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Abstract
Increased life expectancy in developed countries has led researchers to pay more attention to mortality projection to anticipate
changes inmortality rates. Following the scheme proposed in Deprez et al. (Eur Actuar J 7(2):337–352, 2017) and extended by
Levantesi and Pizzorusso (Risks 7(1):26, 2019), we propose a novel approach based on the combination of random forest and
two-dimensional P-spline, allowing for accurate mortality forecasting. This approach firstly provides a diagnosis of the limits
of the Lee–Carter mortality model through the application of the random forest estimator to the ratio between the observed
deaths and their estimated values given by a certain model, while the two-dimensional P-spline are used to smooth and
project the random forest estimator in the forecasting phase. Further considerations are devoted to assessing the demographic
consistency of the results. The model accuracy is evaluated by an out-of-sample test. Finally, we analyze the impact of our
model on the pricing of q-forward contracts. All the analyses have been carried out on several countries by using data from
the Human Mortality Database and considering the Lee–Carter model.

Keywords Mortality · Machine learning · Two-dimensional P-spline · q-Forward

1 Introduction

The downward trends in mortality rates experienced in the
last century by developed countries engender economic and
financial challenge for annuity providers at both public and
private level. To manage longevity risk, annuity providers
use projected life tables in order to include future mortal-
ity trends in the present value of liabilities. The accuracy of
mortality forecasting is then considered an important issue
for longevity risk management.

Recently, some authors applied machine learning tech-
niques to improve the fitting accuracy of mortality models.
Deprez et al. (2017) use a regression tree boosting machine
to enhance the quality of mortality estimates provided by
two stochastic mortality models, namely Lee–Carter model
and Renshaw–Haberman model. This approach allows to
identify strengths and weaknesses of each model respect
to the individual features (age, year of birth, gender,…).
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Levantesi and Pizzorusso (2019) extend this approach to
improve the projected mortality rates provided by the Lee–
Carter model using machine learning techniques that better
capture not identifiable patterns. They apply three different
supervised learning methods, decision tree, random forest
and gradient boosting to predict the ratio between observed
and estimated deaths (according to a specified model). The
machine learning estimator of this ratio is then forecasted
using the Lee–Carter formulation, moving away from the
machine learning framework.

Other authors use deep learning to detect the futuremortal-
ity trends. Hainaut (2018) applies neural network algorithms
to identify the latent factors of mortality that are then fore-
casted by a random walk with drift. Richman and Wüthrich
(2018) use neural networks to estimate a multi-population
version of the Lee–Carter model. Nigri et al. (2019) use
recurrent neural network with long short-term memory to
forecast the future evolution of the time index of the Lee–
Carter model, providing more accurate forecasting than
the traditional ARIMA processes. Finally, Piscopo (2017,
2018a, b) has implemented an integrated dynamic evolving
neuro-fuzzy inference system for mortality forecasting by
combining neural networks and fuzzy inference.
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As suggested by Levantesi and Pizzorusso (2019), the use
of amachine learning estimator of the ratio between observed
and estimated deaths allows to significantly improve the
mortality estimation provided by a mortality model, even
more in the forecasting. Following this line of research, we
propose a novel approach for the machine learning estima-
tor forecasting, exploiting the two-dimensional P-splines to
smooth and extrapolate their future values on the mortality
surface.

We develop a case study applying the random forest
algorithm on mortality data of a set of developed coun-
tries. Moreover, we analyze the impact of the mortality rates
obtained by both the traditional Lee–Carter model and its
improved version obtained by the combination of a ran-
dom forest algorithm and two-dimensional P-splines on the
pricing of q-forward contracts. Compared to other longevity-
linked securities traded on the market, the q-forward contract
has some important advantages: it is built on standardized
mortality indices reflecting the experience of a large popula-
tion, is easier to price, less expensive and more liquid.

The paper is organized as follows. Section 2 provides a
description of the model, including a brief introduction of
the Lee–Carter model, an illustration of the machine learn-
ing estimator and P-splines. Section 3 shows a numerical
application based on the population of six countries world-
wide. An out-of-sample test is also provided to check the
model ability to predict mortality. Conclusions follow.

2 Themodel

The generally available mortality data contains the following
features, identifying an individual: age (x), calendar year (t),
cohort (c) and gender (g). We define a feature space S =
X ×T ×C×G where:X = {x1, . . . , xm}, T = {t1, . . . , tn},
C = {c1, . . . , ck} and G = {males, females}. The number of
mortality observations is then obtained by multiplying the
range of the three variables x , t and g. We assign to each
individual the feature s = (x, t, c, g) ∈ S that can be used as
input of a regression model as well as for machine learning
and deep learning regression algorithms.

We consider demographic data available in the Human
Mortality Database (HMD) that provides the number of
deaths, Dx,t and the exposure to risk, Ex,t for individuals age
x in the calendar year t . In the proposed framework, the data
are organized so that the features of each individual x, t, c
and g are recorded in a single row. Therefore, deaths and the
exposure to risk are defined by Ds and Es, respectively.

The number of deaths, Ds, is assumed independent in
{s ∈ S} and Poisson-distributed: Ds ∼ Pois(ms · Es) for all
{s ∈ S}, where ms = Ds

Es
is the central death rate.

2.1 Lee–Carter model

We present the Lee–Carter (LC) model in the Poisson frame-
work as proposed by Brouhns et al. (2002) as a function of
the feature s:

log (ms) = αx + βxκt , ∀s = (x, t, c, g) ∈ S (1)

where αx is the age-specific parameter providing the average
age profile of mortality; βx ·κt is the age-period term describ-
ing the mortality trends. (κt is the time index and βx modifies
the effect of κt across ages.) The following constraints on κt
and βx avoid identifiability problems with the parameters:

∑

t∈T
κt = 0

∑

x∈X
βx = 1

Mortality forecasting is obtained by modeling the time index
κt by an autoregressive integrated moving average (ARIMA)
process. In general, a randomwalk with drift properly fits the
data:

κt = κt−1 + δ + εt , εt ∼ N (0, σ 2
k ) (2)

where δ is the drift parameter and εt are the error terms,
normally distributed with null mean and variance σ 2

k .

2.2 Machine learning estimator

We denote D̂s the expected number of deaths estimated by a
givenmortalitymodel and m̂s the corresponding central death
rate. We define the ratio between the death observations and
the estimated values as:

ψs = Ds

D̂s
(3)

We estimate ψs by a regression algorithm depending on age,
calendar years, year of birth (cohort) and gender:

ψs ∼ gender + age + year + cohort (4)

We apply a regression algorithm to the ratio between death
observations and estimated valued (ψs) in order to improve
the forecasting provided by standard stochastic mortality
models, catching unidentifiable outlines. More in detail, our
aim is to use a machine learning algorithm to complement
theLee–Cartermortalitymodel andmake themodel’s predic-
tion more accurate. The application of the algorithm directly
to the mortality rate is beyond the scope of this paper that
do not consider machine learning as a substitute of mortal-
ity models, but benefits from artificial intelligence to detect
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Fig. 1 Predictor space division .
(source: James et al. (2017))

the mortality hidden features. Using only machine learning
to model mortality can make results difficult to understand
because the underlying decision process of a machine learn-
ing algorithm is often considered as unclear. However, the
analysis of the model’s features importance can offer more
intuition into what the algorithm is learning.

We propose to solve Eq. 4 using the random forest algo-
rithm. It belongs to the family of ensemble methods that are
useful to get the error reduction pulling down the prediction
variance, preserving the bias. The regression tree architec-
ture is the basis behind the concept of random forest. Let us
consider the need to approximate a function y = f (x) (in
our case, the function which describes ψs). The regression
trees allow to get the best function approximation (Loh 2011)
by a procedure consisting in the following steps:

– We divide the predictor space that is, the set of pos-
sible values for X1, X2, . . . , X p, into J distinct and
non-overlapping regions, R1, R2, . . . , RJ (Fig. 1).

– For each observation that falls into the region R j , we
make the same prediction, which is simply the mean of
the response values for the training observations in R j .

The basic idea is to divide the predictor space into high-
dimensional rectangles, finding the boxes R1, . . . , RJ that
minimize the residual sumof squares (RSS):

∑J
j=1

∑
i∈R j

(yi
− ŷR j )

2.
Once the regions R1, . . . , RJ have been created, we pre-

dict the response for a given test observation using the
mean of the training observations in the region to which
that test observation belongs. It is of course computationally
infeasible to consider every possible partition of the fea-
ture; therefore, we consider a “top-down” approach (Quinlan
1986) by using a recursive binary splitting. Considering a
generic (upside down) tree structure, the algorithm (Breiman
et al. 1984) starts at the top of the tree, where all observations
belong to a single region, and then successively splits the pre-

dictor space (see Fig. 2). Thus, starting from the root node,
which generates the subsequent nodes up to the final ones (or
leaves) according the split rule (Morgan and Sonquist 1963;
Breiman et al. 1984):

– If X1 < t , then the unit belongs to the left branch, where
t is the cut point such that the space predictor splitting
leads to the greatest possible reduction in RSS.

– Otherwise, it belongs to the right branch.

To identify the best split, consider a purity measurement
(homogeneity) for each node quantified by the entropy or the
index ofGini. Themaximumpurity is reachedwhen only one
class of Y is present in the node.

The regression tree-based methods have some interesting
properties (see Breiman (2001) for more details). For exam-
ple:

– They are nonparametric and able to model complex
relations between inputs and outputs, without any (prob-
abilistic) a priori assumption;

– They handle heterogeneous data (ordered or categorical
variables, or a mix of both);

– They intrinsically implement feature selection, making
them robust to not significant or noisy variables;

– They are robust to outliers or missing values;
– They are easily interpretable.

Random forests basically consist in building an ensemble
of decision trees grown from a randomized variant of the
tree. Starting from a single learning set, the basic idea is
to introduce a random perturbation into the learning proce-
dure in order to introduce a differentiation among the trees
and combine the predictions of all these trees using aggrega-
tion techniques. Breiman (1996) proposed a first aggregation
method the so-called bagging in which the different trees are
built by using random bootstrap copies of the original data.
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Fig. 2 Top-down approach:
splitting rule . (source: James
et al. (2017))

Its natural evolution, the random forests have been developed
by the same author in 2001 Breiman (2001). In the random
forests, the bagging approach has been extended and com-
bined with randomization of the input variables that are used
when considering candidate variables to split internal nodes
t . In particular, instead of looking for the best split s∗ among
all variables, the algorithm chooses a random subset of K
variables for each node and then determines the best split
using these variables.

It is also important to consider the so-called variable
importance. To this purpose, Breiman (2001) proposed a
weighted impurity measure for evaluating the importance of
a variable Xm in predicting Y, for all nodes t averaged over
all NT trees in the forest. If impurity i(t) is the Gini index,
the impurity measure is called the Gini importance or mean
decrease Gini (here denoted by I ncNodePuri ty):

I ncNodePurity(Xm) = 1

NT

∑

T

∑

t∈T :v(st )=Xm

p(t)	i(st , t)

(5)

where v(st ) is the variable used in split st and	i(st , t) is the
impurity decrease in a binary split st dividing node t into a
left node tl and a right node tr:

	i(st , t) = i(t) − Ntl

Nt
· i(tl) − Ntr

Nt
· i(tr) (6)

where p(t) = Nt
N is the proportion of samples reaching t , and

p(tl) = Ntl
N and p(tr) = Ntr

N are the proportion of samples
reaching the left node tl and the right node tr, respectively.

Themean decreaseGini in Eq. 5 calculates the importance
of each variable Xm as the sum over the number of splits that
include the variable, proportionally to the number of samples
it splits.

We denote ψ̂s the random forest estimator, obtained by
applying the random forest algorithm from the R package

randomForest (Liaw 2018). Since this procedure proved
to be very costly from a computational point of view, the
number of trees must be carefully chosen; it should not be
too large but at the same time able to produce an adequate
percentage of variance explained and a low mean of squared
residuals, MSR.

The goodness of fit of the Lee–Carter model can be
improved by the random forest estimator, ψ̂s, that is applied
to the central death rate estimated by the Lee–Carter model,
m̂s. Therefore, the random forest improved rates are calcu-
lated by:

m̂ψ
s = ψ̂s · m̂s (7)

To obtain a better performance from the Lee–Carter model
forecasting, we need to estimate future values of the ran-
dom forest estimator. To this aim, we propose amethodology
based on the smoothing and extrapolation of ψ̂s using P-
splines (in particular, the two-dimensional version). The use
of the P-splines is legitimized by some of their important
properties partially deriving from the B-spline (De Boor
1978). Compared to other smoothing methods (in particular,
Kernel-based methods), P-splines do not show the spread of
a curve or density outside the data domain, indeed, as proved
by Eilers and Marx (1996), they show no boundary effects.
The authors also underline how average and variance of the
fitted data (for any level of smoothing) are equal to the aver-
age and the variance of the observed data. This point is very
important when working on density smoothing. The latter is
not guaranteed in other smoothing methods, such as for Ker-
nel methods that compromise the variance estimate, which
increases proportionally to smoothing. Last but not least,
the possibility of working in a Poisson setting (on the log-
likelihood) that is the base of the most used mortality models
(Lee–Carter included). As stated by Currie et al. (2006) (p.
280): “an important feature of this method is that forecasting
is a natural consequence of the smoothing process. We con-
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sider future values as missing values; the penalization then
allows the estimation of future values simultaneously with
the fitting of the mortality surface.”

The form of the forecast is then determined by the penalty
function that is more important in the extrapolation of future
vales respect to the smoothing of data. Therefore, the penalty
function must be chosen with careful.

2.3 P-splines

We introduce the P-splinemodel starting from its base, the B-
spline. We will follow the line described by Eilers and Marx.
The P-spline estimation is performed in two main steps, in
order:

1. Use B-spline as the basis for the regression (for an exten-
sive introduction toB-spline see Eilers andMarx (1996)),

2. Modify the likelihood by a penalty on the regression coef-
ficients.

Let Bj (x, q) denote the value at x of the j th B-spline of
degree q. For a given equidistant grid of knots, we can define
ŷ(x) = ∑n

j=1 â j B j (x, q). In the present study, the rows of
the B are the values of the B-splines in the basis evaluated
at each year. Therefore, aB are weighted averages of a local
subset of the coefficients. In many cases, the application of
B-spline leads to an over-smoothed behavior of the fitted
function. At this purpose, O’Sullivan (1986, 1988) proposed
a penalty on the second derivative:

m∑

i=1

⎧
⎨

⎩yi −
n∑

j=1

a j B j (xi )

⎫
⎬

⎭

2

+λ

∫ xmax

xmin

⎧
⎨

⎩

n∑

j=1

a j B
′′
j (xi )

⎫
⎬

⎭

2

dx .

(8)

Eilers and Marx improved the O’Sullivan’ model, propos-
ing a penalty term on higher-order finite differences of the
coefficients of adjacent B-splines:

m∑

i=1

⎧
⎨

⎩yi −
n∑

j=1

a j B j (xi )

⎫
⎬

⎭

2

+ λ

n∑

j=k+1

(	ka j )
2 (9)

where λ is smoothing parameter (see e.g., D’Amato et al.
(2011) for the use of P-splines on the Lee–Carter model). It
worth to notice that the penalty from Eq. 9 allows to preserve
the moments of data.

As already mentioned, P-splines also allow to work in a
Poisson setting. In this regard, in order to obtain the penalized
log-likelihood, the penalty can be incorporated into the log-
likelihood function, �(a, y), estimated by a given mortality
model.

�p = �(a, y) − 1

2
a′Pa (10)

�(a, y) − 1

2
λa′D′Da (11)

where D is a difference matrix of order d. P = λD′D is the
penaltymatrix andλ is the smoothing parameter.Maximizing
�p gives the penalized likelihood B ′(y−μ) = Pa, which can
be solved by the penalized version of the scoring algorithm:

(B ′W̃ B + P)â = B ′W̃ Bã + B ′(y − μ̃) (12)

where B is the regression matrix, P is the penalty matrix, ã,
μ̃ and W̃ , the diagonal matrix of weights and â denotes the
updated estimate of a. As shown in Eilers and Marx (1996),
it is possible to use penalized spline in a Poisson setting by
using a penalized version of the iteratively re-weighted least
squares (IRWLs used for generalized linear model estima-
tion).

(B ′W̃ B + P)â = B ′W̃ z̃; (13)

z̃ = Bã + ˜W−1(y − μ̃); (14)

where μ̃ = diag(μ).
The P-splines application leads to face some difficulties

about the right number of knots, the degree of the P-spline,
the penalty order and the smoothing parameter. The latter
could be negligible in the fitting phase, but when we will
approach the forecasting estimation we will have to take into
account that the penalty order greatly influences the forecast-
ing values. Ruppert (2002) and Currie and Durban (2002) list
some sufficient advices in choosing the P-spline parameters;
with equally spaced data, use one knot for every four or five
observations up to a maximum of forty knots. Anyway, the
authors proposed the BIC criterion (Schwarz 1978) to choose
the smoothing parameter. As pointed out in the previous sec-
tion, the final aimof the paper is obtaining a smoothed surface
of ψs estimation over time that is achieved through the two-
dimensional P-spline approach. Since the Eilers and Marx
improvement, the P-spline has been widely used, embracing
different scientific fields. One of its major uses is certainly
in the area of mortality in which there was a need to smooth
the roughness of the raw data. In the analysis of mortality,
we usually deal with two-dimensional surfaces so that some
authors (Eilers and Marx 2002; Eilers et al. 2006; Eilers and
Marx 2010; Currie et al. 2004, 2006; Camarda 2012) pro-
posed a P-spline evolution: the two-dimensional P-splines.
The first steps to approach the two-dimensional p-spline is
to start the construction of the two-dimensional basis, anal-
ogously to the one-dimensional case. For the purposes of
regression, we assume that the data are arranged as a column
vector, y = vec(Y ). Let Ba = B(xa), na × ca , be a regres-
sion matrix of B-splines based on the explanatory variable
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Table 1 RSS and MSR by the
random forest algorithm for LC
model. Ages 20–100 and years
1947–2014

Indicator Australia France Italy Spain UK USA

RSS (%) 56.91 87.18 87.43 89.11 89.58 93.76

MSR 0.0057 0.0017 0.0025 0.0030 0.0019 0.0004

Gender

Year

Cohort

Age

0 10 20 30 40 50

(a) Australia

Gender

Year

Cohort

Age

0 10 20 30 40 50

(b) France

Gender

Year

Cohort

Age

0 20 40 60

(c) Italy

Gender

Year

Age

Cohort

0 20 40 60 80 120

(d) Spain

Gender

Year

Cohort

Age

0 20 40 60

(e) UK

Gender

Year

Cohort

Age

0 5 10 15 20 25 30

(f) USA

Fig. 3 Variable importance. %I ncNodePuri ty. Ages 20–100 and years 1947–2014

for age xa and By = B(xy), na y×cy , be a regression matrix
of B-splines based on the explanatory variable for year xy .
The regression matrix for our two-dimensional model is the
Kronecker product:

B = By ⊗ Ba (15)

From theKronecker product definition, and by using IRWLS,
we can independently penalize the age and year coefficients
over the rows and columns of A that is a ca × cy matrix
containing the arranged elements of a = vec(A). Let Da

and Dy the difference matrices acting on the columns and
rows of A, respectively. The penalty is:

P = λa Icy ⊗ D′
aDa + λy D

′
y Dy ⊗ Ica (16)

where λa , λy are the smoothing parameter used for age and
year, respectively. Ica , Icy are identity matrices of dimension
ca , cy . The latter point allows to choose different smooth-
ing parameters over age and years independently, giving an
higher flexibility model.

3 Numerical analysis

The model presented in Sect. 2 is applied to the population
of six countries worldwide: Australia, France, Italy, Spain,
UK and the USA. Data are downloaded from the Human
Mortality Database (www.mortality.org), while model fitting
is performed with StMoMo package provided by Villegas
et al. (2015). We analyze the following set of explanatory
variables:

X = {20, . . . , 100} , T = {1947, . . . , 2014} ,

C = {1847, . . . , 1994} ,G = {males, females}

where ms is the observed central death rate for the feature s,
m̂s the estimated value and N the number of observations.

The first step of the model’s application consists in the
estimation of the Lee–Carter model parameters, separately
for male and female population. The second step in mod-
eling ψs, the ratio between the death observations and the
estimated values from the Lee–Carter model by the random
forest algorithm, while the final step consists in smoothing
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Table 2 MAPE. Ages 20–100
and years 1947–2014

Gender Model Australia (%) France (%) Italy (%) Spain (%) UK (%) USA (%)

Males LC 10.31 9.76 11.09 12.32 10.52 7.71

LC ψ 5.13 2.69 3.19 3.65 2.86 1.42

Females LC 9.31 9.36 10.29 13.29 10.27 6.53

LC ψ 5.91 3.01 3.37 4.18 3.02 1.56

Fig. 4 ψ̂s sensitivity to predictor. Ages 20–100 and years 1947–2014. Italy

and extrapolating the machine learning estimator, and then
applied to the Lee–Carter forecasted mortality rates.

3.1 Model fitting

Wemodelψs using the random forest algorithm implemented
in the R package randomForest. We set the parameters
of the algorithm as follows: to avoid model’s over-fitting the
number of trees (ntrees) has been set to 200 and the number
of input variables to be used in each node (mtry) to 2. Table 1
shows the percentage of variance explained by the random
forest algorithm, RSS, and the level of the mean of squared
residuals MSR by each country. The explained variance is
calculated on the central death rate as:

∑
s(m̂s−ms)

2. Its level

is higher than 80% for all the countries, except for Australia
(57%).

We show in Fig. 3 the values of the mean decrease Gini of
attributes assigned by the random forest (sorted decreasingly
from top to bottom). The lessen importance of the gender
predictor in explaining ψ̂s points out the ability of the Lee–
Carter model to catch well the gender difference in mortality
in the analyzed countries. Conversely, the higher importance
of the age predictor leads to the conclusion that this feature is
not well-detected by the Lee–Carter model, mostly in the old
ages. In fact, if we consider ages 20–90, the age predictor is
no longer the most important in regressing ψ̂s (see Fig. 7 in
“Appendix”). In this case, the cohort predictor rises to the top
of the importance as the Lee–Carter model does not include
a cohort effect.

123

Author's personal copy



S. Levantesi, A. Nigri

20 40 60 80 100

19
50

19
60

19
70

19
80

19
90

20
00

20
10

19
50

19
60

19
70

19
80

19
90

20
00

20
10

19
50

19
60

19
70

19
80

19
90

20
00

20
10

19
50

19
60

19
70

19
80

19
90

20
00

20
10

19
50

19
60

19
70

19
80

19
90

20
00

20
10

19
50

19
60

19
70

19
80

19
90

20
00

20
10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) Australia (males)

20 40 60 80 100

0.0

0.5

1.0

1.5

(b) France (males)

20 40 60 80 100

0.0

0.5

1.0

1.5
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Fig. 5 ψ̂s smoothed values (1947–2000) and extrapolated values (2000–2014). Results from MortalitySmooth package. Male population. Age
20–100

The goodness of fit is measured by the mean absolute
percent error (MAPE), defined as:

MAPE = 100

N

∑

x

∣∣∣
ms − m̂s

ms

∣∣∣ (17)

The resulting MAPE is reported in Table 2 by country. In
summary, the random forest algorithm improves the fitting
of the Lee–Carter model for all the countries. The lower level
of improvement is recorded in Australia, where the variance
explained by the algorithm is the lowest.

3.2 Sensitivity to predictor

As shown in Sect. 2.2, the random forest algorithm provides
information about the importance of the variables. Since our
investigation falls into a population study, some demographic
aspects need to be considered. First of all, we have to inves-
tigate if the algorithm predictors evaluation is reasonable in
a demographic perspective. To this aim, we proceed with a
predictors sensitivity analysis considering the case of Italy.
According to the I ncNodePuri ty measure in Fig. 3 (panel
c), the most important variable (with a higher node purity) in
Italy is the age. It is quite close to the second and the third one,

respectively cohort and calendar year. The gender predictor
instead seems to be very far from the others, showing the low-
est level of purity. This picture appears to be consistent with
the age structure transformation and the remarkable cohort
effect characterizing the Italian mortality dynamic over time.
It could be confirmed (or discredited) by a sensitivity analysis
of the predictors. We progressively add a single predictor in
the regression model ofψs, in order to check the contribution
of each predictor to improve the mortality surface estimation
given by the Lee–Carter model. Figure 4 shows the values of
ψ̂s obtained by the random forest algorithm in a regression
model based on a single predictor. The contribution of the
age predictor is quite age homogeneous except for the very
old ages (90–100). The period predictor shows high levels
immediately after the Second World War that represents one
of themost important historical shocks inmortality dynamic.
In this case, the Lee–Carter model fails to capture this mor-
tality peak. Similarly, the cohort predictor has high values for
cohorts born during the Second World War. Lastly, the gen-
der predictor shows similar values, confirming that gender is
not important in predicting ψ̂s. Therefore, we deduce that the
gender difference in the Italian mortality is well-detected by
the Lee–Carter model.
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Fig. 6 ψ̂s smoothed values (1947–2000) and extrapolated values (2000–2014). Results from MortalitySmooth package. Female population. Age
20–100

Table 3 Out-of-sample test
results: RMSE for the LC model
without and with machine
learning. Ages 20–100 and
years 2001–2014

Gender Model Australia France Italy Spain UK USA

Males LC 0.0269 0.0330 0.0327 0.0381 0.0341 0.0358

LC ψ 0.0161 0.0158 0.0212 0.0207 0.0145 0.0255

Females LC 0.0123 0.0203 0.0203 0.0268 0.0192 0.0149

LC ψ 0.0085 0.0057 0.0057 0.0109 0.0079 0.0179

3.3 P-splines smoothing and extrapolation

To improve the performance of the Lee–Carter model inmor-
tality forecasting, we have to estimate the future values of ψ̂s.
Firstly, we smooth the values of ψ̂s on two dimensions, age
and time, simultaneously using the two-dimensional smooth-
ing algorithm based on P-splines proposed in Camarda
(2012). This algorithm also allows to extrapolate future val-
ues. It is implemented in the R package MortalitySmooth.

We perform an out-of-sample test splitting the dataset in
two parts: data from 1947 to 2000 constitutes the fitting
period and data from 2001 to 2014 the forecasting period.
The resulting values of ψ̂s are illustrated in Figs. 5 and 6
for males and females respectively. Results for all the coun-
tries (exceptUSA) indicate that the Lee–Cartermodelmostly
overestimates mortality in the ages 90–100 for both genders
(ψ̂s < 1), while it underestimates mortality especially in the
ages 20–40 for both genders (ψ̂s > 1).

To evaluate the goodness of the out-of-sample test results,
we use the root-mean-squared error of mx (RMSE), defined
as:

RMSE =
√∑

s
(
ms − m̂s

)2

N
(18)

Table 3 shows the results of the out-of-sample test. The ran-
dom forest algorithm produces a significant improvement in
forecasting respect to the Lee–Carter model withoutmachine
learning.

3.4 Sensitivity to the age range

Wedevelop a sensitivity analysis on the age range to study the
level of the improvement provided bymachine learning algo-
rithms on a reduced dataset. In addition to the base case (age
range 20–100), we also consider the following range: 40–100
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Table 4 MAPE. Ages 40–100
and years 1947–2014

Gender Model Australia (%) France (%) Italy (%) Spain (%) UK (%) USA (%)

Males LC 10.14 9.26 9.43 9.63 10.06 7.96

LC ψ 4.50 2.26 2.74 3.16 2.34 1.29

Females LC 7.98 8.32 7.86 9.76 7.81 6.62

LC ψ 4.39 3.01 2.41 3.26 2.06 1.31

Table 5 MAPE. Ages 60–100
and years 1947–2014

Gender Model Australia (%) France (%) Italy (%) Spain (%) UK (%) USA (%)

Males LC 11.21 11.40 11.13 11.13 11.52 9.22

LC ψ 4.52 2.38 2.93 3.21 2.41 1.35

Females LC 8.37 9.46 9.40 10.05 8.90 7.50

LC ψ 3.82 1.95 2.15 2.88 1.73 1.26

Table 6 Out-of-sample test
results: RMSE for the LC model
without and with machine
learning. Ages 40–100 and
years 2001–2014

Gender Model Australia France Italy Spain UK USA

Males LC 0.0310 0.0385 0.0384 0.0429 0.0393 0.0410

LC ψ 0.0197 0.0165 0.0228 0.0184 0.0173 0.0272

Females LC 0.0140 0.0232 0.0234 0.0303 0.0217 0.0172

LC ψ 0.0094 0.0091 0.0059 0.0105 0.0092 0.0207

Table 7 Out-of-sample test results: RMSE for the LC model without
and with machine learning. Ages 60–100 and years 2001–2014

Gender Model Australia France Italy Spain UK USA

Males LC 0.0366 0.0470 0.0465 0.0516 0.0467 0.0506

LC ψ 0.0220 0.0219 0.0289 0.0226 0.0239 0.0365

Males LC 0.0166 0.0278 0.0284 0.0364 0.0260 0.0209

LC ψ 0.0098 0.0119 0.0076 0.0124 0.0125 0.0232

Table 8 q-forward price (in thousands) for the LC model without and
with machine learning. Ages 60, 70, 80. Maturity T = 10. Males

Age Model Australia France Italy Spain UK USA

60 LC 6.06 10.65 8.63 8.46 8.51 10.66

LC ψ 6.15 8.96 7.18 8.46 8.57 9.51

70 LC 20.18 22.48 23.90 20.74 26.51 27.66

LC ψ 20.10 21.08 21.73 20.28 25.63 26.07

80 LC 62.13 58.39 62.96 60.54 75.11 74.05

LC ψ 59.41 56.93 61.90 58.80 72.64 73.20

and 60–100. The aim is to check if the change of the cali-
bration period could have an important impact on the results.
The values of ψ̂s are shown in appendix (Fig. 8 (males)–
Fig. 9 (females) for ages 40–100 and Fig. 10 (males)–Fig. 11
(females) for ages 60–100). The MAPE values providing a
measure of the quality of fitting are shown in Table 4 (males)
and Table 5 (females) for ages 40–100 and in Table 6 (males)
and Table 7 (females) for ages 60–100. Also for a shorter age

range, the random forest algorithm improves the estimates
provided by Lee–Carter model.

3.5 Pricing q-forward

This section focuses on studying the impact of the mortality
rates obtained from our model, based on the combination of
a random forest algorithm and two-dimensional P-splines,
on the pricing of q-forward contracts. A comparison with the
traditional Lee–Carter model is also provided.

A q-forward contract is a longevity-based instrument that
can be interpreted as a zero-coupon swap. According to the
definition provided by The Life & Longevity MarketsAsso-
ciation (2010), “A q-forward is an agreement between two
counterparties to exchange at a future date (the maturity of
the contract) an amount equal to the realized mortality rate
of a given population at that future date (the floating leg), in
return for a fixed mortality rate agreed upon at the inception
of the contract (the fixed leg)”.

Different pricing methods have been proposed in the lit-
erature. The most common are the risk-neutral approach and
the Sharpe ratio approach (see Barrieu and Veraart (2016)
for a review of some classical financial and actuarial for-
mulae that can be applied in pricing q-forwards and see
e.g., Loeys et al. (2007) for the application of the Sharpe
ratio approach). Moreover, some authors propose a pricing
methodology based on Solvency II, using the Cost of Capital
approach (see Levantesi and Menzietti 2017 and Zeddouk
and Devolder 2019).
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Table 9 q-forward price (in thousands) for the LC model without and
with machine learning. Ages 60, 70, 80. Maturity T = 10. Females

Age Model Australia France Italy Spain UK USA

60 LC 3.93 3.56 3.62 2.45 6.58 7.79

LC ψ 3.83 3.52 3.47 2.53 5.48 6.25

70 LC 10.92 8.13 9.59 7.08 16.44 18.22

LC ψ 10.49 7.93 9.20 7.08 14.54 16.08

80 LC 35.47 30.18 34.36 32.86 45.07 48.25

LC ψ 34.31 29.15 33.44 31.62 43.17 46.31

Let define qE
s,T as the expected mortality rate (the fixed

leg of the contract), function of the feature s and the maturity
date T . It is calculated from the corresponding central death
rate mE

s,T according to the well-known equation qE
s,T = 1 −

e−mE
s,T .

We evaluate the q-forward contracts according to the
Sharpe ratio approach as in Loeys et al. (2007). Therefore,
the q-forward price is calculated as:

qF
s,T = (1 − SR · T · σq)q

E
s,T (19)

where T is the time to maturity, SR is the Sharpe ratio for

the q-forward and σq =
√
var

(
	qs,T
qs,T

)
is the historical stan-

dard deviation of changes in the mortality rate. The value
of SR is set to 0.1 according to the results obtained by
Barrieu and Veraart (2016). We consider q-forwards with
a ten-year maturity (T = 10) and three different underlying
ages x ∈ {60, 70, 80}. Results are shown in Tables 8 and 9 for
males and females, respectively. The q-forwards price level
increases with age because the mortality models provide age
increasing mortality rates. Our model affects the price of q-
forwards, producing lower values than those obtained with
the Lee–Carter model, with the exception of Australia and
UK (age 60) for males and Spain (age 60) for females.

4 Conclusions

In recent decades, different approaches to modeling and
forecasting mortality have been proposed in the literature.
These models were intended to portray the mortality sur-
face, and on the other hand, they aimed to anticipate future
changes in mortality shape as accurately as possible. Since
the first Lee–Carter formulation, several stochastic models
were introduced, albeit most of them still show the same crit-
ical issues. Some of these drawbacks are well-known among
scholars and they have been extensively treated. One of the
most important concerns the fixed structure of the βx index
over time (Lee and Miller 2001; Girosi and King 2008).

In developed countries, mortality deceleration is lead by a
decline at younger ages (infant and child mortality) as well
as an accelerating at old ages. This phenomenon is called
“rotation”. To overcome this problem, Li et al. (2013) pro-
posed a rotation of theβx for long-termmortality projections.

Our analysis supports the basic finding that mortality rises
at older ages, where the Lee–Carter model fails to provide
an appropriate estimate showing overestimated mortality
rates. Machine learning allows to take into consideration this
important aspect, overcoming this limitation without adjust-
ing the model parameters.

Following the idea fromDeprez et al. (2017) about the use
of machine learning models as a diagnostic tool, we there-
fore retrace the Levantesi and Pizzorusso (2019) approach
aimed to forecast the machine learning estimator of the ratio
between the observed deaths and the estimated ones from
the Lee–Carter model. Following this line of investigation,
we introduce a novel scheme based on the random forest
algorithm and exploiting the two-dimensional P-spline. We
estimate, smooth and forecast a machine learning estimator
contributing to improve the quality of the Lee–Carter model
estimates.

Using data of several countries from the HMD, this paper
aims to demonstrate how machine learning algorithms can
bring effective benefits to the study of mortality, both in
the fitting and forecast phases. We have shown that an
ensemble method can strongly reinforce a mortality model,
preserving the “desirable features” that a good mortality
model should have in accord with the criteria proposed by
Cairns et al. (2008), basically concerning some common-
sense guidelines, such as the consistency with historical data,
the long-term dynamics biologically reasonable and the par-
simony. On the other hand, it is important to point out that
machine learning algorithms must be used with caution,
being careful to keep the demographic interpretability of the
phenomenon. However, the combination of a good algorithm
and a correct demographic interpretation can lead to signif-
icant improvements in the study of mortality and can have
important implications on the evaluation of mortality-linked
securities, such as q-forward contracts.
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Fig. 8 ψ̂s smoothed values (1947–2000) and extrapolated values (2000–2014). Results from MortalitySmooth package. Male population. Age
40–100
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Fig. 9 ψ̂s smoothed values (1947–2000) and extrapolated values (2000–2014). Results from MortalitySmooth package. Female population. Age
40–100

60 70 80 90 100

19
50

19
60

19
70

19
80

19
90

20
00

20
10

19
50

19
60

19
70

19
80

19
90

20
00

20
10

19
50

19
60

19
70

19
80

19
90

20
00

20
10

19
50

19
60

19
70

19
80

19
90

20
00

20
10

19
50

19
60

19
70

19
80

19
90

20
00

20
10

19
50

19
60

19
70

19
80

19
90

20
00

20
10

0.0

0.2

0.4

0.6

0.8

1.0

(a) Australia (males)
60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

(b) France (males)
60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

(c) Italy (males)

60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(d) Spain (males)
60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

(e) UK (males)
60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

(f) USA (males)

Fig. 10 ψ̂s smoothed values (1947–2000) and extrapolated values (2000–2014). Results from MortalitySmooth package. Male population. Age
60–100
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Fig. 11 ψ̂s smoothed values (1947–2000) and extrapolated values (2000–2014). Results from MortalitySmooth package. Female population. Age
60–100
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