards and Technology) 

TDE (Thermo Data Engine). For a final check, a comparison of the principal estimated 

properties for both pure components (vapor pressure, critical point, etc.), with those 

available in literature was carried out, confirming the goodness of the estimation. Since a 

group contribution model was used to define the molecules not present in the database, the 

most logical choice was then to use as thermodynamic reference a model based on group 

contribution method; indeed UNIFAC (UNIquac Functional-group Activity Coefficients) 

was chosen as thermodynamic method in the simulation.  

 

 

 

 

 

 

 

 

 

 

 

Tab. 12 Comparison of the estimated principal properties in liquid phase of Lutein with two thermodynamic 

models at P=250 bar e T=20°C. 

 

 

Thermodynamic Method UNIFAC SRK 

Property Value Value 

Density (mol/l) 4.14 4.17 

Fugacity (bar) 5.8*10-10 5.5*10-11 

Cv (kJ/kmol-K) 950.63 1050.06 

Cp (kJ/kmol-K) 693.01 1071.98 

Vapor Pressure (bar) 6.55*10-11 6.55*10-11 



76 

 

In order to motivate this choice, a comparison of the principal thermophysical properties 

for lutein (the same results were obtained for astaxanthin), estimated with two different 

thermodynamic models (UNIFAC and Soave-Redlich-Kwong=SRK) at P = 250 bar and  

T = 60°C, are reported in Tab. 12, showing very small differences between them and 

confirming the choice made. This simulation was necessary to calculate the energy and 

utilities consumption that, coupled with the design of each equipment of the facility, 

provided to make an estimation of Operating Expense (OPEX) and Capital Expenditure 

(CAPEX) (see subparagraph 3.7.4). 

 

2.6 Simulation of molecular distillation process 

 

In this paragraph the study of a new designed separation process with molecular distillation 

of oily microalgal metabolites (fatty acids esters, in part as omega-3 and carotenoids), 

coming out from the extraction process with sCO2 described in paragraph 2.5, is described. 

To reach more realistic results, each step of the designed process was investigated and 

optimized in order to increase the purification of the desired outputs 

with less energy and costs expenditure. In particular, for the optimization of the operating 

conditions (pressure and temperature) at which the molecular distiller had to work, a 

statistical analysis by Respone Surface Method (RSM) was performed, based on the 

results obtained from simulations by dedicated software (Aspen Plus). In addition to 

molecular distiller, also the other equipments of the facility were studied and optimized 

always maintaining a green approach. Indeed, for the esterification reaction ethanol as 

replacement of the classic methanol was used. Moreover, for the same reasons a 

dewatering section was necessary to recover the ethanol and reusing it in the reaction, 

minimizing wastes and increasing the esterification’s productivity. As has been done for 

sCO2 extraction (subparagraph 3.7.4), also for molecular distillation the entire optimized 

process was then simulated in order to calculate the energy and utilities consumption that, 

coupled with the design of each equipment, provided to make an estimation of Operating 

Expense (OPEX) and Capital Expenditure (CAPEX) (see subparagraph 3.8.6).  

 

2.6.1 Feed characterization and process simulation 

The process’ feed shown in Tab. 13 was based on results obtained from a simulation, 

carried out in Aspen (see subparagraph 3.8.1), aimed to extract and separate carotenoids 

from starch and protein (with ethanol) from the residual stream of sCO2 extraction showed 

in Tab. 27. In addition to traces of water and ethanol due to this pre-treatment, fatty acids 

and carotenoids are the most present components. The feed flow rate was equal to 3.55 kg 

h-1.  
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Tab. 13 Molecular distillation process’ feed composition. 
 

The Block Flow Diagram of the process, focused on the separation of the carotenoids from 

fatty acids (as esters) is shown in Fig. 51. The simulation of the whole process was carried 

out with the software Aspen Plus, including molecular distillation and water removal with 

adsorption/desorption column, even if they didn’t have a dedicated equipment in it. 

Regarding the components described in Tab. 13, only lutein and astaxanthin were not 

present in the simulator database, so it was necessary to import the .mol files of the two 

molecules into the software. The .mol file contains a graphic-functional representation of 

the molecule thanks to which, through a group’s contributions method, it was possible to 

estimate its physical and chemical properties. Since for the evaluation of some chemical-

physical features it was necessary to use predictive estimations, also in this case UNIFAC 

(UNIquac Functional-group Activity Coefficients) was chosen as thermodynamic method 

for the simulation. This method exploits the functional groups present in the molecules to 

evaluate the activity coefficients.  

 

Fig. 51 Block Flow Diagram of the designed process for separation of carotenoids from fatty acids as esters. 

Component Mass frac 

Palmitic Acid 0.109 

Oleic Acid 0.116 

Eicosapentaenoic acid (EPA) 0.048 

Docosahexaenoic acid (DHA) 0.099 

Lutein 0.332 

Astaxanthin 0.268 

Ethanol 0.023 

Water 0.005 
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2.6.2 Esterification and separation 

The stream containing fatty acids and carotenoids described in the previous subparagraph 

was subjected to an esterification reaction with ethanol in order to convert the fatty acids 

into the respective ethyl esters. This step is generally crucial for two reasons: (1) The ethyl-

esters are more stable for a physical separation (2) The ethyl-esters formation increased the 

fractionation efficiency, because it increases the relative volatility of carotenoids and fatty 

acids ethyl-esters. Indeed, the esters don’t have the hydrogen bonding between molecules 

that carboxylic acids have, so they cannot act as hydrogen-bond donors and cannot self-

associate; consequently, esters are more volatile than corresponding carboxylic acids 

(March, 1992). In particular, this latter consideration can be applied only to classical 

distillation, because for molecular distillation the partial pressure of the evaporated 

substance approaches the total pressure, the passage of the molecules through the 

distillation space is collision free and the fractionation efficiency depends on the molecular 

weight (dimensions) of the molecules. Anyway, for the esterification of our components, 

the increase of the molecular weight was very little (DHA passes from 328.488 g/mol to 

356.55 g/mol respect to Astaxanthin with 596.841 g/mol), having thus negligible negative 

impact into the molecular distillation efficiency compared to the high benefits given by the 

increased stability of the esterified molecules. Ethanol was the alcohol used in this work 

for the reaction (in substitution of the classical methanol), having been classified as GRAS 

(Generally Recognized As Safe) by the FDA (U.S. Food and Drug Administration, HHS, 

Code of Federal Regulations, Title 21: (Subpart I: Nutrients.), 2013, 229070) and being 

thus suitable for the nutraceutical use of the purified products. The reaction was carried out 

at P = 1 bar and at T = 60 °C, in order to not damage the thermosensitive molecules. Since 

oleic acid is an intermediate component from the point of view of steric hindrance between 

the considered fatty acids, and also due to the absence of kinetic information for palmitic 

acid, EPA and DHA, the same conversion of oleic acid for the other components was used 

for a first attempt estimation. The reactors’ configuration, suitable for the not catalyzed 

homogeneous-phase esterification reaction with a second order kinetic considered in this 

work, was the CSTR. Esterification is usually catalyzed in homogeneous phase by strong, 

corrosive and environmentally harmful acids (as sulfuric acid). In literature there are very 

few reports about non-catalytic kinetics for fatty acid esterification and those few work 

always with methanol as solvent; this latter cannot be applied in our process due to the 

nutraceutical usage of the purified molecules. Furthermore, the non-catalytic reaction, at 

the expense of slower reaction rates, overcome the problems of catalyst separation (for 

homogenous catalysis), purification of the feedstock in order to avoid catalyst damages and 

deactivation (for heterogeneous catalysis) and high costs (for enzymatic catalysis). In 

particular, the data chosen for the forward rate constant (Ea) was similar to the values of 

2560 kJ/mol reported for sulfuric acid-catalyzed esterification of FFA with methanol 

(Aranda et al., 2008), underlining anyway the goodness of the application of a 

noncatalyzed reaction (with ethanol) in this study.  
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As said before, since oleic acid is an intermediate component from the point of view of 

steric hindrance between the considered fatty acids, and also due to the absence of kinetic 

informations for palmitic acid, EPA and DHA, the same conversion of oleic acid for the 

other components was used for a first attempt estimation. The reaction is thus structured: 

 

C18H34O2+C2H6O ↔ C20H38O2+H2O 

 

The kinetic constants follow the Arrhenius equation and both pre-exponential factors 

and activation energies of both direct and indirect esterification reaction for oleic acid 

are reported in Tab. 14 (Pinnarat and Savage, 2010). For a better clarification of the terms 

used, see Fig. 52. 

The material balance equation for a generic component i in a CSTR was written as: 

 

V
dCi
dt

= QCi
0
− QCi + Vri (Eq. 36) 

 

Where V is the reactor's liquid volume, Ci
0 and Ci are respectively the inlet/outlet molar 

concentration for the i-component, Q is the volumetric flowrate and ri is the reaction 

rate per unit of volume for the i-component. The material balance described in Eq. 36 and 

applied to our esterification reaction is represented in Eq. 37, integrated using gPROMS 

software.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 14 Parameters used for the integration of the Eq. 37 in gPROMS for the esterification reaction of oleic 

acid 
 

Parameter Value Unit of measure 

𝐤𝐝𝐢𝐫
𝟎  103.5 L mol-1 min-1 

𝐤𝐫𝐞𝐯
𝟎  105.3 L mol-1 min-1 

𝐄𝐚
𝐝𝐢𝐫 56 kJ mol-1 

𝐄𝐚
𝐫𝐞𝐯 66 kJ mol-1 

𝐂𝐎
𝟎  0.048 mol L-1 

𝐂𝐄
𝟎 14.11 mol L-1 

𝐂𝐖
𝟎  0.03 mol L-1 

Q 0.51 L min-1 

T 333.15 K 

R 8.314 J mol-1 K-1 
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Fig. 52 Nomenclature of the symbols used in the molecular distillation study. 

 

{
 
 
 

 
 
 V

dCO
dt

= QCO
0
− QCO − kdirCOCEV + krevCOECWV 

V
dCE
dt

= QCE
0
− QCE − kdirCOCEV + krevCOECWV

V
dCOE
dt

= −QCOE
0
+ kdirCOCEV − krevCOECWV

V
dCW
dt

= QCW
0
− QCW + kdirCOCEV − krevCOECWV

(Eq. 37) 

 

The values obtained from this calculation gave an idea of the esterification’s conversion 

and reactor volume. The stream coming out from the reactor was sent to a vacuum flash, 

operating at 0.01 bar and 80 °C, in order to separate the formed water and the unreacted 

ethanol from the rest of the stream. 

In order to show the dependence of oleic acid conversion from CSTR reactor liquid 

volume, some mathematical passages have to be shown. Considering the acetic acid as the 

reference component of the abovesaid reaction, the equation that bounds components' 

concentration (CO) to conversion (XO) of oleic acid was defined as: 

 

Ci = Ci
0
+
νi
νO
COXO (Eq. 38) 

Where νi and νO are the stoichiometric coefficients for the i-component and for oleic acid 

respectively. Substituting the Eq. 38 into the material balance Eq. 36 for a steady state 

condition the following equation was obtained: 

 

QC
i

0
− Q(Ci

0
+
νi
νO
COXO) + Vri = 0 (Eq. 39) 

 

Applying the mass balance to the reference component (oleic acid) the Eq. 39 became: 

 

QC
O

0
XO + VrO = 0 (Eq. 40) 
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Furthermore, as previously specified, the reaction considered was non-catalyzed with a 

second order kinetic, so the rO is: 

 

rO = −kdirCOCE + krevCOECW (Eq. 41) 

 

Knowing the Ci for each component, on the basis of the Eq. 38: 

 

CO = CO
0
(1 − XO)

CE = CE
0
− CO

0
XO

COE = COE
0
+ CO

0
XO

CW = CW
0
+ CO

0
XO

 (Eq. 42)
 

 

The Eq. 41 can be rewritten in function of XO: 

 

rO = −kdirCO
0CE

0
+ kdir(C

O

0
)2XO + kdirCO

0CE
0
XO − kdir(C

O

0
)2(XO)

2 + (Eq. 43)

+ kinvCOE
0 CW 

0
+ kinvCOE

0 CO
0
XO + kinvCW

0 CO
0
XO + kinv(C

O

0
)2(XO)

2
 

 

Where krev and kdir were the reaction rate coefficient of the revers and direct esterification 

reaction following the Arrhenius law. 

Finally, replacing thus the Eq. 43 into Eq. 40, the dependence of oleic acid conversion 

from CSTR reactor liquid volume was obtained. 

 

 

2.6.3 Water removal by adsorption column 

In order to recover the ethanol coming out from the flash after the esterification, it was 

necessary to remove the water that tend to accumulate in the closed loop circuit, 

undermining thus the esterification rate. A molecular sieve with a 3 Å zeolite particle, 

having a diameter of 3.6 mm (Simo et al., 2009) was used to do this separation and a TSA 

(Thermal Swing Adsorption) approach was adopted, where a hot air flow at a temperature 

between 140 °C and 250 °C was used to regenerate the adsorbent solid (Gabruś et al., 

2015). For the sizing of the adsorption column, the water material balances both in the 

liquid and solid phase were written, coupling them to the water adsorption isotherm in a 3 

Å zeolite (Yamamoto et al., 2012). Eq. 44 is the Langmuir isotherm, where nW are the 

moles of adsorbed water per kg of adsorbent solid (mol kg
solid

−1
): 

 

nW =
q0K𝐿Cw

S

1 + K𝐿CwS
 (Eq. 44) 
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For the material balance calculations, a LDF (Linear Driving Force) approach was used, 

considering the solid as a pseudo homogeneous phase. Moreover, with this approach an 

overall exchange coefficient (KOL), which takes into account the mass transfer resistances 

of the solid-liquid system, was used (Teo and Ruth van, 1986). In the solid phase it was 

possible to write a macroscopic balance reported in Eq. 45; likewise, the mass balance in 

the liquid phase along the axial coordinate of the column was done. 

 

{
  
 

  
 ε
∂Cw

L

∂t
= −

Q′

πR2
∂Cw

L

∂z
− aKOL(Cw

L − Cw
S )

(1 − ε)ρS
∂nW
∂t

= aKOL(Cw
L − Cw

S )

nW =
q0KLCw

S

1 + KLCwS
 

(Eq. 45) 

 

 

In Eq. 45 ε is the bed void fraction defined as ratio of VL and VTOT, where VL 

is the liquid volume inside the column with a volume VTOT. The system was integrated 

with the software gPROMS (chosen due to its easy applicability for PDE solution), with 

the initial and boundary conditions: 

 

{

Cw
L |𝑡=0 = 0

nW|𝑡=0 = 0

Cw
L |𝑧=0 = Cw

IN

(Eq. 46) 

 

Tab. 15 reports the values of the parameters used for the integration (Gabruś et al., 2015; 

Simo et al., 2009; Yamamoto et al., 2012). The aim of the column’s sizing was to find its 

minimum dimensions and also to find a way to make the process working continuously 

with at least two columns in parallel. For this latter purpose, the saturation time of the solid 

must be greater than the sum of the regeneration and cooling times: 

 

tSAT > tREG + tCOOL (Eq. 47) 

 

To evaluate the regeneration time, a simulation similar to the previous one was carried out, 

integrating the following system: 

 

{
  
 

  
 ε
∂Cw

L

∂t
= −

Q′

πR2
∂Cw

L

∂z
+ aKOL(Cw

L − Cw
S )

(1 − ε)ρS
∂nW
∂t

= −aKOL(Cw
L − Cw

S )

nW =
q0KLCw

S

1 + KLCwS
 

(Eq. 48) 
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With the initial and boundary conditions: 

 

{

Cw
L |𝑡=0 = 0

Cw
S |𝑡=0 = Cw

0

Cw
L |𝑧=0 = 0

(Eq. 49) 

 

The parameters used were the same as those shown in Tab. 15, with the exception of Cw
0

 

equal to 186.55 mol m-3, and aKOL equal to 9.5*10-4 s-1 (Simo et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 15 Parameters used for the integration of the macroscopic balance in order to size the adsorption 

column. 

 

 

2.6.4 Molecular distillation and RSM study 

 

The molecular distiller configuration chosen in this work and confirmed by specialist 

suppliers, was the “Agitated thin-film evaporator” with a falling and revolving liquid film. 

This distiller has a film with thickness of 0.1-1 mm, with a mean residence time ranging 

from 0.1 to 10 s and throughput rate of up to 1 t/h (Lutisan and Cvengros, 1995; Sattler and 

Feindt, 1995). The molecular distillation process was simulated in Aspen Plus software, 

even if there wasn’t a dedicated equipment for this separator, with a flash vessel. The flash 

vessel was the best solution able to simulate the separation of a distilled stream from the 

residue with very short residence time, without requiring the development of a specific and 

more complex model in order to reduce the already short residence time. In order to 

identify the optimal operating conditions for the molecular distiller, a RSM analysis 

(Response Surface Method) with a CCD (Central Composite Design) was performed 

(Bezerra et al., 2008; Kalil et al., 2000). The selected natural (or independent) variables for 

the distillation process were the temperature and the pressure of the molecular distiller, 

which varied in the following ranges (Stephan, 1992): 

60°C ≤ T ≤ 150°C 

0.1 Pa ≤ P ≤ 1 Pa 

 

Parameter Value Unit of measure 

𝐂𝐖
𝐈𝐍 186.53 mol m-3 

ε 0.372 - 

Q' 7.55*10-3 m3 s-1 

𝐚𝐊𝐎𝐋 2.6*10-3 s-1 

𝛒𝐒 838 kg m-3 

𝐪𝟎 22.6*10-2 mol kg-1 

𝐊𝐋 0.611 m3 mol-1 
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Because of different ranges and units of measures of natural variables, it was necessary to 

pass to codified variables that are dimensionless variables with value between -1 and 1 Eq. 

50.  

Xi =
xi − x̅i

0.5(xi
H − xi

L)
(Eq. 50) 

 

Then RSM analysis with CCD needed N experiments, which in this case were replaced by 

as many simulations in Aspen Plus: 

 

N = 2k + 2k + n0 (Eq. 51) 

 

Where 2k indicates the number of experiments conducted with a two-level factorial design, 

where one of the natural variables was set to 1, while the others were kept to the central 

value equal to 0. In the same expression 2k indicates the number of experiments conducted 

in the axial points, where all the codified variables have a value equal to ±α: 

 

α = (2k)
−
1
4 (Eq. 52) 

 

Furthermore, n0 indicates the number of experiments conducted with all the variables set 

to the central value, equal to 0. The parameter k indicates the number of natural variables 

used in the analysis equal to 2. For this reason, α was about equal to 0.707. With these 

calculations, the number of simulations N obtained was equal to 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 16 Operating conditions of temperature and pressure (also as codified variables (X1, X2)) at which the 

simulations in Aspen Plus were carried out. 

 

Tab. 16 shows the conditions to which the simulations were carried out: X1 is the codified 

variable relative to the temperature, while X2 is the codified variable relative to the 

pressure. As response variables, the sum of the carotenoids’ mass fractions in the residue 

and their recovery in the same current were chosen. Recovery was evaluated as ratio 

Run X1 X2 T [°C] P [Pa] 

1 0 0 105 0.55 

2 0 0 105 0.55 

3 1 0 150 0.55 

4 0 1 105 1 

5 -1 0 60 0.55 

6 0 -1 105 0.1 

7 0.71 0.71 137 0.87 

8 0.71 -0.71 137 0.23 

9 -0.71 0.71 73.2 0.87 

10 -0.71 -0.71 73.2 0.23 
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between the sum of the lutein (WL
R) and astaxanthin (WA

R) mass flow rates coming out from 

the bottom of the evaporator and the sum of the lutein (WL
IN ) and astaxanthin (WA

IN ) flow 

rates entering in the molecular distiller: 

 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
WA
R +WL

R

WA
IN +WL

IN
(Eq. 53) 

 

In order to represent the system, a second order model with linear, quadratic and 

interaction terms was chosen (Ba and Boyaci, 2007): 

 

y = β0 +∑βiXi

k

i=1

+∑βiiXi
2

k

i=1

+∑∑βijXi

n

j=1

Xj

k

i=1

(Eq. 54) 

 

In Eq. 55 the model in vector terms was written. In particular y is the response vector 

obtained from the N simulations in Aspen Plus, X is the matrix of the codified variables, 

β is the vector of coefficients, and ε is the error vector given by the difference between 

the responses from the simulations and the fitted ones (yi − y̅i). 

 

y = Xβ + ε (Eq. 55) 

 

The least squares method was used to calculate the regression coefficients, minimizing the 

Sum of Square Errors (SSE) (Eq. 56). 

 

SSE = εTε = (y − Xβ)T(y − Xβ) (Eq. 56) 

 

In order to minimize the residual errors between the simulated responses and the fitted 

ones, the partial derivative of the SSE respect to β was equalized to 0: 

 

∂(SSE)

∂β
= −2XT(y − Xβ) = 0 (Eq. 57) 

 

The condition for which the equality at 0 is verified is y=Xβ. Multiplying the equality 

to both members for XTto the left-hand equals, the following expression was obtained: 

 

XTXβ = XTy (Eq. 58) 

 

Finally, by multiplying both members to the left by (XTX)
−1

it was possible to obtain the 

equation written below: 

β = (XTX)−1XTy (Eq. 59) 
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With the regression coefficients it was possible to express the responses as a function of 

the natural variables through some polynomials and to proceed with the optimization of the 

operating conditions; for this reason an objective function to be maximized was defined: 

 

OF = 0.7𝑦1 + 0.3y2 (Eq. 60) 

 

In Eq. 60 𝑦1 is the recovery, while 𝑦2 is the sum of carotenoids’ mass fracs in the residue. 

The coefficients multiplying the responses (y) indicate the weight given to the responses 

in the optimization. In this case it was decided to give a greater weight (importance) to 

carotenoids’ recovery in the residual current rather than the sum mass fractions of 

carotenoid. This solution was supported by the necessity of a compromise between the 

recovery of the components and the residue purity in terms of carotenoids.  Once the 

optimal operating conditions of temperature and pressure were evaluated, the results of the 

simulations at those conditions were compared with those of the model, and the percentage 

error δ% was calculated:  

 

 δ% =
|Estimated value − Simulated value|

Simulated value
(Eq. 61) 

 

 

2.7 MEWLIFE process description 

 

As anticipated in paragraph 1.8, a real application of the models developed in this thesis 

work (see paragraph 2.3 and 2.4) can be found in the MEWLIFE project. The description 

of the process that will be carried out in MEWLIFE pilot plant, installed in Bio-

P/NextChem site in Rome (Via di Vannina, 88), without considering the Olive Oil Mill 

WasteWaters (OOMWW) membrane treatments in charge of Labor partner, is described in 

this section for a better clarity. As previously mentioned the microalgal process was 

divided in two parts: the cultivation section, carried out in both photobioreactors and 

fermentors, and the downstream section, composed by a dewatering step by centrifugation 

and a drying step by a spray dryer. Bio-P supported the corresponding responsibles of 

Basic and Detailing Engineering phases (Technosind and NextChem) for the documents 

implementation. In particular, Bio-P helped partners with Heat&Material Balance of both 

phototrophic and heterotrophic cultivations, based considerations furnished by HTR 

(university partner) obtained from lab-scale data. Another important contribution of Bio-P 

was done in the Data Sheet implementation of the principal equipment involved in the 

process, designing the entire heterotrophic section and supporting partners for packages 

purchasing with the definition of the principal parameters to supply to vendors. 

 

2.7.1 Phototrophic section 

As regards the phototrophic section, its operation will begin with the inoculum previously 

prepared in the laboratory (6 L at 1-1.5 g L-1) that will be inserted and diluted (1:10) into 
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the 600 L outdoor bags photobioreactor (see figures in subparagraph 3.9.1), beginning its 

start-up phase. Once reached a concentration of 1 g L-1 (in about 18 days) the volume will 

be re-diluted (1:10) in order to reach its operative volume of 600 L. The start-up phase will 

end when the all the photobioreator’s volume will gain a concentration of 1 g L-1 (about 13 

days). In this outdoor photobiorectors temperature and pH will be actively monitored and 

controlled. Indeed, in addition to nitrogen-based nutrients, a flow of carbon dioxide equal 

to 0.660 Sm3 h-1 will be flushed in order to keep the pH at optimal values (equal 8). 

Futhermore, temperature will be controlled either to contrast cold weather conditions 

(using electric resistance inside each bag) and hot conditions during summer period (using 

a water spray cooling system). The growth and outdoor parameters monitoring will be 

performed in the same way of the experiments carried out in the bubble column 

photobioreactors  (see paragraph 2.1). During the duration of the project, 5 batches will be 

performed for the start-up phase of the heterotrophic section and 20 batches in the 

operative phase. As specificied in paragraph 1.8, the multivariate model described in 

paragraph 2.3 could be applied to this cultivation, validating and reinforcing its predictive 

power also in this different photobioreactor configuration. Indeed, once collected enough 

data in this new configuration for model validation, an estimation of the specific growth 

rate and productivity, using the measured outdoor conditions of the bubble column 

experiments descibed in subparagraph 2.1.7, could be extracted. In this way it will be 

possible to know how much time would be necessary to reach the desired concentration  

(1 g L-1) in a specif part of the year. 

 

2.7.2 Heterotrophic (Dark Fermentation) section 

The algal suspension obtained from each batch of the phototrophic cultivation (540 L of 

the 600 L) will be used as an inoculum for the heterotrophic section woking at atmospheric 

pressure. This cultivation, unlike the previous one, will take place in the absence of light 

inside two fermenters both with an operative volume of 3 m3 (see paragraph 3.9). The 

start-up phase begins in the first of the two fermenters (F-101).  

Fig. 53 Start-up schematization of F-101 fermenter. 
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The start-up phase will last approximately 36 days and will be divided into 4 growth cycles 

lasting about 8 days each in fed-batch mode (see Fig. 53). Each cycle will be performed in 

this way: feeding the fermenter with the product of the phototrophic growth section with 

the addition of a synthetic glucose-based volume.  

Glucose is used to grow algal biomass until it doubles the mass. This phase will last about 

2 days. Subsequently, a nutrient flow based on NaNO3 will be introduced, bringing to 

microalgal cell duplication instead of metabolites’ accumulation. Also this phase with 

nitrates lasts about 2 days. Within the same growth cycle these two operations will be 

repeated a second time before inserting the new phototrophic growth product which will 

determine the beginning of the next cycle. At the end of the 4 cycles (4 days each) 

described above, it will take another 4 days to complete the start-up operation reaching a 

concentration of 13.5 g L-1 in a volume of 3 m3.  At this point the operational phase will 

start: 1 m3 of algal suspension will be inserted inside the second fermenter (F-102) together 

with the addition of the OOMWW concentrate which has the same function as the 

synthetic glucose described above, finally the volume of 3 m3 will be reached by adding 

water. In about 2 days in F-102 the algal suspension, with an initial concentration in algae 

equal to 4.5g L-1, will reach a concentration in algae equal to 9g L-1 determining the end of 

the heterotrophic growth. Once arrived at this phase, the entire volume (3 m3) of 

microalgal suspension in F-102 can be sent to the downstream process. During these two 

days of cultivation in F-102, the first fermenter F-101, where 2 m3 of algal suspension 

were left, will be fed with water and glucose and subsequently nitrates in order to bring 

back the algal suspension at a concentration of 13.5g L-1; this operation will last in 4/5 

days (2 days with glucose in parallel with F-102 and 2/3 with nitrate). During the whole 

project period about 40 batches of heterotrophic growth will be carried out lasting 4/5 days 

each. Both fermenters were designed mainly by Bio-P (represented by myself) and 

modified later by NextChem in accordance with suppliers’ reviews and suggestions. In 

particolar, in each fermenter 3 main variables will be monitored and controlled: 

temperature, pH and level. With respect to temperature, is more a maintenance than a 

control because the internal temperature will be keeped at its set-point of 30 °C using 

cooling water inside fermenters’ jacket; none hot utilities will be used because it was 

estimated that the only variation of temperature will be caused by the exotermicity of the 

fermentation reaction. Furthermore, also pH will be actively controlled, adding chemicals 

inside the microalgal solution both as base (NaOH) and acid (H2SO4) when will be 

necessary. As last control, the level will be monitored and manually controlled. Indeed, 

four level will be monitored: High Low Level, Level at 1 m3, Normal Level (3 m3) and 

High Level (see paragraph 3.9 for results of the design phase). In particular the level at 1 

m3 will be necessary to verify the correct volume transfer from F-101 to F-102. In addition 

to the control system, each reactor was equipped with an air sparger and a mixing system 

composed of a mixer with double impeller (one Rushton turbine and one 4 blade hydrofoil 

impeller), both designed for the scope by Bio-P. For the same reasons described in the 

previous subparagraph 2.7.1, also for the heterotrophic cultivation the models developed in 

this work can be applied. Specifically, between two models the metabolic one would find 

more applicability in this case, due to its easy handling and reusablility with simple and 
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few changes to other cultivations conditions. Indeed, in this way an experimental 

campaign, carried out in parallel with cultivation and aimed to quantify the metabolites of 

interest inside microalgal cells cultivated in dark fermentation, will permit to test the 

model, modified accordingly, to this new cultivation condition. This model, applied to 

heterotrophy will permit to reach to two important results, prediction of the time needed to 

reach a fixed output concentration (at a certain glucose/OOMWW and Nitrate 

concentration) but also the estimation of the desidered metabolites quotas, accumulated 

during nitrogen starved conditions.  

2.7.3 Biomass harvesting, drying and packaging 

In order to preserve the algal biomass obtained from the heterotrophic growth section, a 

downstream section was essential in the process. In this process the downstream was 

divided in three steps: centrifugation, drying and packaging. Indeed the microalgal 

suspension, after having reached the specified concentration in F-102 (9 g L-1), will be sent 

into a disc stack centrifuge. This operation will concentrate the algal suspension by 80%, 

thus removing about 2400 liters of water. The remaining suspension will have a 

concentration of 45 g/l of algal biomass (4.5%DW). Disc stack centrifuges are able to 

apply a force from 4000 to 14,000 times gravitational force, thus reducing separation time. 

These are the most common industrial centrifuges and are widely used in commercial 

plants for high-value microalgal products and in microalgal biofuel pilot plants. Although 

several variants exist, the generic type is characterised by an imperforate bowl surrounding 

an inverted stack of 30–200 thin conical discs separated by 0.3–3 mm spacers. The disc 

spacing is dependent on the viscosity and solids content in the feed and needs to be fixed 

accordingly, lower viscosities and solids concentrations favour spacings below 1 mm. As 

the discs are spun on a common vertical axis the process suspension, which is fed centrally 

from the top, travels through the annular spaces between the discs. Centrifugal forces cause 

particles to accumulate on the underside of the discs from where they slide down towards 

the outer periphery of the centrifuge bowl. In batch units the thickened solids remain in the 

bowl until the solids handling capacity of the centrifuge is reached. At this point rotation 

stops and the basket containing the trapped solids is manually replaced or a discharge valve 

on the periphery of the bowl is manually operated to facilitate removal of the sediment. In 

continuous units the solids sludge, which must be flowable, is automatically discharged, 

sometimes intermittently, through nozzles positioned on the outer periphery of the bowl.  

The concentrated microalgal suspension will be sent to an accumulation vessel where it 

will be sent to a spray dryer. Inside the spray dryer the solid will be completely dried. 

Spray drying is a well-known method of particle production which comprises the 

transformation of a fluid material into dried particles, taking advantage of a gaseous hot 

drying medium. The process may be described by three major phases: atomization, droplet-

to-particle conversion and particle collection. Generally, a solution is pumped into an 

atomizer, breaking up the liquid feed into a spray of fine droplets. Then, the droplets are 

ejected into a drying gas chamber where the moisture vaporization occurs, resulting in the 

formation of dry particles. There are different drying chamber configurations, in which the 

flow pattern between the hot gas and the spray of droplets is distinct: co-current flow, 



90 

 

counter-current flow and mixed flow. Finally, using an appropriate device, the dried 

particles are separated from the drying medium, being then collected in a tank. 

The solid obtained from this unit will be packaged and stored before being sent to 

subsequent treatments covered in this project: such as starch extraction. Bio-P, also for the 

equipments described in this subparagraph, gave the inputs needed to complete their 

datasheet (input/output concentrations, separation or drying efficiency, type of spray-dryer 

atomizer, etc.), defining with vendors the best solution to use. Since these equiments were 

designed with suppliers know-how, they are defined packages and their design spefications 

will not be shown in Results and Discussion session, differently from fermentors. 

 

Chapter 3. Results and Discussion 
 

3.1 Outdoor growth results  
 

In this paragraph the results obtained from the outdoor pilot plant cultivation, during the 

experiments described in Tab. 5 are resumed, both as cellular concentration (106 cell mL-1) 

and dry weight (g L-1). As additional informations, at the top of each plot the initial 

cultivation conditions in terms of inoculum (Cinit) and sodium nitrate (NaNO3init) 

concentration are specified. Furthermore, the terms displayed in each legend are referred to 

the microalgal species used and in which reactor were cultivated (for example t.o.1 stands 

for Tetradesmus obliquus cultivated in reactor 1, or g.e.10 stands for Graesiella emersonii 

cultivated in reactor 10).  

   

3.1.1 Experiment A (from 02-03-17 to 14-03-17) 

In this experiment only Tetradesmus was cultivated with a NaNO3init=0.35 g L-1 and two 

different Cinit (0.1 g L-1 and 0.3 g L-1). The growths of PBRs 1, 3 and 5, inoculated with the 

lowest cell concentration (0.1 g L-1), show an incongrous trend between the reactors. In 

particular, PBR-1 (t.o.1) shows the typical trend of cell growth (Fig. 54a), highlighting 

well the latency phase, the exponential phase and the stationary phase. On the 12th day of 

culture, an important drift in cell concentration appears, but not in dry weight (Fig. 54b), 

probabily due to the metabolites accumulation phase started as result of nitrogen depletion. 

The other PBRs (3 and 5), on the other hand, don’t reach the same final concentration, 

showing a slower growth and a rapid and early decay, due to the frequent clogging of the 

air diffusion system. Indeed only PBR-1 and PBR-2 were cultivated with the toroidal 

sparger as test, while for the other reactors porous stones were used (see subparagraph 

2.1.1). This clogging problem brought to repetitive biomass sedimentation, limiting thus 

the air/CO2  amount, with high impact to microalgal metabolism. In this case, therefore, the 

reactors cannot be considered as replicate. Also in the case of PBRs 2,4 and 6, inoculated 

with a higher concentration (0.3 g L-1), the same problem is found in Fig. 54c and  Fig. 

54d. Indeed, the best growth trend is reached in PBR-2, for the reasons previously 

described, and on the 12th day the cell concentration decays vertiginously, while the dry 
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weight tends to increase to approx 1 g L-1. Also these PBRs cannot be considered as 

replicate for microalgal growth. As regards the outdoor temperature, similar values of both 

internal and external temperatures were found in this experiment. In particular the 

minimum internal temperature oscillated between 5.7 °C and 9.4 °C and the minumum 

external temperature oscillated between 3.3 °C  and 7.4 °C; almost similar variations were 

found for maximum internal (between 21 °C  and 25 °C) and external (between 23 °C  and 

28 °C) temperatures. Furthermore, since this experiment was carried out during spring 

season, also good PPFD values were found. Indeed, the minimum and maximum values 

obtained were 35 μE m-2 s-1 and 300 μE m-2 s-1. The lowest value is justified by bad 

weather conditions occurred during few days in the experiment. 

                                  (a)                                                                     (b) 

                                   (c)                                                                     (d) 

Fig. 54 Microalgal (Tetradesmus obliquus) growth trends as cellular concentration [with Cinit=0.1 g L-1 (a) 

and Cinit=0.3 g L-1 (c)] and dry weight [with Cinit=0.1 g L-1 (b) and Cinit=0.3 g L-1 (d)], obtained during the 

experiment A (from 02-03-17 to 14-03-17). 

 

3.1.2 Experiment B (from 21-03-17 to 31-03-17) 

In this experiment only Tetradesmus was cultivated with a NaNO3init=0.35 g L-1 and two 

different Cinit (0.1 g L-1 and 0.3 g L-1); in particular in all PBRs porous stones were used 

but with a more frequent execution of cleaning and maintainance operations. In all subplots 

of Fig. 55 a more regular trend is shown, giving good results in terms of replicability. 

These results were obtained guaranteeing a good aeration performance due to a constant 
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monitoring and maintainance of the porous stones that continued to show clogging 

problems. These outcomes, compared to those in Fig. 54a and Fig.54c of using a different 

sparger configuration in order to obtain better results; for this reason in the subsequent 

experiments toroidal spargers were used.  

                                    (a)                                                                     (b) 

                                   (c)                                                                     (d) 

Fig. 55 Microalgal (Tetradesmus obliquus) growth trends as cellular concentration [with Cinit=0.1 g L-1 (a) 

and Cinit=0.3 g L-1 (c)] and dry weight [with Cinit=0.1 g L-1 (b) and Cinit=0.3 g L-1 (d)], obtained during the 

experiment B (from 21-03-17 to 31-03-17). 

 

The fluctuating trend, in terms of cellular concentration, showed in Fig. 55a and Fig. 55c 

after the 6th day is due to the foaming process that occurred in this experiment. Indeed, the 

biomass adhesion in the top surface of the reactors brought to continous decrease/increase 

of the cellular concentration inside the PBR; this mechanism was named as “self-diluition 

process”. However, it is visible in Fig.55a and Fig.55c that a higher values for the PBRs 

inoculated with lower Cinit are reached, confirming what has been affirmed in subparagraph 

3.1.1 about the NaNO3 limitations. Indeed, a higher value of Cinit (0.3 g L-1) means a higher 

number of microalgal cells that need to uptake the nitrogen from the cultivation medium 

for their duplication, causing thus a shortening of the nitrogen replete conditions respect to 

those cultivated at lower Cinit (0.1 g L-1). In terms of dry weight (Fig. 55b and Fig. 55d) the 

two conditions show similar results and good replicability, giving slightly higher values for 

the PBR with a Cinit=0.3 g L-1 as a consequence of the early beginning of nitrogen 
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starvation. Regarding the outdoor factors, similar values, respect to experiment A, of both 

internal and external temperatures were found. In particular the minimum internal 

temperature oscillated between 4.5°C and 10 °C and the minumum external temperature 

oscillated between 2.5 °C  and 7.9 °C; almost similar variations were found for maximum 

internal (between 21 °C  and 25 °C) and external (between 24 °C  and 30 °C) temperatures. 

Even in this case good PPFD values were found; indeed, minimum and maximum values 

obtained were 37 μE m-2 s-1 and 320 μE m-2 s-1. These similarities to experiment A are due 

to the same period in which the experiments were carried out (March 2017); even in this 

experiment few days with bad weather conditions were found. 

 

3.1.3 Experiment C (from 04-04-17 to 14-04-17) 

In this experiment only Tetradesmus was cultivated with a NaNO3init=0.35 g L-1 and two 

different Cinit (0.1 g L-1 and 0.3 g L-1); in particular in each PBR the new toroidal sparger 

was used. It should be noted that in these experiments (Fig. 56a and Fig. 56c) a clearly 

defined latency phase is not present, beginning immediately with exponential phase 

without any sign of microalgal acclimation. However, the exponential phase lasts for 5 

days in PBRs with Cinit=0.1 g L-1 (Fig. 56a) and only 1-2 days for PBRs with Cinit=0.3 g L-1 

(Fig. 56c), even if for these latter the real stationary phase begins after the 5th day. The 

reason of this short growth period, ending briefly after few days, can be traced back to the 

temperature oscillations between maximum (higher than 30 °C) (see Fig. 66) and minimum 

(about 5°C). These strong uncontrolled oscillations caused probably the growth inhibition 

shown in Fig. 56. In this case the nitrogen deficiency cannot be considered the cause of this 

behaviour, since also PBRs with Cinit=0.3 g L-1 shows immediately low growth values and 

is not possible to think of a complete nitrate consumption in this brief period. However, in 

general a good replicability both in terms of cellular concentration and dry weight in all the 

subplots is shown in Fig. 56. The only ecception is represented by PBR3 (t.o.3 in Fig. 56b) 

where a higher value respect to others PBRs is visible. The reason of this behaviour is due 

to the presence of higher level of contamination in this reactor maybe caused by a not 

correct execution of the inoculum operation. Regarding the outdoor factors, similar values, 

between internal and external temperatures were found. In particular minimum internal 

temperature oscillated between 8 °C and 12 °C and the minumum external temperature 

oscillated between 5 °C  and 10 °C. Very similar difference between maximum internal 

(oscillating from 28 °C to 33 °C) and external (oscillating from 24 °C  to 35 °C) 

temperatures were found. In this experiment the presence of cloudy days during the most 

part of this experiment was observed. These cloudy days didn’t impacted too much on 

PPFD results. Indeed, minimum and maximum values obtained were 55 μE m-2 s-1 and 365 

μE m-2 s-1. It is visible that both PPFD values are higher than those seen in the previous 

experiments because even if clouds reduced a little the sunlight amount, the shift to sunnier 

months increased the available irradiance. 
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                                   (a)                                                                     (b) 

                                   (c)                                                                     (d) 

Fig. 56 Microalgal (Tetradesmus obliquus) growth trends as cellular concentration [with Cinit=0.1 g L-1 (a) 

and Cinit=0.3 g L-1 (c)] and dry weight [with Cinit=0.1 g L-1 (b) and Cinit=0.3 g L-1 (d)], obtained during the 

experiment C (from 04-04-17 to 14-04-17). 

 

3.1.4 Experiment D (from 19-04-17 to 10-05-17)  

In this experiment only Tetradesmus was cultivated with a NaNO3init=0.70 g L-1 and two 

different Cinit (0.1 g L-1 and 0.3 g L-1); this new NaNO3init value was used to investigate the 

duration and the final concentrations obtained in a batch carried out with a doubled amount 

of nitrate. This experimental setting led to higher final concentrations (Fig. 57) respect to 

previous cultivations (see subparagraph 3.1.1-3.1.3). These results demonstrate that the 

microalgae cultivated in the experiments A-C were not affected by photolimitation, since 

in this experiment higher final concentrations (above 2.5 g L-1 as DW) are reached  (Fig. 

57b  and Fig. 57c). Therefore, since no limitation of light distribution inside the reactors 

was present, the cellular concentration’s lowering discussed before can be justified only by 

nitrogen depletion or cultivation problems (clogging, etc.), as previously written. It is 

visible in both Fig. 57a and Fig. 57b the presence of foaming problems in correspondence 

of the fluttuating trends after the 11th-12th day.      
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                                  (a)                                                                     (b) 

                                    (c)                                                                     (d) 

Fig. 57 Microalgal (Tetradesmus obliquus) growth trends as cellular concentration [with Cinit=0.1 g L-1 (a) 

and Cinit=0.3 g L-1 (c)] and dry weight [with Cinit=0.1 g L-1 (b) and Cinit=0.3 g L-1 (d)], obtained during the 

experiment D (from 19-04-17 to 10-05-17). 

 

These fluctuations can be justified also by the high internal temperature reached even in 

this experiment (> 30°C) (see Fig. 66) due to the non-active cooling system. However, 

with this doubled NaNO3init concentration the cultivation don’t reached the steady state at 

the 20th day, demonstrating the high impact that the initial nutrients amount have on the 

microalgal cultivation influencing cellular concentration (Fig. 57a and Fig. 57c), dry 

weight (Fig. 57b and Fig. 57d) and also batches’ duration. Also in this case the PBRs show 

a good replicabilty in terms of dry weight and a little less for cellular concentration due to 

foaming problems. Regarding the outdoor factors, an high temperature ranges were found. 

Indeed the minimum internal temperature oscillated between 5.20 °C and 15 °C and the 

minumum external temperature oscillated between 2 °C  and 12.3 °C; the same high 

variations were found for maximum internal (between 22 °C  and 36 °C) and external 

(between 20 °C  and 31 °C) temperatures. As mentioned before, the presence of several 

days with high temperatures (> 30°C) without an active cooling system stressed the 

microalgae, influencing their growth. Even for PPFD values an high range was found; 

indeed, minimum and maximum values obtained were 100 μE m-2 s-1 and 377.5 μE m-2 s-1. 

These high variations are justified by a not-stable weather conditions during the day and 

during the days. 
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3.1.5 Experiment E (from 15-05-17 to 22-05-17)  

In this experiment only Tetradesmus was cultivated with a NaNO3init=0.175 g L-1 and two 

different Cinit (0.1 g L-1 and 0.3 g L-1); this new NaNO3init value was used to investigate the 

duration and the final concentrations obtained in a batch carried out with a halved nitrate 

amount. These results are the exact opposite of those obtained in previous experiment (see 

subparagraph 3.1.4), underlining thus the importance of the NaNO3init in a microalgal 

cultivations. 

 

                                   (a)                                                                     (b) 

                                   (c)                                                                     (d) 

Fig. 58 Microalgal (Tetradesmus obliquus) growth trends as cellular concentration [with Cinit=0.1 g L-1 (a) 

and Cinit=0.3 g L-1 (c)] and dry weight [with Cinit=0.1 g L-1 (b) and Cinit=0.3 g L-1 (d)], obtained during the 

experiment E (from 15-05-17 to 22-05-17). 

Indeed, in this case the metabolites’ accumulation phase (nitrogen starvation) begins 

almost immediately (Fig. 58b and Fig. 58d) at the expense of a low cellular concentration 

(Fig. 58a and Fig. 58c) in which the stationary phase is reached after 2 cultivation days. 

Futhermore, as regards the replicability, the results visible in Fig. 58 show appreciable 

variability between the PRBs (in a smaller way in Fig. 58b) due to cultivations’ problems 

occurred during this experiment. Indeed, in addition to foaming problems bounded to low 

NaNO3init that caused immediaty stress inside microalgae, also the malfunction of the 

solenoid valves that controlled air/CO2 flow-rate occurred. As said before (subparagraph 
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3.1.4), these operational problems are very impactful on microalgal growth and have to be 

always actively monitored in order to keep the pilot opertive at the best working 

conditions. Regarding the outdoor factors the minimum internal temperature oscillated 

between 14 °C and 19 °C and the minumum external temperature oscillated between 13 °C  

and 17 °C; higher variations were found for maximum internal (between 30 °C  and 40 °C) 

and external (between 25 °C  and 32 °C) temperatures. As described in the previous 

subparagraph, the presence of several days with high temperatures (> 30°C) without an 

active cooling system stressed the microalgae, but in this case the effect of low NaNO3init 

concentration influenced more (negatively) microalgal growth. Even for PPFD values an    

high range was found;  indeed, minimum and maximum values obtained were 105 μE m-2 

s-1 and 380 μE m-2 s-1.  

 

3.1.6 Considerations about initial cultivation conditions 

                         (a)                                                                (b) 

Fig. 59 Microalgal (Tetradesmus obliquus) final values obtained in each experiment as cellular concentration 

(a) and dry weight (b) both with Cinit=0.1 g L-1 and Cinit=0.3 g L-1. The bars represent the Standard Deviations 

of the replicates in each experiment. 

 

In this subparagraph the decisions about the initial cultivation conditions to adopt in the 

following experiments are summed up. As regards NaNO3init, in previous subparagraphs 

(in particular from 3.1.3 to 3.1.5) the best value equal to 0.35 g L-1 has been shown, being 

that a compromise between high final concentrations (with long batch’s duration) and low 

final concentrations (with short batch’s duration). Indeed with NaNO3init=0.35 g L-1, a right 

balance between nitrogen repletion and starvation is guarateed. Concerning Cinit, a 

comparison between two levels (0.1 g L-1 and 0.3 g L-1), both in terms of cellular 

concentration and dry weight is reported in Fig. 59; in both subplots the bars represent the 

Standard Deviations of the replicates in each experiment. Since for cellular concentration 

(Fig. 59a) is difficult to define the better condition to use, due to high variability between 

replicates, the results in terms of dry weight (Fig. 59b) are taken as reference for the 

decision. It is can be seen in Fig. 59b that DW values obtained from cultivations carried 

out with Cinit=0.3 g L-1 are higher than those cultivated with Cinit=0.1 g L-1. For this reason, 

for the following experiments Cinit=0.3 g L-1 was adopted. 
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3.1.7 Experiment F (from 20-06-17 to 07-07-17)  

In this experiment only Tetradesmus was cultivated with the optimal initial cultivation 

conditions (NaNO3init=0.35 g L-1 and Cinit=0.3 g L-1) described before (subparagraph 3.1.6). 

In particular in the Experiments F-G-H the cooling system was activated and also the 

addition of 1-2 mL of antifoam (paragraph 2.1), in order to avoid biomass losses, began in 

this Experiment F. The Fig. 60a shows a good exponential phase, a stationary period from 

8th to 12th day and a decay phase that occurred for all three reactors between 14th and 17th 

day. This decay is justified by cell death due to absence of nutrients in the culture medium. 

This condition is reinforced also both by antifoam addition that avoided the aforesaid “self 

dilution” process (due to biomass losses on the reactors’ top) and by the active cooling 

system.  

                                   (a)                                                                     (b) 

Fig. 60 Microalgal (Tetradesmus obliquus) growth trends as cellular concentration (a) and dry weight (b) with 

Cinit=0.3 g L-1 NaNO3init=0.35 g L-1, obtained during the experiment F (from 20-06-17 to 07-07-17). 

 

The interaction of this two factors improved the cultivation conditions, increasing thus the 

cellular concentration inside reactors and reaching the highest values obtained since the 

first experiment. In fact, the continue addition of antifoam (1-2 mL) didn’t inhibit at all the 

growth, since no lag phase is visibile at the beginning of the cultivation; furthermore the 

antifoam guaratee a better data replicability. Also the temperature control system was 

necessary, demonstrating how its presence assures good growth trends, avoiding the 

considerable stress caused by high temperatures reaching. As regards dry weight trends, 

Fig. 60b shows instead a continuous increase due to the metabolites accumulation during 

nitrogen starvation. An additional cause of this increment is probably due to weighing of 

lised and dead cell during the dry weight analysis. Regarding the outdoor factors, since in 

this experiment the cooling system was activated, the internal temperature’s trend was 

constrained to the high value (30 °C). The minimum internal temperature oscillated 

between 20 °C and 24 °C, the minumum external temperature oscillated between 18 °C  

and 23 °C and the maximum external temperature oscillated between 30 °C  and 40 °C. 

The high external temperatures reached during this summer period justified the necessity 
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of using an active cooling system in order to keep microalgae in good cultivation 

conditions. Even for PPFD high values were found due to the summer period; indeed, 

minimum and maximum values obtained were 110 μE m-2 s-1 and 385 μE m-2 s-1. 

 

3.1.8 Experiment G (from 10-07-17 to 27-07-17)  

In this experiment and in the following ones, both Tetradesmus and Graesiella were 

cultivated with the optimal initial cultivation conditions (NaNO3init=0.35 g L-1 and Cinit=0.3 

g L-1) described before (subparagraph 3.1.6). Both cellular growth present all the typical 

phases of microalgae growth trend. Differently from the initial experiments (A-E) carried 

out during spring, in which the cultivation phases lasted for about 30 days, in the summer 

period all the phases ended in about 15 days (see also Eperiment F in subparagraph 3.1.7). 

However, in this experiments lower final concentrations in terms of number of cells (Fig. 

61a and Fig. 61c), respect to Experiment F, are reached. On the contrary, similar dry 

weight values (Fig. 61b and Fig. 61d) compared to those visibile in Fig. 60b, are obtained. 

This lower final cellular concentrations, both for Tetradesmus and Graesiella can be traced 

back to presence of competitive microorganisms found in the microscope analysis for cell 

count.  

                                   (a)                                                                     (b) 

                                  (c)                                                                     (d) 

Fig. 61 Microalgae Tetradesmus obliquus (a)-(b) and Graesiella Emersonii (c)-(d) growth trends as cellular 

concentration and dry weight with Cinit=0.3 g L-1 NaNO3init=0.35 g L-1, obtained during the experiment G (from 

10-07-17 to 27-07-17). 
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As comparison between two species, the results obtained either as cell concentration and 

dry weight are very similar, not allowing the choice of the best one. Furthermore, also 

these results show very good replicability due to the optimized operative cultivation 

conditions used. Regarding the outdoor factors, even in this experiment the cooling system 

was activated, holding the maximum internal temperature at its set point (30 °C). 

Minimum internal temperature oscillated between 18 °C and 24 °C, the minumum external 

temperature oscillated between 17 °C  and 24 °C and the maximum external temperature 

oscillated between 34 °C  and 38 °C. Even for PPFD high values were found, slightly 

higher than the previous experiment; indeed, minimum and maximum values obtained 

were 150 μE m-2 s-1 and 380 μE m-2 s-1. 

 

3.1.9 Experiment H (from 22-09-17 to 17-10-17)  

In this experiment both Tetradesmus and Graesiella were cultivated with the optimal initial 

cultivation conditions (NaNO3init=0.35 g L-1 and Cinit=0.3 g L-1) described before 

(subparagraph 3.1.6). During August, due to company’s summer vacantion, the 

cultivations of both species were transferred in two indoor PBRs, providing an artificial 

lighting system and an aeration system. This experiment started at the beginning of 

autumn, after several days in which microalgae were brought back to outdoor environment, 

trying to ensure the necessary acclimatization to the different temperatures and lighting 

conditions between indoor and outdoor systems. The results in Fig. 62 show a slower and 

less regular growth respect to those obtained during summer. The main factor that caused 

these behaviors is the sun irradiance, indeed a significan lowering of light amount (both as 

PPFD and Daily Illumination Time) was verified (see Fig. 67).  In addition to this factor it 

must be considered that on the 11th day a CO2 solenoid valve’s failure occurred, remaining 

in the open position for about 3 days, continuing to supply CO2 and keeping pH constantly 

to 4. This problem affected negatively the growth trends and data replicability for both 

species. Furthermore, as visible in Fig. 62a and Fig. 62b the cultivation carried out in the 

PBR1 (t.o.1) ends at 17th day due the high level of contamination detected, maybe caused 

by a not-complete cleaning operation of the PBR1 after the summer pause. In this case a 

comparison between two specied cannot be done also due to lack of replicates especially 

for Tetradesmus. Regarding the outdoor factors, this was the last experiment with the 

active cooling system that held the maximum internal temperature at its set point (30 °C). 

The minimum internal temperature oscillated between 10 °C and 15 °C, the minumum 

external temperature oscillated between 8°C  and 12 °C and the maximum external 

temperature oscillated between 27 °C  and 35 °C. It is visible that the temperature’s values 

are lower than those collected in experiment F and G due to the autumn approach. This 

change of the season influenced also the PPFD values; indeed, minimum and maximum 

values obtained were 38.5 μE m-2 s-1 and 232 μE m-2 s-1.  
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                            (a)                                                                     (b) 

                                     (c)                                                                     (d) 

Fig. 62 Microalgae Tetradesmus obliquus (a)-(b) and Graesiella Emersonii (c)-(d) growth trends as cellular 

concentration and dry weight with Cinit=0.3 g L-1 NaNO3init=0.35 g L-1, obtained during the experiment H (from 

22-09-17 to 17-10-17). 

 

 

3.1.10  Experiment I (from 27-10-17 to 22-11-17)  

In this experiment both Tetradesmus and Graesiella were cultivated with the optimal initial 

cultivation conditions (NaNO3init=0.35 g L-1 and Cinit=0.3 g L-1) described before 

(subparagraph 3.1.6). Even in this experiment the effect of low light amount influenced 

negatively the results obtained both as cellular concentration and dry weight for both 

species. In this experiment, in order to have more replicates, all PBR available inside the 

pilot plant were used; the only exception was PBR6 (g.e.6) that after two days showed 

leakege problems at its basis and for this reason the cultivation was stopped. Tetradesmus 

cultivation shows goood replicability in terms of cell concentration (Fig. 63a) but evident 

variability as dry weight is visible in Fig. 63b. Also in Graesiella’s dry weight results (Fig. 

63d) variability is present during the period between 8th-24th days. These problems visible 

in dry weight measurements, and also in Graesiella’s cellular concentration (Fig. 63c), are 

attributable to contamination problems already found in the previous experiment 

(subparagraph 3.1.9) due to the restart of reactors left in standby mode during summer 

vacation. Anyhow Tetradesmus showed higher results (as cellular concentration) compared 
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to Graesiella although this latter was more influenced by other contaminating 

microorganisms, falsifying thus the results obtained.  
 

                                    (a)                                                                               (b) 

                          (c)                                                                              (d) 

Fig. 63 Microalgae Tetradesmus obliquus (a)-(b) and Graesiella Emersonii (c)-(d) growth trends as cellular 

concentration and dry weight with Cinit=0.3 g L-1 NaNO3init=0.35 g L-1, obtained during the experiment I (from 

27-10-17 to 22-11-17). 

 

As regards dry weight, considering also the contamination problem, both algae reached the 

same results, making impossible the decision on which was the best. Regarding the outdoor 

factors the minimum temperature was pratically the same for the internal and external probes 

oscillating between 5 °C and 13 °C. The maximum external temperature oscillated between 

28 °C and 31 °C and the maximum internal temperature oscillated between 20 °C and 32 °C. 

On the other side the minimum and maximum PPFD values obtained were 28 μE m-2 s-1 and 

90 μE m-2 s-1. In this experiment an high variability of the outdoor factors occurred, indeed 

even if in some days the temperature overcame 30 °C the light availabilty was always low 

due to the short light availability typical of winter months. 
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3.1.11  Experiment L (from 24-11-17 to 22-12-17)  

                                  (a)                                                                             (b) 

                                        (c)                                                                             (d) 

Fig. 64 Microalgae Tetradesmus obliquus (a)-(b) and Graesiella Emersonii (c)-(d) growth trends as cellular 

concentration and dry weight with Cinit=0.3 g L-1 NaNO3init=0.35 g L-1, obtained during the experiment L (from 

24-11-17 to 22-12-17). 

 

In this experiment both Tetradesmus and Graesiella were cultivated with the optimal initial 

cultivation conditions (NaNO3init=0.35 g L-1 and Cinit=0.3 g L-1) described before 

(subparagraph 3.1.6). In order to avoid the contamination problems found in the previous 

experiments H-I, an accurate cleaning and disinfection of the largest part of  the reactors 

(excluding PBR5 and PRB6 for leakeages issues) was carried out. This reactors’ 

preatreatments gave a good responses for both microalgae either as cellular concentration 

(Fig. 64a and Fig. 64c) and dry weight (Fig. 64b and Fig. 64d); indeed a good level of 

replicability is reached, even if the final values are lower than those showed in the previous 

experiments H and I (see subparagraph 3.1.9 and 3.1.10). These results are justified by 

lowering of both temperature and light amount (see Fig. 66 and Fig. 67), common effects of 

outdoor cultivation carried out during autumn or winter period. As comparison of two 

species, Tetradesmus shows slightly higher results in terms of cellular concentration respect 

to Graesiella, but as dry weight they reach the same final values; therefore even in this case 

both species can be considered equivalent. Regarding the outdoor factors, in this case both 

internal and external probes showed similar values, in particular the minimum temperature 

oscillated between -3.5 °C and 8 °C and the maximum temperature oscillated between 9 °C 
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and 24 °C. On the other side the minimum and maximum PPFD values obtained were 30 μE 

m-2 s-1 and 90 μE m-2 s-1. In this experiment, due to winter season, very low temperature 

(below zero) and irradiance’s values were obtained, having a negative impact on the 

microalgal specific growth rate and productivity.                               

 

3.1.12  Experiment M (from 19-01-18 to 22-02-18)  

                                      (a)                                                                             (b) 

                                      (c)                                                                             (d) 

Fig. 65 Microalgae Tetradesmus obliquus (a)-(b) and Graesiella Emersonii (c)-(d) growth trends as cellular 

concentration and dry weight with Cinit=0.3 g L-1 NaNO3init=0.35 g L-1, obtained during the experiment M (from 

19-01-18 to 22-02-18). 

 

In this experiment both Tetradesmus and Graesiella were cultivated with the optimal initial 

cultivation conditions (NaNO3init=0.35 g L-1 and Cinit=0.3 g L-1) described before 

(subparagraph 3.1.6). This experiment is not present in Tab. 5 because it wasn’t used to 

multivariate model developing, differently from previous experiments (from A to L). 

Indeed this experimet was used to validate the model’s prediction ability, which results 

will be showed in the following paragraphs (see paragraph 3.6). The results are similar to 

those obtained in the previous experiment L, in particular for dry weight (Fig. 65b and Fig. 

65d) at a first glance the results seems higher but this increase is due to the stretching of 

the batch duration. Indeed if the cultivation had been stopped at 28th day the results were 

very similar to those of experiment L. Even in this case the contamination is not visible 
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and the results show high level of replicability between reactors; furthermore, even in this 

case both species can be considered equivalent. Regarding the outdoor factors, even in this 

experiment both internal and external probes showed similar values, in particular the 

minimum temperature oscillated between 0.37 °C and 5 °C and the maximum temperature 

oscillated between 18 °C and 26 °C. With respect to minimum and maximum PPFD, the 

values obtained were 28 μE m-2 s-1 and 55.5 μE m-2 s-1. The outdoor variables’ behaviour 

was identical to those of the previous experiment (L).                  

 

 

3.2 Results of the preliminary statistical analysis 

 

As regards the factors listed in Tab. 3, the results of ANOVA test for those are reported in 

Tab. 17. The only factor that didn’t influence the collected data (F<Fcrit, null hypothesis 

accepted) is the position of the reactors inside the plant, so each reactor inside the plant 

could be considered as a replicate for light exposition. The other factors influenced 

significantly light data collection and the causes can be found in the shadow’s effect 

between reactor-reactor and reactor-building, in the day-night cycle and also in weather 

and seasonal light variability.  These preliminary results show that collecting light data in a 

casual position of the reactor would not been an accurate way to describe light exposition 

and could have affect the forecast growth value in a predictive empiric model.                                                                                  

 

 

Tab. 17 Results of ANOVA test for the different factors considered to be able to influence light measures. 

SS=Sum of Squares; df=degree of freedom; MS=mean square; F= Fisher statistic. 

 

As concerns temperature, the paired t-test results, comparing thus internal and external 

temperatures in time divided in three phases (temperature increment, constant temperature 

and temperature decrement), indicated a significant difference between two temperatures, 

showing respectively for each aforesaid phase a p-values equal to 0.01, 1·10-19 and 0.08. 

This statistical analysis, confirmed the necessity of using two probes, because internal and 

external temperatures should had to be considered as two different input parameters 

influencing microalgal growth. 

 

Factor SS df MS F P-value Fcrit 

Position along the  

axis of each reactor 
0.586 1 0.586 49.76 7.34*10-11 3.91 

Reactors’ position 

inside the plant 
0.097 6 0.016 1.37 0.229 2.16 

Time of measurements' 

uptake: Part of the day 
5.55*108 2 2.77*108 2.29*103 1.40*10-119 3.05 

Time of measurements' 

uptake: Different days 
3.03*107 8 3.79*105 31.31 2.88*10-29 1.99 
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3.3 Input and Output values for multivariate model 

development 

 

Before showing PCA and PLS results, the values of two inputs and outputs, representing 

the most important outdoor variables (light and temperature) influencing outdoor 

cultivation in closed photobioreactors, are reported in this paragraph. Both of these outdoor 

factors can change several folds in response to seasons, day/night cycle and weather, in a 

range known to affect microalgae metabolism. Besides the environmental variables, as 

visibile in the cultivation results (subparagraph 3.1.1.-3.1.12), also the initial biomass 

concentration (Cinit) and the initial NaNO3 concentration (NaNO3init) of each test were used 

as input in the model. These two factors were essential to understand the experiment's 

duration and the biomass production. Other factors, such as CO2 and pH, that can also 

influence microalgal growth, were not considered for model development. Indeed, pH was 

controlled by a control system which maintained it always constant around 8 

(subparagraph 1.3.1). CO2 was supplied on demand by the pH control system and thus was 

assumed to be sufficient, and not a limiting nutrient for microalgae growth throughout the 

cultivation. For such reasons these two factor were assumed to be not influent on our tests. 

In Fig. 66 averaged maximum and minimum values of Internal and External Temperature 

measured during the experiments are shown. It is evident that the Minimum Temperatures’ 

plots (Fig. 66b and Fig. 66d) have the same trends and similar values, in contrast to the 

Maximum Temperatures (Fig. 66a and Fig. 66c). This difference is due mainly to two 

reasons: firstly, the water contained in a closed vessel directly irradiated by sun, without an 

active cooling system, heats up to a temperature higher than that of the air (Timax > Temax) 

for physical reasons related to heat transfer efficiency and the thermal capacity of water. 

Moreover, these effects are improved by trigger of Non-Photochemical Quenching (NPQ) 

mechanism. This particular defence mechanism protects microalgae from the negative 

effects of high solar light absorption, dissipating the excess amount of light energy to heat 

and giving the appearance of an exothermic reaction. The second reason is the presence of 

the temperature control system with water spray cooling (see subparagraph 2.1.3), that kept 

during June-September period the Internal Temperature at its set point T= 30 °C. In all 

four subplots, anyway, the seasons’ temperature trend is visible reaching maximum value 

at about Tmax=38° C in July, and minimum value at about Tmin=4° C in December. 

In Fig. 67, the light trend both in terms of Daily Illumination Time (dotted) and of PPFD 

(yellow bars) is plotted; the Daily Illumination Time is averaged on the light hours during 

each experiment. The irradiance measured values can be positioned between those of 

Amsterdam (N 52° 22' 13" E 4° 53' 43") and Ankara (N 39° 55' 32" E 32° 51' 59") 

(Boxwell, 2009). 
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Fig. 66: Averaged maximum/minimum values of Internal (a/b) and External (c/d) Temperature during the 

experiments. The yellow bar indicates the cooling system activation during the summer periods. The bars 

represent the Standard Deviations of the replicates. 

 

Fig. 67: Photosynthetic Photon Flux Density (PPFD) (µE m2 s-1) and Daily Illumination Time (h) averaged 

trends during each experiment. The higher values are obtained in summer periods, having more daylight 

hours and a better solar irradiance. The bars represent the Standard Deviations of the replicates. 
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It can be seen, as expected, that the maximum value of PPFD (260 µE m2 s-1) is reached 

during the summer period, as also for the Daily Illumination Time (15.6 h) that begins to 

decrease with autumn. In Fig. 68 the output values (subparagraph 2.3.1) during each 

esperiment are plotted in terms of specific growth rate (µ (d-1)) and productivity calculated 

at Cmax (Pmax (g L-1 d-1)), both averaged on the replicates. These values are referred to both 

Tetradesmus and Graesiella, which were considered as belonging to a single microalgal 

strain for the empiric model's development.  

 

Fig. 68: Output values profiles in terms of Specific growth rate (µ (d-1)) and Productivity calculated at Cmax 

(Pmax(g L-1 d-1)) obtained during the experiments (March 2017-December 2017). A positive trend of Pmax 

towards summer months (with the exception of E conducted at a half of normal NaNO3 concentration) is 

shown. µ doesn't show a clear trend because of high standard deviations between the replicates (especially 

for C and E) due to the several factors influencing the outdoor microalgal growth. The bars represent the 

Standard Deviations of the replicates for both microalgae, in each experiment, considered separately. 

 

These assumptions were verified by analyzing results obtained running PCA/PLS methods, 

with experimental values of each microalga considered singularly (see paragraph 3.6), 

highlighting thus that these slight differences, in terms of the experimental values of µ and 

Pmax between Tetradesmus and Graesiella, were too small to be detectable from these 

multivariate statistics methods. Fig. 68 shows a positive Pmax trend moving towards the 

summer period (from experiment A to G), with the highest value (0.17 g L-1 d-1) obtained 

in the experiment G and a negative trend moving towards winter months (from experiment 

H to L). These Pmax values are fully in line with the outdoor variables plotted in Fig. 66 and 

Fig. 67 showing better results with the increasing of temperature and light availability. The 

only exception of Pmax increasing trend towards summer period, is shown in experiments D 

and E and is due to different NaNO3 concentration used (see subparagraphs 3.1.4 and 

3.1.5). Indeed in D a doubled concentration of NaNO3, respect to others experiments, was 

used, leading to a biomass and productivity increase. On the other hand in E experiment 
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using an half of normal NaNO3 concentration led to a lower productivity. These results 

highlight the relevance of Cinit and NaNO3init factors, in order to understand the 

experiments duration and the biomass production; indeed, the D and E experiment show 

different values of Pmax (therefore intrinsically also of duration), even if were conducted at 

similar environmental conditions. As regards the specific growth rate µ, in Fig. 68 there 

isn't a clear trend because of high standard deviations between the replicates, especially in 

the experiments C and E (see subparagraphs 3.1.3 and 3.1.5). This µ variability has been 

explained before and is caused by the several factors influencing the outdoor microalgal 

growth; for this reason PCA and PLS methods were chosen to isolate the different factors 

affecting the growth. The Pmax and µ values in Fig. 68 are comparable with those reported 

in Tab. 8, obtained in similar environmental conditions in outdoor cultivations, both in 

Italy and in other locations of the world.  

 

Tab. 18: µ and Pmax comparison with other similar environmental conditions in outdoor microalgal 

cultivations. 

In particular during the cultivation period of work described by Camacho-Rodrìguez et al. 

(Camacho-Rodríguez et al., 2014) we obtained Pmax = 0.025-0.25 L-1 d-1 and µ = 0.12-1.1 d-

1, during the cultivation period of work described by Bosma et al. (Bosma et al., 2007) we 

obtained Pmax = 0.04-0.135 L-1 d-1 and µ = 0.15-0.31 d-1 and lastly during cultivation period 

of of work described by Cheng-Wu et al.(Cheng-Wu et al., 2001) we obtained Pmax = 

0.025-0.18 L-1 d-1 and µ = 0.14-0.3 d-1. Only Italy values of Chini Zittelli et al. (Chini 

Zittelli et al., 2006) are slightly different than our (Pmax = 0.07-0.18 L-1 d-1 and µ = 0.12-0.3 

Reactor 

configuration 

Microalgae 

Used 
Location 

Cultivation 

period 

Pmax 

(g L-1 d-1) 

µ  

(d-1) 

 

Corresponding 

Author 

Bubble  

Column 

Tetraselmis 

suecica 
Italy 

August-

September 
0.4-0.65 

0.32-

0.65 

Chini Zittelli, et 

al., 2006 

Closed  

Bags 

Nannochlorop

sis gaditana 
Spain 

January-

December 
0.02-0.13 

0.1-

0.5 

Camacho-

Rodríguez et al., 

2014 

Bubble 

 Column 

Monodus 

subterraneus 

Netherlan

ds 

July-

October 
0.05-0.2 

0.6-

0.4 

Bosma et al., 

2007 

Flat Panel 
Nannochlorop

sis sp. 
Israel 

Winter-

Summer 
0.14-0.25 

0.15-

0.17 

Cheng-Wu et 

al., 2001 

Bubble 

Column 

Tetradesmus 

obliquus and 

Graesiella 

emersonii 

Italy 
March-

December 

0.025-

0.25 

0.12-

1.1 
This work 
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d-1, especially for Pmax), due to their optimized pilot plant positioning that increased the 

photosynthetic productivity. 

 

3.4 Multivariate Model Results 

 

In this paragraph the results obtained from the developed multivariate model having the 

aim to predict microalgal growth in specific outdoor cultivation conditions, are resumed. 

 

3.4.1 PCA Results 

As preliminar result, PCA analysis was implemented and the redundant variables were 

eliminated; for example variables related to light measures along reactor axis (top, 

medium, bottom) were deleted, leaving as light representig data, the measure taken on the 

“unshaded reference point". After this first modification PCA were recalculated, showing 

that only 2 Principal Components (PC) were needed to explain most of the data variance 

(88%). This result was carried out by using Cross Validation (CV) method and calculating 

the Predicted Residual Error Sum of Squares (PRESS) (Wold et al., 1987). The results 

obtained with PCA implementation, giving a PC=2, granted an easy interpretation of the 

variables' effects on PCs in a bidimensional plot. In particular, the Loading Plot (Fig. 69) 

and the Score Plot (Fig. 70) are reported.  

Fig. 69: Loading Plot relatively to the first two Principal Components (PC1 and PC2). The vectors with a 

horizontal orientation influence more PC1 (“Environmental Conditions”) and for the same reason the vectors 

with a vertical orientation influence more PC2 (“Cultivation Conditions”).  
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Fig. 70: Score Plot relatively to the first two Principal Components (PC1 and PC2). This plot shows the 

individual observations, collected during the experiments, clustered in groups having as common features to 

belong to the same experiment (A-L) and moved near or far from the axis depending on the influence of PC1 

or PC2. 

 

Loading Plot is an illustration of how much each variable contributes to build (or “load”) 

each PC, showing how much each variable influence the PCs. In particular the Fig. 69 

evidences that the variables with a horizontal orientation (Timax avg, Temax avg, Timin avg,     

Temin avg, Daily Illumination Time, PPFD) and similar lenght (which means similar 

influence on a PC) have a low effect on PC2 but a high effect on PC1. These variables also 

have good correlation to each other (verified also physically), due to the small angles 

between the vectors. Fig. 69 also shows that variables approaching to a vertical orientation 

(NaNO3init, Cinit) are irrilevant to PC1, but significantly influence PC2. In particular, the 

NaNO3init vector is longer than Cinit one, being the most influent in PC2 load. Furthermore 

these two variables do not correlate with each other; indeed they physically represent two 

different conditions. Since vectors that influence more PC1 are composed by 

environmental variables, the PC1 can be named: “Environmental Conditions” and for the 

same reason the PC2 is called “Cultivation Conditions”. In Fig. 70 the Score Plot is 

represented, showing that the observations are clustered in groups having as common 

feature to belong to the same experiment (A-L). Moreover, the experiments A-B-C-D are 

also clustered near the vertical axis and shifted from the origin, highlighting that the 

obeservations are more influenced by the variables with a vertical orientation (NaNO3init 

and Cinit) that define PC2. This result is due to the changes, in terms of initial biomass 

concentration (Cinit) and the initial NaNO3 concentration (NaNO3init), carried out during 

those experiments. Besides that, the experiments F-G-I-L are affected by both 

Enviromental conditions and Cultivation conditions, without either of this two Pricipal 

Components prevail over the other. Lastly, for the experiments H and E, there is almost no 
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contribution of both variables groups, indicating that the variables have values near their 

average level, having centered and scaled the observation matrix. In Fig. 70 a dashed circle 

is reported, representing the Mahalanobis distance, denoting no outlier (Härdle and Simar, 

2015). Like many other multivariate statistic methods, the results obtained (in terms of 

plots, tables and numbers) have to be interpreted and sometimes are not univocal. Indeed, 

even if the first principal component (PC1) is the most important one because explains the 

maximum percentage of variability present in the data that can be represented in only one 

dimension, it is possible that the second one (PC2) is influenced by more important 

variables (maybe economically). In our case PC2, influenced by the Cultivation Condition 

variables, is less important for the explanation of data variance but is more important for 

the economical point of view. Indeed, the amount of nutrients (NaNO3 in our study) can 

affect, besides the growth rate and productivity, also the Operative Expenditures (OPEX) 

of the process. For this reason, a correct and deeper interpretation of PCA results, without 

stopping to a shallow analysis, is essential. 

 

3.4.2 PLS Results: Model Selection and Predictors’ Evaluation 

PCA results showed the connections between variables and their effects on PCs, grouping 

both observations and variables. An empiric model able to represent the variables’ effect 

on biomass growth was developed with PLS. As first step, in Fig. 71 the PRESS (Predicted 

Residual Error Sum of Squares) values of each predictor (the same meaning of component 

for PCA) are plotted. It is shown that the minimum value of PRESS is obtained at the 6th 

predictor and consequently the PLS model will need six predictors to describe most of the 

variance (84%). This is shown in Fig. 72, where the R-Squared (R2) value for each 

predictor is plotted for µ response (the same trend is observed also for Pmax). The R-Sq 

value provides the proportion of variation in each response that is explained by predictors, 

indicating how well each model fits data (the higher value obtained, the better the model 

fits data). In particular, in Fig. 72 both absolute R-Sq (bars) and cumulative R-Sq (dots) are 

plotted, denoting the same result: i.e. maximum value of R-Sq at 6th predictor (84%). As 

shown in Fig. 72, with the usage of Cross Validation (CV), an improvement in variability 

representation can be achieved. The cross-validation technique (the leave-one-out case was 

used in this study) works by omitting each observation one at a time, rebuilding the 

predictive model using remaining data and then using this model to predict the omitted 

data, estimating at the end with PRESS the predicted residual error. 
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Fig. 71: PRESS (Predicted Residual Error Sum of Squares) Plot for each predictor. This plot aims to 

illustrate the minimum number of predictors needed to explain the most part of the system variance: in this 

case PLS model will need six predictors to describe most of the variance. 

 

Fig. 72: Model Selection Plot representing the R-Squared trend for each predictor both with and without the 

Cross Validation (CV) method in absolute and cumulative values. This plot shows that PLS model will need 

six predictors to describe most of variance (84%) with Cross Validation method, as can be seen also in Model 

Selection Plot. 
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3.4.3 PLS Results: Response Analysis 

In Fig. 73 and Fig. 74 predicted responses versus experimental data are reported for both 

outputs for direct fitting and CV procedure. Both plots show very little difference 

between the fitted and cross-validated fitted responses. Furthermore the points on both 

plots lie around the correlation line in a similar linear pattern, indicating that model fits 

data with a good level of accuracy. The analysis of residuals between fitted and 

experimental data can give further insight into the model goodness.  

 

 

Fig. 73: Response Plot (plot of fitted and cross-validated fitted responses versus experimental values) for µ 

(d-1). It shows very little differences between fitted and cross-validated fitted responses with points lying 

around the correlation line in a similar linear pattern, indicating the good level of accuracy of the model data 

fitting. Plotted data are referred to the individual observations collected during the experiments. 

 

Fig. 74: Response Plot (plot of fitted and cross-validated fitted responses versus experimental values) for 

Pmax (gL-1d-1). It shows very little differences between fitted and cross-validated fitted responses with points 

lying around the correlation line in a similar linear pattern, indicating the good level of accuracy of the model 

data fitting. Plotted data are referred to the individual observations collected during the experiments. 
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In Fig. 75, the Residual Normal Probability Plot for both outputs µ (d-1) (a) and Pmax  

(gL-1d-1) (b) are reported. These figures show the standardized residuals versus their 

expected values when the distribution is normal. The residuals appear to follow a straight 

line for µ values, while some distorsion can be noticed for Pmax but always within the range 

of confidence intervals at 95%.                                                                                     

                                                                              (a)                                                                              

                                                                               (b) 

Fig. 75: Residual Normal Probability Plot (standardized residuals results versus their expected values when 

the distribution is normal) for µ (d-1) (a) and Pmax (gL-1d-1) (b). The residuals appear to follow a straight line 

for µ values, while some distortions can be noticed for Pmax but always within the range of 95% confidence 

intervals. In both plots the data are referred to the individual observations collected during the experiments. 

 

In Fig. 76 and Fig. 77 the predicted and experimental results are compared for both 

µ and Pmax outputs, confirming the quality of PLS regression model for different 

sets of experiments. In both plots the model is able to follow the experimental trends, 

overcoming the variability specific of the environmental conditions and resembling the 

effect of changed cultivation condition. Indeed, in both plots some possible outliers, for µ 

(d-1) in April and May and for Pmax (gL-1d-1) during March, are present.  
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As regards µ, the outliers could be caused by outdoor variability and operation problems, 

as described in subparagraphs of paragraph 3.1. On the other hand, for Pmax the presence of 

possible outliers can be explained by the different initial cultivation conditions, in terms of 

Cinit and NaNO3init carried out in the first experiments (see the experiments results in 

paragraph 3.1) 

Fig. 76: Comparison between PLS predicted results and experimental ones for µ (d-1). Is visible that the 

model is able to follow the experimental trends even with the presence of some possible outliers for in April 

and May (due to the outdoor variability as described in paragraph 3.1). Plotted data are referred to the 

individual observations collected during the experiments. 

 

 

Fig. 77: Comparison between PLS predicted results and experimental ones for Pmax (g L-1 d-1). Is visible that 

the model is able to follow the experimental trends even with the presence of some possible outliers during 

March (due to the different initial cultivation condition carried out). Plotted data are referred to the individual 

observations collected during the experiments. 
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3.4.4 PLS Results: Empiric Model Prediction Results 

In this subsection the prediction results using PLS model are shown. In particular, in Tab. 

19 the experimental values obtained during period M (subparagraph 3.1.12) are listed; 

these values are used only for testing and validating PLS model's prediction abilities and 

not for its development.  

 

 Response Predictor 

Experiment µ Pmax Cinit 
NaNO3 

init 

Tima

x avg 

Timin 

avg 

Temax 

avg 

Temin 

avg 

PPF

D 

Daily 

illumination 

time 

M 0.2 0.03 0.3 0.35 19.6 5.43 18.9 4.74 4090 10.25 

Tab. 19: µ and Pmax comparison with other similar environmental conditions in outdoor microalgal 

cultivations experimental values obtained during M period (from 19-01-2018 to 22-02-2018), used for testing 

and validating model’s prediction abilities. Responses: specific growth rate µ (d-1) and productivity 

calculated at Cmax (Pmax (gL-1d-1)). Predictors: maximum and minimum internal and external temperatures 

averaged during each experiment Timax avg, Timin avg, Temax avg, Temin avg (°C); initial inoculum concentration Cinit 

(gL-1) and initial nitrate concentration NaNO3init (gL-1); photosynthetic photon flux density PPFD (µE m2 s-1); 

Daily Illumination Time (h). 

In Tab. 20 the Predicted Responses both for µ and Pmax, with their correspondig Standard 

Error (SE) of Fit and 95% Confidence Interval (CI), are listed and compared with the 

experimental ones. It can be seen that for both output variables, the regression values are 

similar but not identical to the experimental ones. This difference is mainly due to the 

absence of the experimental data collected during M period for PLS model development, 

lowering a little its prediction ability. The values obtained in Tab. 20 are still an acceptable 

estimation, considering the high variability that influenced outdoor microalgal growth, 

underlining the effective goodness of the PLS regression model.  

 

Output 

variable 

Experimental 

value 

Regressed 

value 
SE of Fit 95% CI 

µ 0.2 0.28 0.037 (0.206; 0.357) 

Pmax 0.031 0.024 0.006 (0.012; 0.035) 

Tab. 20: µ (d-1) and Pmax (gL-1d-1) PLS Regressed Values with relative Standard of Error (SE) and 95% 

Confidence Interval (CI) compared with the Experimental Values. 

 

 

 

 

 



118 

 

As a final step, in Tab. 21 the standardized regression coefficients, used with predictors in 

order to calculate the fitted value of both response variables, are listed. 
 

Predictor 
µ Standardized 

Coefficients 
Pmax Standardized Coefficients 

Cinit -0.050482 0.154351 

NaNO3init -0.628423 0.402856 

Timax avg 0.664885 -0.366197 

Timin avg -0.058646 0.281886 

Temax avg -0.876960 0.271945 

Temin avg 0.009383 0.277537 

PPFD 0.336034 0.295258 

Daily Illumination Time 0.421541 0.124203 

Tab. 21: Regression standardized coefficients for both outputs: specific growth rate (µ (d-1)) and productivity 

calculated at Cmax (Pmax (gL-1d-1)). 

 

3.5 Comparison between Tetradesmus and Graesiella's 

outputs 

 

In order to confirm the hypotesis made in the multivariate model’s development that 

considered Tetradesmus and Graesiella as belonging to a single microalgal strain due to 

their high similarity, in this paragraph the results obtained running PCA/PLS methods, 

with the experimental values of each microalga considered singularly, are showed. In both 

Fig. 78 and Fig. 79 the comparison between Tetradesmus and Graesiella's averaged 

outputps (in terms of µ and Pmax), during the experiments in which they were cultivated 

together in parallel, are plotted. The bars represent the Standard Deviations of the 

replicates for both microalgae, in each experiment, considered separately. The difference is 

statistically significant, however, there is any difference when data are used separately for 

PCA/PLS methods. 
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Fig. 78: Comparison between experimental averaged µ values obtained for both Tetradesmus and Graesiella 

strains during the experiments in which they were cultivated together in parallel. The bars represent the 

Standard Deviations of the replicates for both microalgae, in each experiment, considered separately. For 

each species the replicates' number (n) consist in the number of reactors used the experiment. 

 

Fig. 79: Experimental averaged Pmax values obtained for both Tetradesmus and Graesiella strains during the 

experiments in which they were cultivated together in parallel. The bars represent the Standard Deviations of 

the replicates for both microalgae, in each experiment, considered separately. For each species the replicates' 

number (n) consist in the number of reactors used the experiment. 
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That is verified in Fig. 80-82 where the results obtained running PCA/PLS methods, with 

the experimental values of each microalga considered singularly, are shown. All three 

figures display very similar results, both in the Score and Loading Plot (Fig. 80 and Fig. 81) 

and in PRESS Plot (Fig. 82).  

                             (a)                                                                       (b) 

Fig. 80: Score Plot for Graesiella (a) and Tetradesmus (b) relatively to the first two Principal Components 

(PC1 and PC2). These results are referred to the experiments (G-M) where both microalgae were cultivated 

together, showing very similar results in both plots without any outliers. In both plots data are referred to the 

individual observations collected during the experiments.  

                             (a)                                                                    (b) 

Fig. 81: Loading Plot for Graesiella (a) and Tetradesmus (b) relatively to the first two Principal Components 

(PC1 and PC2). These results are referred to the experiments (G-M) where both microalgae were cultivated 

together, showing very similar results in both plots. In both plots, the “Cultivation Conditions” variables 

(NaNO3init and Cinit) are nil because in the experiments G-M these variables were not varied.  
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The PRESS Plot shows that PLS model, for both microalgae, will need 3 predictors to 

describe most of the variance (95%). This result is different from what is obtained in Fig. 71 

because in this case the model was built on data referred only to the experiments where both 

were cultivated together (Experiments G-M). The same considerations can be applied to the 

Loading Plots Fig. 81, where the “Cultivation Conditions” variables (NaNO3init and Cinit) are 

zero because in the experiments G-M these variables were not varied. 

                             (a)                                                                 (b) 

Fig. 82: PRESS Plot for Graesiella (a) and Tetradesmus (b) relatively to the first two Principal Components 

(PC1 and PC2). These results are referred to the experiments (G-M) where both microalgae were cultivated 

together, showing very similar results in both plots. The PRESS Plot shows that PLS models, for both 

microalgae, will need 3 predictors to describe most of the variance (95%). 

 

3.6 Compartmental Model Results 

 

In this paragraph the results obtained from the new developed mathematical model, able to 

represent in a simple way the accumulation process of metabolites inside microalgae, 

focusing on the carbon partitioning process between TAG and starch (see subparagraph 

1.2.2 and paragraph 2.4), are resumed. In particular the results are divided in 

subparagraphs, each one is related to the literature work from which data were gathered in 

order to validate the model. Furthermore, as already explained in the subparagraphs related 

to the model structure (subparagraph 2.4.2) and to the parameter estimation (subparagraph 

2.4.4), the simulated variables are 4 (x, qn, qg, ql) and the estimated and optimized 

parameters are also 4 (𝛂, β, KI, µm). For each variable a plot that shows the difference 

between the experimental values and the model results is provided. As regards the optimal 

parameters, a summary table related to each data-set is showed, listing also their 

confidence intervals and the R-Squared value calculated in order to evaluate the model’s 

goodness of fitting.  
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3.6.1 Results related to “Breuer  et al., 2014” data  

                                      (a)                                                                 (b) 

                                        (c)                                                                 (d) 

Fig. 83: Model simulation results (solid line) applied to experimental data (squares) gathered from “Breuer et 

al., 2014” data. The subplots are referred to the 4 model’s variables: x (a), qn (b), ql (c) and qg (d). All 

variables are represented with the unity of measure related to the elemental composition (see subparagraph 

2.4.1). 

 

 

 

 
 

 

Tab. 22: Values of the optimal parameters estimated by the developed model with the corresponding 

confidence intervals and R-squared value. 

 

In all subplots present in Fig. 83 the ability of the new developed model to follow all 

variables’ trends is shown. Furthermore, also the non monotonous behaviour of starch, due 

Parameter 
Values obtained from 

the model 

Confidence 

Intervals 
R2 

𝛂 (g[C] g[C]-1) 0.8154 0.7994;0.8314 

0.9462 
β (g[C] g[C]-1) 0.1926 0.1076;0.2776 

𝛍𝐦 (d-1) 0.6762 0.6064;0.7460 

𝐊𝐈 (W m-2) 3.4921 3.2403;3.7439 
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to the carbon partitioning process with TAG (see subparagraph 1.2.2), is represented well 

by the model, estimating thus with a good accuracy the maximum values reached by qg. 

This high level of accuracy is visible also in the results listed in Tab. 22 where a high R2 is 

obtained (further details are discussed in the following subparagraph). 

 

3.6.2 Results related to “Breuer  et al., 2015” data  

                                       (a)                                                                   (b) 

                                       (c)                                                                 (d)                                                                  

 Fig. 84: Model simulation results (solid line) applied to experimental data (squares) gathered from “Breuer 

et al., 2015” data. The subplots are referred to the 4 model’s variables: x (a), qn (b), ql (c) and qg (d). All 

variables are represented with the unity of measure related to the elemental composition (see subparagraph 

2.4.1). 

 

Even in this case, in all subplots present in Fig. 84 the model follows very well the 

experimental data of each variable. Furthermore, also the starch (qg) peak is represented 

with good accuracy. The goodness of fitting can be also seen in the results listed in Tab. 23 

where a high R2 is obtained. In this case, a comparison with the previous results 

(subparagraph 3.6.1) has to be done since these two data sets come from similar 

experimental conditions.  
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Indeed as reported in Tab. 6 for both experiments the same microalga (Scenedesmus 

obliquus) and the same reactor (flat panel photobioreactor), with similar cultivation 

conditions but different incident light intensity (I0), were used. 

 

Tab. 23: Values of the optimal parameters estimated by the developed model with the corresponding 

confidence intervals and R-squared value. 

 

These differences can be seen both in the plotted variables and the estimated parameters. 

Indeed higher values for μm and KI are obtained in Tab. 23 compared to those listed in Tab. 

22, and this is justified by the higher illumination conditions used in the second work 

((Breuer et al., 2015b) respect to the other (Breuer et al., 2014) that caused also an higher 

specific growth rate (Fig. 83a and Fig. 84a). As regards 𝛂 and β values, they reflect the 

typical behaviour of the carbon partitioning between starch and lipid during nitrogen 

starvation, in which the starch is the primary storage compound accumulated with a higher 

rate (𝛂) than TAG (1-𝛂). The lower β value obtained in the second case (Tab. 23) 

represents a slower intercorversion of starch to TAG, compared to that obtained in the 

previous subparagraph (Tab. 22). 

 

3.6.3 Results related to “Zhu et al., 2014” data  

In Fig. 85 the results obtained for the model validation with data from Zhu et. al (Zhu et 

al., 2014) are resumed. In particular, differently from the previous results (subparagraphs 

3.6.1 and 3.6.2) the available data, on which model is developed, are far fewer; these so 

low data number impacted on the model’s results. Indeed, the model describe well the 

variables’ trends but with less accuracy, also in terms of R-squared (Tab. 24). However, 

the results represent well the carbon partitioning between starch (Fig. 85c) and TAG (Fig. 

85d), describing also the presence of the maximum in the starch quota (qg) trend. As regard 

the values of the estimated parameters, it can be seen that the value of KI is lower than 

those previously obtained due to the lower incident light intesity used (see subparagraph 

2.4.1). In fact these values can be compared because, even if in this case the averaged light 

intensity has been calculated by integration on cylindrical geometry (Eq. 27) and not by a 

planar geometry (Eq. 26), the reactor used in this experiment had a light path similar 

(0.025) to the flat panel (0.03) used in Breuer’s experiments (subparagraph 3.6.1-3.6.2).  

 

 

Parameter 
Values obtained from 

the model 

Confidence 

Intervals 
R2

 

𝛂 (g[C] g[C]-1) 0.7027 0.6868;0.7185 

0.9542 

 

β (g[C] g[C]-1) 0.0733 0.0117;0.1349 

𝛍𝐦 (d-1) 2.1141 2.0613;2.1670 

𝐊𝐈 (W m-2) 13.3514 13.0082;13.6946 
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Furthermore, the μm is higher than that of Breuer2014 (and lower respect to Breuer2015), 

even if the light amount is lower; this can be justified by the different microalga used by 

Zhu et. al (Chlorella zonfingiensis).  

As regards the carbon partitioning parameters (𝛂 and β), they are very similar to those of 

Breuer2014, representing thus similar metabolic pathways. 

                                      (a)                                                                      (b) 

                                      (c)                                                                   (d) 

Fig. 85: Model simulation results (solid line) applied to experimental data (squares) gathered from “Zhu et 

al., 2014” data. The subplots are referred to the 4 model’s variables: x (a), qn (b), ql (c) and qg (d). All 

variables are represented with the unity of measure related to the elemental composition (see subparagraph 

2.4.1). 
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Tab. 24: Values of the optimal parameters estimated by the developed model with the corresponding 

confidence intervals and R-squared value. 

 

3.6.4 Results related to “Adesanya  et al., 2014” data  

Finally, the model was applied to Adesanya et al. (Adesanya et al., 2014) data, as can be 

seen in Fig. 86. In this case, even the number of data on which the model was applied are 

few, the model is able to follow well the variables’ trends with very good accuracy, as 

visible also in the R-squared value listed in Tab. 25. The only negative aspect is constituted 

by the failure in reaching the maximum value in the starch quota (Fig. 86d), even if its non 

monotonous trends is represented. 

                            (a)                                                                      (b) 

                                       (c)                                                                      (d) 

Fig. 86: Model simulation results (solid line) applied to experimental data (squares) gathered from 

“Adesanya et al., 2014” data. The subplots are referred to the 4 model’s variables: x (a), qn (b), ql (c) and qg 

(d). All variables are represented with the unity of measure related to the elemental composition (see 

subparagraph 2.4.1). 

 

Parameter 
Values obtained from 

the model 

Confidence 

Interval 
R2

 

𝛂 (g[C] g[C]-1) 0.8625 0.8473;0.8777 

0.9476 

 

β (g[C] g[C]-1) 0.1245 0.0356;0.2134 

𝛍𝐦 (d-1) 1.4546 1.4208;1.4884 

𝐊𝐈 (W m-2) 1.7998 1.5047;2.0949 
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As regards the optimal parameters, they have unusual values if compared to those obtained 

in the previous subparagraphs (see subparagraph 3.6.1-3.6.3), first among all the KI that 

results higher to Breuer2014 and Zhu even if the incident light intensity used in 

Adesanya’s experiment was the lowest among those listed in Tab. 6. 

 

 

Tab. 25: Values of the optimal parameters estimated by the developed model with the corresponding 

confidence intervals and R-squared value. 

 

This problems is caused by the approximate geometry used for the integration of Eq. 24; 

indeed the experiments of the Adesanya’s work were conducted in glass flask (with a 

culture dept of 30 mm) and not inside a classical photobioreactor. In first approximation, in 

the cited work, the reactor geometry was considered planar and thus the mean irradiance 

calculation followed the Eq. 26. These considerations had an impact to the model results, 

since the reactor geometry is fundamental for µ calculation and also for the 4 parameters’ 

estimation. Consequently, even if the implemented model was able to describe the carbon 

partitioning process between starch and TAG, the results obtained in this subparagraph 

cannot be compared to those showed in the previous subparagraphs. 

 

3.6.5 Final considerations on the model 

In this subparagraph some additional considerations on the compartemental model have 

been carried out. In particular, as example the results obtained running the developed 

model with experimental data obtained from “Bernard et al., 2015” data but with the 

optimal parameters found in subparagraph 3.6.1, have been reported in Fig. 87. It is visible 

that the results obtained from the model are not very accurate, because the parameters used 

were obtained from another experimental data set conducted at different experimental 

conditions. Indeed, due to the different experimental conditions used in the cited work 

listed in Tab. 6, the results showed in the previous subparagraphs (3.6.1-3.6.4) were 

obtained with separated regressions and not with an overall regression of the data set. 

Furthermore, Fig. 87 was chosen as example because experimental conditions from 

“Bernard et al., 2015” and “Bernard et al., 2015” were not so different if compared to the 

other two works. In fact in Fig. 87 the model, even if not accurately, is able to follow the 

experimental trends, showing also the starch maximum quota, underlining its goodness 

even in presence of not optimal parameters.  

Parameter 
Values obtained from 

the model 

Confidence 

Interval 
R2

 

𝛂 (g[C] g[C]-1) 0.8834 0.8676;0.8991 

0.9681 
β (g[C] g[C]-1) 0.0621 0.0004;0.1234 

𝛍𝐦 (d-1) 0.6374 0.5588;0.7168 

𝐊𝐈 (W m-2) 8.5926 8.3149;8.8703 
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Fig. 87: Model simulation results (solid line) applied to experimental data (squares) gathered from “Bernard 

et al., 2015” data using the optimized parameters found in subparagraph 3.6.1. The subplots are referred to 

the 4 model’s variables: x (a), qn (b), ql (c) and qg (d). All variables are represented with the unity of 

measure related to the elemental composition (see subparagraph 2.4.1). 

 

3.7 Supercritical CO2 modeling results 

 

In this paragraph, the results obtained from the sCO2 extraction modeling, both in technical 

and economical point of view are resumed and discussed.  

 

3.7.1 Extraction time 
 

As first step, the extraction time of each component was calculated at specific operative 

conditions. In these calculations an important assumption was done: for each component 

the maximum extractable percentage was set to the 85% of its quantity inside the 

microalgae (Follegatti-romero et al., 2009). This upper limit (based mainly on “oil” 

extraction) is mainly an operative barrier and it is due to the existence of the mass transport 

resistances, ever more present with the approach to the complete extraction, that would 

stretch the extraction time to values too long for any industrial application. In Fig. 88 the 

maximum extractable percentage (in terms of extraction yield), for the more soluble 

metabolites in sCO2, are plotted at T = 60°C, P = 250 bar and SSR = 5 h-1 (see the next 

subparagraphs for the justification of these variables’ values). Carotenoids are not present 

in Fig. 88 as specified in the subparagraph 2.5.2. Also the saturation time, defined as the 
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time necessary to reach the maximum extractable percentage, was calculated for each 

component. Even if they are similar, DHA takes longer time to reach its saturation value 

(370 min) so it was taken as reference. In particular in the subsequent calculations, the 

desired extraction yields of the others components were determined at the time in which 

DHA reached the specified yield, assuring thus that also the slower molecule will reach the 

scheduled yield. 

Fig. 88: Target metabolites’ yield trend at T = 60 °C,P = 250 bar and SSR = 5 h-1. 

 
3.7.2 Effects of the operative variables on the extraction yield 

 
3.7.2.1 Temperature effects 

 
In this subparagraph, the effects of temperature, pressure and ratio of CO2 flow rate to 

microalgal mass (Solvent to Solid Ratio = SSR) on extraction yield are evaluated with the 

aim of finding the best working conditions that allow also the extraction and separation of 

carotenoids (residue stream) from fatty acids (extract stream). In Fig. 89 the extraction 

curves at P = 250 bar, SSR = 5 h-1 and different temperatures for palmitic acid are shown.It 

is visible that with a temperature increase a greater extraction yield is obtained; the same 

results were achieved for oleic acid (data not shown).  
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Fig. 89: Palmitic acid’s yield in function of time at differenttemperatures. 

 

The temperature range analyzed was 55-65°C because is the best compromise between an 

improving of the extraction yield and a preservation of bioactive and thermolabile 

properties of the extracted metabolites. At a first glance the better choice would be to work 

a T = 65°C because it permits to reach the same extraction yield in a shorter time, caring 

out more daily cycles with consequent higher productivity, but at this temperature the loss 

of some properties of the thermosensitive and thermolabile compounds like omega-3 and 

carotenoids begins (Xu and Howard, 2012). At the same time, lower temperatures than 

55°C will lead to lower extraction yield and lower productivity, so T = 60°C was chosen 

for both molecules. For EPA and DHA the effect of temperature at the same pressure and 

SSR on the extraction yield has a particular behavior compared to palmitic and oleic acid, 

underlining the effectiveness of considering metabolites individually (even if the extraction 

time is about the same for all the analyzed cases). Indeed, it is necessary a magnification in 

DHA yield trends (Fig. 90) (EPA results are identical, figure not shown) for seeing that to 

higher temperature corresponds a minor extraction yield at the same time. An explanation 

for this behavior is found in the cross-over phenomenon.  

Fig. 90: Magnification of the trend of DHA’s yield in functionof time at different temperatures. 
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Cross-over pressure (Pco) is defined as (Erkey, 2011): 

 

• At a P > Pco solubility increases with increasing temperature  

• At P = Pco the temperature hasn’t effect on solubility and therefore on yield 

extraction  

• At P < Pco solubility decreases with increasing temperature.  

 

In our case, for EPA and DHA the extraction is working under the cross-over pressure. 

Even if the optimal temperature seems to be 55°C, T = 60°C was chosen also for these two 

molecules, considering that there isn’t a significant difference between two extraction 

yields. 

 

3.7.2.2 Pressure effects 

 

The same considerations done for temperature were used for pressure analysis. In 

particular temperature was kept at T = 60°C, SSR = 5 h-1 and the pressures range analyzed 

was 200-300 bar. This range was chosen in order to minimize as much as possible the 

solubilization of carotenoids into sCO2 and to increase at same time the fatty acids’ 

extraction yield. In Fig. 91 the pressure’s effect on the extraction yield, referred to DHA, is 

plotted. It is visible that with a pressure increase a greater extraction yield is obtained; this 

happens also in the case of palmitic acid, oleic acid, EPA and DHA. However, observing 

the curves in Fig. 91, it is notable that an increase of 50 bar (from 250 to 300) actually 

involves to limited changes in extraction yield but to higher investment and operating 

costs. For these reasons P = 250 bar is assumed as optimal pressure. 

Fig. 91: DHA’s yield in function of time at different pressures. 
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3.7.2.3 Solvent to Solid Ratio (SSR) effects 
 

The study of the effects of the solvent flow rate on the extraction yield is important for two 

reasons: the first is because the extraction yield is indirectly dependent of it (e.g. Reynolds’ 

number), the latter is due to the industrial importance of knowing the sCO2 quantity needed 

to reach the target yield in order to analyze the feasibility of the process, having the sCO2 

flow rate direct impact on the process’ economics (being part of the TOTAL OPEX). In 

this work 360 kg of microalgae was considered as the daily available quantity to process 

with sCO2. This value was estimated by combination of literature data (Doucha and 

Lívanský, 2014) and informations about industrial fermentation plant size (Nutraceutical 

Business Review, 2018). Different simulations were carried out in order to calculate the 

number of the daily cycles and consequently the components’ amount that can be 

extracted. In particular in these simulations the Solvent to Solid Ratio (SSR) was changed 

at these values: 5-10-20-40, always maintaining the pressure at P = 250 bar and the 

temperature at T = 60°C, finding at each SSR the time needed to reach the maximum 

extractable percentage (saturation value) of a specific component. Furthermore, 

considering that the extraction process from microalgae is not continuous but works in 

cycles, also the duration of each cycle had to be analyzed, depending on the sum of three 

times:   

• The pressurization time (tp) 

• The extraction time (te) 

• The depressurization time (td) 
 

Indicative values of pressurization (1 h) & depressurization (1 h) times were estimated by 

contacts with extractor’s suppliers and cover all the operative steps needed to make in 

function the extractor’s equipments, including: time in which the microalgae is 

loaded/discharged into/from the extractor, time to place/displace the extractor in/from the 

correct position, time to turn on/off the compressors and other equipments, time to 

open/close all the valves, time to collect the extract from the extraction vessel and other 

additional working times (cleaning, etc.). Therefore, the sum of pressurization and 

depressurization time had to be added to each extraction time found with the simulations. 

In this way it was possible to calculate the duration of the single extraction cycle, the 

number of daily cycles and also the microalgal quantity to be introduced in each cycle. 

This procedure was applied to the DHA, assumed as the reference component, and the 

results can be found in Tab. 26. Tab. 26 was chosen in place of a figure in order to increase 

the clarity of the effects of the solvent flow rate per kg of microalgae (SSR) on both 

extraction yield and process operability. Indeed, it is shown in Tab. 26 that the same 

number of daily cycles is reached for each SSR; the reason is because, for a SSR increase, 

there is also a progressive increase of dead times that don’t allow to end entirely any 

additional cycle within the working day. Also the extracted DHA doesn’t change but the 

sCO2 flow rate appears to increase together with SSR because the microalgae loaded in 

each cycle remain the same having always the same number of daily cycles. It is thus 

convenient to work with a ratio SSR = 5 h−1, indeed this ratio needs a lower CO2 flow rate  
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Tab. 26: SSR effects on sCO2 extraction process. 

 

with the same value of loaded microalgae and especially of extracted DHA. Furthermore, 

these considerations were related only to DHA; the extracted amount of the other 

components were found at the DHA saturation time. In our case a daily quantity of fatty 

acids equal to 147 kg can be extracted, corresponding to the 85% (Follegatti-romero et al., 

2009) of their total amount inside the microalgae in that conditions (173 kg).  

The composition of the extract and residue streams are summarized in Tab. 27; in 

particular the not extracted quantity, constituting the residue stream, is equal to 213.19 kg. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Tab. 27: Extract and residue streams’ characterization for the extraction conducted until the DHA saturation 

value. 

 

 

 

SSR (h−1) 
Saturation time 

(h) 

Number of 

cycles 

Microalgae 

cycle (kg) 

sCO2 flow 

rate (kg/h) 

DHA 

extracted (kg) 

5 6.10 3 120 600 39.78 

10 5.82 3 120 1200 39.78 

20 5.69 3 120 2400 39.78 

𝟒𝟎 5.62 3 120 4800 39.78 

 Mass fraction 

Component in the extract  

Palmitic acid 0.29 

Oleic acid 0.31 

EPA 0.13 

DHA 0.27 

Component in the residue  

Starch 0.29 

Protein 0.35 

Palmitic Acid 0.03  

Oleic Acid 0.03  

EPA 0.01 

DHA 0.03 

Lutein 0.14 

Astaxanthin 0.12 
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3.7.3 Effects of the operative variables on the extraction yield 
 

In Fig. 92 the simulated process in Aspen Plus is represented with the corresponding table 

that sums up the features of each stream; in particular for the first four streams the flow 

rate values, calculated for the pressurization of the sCO2 for the make-up, are listed. It is 

visible that the CO2 is first compressed with a multistage inter-refrigerated compressor to 

reach is liquid phase but only with the successive pump (PUMP: T = 37°C and P = 250 

bar) and heater (HEATER-1: T = 60°C and P = 250 bar) its supercritical state is achieved; 

this passage is industrially preferred for the high cost and problems that occur with the gas 

compression. The supercritical pressure and temperature conditions reached by pump and 

heater, and also the SSR, are the results of the optimization phase described in the previous 

subparagraphs. Once reached the supercritical state, the sCO2 is sent in the extractor where 

the microalga has been previously loaded and once finished the residence time in the 

extractor, the sCO2 comes out from it and drags out the soluble component. The extract 

stream is then expanded in a valve, allowing to the sCO2 to return in gaseous state; to 

ensure that, after the expansion the temperature is kept at the value that it had before the 

valve with the help of an heater (HEATER-2: T = 60°C and P = 47 bar). After that, this 

stream is sent in a separator where the components, that in these conditions are not soluble 

in the CO2 anymore, are collected on the bottom of the separator while the CO2 in the 

gaseous state comes out from the top. This CO2 is then recycled and reaches the liquid 

state by a cooler (COOLER-2: T = 10°C and P = 47 bar). This procedure has to be 

repeated, during each cycle, until the saturation value of the rate determining component 

(DHA) is reached. 

Fig. 92: Process scheme with relative mass balance. 

 

The Table present in Fig. 92 is added in order to give informations about the amount of 

microalgal treated and sCO2 used during each day of working pilot. The daily process is 

divided in 3 cycles and in each cycle 120 kg of dry biomass is treated with 600 kg/h of 

sCO2 (SSR= 5h-1). During each cycle the sCO2 passes continuously through the basket, in 
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which the dried algae are positioned, and is continuously recycled in its closed loop until 

the saturation time is reached (about 6 hours). During each cycle the extracted lipids are 

accumulated in the EXTRACT ACCUMULATION TANK and the residuals remain inside 

the microalgal matrix. At the end of each cycle it is necessary to depressurize the system in 

order to offload the residual biomass in the extractor’s basket, closing the valve before and 

after the extractor and opening the extractor, losing thus the sCO2 contained inside (100 kg 

for each cycle) that has to be add back at the beginning of each cycle as make-up (100 kg/h 

as indicated in the modified table in S1, S2 and S3), in order to keep the stream S4 always 

at 600 kg/h. Indeed, as previously said, sCO2 extraction works in batch mode and in 

particular in a closed cycle, except at start-up. These CO2 of make-up will be accumulated 

in a refrigerated tank (CO2ACCUMULATION TANK)  

placed immediately after the cooler (COOLER-1: T = 10°C and P = 47 bar). At the end of 

each cycle, during the depressurization phase, the residual biomass is removed from the 

extractor and placed in a storage tank (RESIDUAL STORAGE TANK) and by opening the 

shut-off valve located under the separator, the oil precipitates inside an accumulation tank 

(EXTRACT ACCUMULATION TANK).  

 

3.7.4 Cost analysis 
 

As said in the previous paragraph 2.5, the simulation of the process is necessary to 

calculate the energy and utilities consumption that, coupled with the design of each 

equipment, provides tomake an estimation of Operating Expense (OPEX) and Capital 

Expenditure (CAPEX) that are resumed in this paragraph. For CAPEX evaluation, Direct 

Costs and Indirect Costs have to be estimated and summed up. Each equipment was 

designed following our internal procedures and classical engineering equations (Peters et 

al., 2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 28: Total CAPEX of the sCO2 extraction process. 

 

Direct cost item Cost (k€) Indirect cost item Cost (k€) 

Equipments 659.7 
Engineering 211.1 

Installation 257.3 

Instrumentation 171.5 
Construction costs 224.3 

Piping 204.5 

Electric systems 65.9 
Contractor payment 125.4 

Civil works 191.3 

Facilities 362.8 Contingencies 244.1 

TOTAL DIRECT COSTS 1913 TOTAL INDIRECT COSTS 804.9 

Total CAPEX = Direct Costs + Indirect Costs = 2717.9 k€ 
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In particular for vessels, after having calculated the thickness (and therefore the mass) of 

steel needed for both shell and plates, their costs were evaluated multiplying the weight of 

the equipment by the unit cost of the material used found in the reference book (Peters et 

al., 2003). Furthermore, for the most peculiar equipments, as the sCO2 extractor skid, their 

cost were estimated from contacts with suppliers. In Tab. 28 the CAPEX of the process is 

resumed, the other items besides the Equipments were estimated as percentual of the 

Equipment cost (including freight costs), multiplying each voice for its specific index (or 

Peters-Timmerhaus Factors (Peters et al., 2003) ). In order to estimate OPEX, it was 

necessary to know the utilities’ consumption based on the energy values obtained from the 

process simulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 29: Utilities’ consumption and TOTAL OPEX value for a 7200 h sCO2 extraction running plant. 

 

Furthermore, knowing the unit costs for each utility, their total cost can be calculated and 

is reported in Tab. 29. In particular, even if it is not properly an utility, the make-up CO2 

needed to compensate the losses during each cycle, representing an annual cost, is listed in 

Tab. 29. Considering a CO2 with 99% purity, its price was estimated (by internal database) 

to be 0.03 €/kg. The OPEX of the process is showed in Tab. 29, adding to the Total 

Utilities’ Cost two other important items (Manpower and Maintenance) assumed both as 

10% of the total CAPEX (271.8 k€/year). The values obtained in Tab. 28 and Tab. 29 give 

an overview on the costs that the sCO2 extraction process may require, without considering 

any integration to another existing plant that may reduce the OPEX (thermal integration, 

etc.). Furthermore, considering 3 cycles per day with a daily treated biomass equal to 360 

kg, the annual (7200 h of running pilot) biomass amout is equal to 108 ton. With this 

amount it is possible to calculate the Total Treatment Cost (TTC= OPEX+CAPEX per kg 

of treated algal biomass) equal to 30.36 €/kg. However these values are preliminary, 

indeed this part of the thesis’ work is focused only on the modeling and optimization of the 

extraction process, even if they show good financial perspective due to the high market 

Utility 
Estimated 

consumption 

Calculated cost 

(k€/year) 

Low pressure steam 426.8 (ton/y) 9.5 

Cooling water 238.9 (ton/y) 0.003 

Chilled water 
24617.4 

(ton/y) 
3.8 

Electric energy 
43.5 

(MWh/y) 

2.1 

CO2 109.5 (ton/y) 2.7 

TOTAL UTILITIES COSTS 18.1 

Manpower + Maintenance = 271.8 + 271.8 = 543.6 k€/year 

TOTAL OPEX = Utilities + Manpower + Maintenance = 561.7 k€ /year 
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price of the extracted metabolites. Indeed, the described extraction would be only a part of 

a larger process that aims to purify the desired extracted products in order to place them on 

the market as pure components or in mixture (see also paragraph 3.8). In addition to OPEX 

and CAPEX also a ROI value of the production process would give more accurate 

informations about the investment’s feasibility, but to do that the product’s sell price and 

with it the purification’s grade of the metabolites, are required. 

 

3.8 Molecular distillation simulation results 

 

In this paragraph, the results obtained from the simulation of the molecular distillation 

process, both in technical and economical point of view are resumed and discussed.   

 

3.8.1 Preliminary treatment of the inlet stream 
 

Before showing the results obtained for the molecular distillation purification process, an 

introduction on the pre-treatments carried out to the stream before the esterification 

reaction is briefly described here. 

Fig. 93: Process scheme of the pretreatment done on the inlet stream before the esterification 

 

The first operation concerns the extraction of the lipid phase (consisting of fatty acids and 

carotenoids, residues of the treatment with sCO2) from the solid fraction consisting of the 

spent biomass and the starch contained in it in the form of granules (Stream 1). This 

extraction process is carried out through the use of a polar solvent, ethanol (Stream 2), in a 

mixture with water (ethanol/water ratio=4:1 by weight) in an agitated tank (V-101 of Fig. 

93). The choice of ethanol at this stage of the process is due to the fact that this solvent is 

subsequently used in the esterification reaction before the molecular distiller. It is well 

known that the mixture water-ethanol brings to formation of azeotrope with a 95% 

percentage by volume of ethanol at a temperature of T=78°C and P= 1 bar. This problem is 

overcome, because the process is carried out at a lower temperature, equal to T=60 °C, and 

a lower percentage of ethanol (75% v/v). The operating temperature of 60°C is chosen as a 

precautionary value to avoid structural changes in the starch granule. The liquid/solid ratio 

(L:S in mass) was determined by literature studies. For biomass not previously treated, a 

typical value used is 15:1 (Tsibranska et al., 2011) while for ultrasonic or microwave-

assisted extractions (to optimize the breaking of the cell wall) typical values of the ratio are 

6:1 or 5:1 (Davis et al., 2013; Sepidar et al., 2011). 
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Since the residue to be treated has already undergone a step of cell wall breaking, it was 

decided to use an L:S ratio of 6:1, which is equivalent to the use of 1320 kg of solvent. 

The calculation of the residence time of the biomass-solvent mixture within V-101 was 

made using a mathematical report from literature (Chan et al., 2014). 

 

ln (
𝐶∞

𝐶∞ − 𝐶
) = 0.498 + 9.87

𝐷 ∗ 𝑡

𝑅2
(Eq. 62) 

 

Where: 

• 𝐶∞[g L-1] is the solute concentration in the solvent after an infinite time 

• 𝐶 [g L-1] is the solute concentration in the solvent at time t 

• t [s] is the extraction time 

• 𝐷 [m2 s-1] is the solute diffusion coefficient in the solvent 

• 𝑅 [m] is the radius of microalgae considered spherical 

 

The Eq. 62 comes from a simplification of the mass balance in solid particles, in which the 

resistance to external mass transfer of solvent is neglected, simplifying thus the 

mathematical treatment of the extraction. 

The extraction yield to be reached was fixed at 98% in order to recover most of the fatty 

acids and carotenoids trapped in the microalgal matrix. With this specification and 

knowing that R= 5*10-6 m and D=1.5*10-12 m2 s-1, an extraction time of about 360 min  

(6 h) was obtained. 

Fig. 94 shows the extraction time [min] necessary to reach the concentration [g L-1] at 

which the chosen yield is obtained. 

Fig. 94: Trend of the extract concentration versus time 

 

Once the lipidic phase is extracted from the microalgal matrix, the separation between the 

liquid and the solid phase is realized through the use of a disk centrifuge CF-101. It 

separates the oily phase, containing most of the solvent, from the solid phase, consisting of 

the exhausted biomass, the starch and traces of oil and solvent. The oily stream (Stream 4) 

will go to a later stage where the solvent will be separated from the oil with a flash; while 

the solid phase (Stream 5) will continue the process not until having separated the solid 

from traces of oils in the filter F-101. In particular the oily phase stream sent to the 

purification with molecular distillation is the Stream 10, formed by the sum of extracted oil 

(carotenoids and traces of fatty acids) collected in both Stream 8 and Stream 9. The 
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residual biomass containing starch and protein will be sent to further treatments (Stream 7) 

and the solvent separated in both flashes (V-102 and V-103) is recirculated in the process 

(Stream 12). 

 

3.8.2 Sizing of CSTR reactor 
 

The sizing of the CSTR reactor was made by integrating Eq. 36 and through a Trial and 

Error process the optimal compromise between the volume of the reactor and the 

conversion of oleic acid was found. Through the integration it is possible to know that a 

volume greater than 3 m3 does not lead to significant improvements in terms of conversion, 

as shown in Fig. 95 where the volumes needed to reach a specified conversion are 

reported. With a volume increase of 7 m3 and 10 m3 only a slightly increase of the 

conversion is reached, obtaining XOL = 0.978 and XOL = 0.982 respectively. Indeed, an 

increase of 0.012 (from 3 m3 to 10 m3) doesn’t justify the more than threefold volume 

increase, involving thus higher Equipment Costs (at least more than twice) and with them 

higher CAPEX (see subparagraph 3.8.6). For this reasons the CSTR reactor’s volume is set 

to 3 m3 and, under these conditions, a conversion of about 97% is obtained (at about 15 h), 

as can be seen from the kinetics shown in Fig. 96.  

Fig. 95: Oleic acid conversion (XOLEIC ACID) profile with increased reactor volume. 
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Fig. 96: Oleic acid conversion (XOLEIC ACID) profile with increased reaction time. 

 

3.8.3 Sizing of water adsorption column 
 

As second step, the sizing of the water adsorption column is made by integration of the Eq. 

45. The optimization criterion of minimizing the size of the asdsorption column, allowing 

also the possibility of working continuously has been described in subparagraph 2.6.3. 

Regarding the cooling time, a literature value was considered, depending on the 

regeneration temperature; assuming that this temperature is equal to 200 °C, the cooling 

time is equal to 1 h (Gabruś et al., 2015). At this point, the optimal dimensions of the water 

adsorption column calculated are: Length = 1 m and Radius = 0.2. With these dimensions 

the saturation time of the adsorption column is approximately equal to 4.5 h as shown in 

Fig. 97, where the water concentration profile over time at the column’s outlet section is 

plotted. The regeneration time is approximately equal to 2.5 h, as shown in Fig. 98 that 

shows the relationship between the water concentration in the solid phase over the time 

during the regeneration process. It can be seen, with the dimensions reported and with the 

sum of cooling time and regeneration time equal to 3.5 h (while the saturation time is equal 

to 4.5 h), that the system made by two adsorption columns in parallel is able to operate 

continuously. 

Fig. 97: Concentration profile over the time of water in the liquid phase (CW
L  (mol m-3)) at the adsorption 

column output. 
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Fig. 98: Water concentration (CW
S  (mol m-3)) in the zeolite solid phase over the time during the regeneration 

process. 

 

3.8.4 Results of RSM analysis 
 

As already mentioned, an RSM analysis was carried out in order to identify the optimal 

operating conditions to use in the molecular distiller. In order to implement the analysis, N 

simulations in Aspen Plus were conducted at the operating temperature and pressure 

conditions (different from the optimal one) reported in Tab. 16. The values of the answers 

are shown in Tab. 30. Once obtained the y values, it was possible to calculate the 

regression coefficients bi of both y1 and y2 responses visible in Tab. 31. By implementing 

the optimization process described in Section 2.4, it was possible to find the optimal 

operating conditions of temperature and pressure that are: T = 128 °C and P = 0.33 Pa.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 30: Answers (y1, y2) obtained from the N = 10 simulations in Aspen with the operating conditions as 

codified variables (X1, X2) shown in Tab. 16. 

 

Run X1 X2 T [°C] P [Pa] y1 y2 

1 0 0 105 0.55 0.999 0.879 

2 0 0 105 0.55 0.999 0.879 

3 1 0 150 0.55 0.952 0.993 

4 0 1 105 1 0.999 0.812 

5 -1 0 60 0.55 0.999 0.606 

6 0 -1 105 0.1 0.994 0.973 

7 0.71 0.71 137 0.87 0.989 0.977 

8 0.71 -0.71 137 0.23 0.959 0.993 

9 -0.71 0.71 73.2 0.87 0.999 0.606 

10 -0.71 -0.71 73.2 0.23 0.999 0.638 
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Tab. 31: Regression coefficients (bi) for both y1 and y2 responses. 

 

After having obtained the optimal operating conditions for the molecular distiller, the 

values of the responses deriving from the simulations in Aspen Plus (y1=0.987 and y2= 

0.983) and from the model (y1’ = 0.975 and y2’ = 0.987) were compared, showing a 

percentage errors less than 1.5% (δ1 = 1.2 and δ1 = 0.4) and affirming the validity and 

relevance of the model generated by the simulative reality. The RSM analysis also allows 

to represent graphically the dependence of the responses from the natural variables with 

the help of response surfaces plots and contour plots. Fig. 99 represents the response 

surface and the contour plot of the y1 response; it can be seen that the maximum response 

(mass fraction of carotenoids in residue stream) occurs at high temperature at minimum 

pressure. In these conditions, indeed, the lighter components pass completely into the 

distilled stream with also a little part of the heavier which would diminish its purity. 

 

Fig. 99: Response surface of y1 response showing the dependence of the carotenoids’ mass frac in the residue 

stream from the temperature and pressure of the molecular distiller. 

 

 

 

 y1 y2 

Coefficient βi Value Value 

β0 0.999 0.878 

β1 -0.021 0.225 

β2 6.83* 10-3 -0.049 

β3 -0.023 -0.101 

β4 -0.002 -0.007 

β5 0.015 7.51*10-3 
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Thereby, the residue current is practically pure in carotenoids in terms of mass fraction but 

their recovery is not at its maximum value due to the transfer of a little aliquote of them 

into the distilled. In Fig. 100 is visible that the influence of the pressure is lower than the 

temperature one, but there is anyway an improvement in the response with a pressure 

decrease, increasing more and more the vaporization rate of the lighter components. 

Fig. 100: Contour plot of y1 response showing the dependence of the carotenoids’ mass frac in the residue 

stream from the temperature and pressure of the molecular distiller. 

 

 

Fig. 101: Response surface of y2 response showing the dependence of carotenoids’ recovery in the residue 

from the temperature and pressure of the molecular distiller. 

 

The same plots are visible in Fig. 101 and Fig. 102 for the y2 response. For the opposite 

reasons of y1 response, the maximum value of the y2 response (carotenoids’ recovery in the 

residue stream) occurs at low temperature; in these conditions indeed, the fraction of 

carotenoids that passes into the distilled stream is minimal, so the entire inlet flow of 

carotenoids remains in the residue stream.  
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Fig. 102: Contour plot of y2 response showing the dependence of carotenoids’ recovery in the residue from 

the temperature and pressure of the molecular distiller. 

 

Also in this case the influence of the pressure is lower than the temperature but there is 

anyway an improvement in the response with a pressure increase, lowering further the 

carotenoids’ vaporization rate. As resulted in both figures,  the responses reached their 

maximum values for diametrically opposite conditions; obviously neither of the two pairs 

of operating conditions represent an optimal solution for the process. The optimization 

indeed provides a compromise in maximizing the responses y1 and y2, as evidenced by the 

objective function previously defined in the Eq. 60. At these optimized conditions, the 

outlet distilled stream is composed mainly by the esterified fatty acids (95% in mass) and 

by a little fraction (4% in mass) of unesterified fatty acids; on the contrary, the residue 

stream is composed mainly by carotenoids (98.8% in mass).  

 

3.8.5 Process simulation 
 

In Fig. 103 the simulated process, with the optimized conditions previously defined, is 

reported with the summary of each stream. In particular the esterification reactor (CSTR) 

was simulated using RSTOIC model and the output stream is sent to the flash separator 

(FLASH) where the ethanol + water vapours are treated, after compression, with the 

adsorption’s column (SEP) that separates water from ethanol. Ethanol is recirculated and 

reused in the reactor and also a MAKE-UP for the reintegration of its losses is considered 

in the process. For the simulation of the molecular distillation in Aspen a flash vessel was 

used (MD1), as specified in the previous paragraphs. Furthermore since for passing from 

0.01 atm (S18) to 1 atm (S13) (with a pressure ratio of 100) is necessary a multistage 

inter-refrigerated compressor, in the simulation a series of 5 compressors with 5 

condensers were used to represent this equipment. As said previously, this simulation is 

necessary to calculate the energy and utilities consumption that, coupled with the design of 

each equipment, provides to make an estimation of Operating Expense (OPEX) and 

Capital Expenditure (CAPEX) that are reassumed in the next subparagraph. 
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Fig. 103: Simulated process scheme with relative streams’ summary. 

 

3.8.6 Cost analysis 
 

As has been done for sCO2 extraction process, also for molecular distillation an estimation 

of the Operating Expense (OPEX) and Capital Expenditure (CAPEX), using the results of 

the simulations in terms of energy and utilities’ consumption, was done. For CAPEX 

evaluation, Direct Costs and Indirect Costs have to be estimated and summed up. In 

particular, after having designed each equipment, following our internal procedures and 

classical engineering equations (Peters et al., 2003), the Equipment costs (as subset of 

Direct Costs) were estimated. For the cost calculation of the more standardized equipment 

(heat exchangers, reactor, pumps, compressors, vessels, etc.) the estimation graphs present 

in the reference book were used. Indeed, the cost of an heat exchanger was estimated by 

calculating the required exchange surface and finding inside of the corresponding chart its 

cost related to the specific material used. This cost was then multiplied by a factor, 

provided directly in the graph, according to the operating pressure conditions of the 

exchanger. The same procedure was used for the other equipments; in particular for the 

adsorption column its cost consists in two contribution: the cost of external shell (as kg of 

steel), found with the described procedure, and the cost of adsorbent solid (as kg of zeolite 

3Å), found by internal database. Lastly, for the most peculiar equipment as the molecular 

distiller, its cost was estimated from contacts with suppliers. The other costs of CAPEX 

were estimated as percentual of the Equipment cost (including freight costs), multiplying 

each voice for its specific index (or Peters-Timmerhaus Factors). On the other hand for 

OPEX estimation it was necessary to know the utilities’ consumption based on the values 

obtained from the process simulation. Furthermore, knowing the unit cost (Peters et al., 
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2003) of each utility, their total cost can be calculated by multiplying it by their 

consumption. The OPEX value was then calculated adding to the Total Utilities’ Cost two 

other important items (Manpower and Maintenance) assumed both as 10% of the total 

CAPEX. In Tab. 32 the calculated CAPEX of the process is shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 32: CAPEX of the molecular distillation process. 

 

Moreover, in Tab. 33 the process OPEX is shown, considering the consumption of each 

utility for a 7200 h running plant and adding to the Total Utilities’ Cost also the costs of 

Manpower and Maintenance equal to 10% of the total CAPEX (238.74 k€/year). In 

particular, even if it is not properly an utility, the ethanol for make-up, needed to 

compensate the losses during each cycle and representing an annual cost, is listed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 33: Utilities’ consumption and OPEX value for a 7200 h molecular distillation running plant. 

 

Considering a ethanol with 95% purity, its price was estimated (by internal database) to be 

0.76 €/kg. The values obtained in Tab. 32 and Tab. 33 give an overview of the costs 

Direct cost item Cost (k€) Indirect cost item Cost (k€) 

Equipments 451.4 
Engineering 163.8 

Installation 233.3 

Instrumentation 178.7 
Construction costs 203.5 

Piping 337.6 

Electric systems 54.6 
Contractor payment 109.2 

Civil works 89.4 

Facilities 347.5 Contingencies 218.4 

TOTAL DIRECT COSTS 1692.5 TOTAL INDIRECT COSTS 694.9 

Total CAPEX = Direct Costs + Indirect Costs = 2387.4 k€ 

Utility 
Estimated 

consumption 

Calculated cost 

(k€/year) 

Low pressure steam 87.4 (ton/y) 1.9 

Cooling water 2581.6 (ton/y) 0.003 

Electric energy 368.5 (MWh/y) 17.8 

Ethanol 1.1 (ton/y) 0.9 

TOTAL UTILITIES COSTS 20.63 

Manpower + Maintenance = 238.8 + 238.8 = 477.6 k€/year 

TOTAL OPEX = Utilities + Manpower + Maintenance = 498.23k€/year 
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estimated for the designed purification process with molecular distillation. Furthermore, 

considering the daily treated biomass with sCO2 equal to 360 kg, the annual (7200 h of 

running pilot) biomass amout is equal to 108 ton. With this amount it is possible to 

calculate the Total Treatment Cost (TTC= OPEX+CAPEX per kg of treated algal 

biomass) equal to 26.72 €/kg. Notably, further purifications of the omega-3 part of the 

distilled stream (both in their esterified or unesterified form) are not taken into account 

because of the possibility to place them directly on the market as mixture and not as pure 

components; the same considerations have been done for carotenoids. The price of these 

mixtures, that is very difficult to find because strictly bounded to the composition obtained 

in this work, would have led to a more accurate economic analysis with a ROI value. 

Anyhow, this technology is very promising for its fractionation efficiency of heat-labile 

compounds that have good financial perspective due to their high market price. Indeed, 

even if it requires several technical attentions for the high vacuum used, the high-added 

value of the separated molecules makes it an appropriate solution to be combined also with 

microalgal cultivation and metabolites’ extraction in order to realize a complete process. 

 

3.9 MEWLIFE results 

 

3.9.1 Fermenters’ design  

In this subparagraph the considerations used to design the fermenters, with the 

corresponding results, are resumed. The first consideration that have to be done and that is 

bound to all the specifications described below, consists in not having used the classical 

engineering design equations and definitions due to the presence of several constraints. 

The main constraint was the dedicated space for pilot installation, having as available 

heigth max 3.5 m. This 3.8 m had to include the fermentor (planking and heads), its raising 

from the floor with legs permitting bottom piping connection and the motor group for 

mixing positioned at its top head. Considering a space of 0.5 m for the raising with legs, 

0.5 m for motor group and 0.5 m for motor’s maintainance at top head, the residual 

available height for fermenters’ positioning is 2.3 m (HF). The other important constraint 

was the volume declared in the project: 3 m3 of operative volume for each reactor. These 

two constraint brought to a completely different design from classical fermentors, having a 

H/D ratio of about 2.5-3. Indeed, after an iterative calculation the internal diameter chosen 

(Dt) is equal to 1.6 m; adding to that the contribution of the jacket, an external diameter De 

= 1.71 m is obtained. In order to reach the volume declared, it was necessary to design also 

the bottom heads. Usually the volume present in the bottom head is not considered in the 

calculation of the operative volume, taking into consideration only the volume between the 

tangent lines. For the calculation of the head’s volume, a spreadsheet in Excel was 

implemented and is reported in Fig. 104. 
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Fig. 104: Excel spreadsheet developed to estimate the bottom head volume in order to reach an operative 

volume of 3 m3 inside each fermenter. 

 

It can be seen that, since the fermentors will be operated at atmospheric pressure, a 

“Flanged and Dished” is adequate (see Fig. 105). 

Fig. 105: Flanged and Dished head schematization (http://www.conrexsteel.com/calculator.php). 
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The volume obtained, after an iterative procedure, is 0.45 m3 in each bottom head. As a 

check the operative liquid volume was calculated. Knowing the available fermenter’s 

height equal to HF=2.3 m and knowing the Overall Height (OAH) for both heads = 

2*0.35=0.7 m the cylinder planked height HC=1.6 m is obtained. Furthermore, knowing the 

total liquid volume (VTOT) equal to 3.66 m3, as sum of cylynder planked volume and 

bottom head volume, the operative volume VOP = 3 m3 is equal to 0.8*VTOT; this value is 

acceptable. In Fig. 106 the picture of the fermentors, designed by Bio-P and modified and 

revised by NextChem and present in the Data-Sheet (DS) sent to vendors, are visible. 

Along with the dimensions, also the indication of all the required nozzles are reported in 

Fig. 107 and their position is specified in Fig. 108.   

                           Fig. 106: Fermentor schematization with the relative dimensions. 
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Fig. 107: Fermentor schematization with the nozzles and levels indication. 

 

Fig. 108: Bottom and top head nozzles’ positioning. 

 

Besides the fermenters, also the internals and the mixing devices were designed. 

Concerning the baffles (3 baffles are used), considering the ratio usually applied between 

the baffle diameter (Db) and the fermentor internal diameter (Dt) equal to 0.09, a Db = 0.15 

m is obtained. Furthermore, also the air sparger was designed and included in fermenters’ 

DS. In order to guarantee the bubbles’ rise, the number of holes (NH) have to be calculated 

in a way that the holed surface (SH) is less than the inlet air surface (SI). In order to 

guaratee this, it is obtained NH < 46, so NH=35 is fixed. The diameter of each hole was 

fixed at 6 mm as compromise between high pressure loss and high bubbles’ dimension. 
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The designed sparger is visible in Fig. 109. 

Fig. 109: Sparger schematization with relative dimensions. 

 

As last consideration, the mixing device is described. Differently from typical fermentation 

process, the configuration and the position of the impellers were designed in order to avoid 

operative problems occurring in microalgal cultivation. Indeed, usually the impeller is 

positioned immediately above the sparger, maximazing thus the oxygen dispersion inside 

the culture medium. In this case, due to the stubby fermentor’ configuration, a rushton 

impeller was positioned below the sparger and near the bottom head in order to avoid any 

microalgal deposit in the bottom, guaranteeing thus a complete and uniform mixing. The 

dimension of these impellers were furnished by specialized vendors, able to define the best 

solution to use.  

In conclusion of this section some pictures available to date, showing the designed 

fermenters just positioned in the Bio-P/Nextchem site, are reported below.  
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 Fig. 110: Detail of the fermenter’s sparger designed for the aeration. 

 

In Fig. 110 the detail of the sparger designed and discussed before is reported. It is visible 

that it is positioned near the bottom head, avoiding any possible microalgal deposit on the 

bottom. The holes (with a diameter of 6 mm) are not visible because are faced down in 

order to avoid clogging problems.  
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           Fig. 111: Detail of the fermenter’s impellers designed for colture mixing. 

 

In Fig. 111 the details of the mixing impellers are shown. As anticipated before, the 

Rushton turbine will positioned under the sparger in order to guarantee a proper mixing in 

the fermenters’ bottom. On the other side, the axial 4 blades hydrofoil impeller will be 

positioned at the middle of the fermenter’s height in order to provide the proper 

fluidynamic of the microalgal solution. 
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Fig. 112: Detail of the manufactured fermenter during its development inside the vendor’s workshop. 

Fig. 113: Fermenter’s positioning inside the space dedicated to the indoor pilot plant. 

 



155 

 

 

Fig. 114: Detail of the manufactured fermenter designed ad hoc for microalgal heterotrophic cultivation 

positioned inside the space dedicated to the indoor pilot plant. 

 

In Fig. 112-114 the details of the designed and manufactured fermenters are shown. As 

previously anticipated, their dimensions and ratio (H/D) doesn’t correspond to the typical 

fermenters configuration due to the constraints described before. In particular, the required 

noozles (indicated in Fig. 107 and Fig. 108) with their corresponding positions can be seen. 

It is present also the manhole for the inspection and future cleaning and maintainance. 

Furthermore, the motor groups are not visible because have to be still installed.   
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Conclusions 

 

In the present work a study aimed to analyze and model both microalgal growth and 

production of high added-value metabolites, focusing also on their extraction and 

purification, has been carried out.  

❖ As regard the outdoor cultivation: a 10 bubble column photobioreactors (PBRs) pilot plant 

for the cultivation of two microalgae named Tetradesmus obliquus and Graesiella 

emersonii, covering a 9 months cultivation period (March 2017-December 2017) has been 

installed and operated. A preliminary statistical analysis on the outdoor variables (light and 

temperature) has been done, showing that reactors’ position inside the plant has been the 

only factor that didn’t influence the light collected data and confirming the necessity of 

using two probes for internal/external temperature, considering them as two different input. 

The best initial conditions to use as sodium nitrate concentration (NaNO3init) and inoculm 

concentration (Cinit) have been respectively 0.35 g L-1 and 0.3 g L-1 as compromise between 

high final concentrations (with long batch’s duration) and low final concentrations (with 

short batch’s duration). The best values reached for Tetradesmus have been 45*106 cell 

mL-1  (reached in the experiment F: from 20-06-17 to 07-07-17) and 16*106 cell mL-1 for 

Graesiella (reached in the experiment G: from 10-07-17 to 27-07-17). Both algae have 

been cultivated together in the experiments G-M (10-07-17 to 22-02-18), showing high 

level of replicability between reactors and very similar results for both species that have 

been considered equivalent.  

❖ The collected data (as microalgal growth rate, outdoor parameters and initial cultivation’s 

conditions) have been used to develop an empirical model for prediction of microalgal 

growth in photobioreactors at specific outdoor conditions, using Principal Component 

Analysis (PCA) and Partial Least Squares (PLS) regression method. Model predictions 

results showed acceptable outcomes for both responses: microalgal specific growth rate (µ) 

and productivity calculated at the maximum concentration reached at each experiment 

(Pmax). Furthermore, the identical results obtained running PCA/PLS methods with the 

experimental values of each microalga considered singularly, confirmed the hypothesis 

made in the multivariate model’s development to consider Tetradesmus and Graesiella as 

belonging to a single microalgal strain. All of these informations could be used as basis for 

the MEWLIFE European project in which Bio-P has a role as partner. Since this project 

has as aim the production of microalgal biomass in an integrated phototrophic and 
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heterotrophic cultivation system using preconcentrated olive oil wastewaters (OMWW) as 

carbon source, the multivariate model could be applied to phototrophic cultivation 

validating and reinforcing its predictive power also in a different photobioreactor 

configuration and estimating both specific growth rate and productivity in a specific 

outdoor conditions. 

❖ Moving on microalgal metabolism, also a new mathematical model able to simply 

represent the (high-added value) metabolites’ accumulation inside microalgae, focusing on 

the carbon partitioning process between triacylglycerides (TAG) and starch during nitrogen 

starvation in phototrophy, has been developed. The model simulated the dynamic of 4 

variables related to a phototrophic cultivation during nitrogen starvation (biomass 

concentration (x), nitrogen intracellular quota (qn), starch intracellular quota (qg) and TAG 

intracellular quota (ql)), finding with the Simulated Annealing method  the best set of 

parameters (𝛂, β, µm and KI) that minimized the Residual Sum of Squares function. 

Anyhow, even in presence of few data the model gave very good results, with high R-

Squared values for each estimated parameter as index of model’s goodness of fitting. This 

model could be applied to heterotrophic section of MEWLIFE project, allowing to know: 

time needed to reach a fixed output concentration (at a certain glucose/OOMWW and 

Nitrate concentration as input) but also the estimation of the desidered metabolites quotas, 

accumulated during nitrogen starved conditions.  

❖ As completion of microalgal process treatment, a study of the downstream processes for 

the extraction (using supercritical CO2) and purification of the high added value 

metabolites (with molecular distillation) has been carried out, developing a feasibility 

study also from the economical point of view. As regard the extraction modeling, the 

Broken and Intact Cell Model has been implemented for each component considered 

singularly, allowing to find the best extraction conditions in terms of operative variables (T 

= 60°C, P = 250 bar and SSR = 5 h−1). The results obtained from the model have been used 

to simulate the process, calculating the daily amount ofthe desired products (147 kg of 

extracted stream and 213.19 kg of residue stream) and estimating also OPEX (561.7 

k€/year) and CAPEX (2717.9 k€/year), showing good financial perspective due to the high 

market price of the extracted metabolites considered as a mixture. Regarding molecular 

distillation fractionation process of microalgal lipidic products, coming out from sCO2 

extraction step, both esterification and dewatering feed’s pretreatments have been analyzed 

to complete the process, obtaining for the esterification reactor V = 3 m3 and XOLEIC ACID = 
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97% and for the adsorption column Length = 1 m, Radius = 0.2 m working continously. 

The optimal operating conditions, obtained from the RSM analysis, has been found at T = 

128 °C and P = 0.33 Pa, in which the distilled stream has been composed mainly by the 

esterified fatty acids (95% in mass) and the residue stream has been constituted mainly by 

carotenoids (98.8% in mass). These results have been used to simulate the process, in order 

to estimate OPEX (498.23 k€/year) and CAPEX (2387.4 k€/year), that coupled with the 

calculation of a ROI value of the production process, could give more accurate 

informations about the investment’s feasibility. Also for these two downstream processes, 

future experiments should be carried out in order to validate the results obtained from the 

simulations. 
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