
LA SAPIENZA UNIVERSITY OF ROME

DOCTORAL THESIS

Study and development of innovative
strategies for energy-efficient cross-layer
design of digital VLSI systems based on

Approximate Computing

Author:
Giulia STAZI

Supervisor:
Dr. Francesco MENICHELLI

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Information Engineering, Electronics and
Telecommunications (DIET)

January 7, 2020

https://www.uniroma1.it/
http://www.johnsmith.com
http://www.jamessmith.com
https://web.uniroma1.it/dip_diet/
https://web.uniroma1.it/dip_diet/

iii

Declaration of Authorship
I, Giulia STAZI, declare that this thesis titled, “Study and development of innovative
strategies for energy-efficient cross-layer design of digital VLSI systems based on
Approximate Computing” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

“gnÀji seautìn”
Delphi’s Oracle

vii

LA SAPIENZA UNIVERSITY OF ROME

Abstract
Faculty of Information Engineering, Informatics and Statistics (I3S)

Department of Information Engineering, Electronics and Telecommunications
(DIET)

Doctor of Philosophy

Study and development of innovative strategies for energy-efficient cross-layer
design of digital VLSI systems based on Approximate Computing

by Giulia STAZI

The increasing demand on requirements for high performance and energy effi-
ciency in modern digital systems has led to the research of new design approaches
that are able to go beyond the established energy-performance tradeoff. Looking
at scientific literature, the Approximate Computing paradigm has been particularly
prolific. Many applications in the domain of signal processing, multimedia, com-
puter vision, machine learning are known to be particularly resilient to errors occur-
ring on their input data and during computation, producing outputs that, although
degraded, are still largely acceptable from the point of view of quality. The Ap-
proximate Computing design paradigm leverages the characteristics of this group
of applications to develop circuits, architectures, algorithms that, by relaxing de-
sign constraints, perform their computations in an approximate or inexact manner
reducing energy consumption.

This PhD research aims to explore the design of hardware/software architectures
based on Approximate Computing techniques, filling the gap in literature regard-
ing effective applicability and deriving a systematic methodology to characterize its
benefits and tradeoffs.

The main contributions of this work are:

• the introduction of approximate memory management inside the Linux OS,
allowing dynamic allocation and de-allocation of approximate memory at user
level, as for normal exact memory;

• the development of an emulation environment for platforms with approximate
memory units, where faults are injected during the simulation based on mod-
els that reproduce the effects on memory cells of circuital and architectural
techniques for approximate memories;

• the implementation and analysis of the impact of approximate memory hard-
ware on real applications: the H.264 video encoder, internally modified to al-
locate selected data buffers in approximate memory, and signal processing ap-
plications (digital filter) using approximate memory for input/output buffers
and tap registers;

• the development of a fully reconfigurable and combinatorial floating point
unit, which can work with reduced precision formats.

HTTPS://WWW.UNIROMA1.IT/
https://web.uniroma1.it/i3s/
https://web.uniroma1.it/dip_diet/
https://web.uniroma1.it/dip_diet/

ix

Contents

Declaration of Authorship iii

Abstract vii

1 Introduction 1
1.1 Need for Low Power Circuit Design . 1
1.2 Source of Power Dissipation . 3
1.3 Approximate Computing . 5
1.4 Contribution and thesis organization . 7

2 Approximate Computing: State of the Art 11
2.1 Approximate Computing: main concepts 11
2.2 Strategies for Approximate Computing 12

2.2.1 Algorithmic and programming language Approximate Com-
puting . 12

2.2.2 Instruction level Approximate Computing 14
2.2.3 Data-level Approximate Computing 14
2.2.4 ETAs - Error Tolerant Applications 15
2.2.5 Approximate Computing ad hoc 16

Approximate Adders . 16
Approximate Multipliers . 18
Algorithmic Noise Tolerance and Reduced Precision Redun-

dancy techniques . 20
2.2.6 Design automation Approximate Computing or functional ap-

proximation . 21
ABACUS . 22

2.2.7 Approximate Computing metrics 23
Performance metrics . 23
Quality metrics . 23

2.3 Approximate Memories . 25
2.3.1 Approximate Memory Circuits and Architectures 25

Approximate SRAM . 25
Approximate DRAM . 27

2.4 Transprecision Computing . 32
2.5 Approximate Computing and Machine Learning 33

3 Approximate Memory Support in Linux OS 39
3.1 Introduction . 39
3.2 Linux Memory Management . 40

3.2.1 Virtual Memory and Address Spaces 40
3.2.2 Low Memory and High Memory 41
3.2.3 Physical Memory . 42
3.2.4 Kernel Memory Allocators . 46

x

Page-level allocator (Buddy System algorithm) 46
Continuous Memory Allocator Kmalloc 48
Non Contiguous Memory Allocator vmalloc 49

3.3 Development of approximate memory management in Linux Kernel . 50
3.3.1 Kernel compile-time configuration menu 50
3.3.2 Creation of ZONE_APPROXIMATE on 32-bit architectures . . 51

ZONE_APPROXIMATE on x86 architectures 53
ZONE_APPROXIMATE on ARM architectures 56
ZONE_APPROXIMATE on RISC-V 32-bit architectures 60

3.3.3 Approximate Memory and Early Boot Allocators 61
3.4 Allocation in ZONE_APPROXIMATE 64

3.4.1 Approximate GFP Flags . 64
Alloc Fair policy . 66

3.4.2 User level approximate memory allocation 67
3.4.3 Implementation of the device /dev/approxmem 68
3.4.4 Approximate Memory Library: approx_malloc and approx_free 73

approx_malloc . 73
approx_free . 74

3.4.5 Initial verification . 75
3.5 Quality Aware Approximate Memory Zones in Linux OS 78

3.5.1 Introduction and 64-bit implementation potentials 78
3.5.2 Approximate memory zones on 64-bit architectures 79
3.5.3 Data Allocation . 81

approx library for multiple approximate memory zone 82
3.5.4 Initial verification of the implementation 83
3.5.5 Verification and allocation tests 83

4 AppropinQuo, Full System Emulator for Approximate Memory Platforms 89
4.1 Introduction . 89
4.2 Related Works: Simulation environments for digital platforms 90
4.3 QEmu Emulator . 91

4.3.1 Main Concepts . 91
4.3.2 Dynamic Translation: Tiny Code Generator 92
4.3.3 QEmu SoftMMU . 92

4.4 Approximate Memory in ApropinQuo 93
4.4.1 QEmu Memory Management . 93

Approximate memory mapping on PC PIIX, x86 architecture . 94
Approximate memory mapping on Vexpress Cortex A9, ARM

architecture . 95
Approximate memory mapping on VirtIO, RISCV-32 architec-

ture . 97
Multiple Approximate memories mapping on VirtIO, RISC-

V64 architecture . 97
4.4.2 Approxmem device in AppropinQuo 98

4.5 Error injection models for approximate memories 101
4.5.1 DRAM orientation dependent models 101
4.5.2 SRAM models . 104

Error on read . 104
Error on write . 105

4.5.3 Bit dropping fault model . 105
4.5.4 Memory looseness level and fault models 107

xi

4.6 Quality aware selective ECC for approximate DRAM and model 107
4.6.1 Bit dropping for LSBs, bit reuse and selective ECC 108
4.6.2 Quality aware selective ECC . 108

ECC codes for approximate memories 108
4.6.3 Impact of bit dropping and bit reuse 109
4.6.4 Implementation . 109

4.7 Verification of fault models . 111
4.7.1 Error on access models verification 111
4.7.2 DRAM orientation model verification 111
4.7.3 Bit dropping model verification 112

5 Exploiting approximate memory in applications and results 115
5.1 Introduction . 115
5.2 Impact of Approximate Memory on a H.264 Software Video Encoder . 116

5.2.1 H.264 video encoding and the x264 encoder 116
H.264 Encoder . 117
H.264 Decoder . 118
H.264 data fault resilience . 118
The x264 software video encoder 118
Analysis of x264 heap memory usage 119

5.2.2 Approximate memory data allocation for the x264 encoder . . . 120
5.2.3 Experimental setup . 123
5.2.4 Impact on output using approximate DRAM and power sav-

ing considerations . 124
Power saving considerations . 126

5.2.5 Impact on output using approximate SRAM 127
5.2.6 Considerations on the results and possible future analysis . . . 128

5.3 Study of the impact of approximate memory on a digital FIR filter
design . 129

Impact on output using approximate DRAM 131
Impact on output using approximate SRAM 132
Impact on output using approximate SRAM with bit dropping 132

5.4 Quality aware approximate memories, an example application on dig-
ital FIR filtering . 133

6 Synthesis Time Reconfigurable Floating Point Unit for Transprecision Com-
puting 137
6.1 Introduction and previous works . 137
6.2 Floating Point representation, IEEE-754 standard 138
6.3 Design of the reconfigurable Floating Point Unit 139

6.3.1 Top unit Floating_Point_Unit_core 140
6.4 Experimental Results . 144

6.4.1 Testing . 144
6.4.2 Synthesis Setup . 144
6.4.3 Results . 145

Number of gates and resources 145
Propagation delay and speed . 146
Power consumption . 147

6.5 Conclusion and Future works . 147

xii

7 Conclusion 149
7.1 Approximate Memory management within the Linux Kernel 149
7.2 Models and emulator for microprocessor platforms with approximate

memory . 151
7.3 Impact of approximate memory allocation on ETAs 152
7.4 Transprecision FPU implementation . 153

A Linux kernel files for approximate memory support 155
A.1 Patched Kernel files . 155
A.2 New Kernel source files . 156
A.3 Approximate Memory Configuration (Make menuconfig) 156

B AppropinQuo: list of approximate memory models 157
B.0.1 QEmu 2.5.1 patched files for approximate memory support . . 157
B.0.2 New QEmu 2.5.1 source files . 157

C Transprecision FPU: list of vhd files 159

D Publications and Presentations 161

Bibliography 163

xiii

List of Figures

1.1 Dennard scaling and power consumption models. Source: Hennessy,
2018 . 1

1.2 Moore’s law. Source: . 2
1.3 Amdahl’s law. Source: . 3
1.4 Dark silicon:end of multicore era. Source: Hardavellas et al., 2011 . . . 4
1.5 Power trends. Source: [Burns, 2016] . 5
1.6 Power trends. Source: [Energy Aware Scheduling] 6
1.7 Low power strategies at different abstraction levels. Source: [Gupta

and Padave, 2016] . 7

2.1 Overview of ASAC framework. Source: Roy et al., 2014 12
2.2 Overview of ARC framework. Source: Chippa et al., 2013 13
2.3 Overview of EnerJ language extension. Source: Sampson et al., 2011 . 14
2.4 ISA extension for AxC support. Source: Esmaeilzadeh et al., 2012 . . . 15
2.5 Examples of ETAs . 15
2.6 Possible sources of application error resilience .Source: Chippa et al.,

2013 . 16
2.7 a) simplified MA, b) approximation 1, c) approximation 2. Source:Gupta

et al., 2011 . 17
2.8 Design of exact full adder, 10 transistors. Source: Yang et al., 2013 . . . 17
2.9 Design of AXA1, 8 transistors. Source: Yang et al., 2013 18
2.10 Design of AXA2, 6 transistors. Source: Yang et al., 2013 18
2.11 Design of AXA3, 8 transistors .Source: Yang et al., 2013 18
2.12 Comparison between AXA1, AXA2, AXA3 and exact full adder .Source:

Yang et al., 2013 . 19
2.13 Overview of approximate multipliers comparison. Source: Masadeh,

Hasan, and Tahar, 2018 . 19
2.14 Overview of different approximate FA properties. Source: Masadeh,

Hasan, and Tahar, 2018 . 20
2.15 Reduced Precision Redundancy ANT Block Diagram. Source: Pagliari

et al., 2015 . 21
2.16 Determining the Hamming distance of two combinational circuits us-

ing a Binary Decision Diagrams (BDD). Source : Vasicek and Sekan-
ina, 2016 . 22

2.17 Integration of ABACUS in a traditional design flow. Source : Nepal
et al., 2014 . 23

2.18 SRAM bit dropping precharge circuit. Source: Frustaci et al., 2016 . . . 27
2.19 Sram SNBB precharge circuit. Source: Frustaci et al., 2016 27
2.20 Architecture of dual Vdd memory array. Source : Cho et al., 2011 28
2.21 Overview of HW/SW components for approximated caches. Source :

Shoushtari, BanaiyanMofrad, and Dutt, 2015 28
2.22 RAIDR implementation. Source : Liu et al., 2012a 29

xiv

2.23 Proposed DRAM partitioning according to refresh rate. Source : Liu
et al., 2012b . 29

2.24 Proposed mapping of bits of 4 DRAM chips. Source : Lucas et al., 2014 30
2.25 Proposed quality bins. Source : Raha et al., 2017 30
2.26 eDRAM emulator: block diagram. Source: Widmer, Bonetti, and Burg,

2019 . 31
2.27 Benchmarks output quality for refuced refresh rate. Source: Widmer,

Bonetti, and Burg, 2019 . 32
2.28 Transprecision Computing paradigm. Source : Malossi et al., 2018 . . . 32
2.29 Methodology for designing energy-effcient and adaptive neural net-

work accelerator-based architectures for Machine Learning. Source:
Shafique et al., 2017a . 33

2.30 Overview of DRE. Source : Chen et al., 2017 35
2.31 Flow of Single Layer Analysis. Source: Chen et al., 2017 35
2.32 Approximate memory architecture; (a) conventional data storage scheme,

(b) approximate data storage scheme, (c) system architecture to sup-
port approximate memory access. Source: Nguyen et al., 2018 36

2.33 Row-level refresh scheme for approximate DRAM. Source: Nguyen
et al., 2018 . 37

3.1 Kernel address space and User process address space 42
3.2 Nodes, Zones and Pages. Source:[Gorman, 2004] 42
3.3 Zone watermarks . 44
3.4 Buddy system allocator . 46
3.5 The linear address interval starting from PAGE_OFFSET. Source: [Bovet,

2005] . 50
3.6 Example of menuconfig menu for x86 architecture 51
3.7 Output of dmesg command . 57
3.8 Output of cat /proc/zoneinfo command 57
3.9 Device tree structure . 58
3.10 Example of approximate memory node in DTB file 59
3.11 Vexpress Cortex A9 board memory map (extract) 60
3.12 On left: kernel boot logs. On right: zone_approximate statistics 60
3.13 RISC-V Boot messages . 61
3.14 Overview of memory allocators. Source:[Liu, 2010] 62
3.15 Memblock memory allocation . 63
3.16 Memblock allocator function tree . 63
3.17 Memblock current limit on architectures with ZONE_APPROXIMATE 64
3.18 Output of cat /proc/zoneinfo command 64
3.19 Device driver interaction . 68
3.20 Creation of device approxmem . 73
3.21 Bulding the linked list . 76
3.22 vmallocinfo messages on x86 architecture 76
3.23 Messages of cat / proc / pid / maps . 77
3.24 ZONE_APPROXIMATE statistics after boot 77
3.25 ZONE_APPROXIMATE statistics after approx_malloc call 77
3.26 Configuration of physical memory layout 81
3.27 Configuration of physical memory layout on RISC-V SiFiveU 83
3.28 Boot messages printing the physical memory layout 84
3.29 Kernel boot messages for RISCV 64 platform with 4 approximate mem-

ory zones . 84

xv

3.30 ZONE_APPROXIMATE statistics after approx_malloc call 86
3.31 ZONE_APPROXIMATE2 statistics after approx_malloc call 87
3.32 ZONE_APPROXIMATE3 statistics after approx_malloc call 87
3.33 ZONE_APPROXIMATE4 statistics after approx_malloc call 87

4.1 Tiny Code Generator . 92
4.2 QEmu SoftMMU . 93
4.3 e820 Bios Memory Mapping passed to Linux Kernel 96
4.4 DRAM true cell and anti cell. Source:Liu et al., 2013 102
4.5 Error on Read debug messages produced during execution 105
4.6 SRAM precharge circuit for bit-dropping technique. Source:Frustaci

et al., 2015a . 106
4.7 Example of Looseness Mask on Big Endian architecture 107
4.8 32 bit ECC data format in approximate memory 110

5.1 H.264 high level coding/decoding scheme 117
5.2 H.264 inter-frame and intra-frame prediction 117
5.3 x264 encoding information . 119
5.4 Memory allocation profiling: Massif output 120
5.5 x264, output frame with different Looseness Levels and fault rate 10−4

[errors/(bit× s)] . 125
5.6 x264, output frame with different Looseness Levels and fault rate 10−3

[errors/(bit× s)] . 125
5.7 Video Output PSNR graph [dB] . 127
5.8 DRAM cell retention time distribution. Source:Liu et al., 2012a 127
5.9 x264, output frame coded with exact (top left) and approximate SRAM

(0xFFFFFFFF looseness mask), fault rate 10−6 (top right), 10−4 (bottom
left) and 10−2 (bottom right) [errors/access]. 129

5.10 Digital FIR architecture . 130
5.11 FIR, output SNR [dB] for approximate DRAM (anti cells) 132

6.1 Block diagram of the FPU hardware datapath. Source:[Tagliavini et
al., 2018] . 138

6.2 IEEE 754 Precision formats . 139
6.3 Floating Point Unit Core architecture . 141
6.4 External interface of FPU core . 142
6.5 Resources with DSP disabled @40MHz 145
6.6 Resources with DSP disabled @40MHz: from half to double precision . 146

7.1 Omnitek board where approximate DRAM cells could be introduced . 151

xvii

List of Tables

3.1 DMA zone, physical ranges . 43
3.2 32-bit x86 architecture memory layout 53
3.3 32-bit x86 memory layout with ZONE_APPROXIMATE 54

4.1 List of Hamming codes . 109
4.2 FIR, output SNR [dB] . 109
4.3 BER for 32 bit data in approximate memory 110
4.4 bench_access results, fixed Looseness Level 112
4.5 bench_spontaneous_error results (Wait time t = 1000ms) 113
4.6 bench_dropping results . 113

5.1 Heap memory usage . 119
5.2 Test videos from derf’s collection . 123
5.3 Video Output PSNR [dB] . 126
5.4 x264, video output PSNR [dB] for approximate DRAM (true cells) . . . 126
5.5 x264, video output PSNR [dB] for approximate SRAM (error on access) 128
5.6 FIR, output SNR [dB] for SRAM . 133
5.7 FIR, SNR [dB] for SRAM bit dropping 133
5.8 FIR, access count on approximate data structures 135
5.9 FIR, output SNR [dB] for SRAM, EOR 135
5.10 FIR, output SNR [dB] for SRAM, EOW 135

6.1 Operation codes . 142
6.2 List of analyzed formats . 144
6.3 Resources @ 40MHz clock with DSP disabled 145
6.4 Propagation delay for reduced precision FP formats 146
6.5 Power consumption @40MHz . 147

xix

List of Abbreviations

AxC Approximate Computing
AxM Approximate Memory
ANT Algorithmic Noise Tolerance
BDD Binary Decision Diagram
BER Bit Error Rate
CNN Convolutional Neural Network
CPS Cyber Physical System
CS Chip Select
DCT Discret Cosin Transform
DMA Direct Memory Access
DNN Deep Neural Network
DPM Dynamic Power Managment
DRAM Dynamic Random Acess Memory
DRT Data Retention Time
eDRAM embedded Dynamic Random Acess Memory
ECC Error Correction Code
EOR Error On Read
EOW Error On Write
ER Error Rate
ES Error Significance
EAS Energy Aware Scheduler
ETA Error Tolerant Application
FA Full Adder
FIR Finite Impulse Response
GFP Get Free Page
HPC High Performance Computing
HW HardWare
IoE Internet of Everything
IoT Internet of Things
ISA Instruction Set Architecture
LSB Least Significant Bit
MA Mirror Adder
ML Machine Learning
MMU Memory Management Unit
MSB Most Significant Bit
MSE Mean Squared Error
NBB Negative Bitline Boosting
OS Operating System
PDP Power Delay Product
PSNR Peak Signal to Noise Ratio
PULP Processor Ultra Low Power
QoS Quality of Service
RM Read Margin

xx

RTL Register Transfer Level
RPR Reduced Precision Format
SoC System on Chip
SSIM Structural SIMilarity
SNBB Selective Negative Bitline Boosting
SNR Signal to Noise Ratio
SRAM Static Random Acess Memory
SW SoftWare
TCG Tiny Code Generator
TS Training Set
VLSI Very Large Scale Integration
VGG Visual Geometry Group
WM Write Margin

xxi

To my dearest affections, for always being by my side.
To myself for the constancy and commitment to achieve this

goal, for trying and being successful.

1

Chapter 1

Introduction

1.1 Need for Low Power Circuit Design

In the past, during the so-called desktop PC era, the main goal of VLSI design was
to develop systems capable of satisfying and optimizing real time processing re-
quirements, computational speed and graphics quality in applications such as video
compression, games and graphics. With the advancement of VLSI technology, digi-
tal systems have increased in complexity and three factors have come to convergence
making energy efficiency the most important constraint:

• Technology. From a technological point of view, excessive energy consumption
has become the limiting factor in integrating multiple transistors on a single
chip or a multi-chip module, determining the end of the Dennard scaling law
(Fig. 1.4).

FIGURE 1.1: Dennard scaling and power consumption models.
Source: Hennessy, 2018

The latter, also known as MOSFET scaling (1977), claims that as the transis-
tors shrink in size, the power density stays constant; meaning indeed that the
power consumption is proportional to the chip area. This law allowed chip-
makers to increase clock speed of processors over years without increasing
power. However, the MOSFET scaling, which held from 1977 to 1997, became
fading between 1997 to 2006 until it collapsed rapidly in 2007 when the tran-
sistors became so small that the increased leakage started overheating the chip
and preventing processors from clocking up further.

2 Chapter 1. Introduction

In these years there has been also a slowdown in Moore’s law (Fig. 1.2), accord-
ing to which the number of devices in a chip doubles every 18 months [Platt,
2018]. In facts, with the end of Dennard’s law process technology scaling can
continue to allow the duplication of the number of transistor for every gener-
ation, but without getting a significant improvement in switching speed and
energy efficiency of transistors. As the number of transistors increased, also
energy consumption raising followed. Technology scaling, while involving a
reduction of supply voltage (0.7 scaling factor) and a reduction in the die area
(0.5 scaling factor), started increasing parasitic capacities of about 43%, mean-
ing that the power density increases by 40% with each generation [Low Power
Design in VLSI].

FIGURE 1.2: Moore’s law. Source:

• Architecture. The limitations and inefficiencies in exploiting instruction level
parallelism (dominant approach from 1982 to 2005) has led to the end of single-
processor era. Moreover the Amdahl’s Law (Fig. 1.3), which aims to predict the
theoretical maximum speedup for programs using multiple processors, and
its implications ended the ’easy’ multicore era. Citing this law: “the effort ex-
pended on achieving high parallel processing rates is wasted unless it is accompa-
nied by achievements in sequential processing rates of very nearly the same magni-
tude”[Amdahl, 1967]. In [Esmaeilzadeh et al., 2013] it is also shown that, as the
number of cores increases, constraints on power consumption can prevent all
the cores from being powered at maximum speed, determining a fraction of
cores which are always powered off (dark silicon). At 22 nm the 21% of a fixed-
size chip must be "dark", and, with ITRS projections, at 8 nm, this number can
grow up to more than 50%.

• Application focus shift. The transition from desktop PC to individual, mobile
devices and ultrascale cloud computing determines the definition of new con-
straints. The advent of the Big Data era, IoT technologies, IoE and CPS have led
to increasing demand for data processing, storage and transmission: modern
digital systems are required to interact continuously with the external physical
world, satisfying not only requirements on high performance capabilities but
also specific constraints on energy and power consumption.

1.2. Source of Power Dissipation 3

FIGURE 1.3: Amdahl’s law. Source:

Power consumption therefore has become an essential constraint in portable
devices, in order to take advantage of real time execution times having min-
imum possible requirements on weight, battery life and physical dimensions
due to battery size. As an example, we can consider that almost 70% of users
look for longer talk times and battery lasting times as a key feature for mobile
phones [Natarajan et al., 2018]. Moreover, power consumption impacts sig-
nificantly the design of VLSI circuits since users of mobile devices continue to
demand:

– mobility: Nowadays consumers continue to request smaller and sleeker
mobile devices. To support these features, high level silicon integration
processes are required, which, in turn, determines high levels of leakage.
Hence the need to find a strategy to reduce powr cinsumption and in
particular leakage currents.

– portability: battery life is impacted by energy consumed per task; more-
over a second order effect is that effective battery energy capacity is de-
creased by higher drawing current that causes IR drops in power supply
voltage. To overcome this issue, more power/ground pins are required
to reduce the resistance R and also thicker/wider on-chip metal wires or
dedicated metal layers are necessary.

– reliability. Power dissipated as heat reduces speed and reliability since
high power systems tend to run hot and the temperature can exacerbate
several silicon failure mechanisms. More expensive packaging and cool-
ing systems are indeed required.

1.2 Source of Power Dissipation

The sources of power dissipation in a CMOS device are expressed by the elements
of the following equation:

4 Chapter 1. Introduction

FIGURE 1.4: Dark silicon:end of multicore era. Source: Hardavellas
et al., 2011

TotalPowerP = Pdynamic + Pshort−circuit + Pleakage + Pstatic

In particular:

• Dynamic power or switching power:

P = αCV2 f

where P corresponds to the power, C is the effective switch capacitance which
is a function of gate fan-out, wire length and transistor size, V is the supply
voltage, f is the frequency of operation and α the switching activity factor.
It corresponds to the power dissipated by charging/discharging the parasitic
capacitors of each circuit node.

• Pshort−circuit:

P = IshortV

which is produced by the direct path between supply rails during switching.
In particular both pull-down (n-MOS) and pull-up (p-MOS) networks may be
momentarily ON simultaneously leading to an impulse of short-circuit cur-
rent.

• Pleakage:

P = IleakageV

which is mainly determined by the fabrication technology. There are many
sources that contribute to the leakage power, such as gate leakage, junction
leakage, sub-threshold conduction. It occurs even when the system is idle or
in standby mode. The leakage power, which is the dominant component in
static energy consumption, was mainly neglected until 2005 when, in corre-
spondence with the 65nm technology step, further scaling of threshold voltage

1.3. Approximate Computing 5

has extremely increased the sub-threshold leakage currents (Fig. 1.5). It is ex-
pected that this kind of power will increase 32 times per device by 2020 [Roy
and Prasad, 2009].

• Pstatic:

P = IstaticV

which is determined by the constant current from Vdd the ground (standby
power).

FIGURE 1.5: Power trends. Source: [Burns, 2016]

1.3 Approximate Computing

The problems caused by the sharp increase in power densities of SoC, due to the
interruption of Dennard’s downsizing law, prompted the search for new solutions.
There are different strategies that can be applied for reducing power consumption at
different levels of the VLSI design flow [Gupta and Padave, 2016, R., 2016] (Fig.1.7).
These are listed below:

• Operating System and Software Level: approaches such as partitioning and com-
pression algorithms. At Operating System level, power consumption can be
reduced by designing an "‘energy-aware"’ scheduler (EAS). In this scenario, the
scheduler takes decision relying on energy models of the resources. As an ex-
ample in Linux kernel 5.4.0 the EAS, based on energy models of the CPU, is
able to select an energy efficient CPU for each task [Energy Aware Scheduling]
(Fig. 1.6).

OS can also achieve energy efficiency by implementing Dynamic Power Manage-
ment (DPM) of system resources allowing to reconfigure dynamically the sys-
tem providing the requested services [Low Power Principles]. Another approach
at system level can be code compression, which proposes basically to store pro-
grams in a compressed form and decompress them on-the-fly at execution time
[Varadharajan and Nallasamy, 2017, Benini, Menichelli, and Olivieri, 2004]. An
example of a simple code compression approach consists in the definition of a
dense instruction set, characterized by a limited number of short instructions.
This technique has been adopted by several commercial core processors such
as ARM (Thumb ISA), MIPS and Xtensa.

6 Chapter 1. Introduction

FIGURE 1.6: Power trends. Source: [Energy Aware Scheduling]

• Architecture level: techniques such as parallelism, pipelining, distributed pro-
cessing and power management. In particular, parallelism and pipelining can
optimize power consumption at the expense of area while maintaining the
same throughput. By combining these two approaches it is possible to achieve
a further reduction in power by aggressively reducing supply voltage.

• Circuit/Logic level: examples are voltage scaling, double edge triggering and
transistor sizing. The latter in particular has a strong impact on circuit delay
and power dissipation in combinational circuits. At logic level an example is
represented by adiabatic circuits which use reversible logic to conserve energy.
The implementation of these circuits is governed by two rules:

1. a transistor must never be turned on when there is a potential voltage
between drain and source;

2. a transistor must never be turned off when current is flowing through it.

• Technology Level: techniques such as threshold reduction and multi-threshold
(MT-CMOS) devices. The latter refers to the possibility of realizing transistors
with different thresholds in a CMOS process, which allows to save energy up
to 30% [Gupta and Padave, 2016]. Another technique is the usage of multiple
supply voltages (Voltage Islands) that, by assigning different Vdd values to cells
according to their timing criticality, allows to reduce both leakage and dynamic
power. In particular, the basic idea is to group different supply voltages in
a reduced number of voltage islands (each one with a single Vdd) avoiding
complex power supply system and a large amount of level shifters.

In the past, across all low power approaches described above, computing plat-
forms have always been designed following the principle of deterministic accuracy,
for which every computational operation must be implemented deterministically
and with full precision (exact computation). However, continuing to include deter-
ministic accuracy in computation at all stages seems to be outperforming and dos
not allow to solve the upcoming energy efficiency challenges; this stimulated the
exploration of new directions in the design of modern digital systems.

Approximate Computing (AxC) is an emerging paradigm which proposes to re-
duce power consumption by relaxing the specifications on fully precise or com-
pletely deterministic operations. This is due to the fact that many applications,
known as ETA (Error Tolerant Applications), are intrinsically resilient to errors and
can produce outputs with a slightly shift in accuracy and a significant reduction in

1.4. Contribution and thesis organization 7

FIGURE 1.7: Low power strategies at different abstraction levels.
Source: [Gupta and Padave, 2016]

computations. AxC therefore exploits the gap between the effective quality level
required by applications and the one provided by the computer system in order to
save energy.

Although it is an extremely promising approach, Approximate Computing is not
a panacea. It is right to underline the need to accurately select where to apply AxC
techniques in code and data portions. Suffice it to consider that a uncontrolled use of
approximate circuits can lead to intolerable quality losses or applying approximate
techniques in program control flow can lead to catastrophic events such as process
or systems crashes. Finally, it is necessary to evaluate the impact of the approimate
computation on output quality, in order to assess that the quality specifications are
still met.

1.4 Contribution and thesis organization

The aim of this work is mainly to explore design and programming techniques for
low-power microprocessor architectures based on Approximate Computing. Chap-
ter 2 illustrates the promises and challenges of AxC, focusing on the key concepts
(Section 2.1), on the motivations that led to the development of this paradigm and
on quality metrics. Then it is presented a survey of Approximate Computing tech-
niques, from programming languages (how to automatically find approximable code/-
data and support of programming languages for approximate computing, Section
2.2.1), approximate ISA (Section 2.2.2), design automation methods developed for
the approximation of a class of problems (Functional Approximate Computing, Section
2.2.6), design of approximate devices and components (Approximate Computing ad
hoc: approximate memories, approximate adders, approximate multipliers. Section
2.2.5). The key concepts of AxC are then compared to those of another emerging
paradigm: the Transprecision Computation, born in the context of OPRECOMP, a 4-
year research project funded under the EU Horizon 2020 framework. Finally, the
adoption of approximate computing strategies for machine learning algorithms and
architecture is illustrated.

Particular emphasis in this work has been placed on approximate memories
(SRAM, DRAM, eDRAM), considering that it is expected that the power consump-
tion of memories will constitute more than 50% of the entire system power. The
scope of designing an architecture with approximate memories is to reduce power
consumption for storing part of the data, by managing critical data and non-critical
(approximate) data separately; with this partitioning it is possible to save energy

8 Chapter 1. Introduction

by relaxing design constraints and allowing errors on non-critical data. One of the
final goals of this thesis is to provide the required tools to evaluate the impact of
different levels of approximation on the target application, considering that quality
output is not only impacted by the fault rate but it also depends on the application,
its implementation and its representation of the data in memory.

The work starts from the software layer, implementing the support for Approxi-
mate Memories (AxM) in Linux Kernel (version 4.3 and 4.20) and allowing the OS to
distinguish between exact memory and approximate memory. In particular Chapter
3 provides a description of the physical memory management in Linux OS kernel
(Section 3.2.3); then the development of the extension to support approximate mem-
ory allocation is described (Section 3.3). This extension has been implemented and
tested for three different of architectures:

• Intel x86, as a target in the group of High Performance Computing;

• ARM, as a target in the group of Embedded Systems architectures;

• RISC-V, as the emerging instruction set which is rising interest in the research
and industrial communities.

In order to complete this step, it has been also necessary to implement a user-space
library to allow applications to easily allocate run-time critical and non critical data
in different memory areas. Finally, results are illustrated, in the form of allocation
statistic messages provided by the kernel, discussing the characteristics of the im-
plementation.

The next step of the work is represented by the development of AppropinQuo, a
hardware emulator to reproduce the behavior of a system platforms with approxi-
mate memory. This part is illustrated in Chapter 4, the core of this work has been
the implementation of models of the effects of approximate memory circuits and ar-
chitectures, that depend on the internal structure and organization of the cells. The
ability to emulate a complete platform, including CPU, peripherals and hardware-
software interactions, is particularly important since it allows to execute the appli-
cation as on the real board, reproducing the effects of errors on output. In fact,
output quality is related not only to error rate but it also depends on the application,
implementation and its data representation. The level of approximation instead is
determined by key parameters such as the error rate and the number of bits that can
be affected by errors (looseness level).

After the implementation of AxM support at OS level and of the emulator Ap-
propinQuo, Chapter 5 describes the analysis and the implementation of different
error tolerant applications modified for allocating non critical data structures in ap-
proximate memory. For these applications the impact of different levels of approx-
imation on the output quality has been studied. The first application is a h264 en-
coder (Section 5.2). This work started by profiling memory usage and finding a
strategy for selecting error tolerant data buffers. Then the modified application was
run on the AppropinQuo emulator, for several combination of fault rates and fault
masking at bit level (looseness level). The obtained results, showing the importance
of exploring the relation between these parameters and output quality, are then ana-
lyzed. The second application is a digital filter (Section 5.3). In particular a 100-taps
FIR filter program (configured as low-pass filter), working on audio signal, is im-
plemented. The latter has been implemented to allocate tolerant data (internal tap
registers and input and output buffers) on approximate memory while the FIR coef-
ficients are kept exact. Results are provided in terms of SNR.

1.4. Contribution and thesis organization 9

Eventually, Chapter 6, in the context of Transprecision Computing, describes
the implementation of a fully combinational and reconfigurable Floating Point Unit,
which can perform arithmetic operations on FP numbers with arbitrary length and
structure (mantissa and exponent) up to 64 bits, included all formats defined by the
IEEE-754 standard. In particular, the analysis of the resutls has been focused on re-
duced precisions formats, between 16 bit (IEEE half-precision) and 32 bit (IEEE single-
precision), evaluating the impact on performance, reuired area, power consumption
and propagation speed.

11

Chapter 2

Approximate Computing: State of
the Art

2.1 Approximate Computing: main concepts

Energy savings has become a first-class constrain in the design of digital systems.
Currently most of the digital computations are performed on mobile devices such
as smart-phones or on large data centers (for example cloud computing systems),
which are both sensitive to the topic of energy consumption. Concerning only the
US data centers it is expected that the electricity consumption will increase from 61
millions kW in 2006 to 140 kW in 2020. In the era of nano-scaling, the conflict be-
tween increasing performance demands and energy savings represents a significant
design challenge.

In this context Approximate Computing [Han and Orshansky, 2013] has become
a viable approach to energy efficient design of modern digital systems.

Such an approach relies on the fact that many applications, known as Error Tol-
erant Applications (see section 2.2.4), can tolerate a certain degree of approximation
in the output data without affecting the quality of results perceived by the user. The
solutions offered by this paradigm are also supported by technology scaling fac-
tors, due to the growing statistical variability in process parameters which makes
traditional design methodologies inefficient [Mastrandrea, Menichelli, and Olivieri,
2011].

Approximate Computing can be implemented through different paradigms as:

1. Algorithmic level and Programming level Approximate Computing [Palem, 2003],
subsection: 2.2.1;

2. Instruction level Approximate Computing [Gupta et al., 2013; Venkataramani et
al., 2012; Esmaeilzadeh et al., 2012], subsection: 2.2.2;

3. Data-level Approximate Computing [Frustaci et al., 2015b; Frustaci et al., 2016],
section:2.2.3;

In literature several approximation methodologies are described even if two sce-
narios are dominating: approximate computing ad hoc and design automation (or
functional) approximate computing. These approaches will be discussed in the fol-
lowing sections (2.2.5 and 2.2.6).

12 Chapter 2. Approximate Computing: State of the Art

2.2 Strategies for Approximate Computing

2.2.1 Algorithmic and programming language Approximate Computing

Discovering data and operations that can be approximated is a crucial issue in ev-
ery AC technique: in several cases it can turn out to be intuitive, as for example
lower-order bits of signal processing applications but in other more complex cases
it can require a deep dive analysis of application characteristics. Several works and
techniques have been implemented in order to address this problem. In [Roy et
al., 2014] the authors propose ASAC (Automatic Sensitivity Analysis for Approximate
Computing), a framework which uses statistical methods to find relaxable data of ap-
plications in an automatic manner. The proposed approach, as shown in Fig. 2.1,
consists in the following steps:

• collect application variables and the range of values that these ones can as-
sume;

• use binary instrumentation to perturb variables and compute the new output;

• compare the new output to the exact one in order to measure the contribution
of each variable;

• mark a variable as approximable or not according to the results of the previous
step.

FIGURE 2.1: Overview of ASAC framework. Source: Roy et al., 2014

The benefits of this approach is that the programmer is not involved in the pro-
cess of annotating relaxable program portions. However, a drawback is that a vari-
able can be marked as approximable even if it is not, leading to errors.

In [Chippa et al., 2013] the ARC (Application Resilience Characterization) frame-
work is described (Fig. 2.2). In this work, the authors firstly identify the application
parts that could be potentially resilient, and so that could be approximated, and
the sensitive parts; then they use approximation models, abstracting several AxC
techniques, to characterize the resilient parts. In particular the proposed framework
consists in the following steps:

• resilience identification step: identification of atomic kernels as innermost loop in
which the application spends more than the 1% of its execution time. Random
errors are injected in the kernel output variables, using Valgrind DBI tool. The

2.2. Strategies for Approximate Computing 13

kernel is considered sensitive if the output does not match quality constraints,
otherwise it could be resilient.

• resilience characterization step: errors are injected in the kernel using Valgrind
in order to quantify the kernel resilience. In particular, using specific models
such as loop perforation, inexact arithmetic circuits and so on, a quality profile
of the application is produced.

FIGURE 2.2: Overview of ARC framework. Source: Chippa et al.,
2013

The distinction between non approximable portions of a program (critical data)
and approximable ones can be used to introduce AxC support at programming lan-
guage. In [Sampson et al., 2011] the authors present EnerJ, a Java extension which
adds type qualifiers for approximate data types: @Approx for non critical data and
@Precise for critical data (Fig. 2.3). By default every variable or construct is of type
@Precise, so it is necessary to specify only approximate data types. An example is
provided in the code section below.

1 @Approximable c l a s s F l o a t S e t {
2 @Context f l o a t [] nums = . . . ;
3 f l o a t mean () {
4 f l o a t t o t a l = 0 . 0 f ;
5 f o r (i n t i = 0 ; i < nums . length ; ++ i)
6 t o t a l += nums[i] ;
7 re turn t o t a l / nums . length ;
8 }
9 @Approx f l o a t mean APPROX() {

10 @Approx f l o a t t o t a l = 0 . 0 f ;
11 f o r (i n t i = 0 ; i < nums . length ; i += 2)
12 t o t a l += nums[i] ;
13 re turn 2 ∗ t o t a l / nums . length ;
14 }
15 }

This approach indeed, with respect to previous works that use annotations on
blocks of code, allows programmers to explicitly specify the data flow from approx-
imate data to precise ones, ensuring the construction of a safe programming model.
The latter, in fact, is safe in that it always guarantees data correctness, unless an

14 Chapter 2. Approximate Computing: State of the Art

approximate annotation has been provided by the programmer. Moreover this ap-
proach eliminates the need for dynamic checking, reducing the runtime overhead
and improving the energy savings.

FIGURE 2.3: Overview of EnerJ language extension. Source: Sampson
et al., 2011

2.2.2 Instruction level Approximate Computing

Concerning the second issue, in [Esmaeilzadeh et al., 2012] the authors describe the
requirements that an approximation-aware ISA should exhibit to support approx-
imable code at programming language:

• AxC should be applied with instruction granularity, allowing to distinguish
between exact (precise) instructions and approximate ones. For example, con-
trol flow variables like a loop increment one must be exact while the computa-
tion inside the loop could be approximated;

• for AxM support, the compiler should instruct the ISA to store data in exact or
approximate memory banks;

• ISA should be flexible to transitioning data between approximate and exact
storage;

• Approximation should be applied only where it is requested by the compiler,
exact instructions indeed must respect traditional semantic rules;

• Approximation should be applied only to specific areas (for example memory
addressing and indexing computation must be always exact).

According to these specifications, the authors produce approximate instructions
and add them to the original Alpha ISA. As shown in Fig. 2.4 , the ISA extension
contains approximate versions of integer load /store, floating-point arithmetic and
load /store, integer arithmetic, bit-wise operation instructions. The format of ap-
proximate instructions is the same as that provided by the original (and exact) ISA,
but the new ones cannot give any guarantees concerning the output values. In the
paper a micro-architecture design, Truffle, supporting the proposed ISA extension is
also described.

2.2.3 Data-level Approximate Computing

While algorithmic level and, less incisively, instruction level approximate comput-
ing are more aggressive and challenging from a technical point of view, data-level
approaches can be of major relevance because most applications that are suitable for
approximate computing utilize large amounts of dynamically allocated data mem-
ory (e.g. multi-media processing Olivieri, Mancuso, and Riedel, 2007; Bellotti et al.,
2009]) and it is generally agreed that memory devices accounts by far for the largest

2.2. Strategies for Approximate Computing 15

FIGURE 2.4: ISA extension for AxC support. Source: Esmaeilzadeh
et al., 2012

parts of static power consumption in modern ICs [Frustaci et al., 2016; Pilo et al.,
2013]. Approximate memories are an example of Approximate computing at data-
level (2.3). In order to open the way for reliable data-level approximate application
development, it is required an evaluation environment to simulate the actual out-
put of the application when processing true inaccurate data. Inaccuracy can occur
at different degrees in different memory segments, can be caused by single random
events or can be correlated to read and write accesses, can be differently distributed
in the bytes of the memory word. The main concepts dealing with Approximate
Memories are described in details in section 2.3.

2.2.4 ETAs - Error Tolerant Applications

Error Tolerant Applications (ETAs), Fig. 2.5, are defined as applications that can
accept a certain amount of errors during computation without impacting the validity
of their output. There may be several factors, as shown in Fig. 2.6, for which an
application can be tolerant to errors:

• perceptive limitations: applications interacting with human senses do not need
fully precise computation, they can accept imprecisions in their results due to
human brain ability of "filling in" missing information. As an example, we can
consider phone lines: these ones are not able to carry sound perfectly, never-
theless the transmitted information is sufficient for human perception.

• redundant input data;

• noisy inputs, for example sensors;

• probabilistic estimates as outputs, for example machine learning applications.

FIGURE 2.5: Examples of ETAs

16 Chapter 2. Approximate Computing: State of the Art

FIGURE 2.6: Possible sources of application error resilience .Source:
Chippa et al., 2013

Multimedia applications are an important class of ETAs: they process data that
are already affected by errors/noise and, as said before due to limitations of hu-
man senses, can introduce approximations on their outputs (e.g. lossy compression
algorithms). Moreover, they tend to require large amounts of memory for storing
their buffers and data structures. Another example of ETAs is represented by closed
loop control applications; again, they process data that are affected by noise (sen-
sor reading) and produce outputs to actuators affected by physical tolerances and
inaccuracies.

2.2.5 Approximate Computing ad hoc

This approach consists in employing specific (ad hoc) methods for the approximation
of a system or of a specific component. In this case a lot of knowledge of the sys-
tem or the component in question is required; moreover the adopted approximation
method can rarely be applied to another system or component. Examples of ad hoc
AxC include arithmetic circuits such as approximate adders 2.2.5 and approximate
multipliers [Masadeh, Hasan, and Tahar, 2018], approximate memories 2.3, approx-
imate dividers [Chen et al., 2016], pipeline circuits [] etc.

Approximate Adders

In [Gupta et al., 2011] IMPACT, IMPrecise adders for low-power Approximate Com-
puTing, are described. The authors propose three different implementations of ap-
proximate FA cells (Fig.:2.7) by simplifying the Mirror Adder (MA) circuit and en-
suring minimal errors in the FA truth table. The proposed approximate units not
only have few transistors, but also the internal node capacitances are much reduced.
Simplifying the architecture allows reducing power consumption in two different
ways:

1. smaller transistor count leads to an inherent reduction in switched capaci-
tances and leakage;

2. complexity reduction results into shorter critical paths, facilitating voltage scal-
ing without any timing-induced errors.

These simplified FA cells can be used to implement several approximate multi-
bit adders, as building blocks of DSP systems. In order to obtain a reasonable output
quality, the approximate FA cells are used only in the LSBs while accurate FA cells

2.2. Strategies for Approximate Computing 17

FIGURE 2.7: a) simplified MA, b) approximation 1, c) approximation
2. Source:Gupta et al., 2011

are used for the MSBs. In general, the proposed approach can be employed to any
adder structure that use FA cells as basic building block as, for example, the approx-
imate tree multipliers, which are extensively used in DSP systems. In order to eval-
uate the efficacy of the proposed approach, the authors use these imprecise units
to design architectures for video and image compression algorithms. The results
show that it is possible to obtain power savings of up to 60% and area savings of
up to 37% with an insignificant loss in output quality, when compared to the actual
implementations.

In [Yang et al., 2013] the authors describe the design of three XOR/XNOR-based
approximated adders, (AXAs), comparing them to an exact full adder in terms of
energy consumption, delay, area and PDP. Fig. 2.8 shows an accurate full adder
based on 4T XNOR gates and composed by 10 transistors; from the schematic of
this accurate adder, applying a transistor reduction procedure, the AXAs adders are
designed. The first AXA (Fig. 2.9) is composed by 8 transistors; in this design the
XOR is implemented using an inverter and two pass transistors connected to the
input signals (X and Y). The output Sum and the carry Cout are correct for 4 of the
total 8 input combinations. Fig. 2.10 and Fig. 2.11 show respectively AXA2 and
AXA3 implementations. The former is composed by a 4 transistor XNOR gate and a
pass transistor, for a total of 6 transistors; the output Sum is correct for 4 of the total
8 input combinations while the Cout is correct for all input combinations. AXA3
has 8 transistors in total, adding two transistor in a pass transistor configuration
in order to improve the accuracy of the output Sum. In this way, Sum output is
exact for 6 input combinations while ,Cout is correct for all input combinations. The
comparison between the three approximate adders and the exact one are illustrated
in Fig. 2.12. Summarizing, AXA1 yields the best performance having the shortest
delay, AXA2 shows the best results in terms of area while AXA3 is the most power
efficient design.

FIGURE 2.8: Design of exact full adder, 10 transistors. Source: Yang
et al., 2013

18 Chapter 2. Approximate Computing: State of the Art

FIGURE 2.9: Design of AXA1, 8 transistors. Source: Yang et al., 2013

FIGURE 2.10: Design of AXA2, 6 transistors. Source: Yang et al., 2013

FIGURE 2.11: Design of AXA3, 8 transistors .Source: Yang et al., 2013

Approximate Multipliers

In [Masadeh, Hasan, and Tahar, 2018] the authors propose a methodology to design
and evaluate the accuracy and the circuit characteristics of different approximate
multipliers, allowing to select the most suitable circuit for a specific application. The
design of these multipliers is based essentially on three different decisions:

• the type of approximate Full Adder employed to build the approximate mul-
tiplier;

• the architecture of the multiplier (e.g. array or tree);

2.2. Strategies for Approximate Computing 19

FIGURE 2.12: Comparison between AXA1, AXA2, AXA3 and exact
full adder .Source: Yang et al., 2013

• how approximate and exact sub-modules are placed in the target multiplier
module.

FIGURE 2.13: Overview of approximate multipliers comparison.
Source: Masadeh, Hasan, and Tahar, 2018

The methodology is illustrated in Fig. 2.13 and it is composed by the following
steps:

1. Building a library of approximate FAs: the authors consider five approximate
mirror adders (AMA1, AMA2, AMA3, AMA4 and AMA5), three approximate
XOR/XNOR based full adders (AXA1, AXA2 and AXA3), three inexact adder
cells (InXA1, InXA2 and InXA3);

2. Characterization and early space reduction: the different approximate FAs are
characterized in terms of power, area, latency and quality (Fig.: 2.14);

20 Chapter 2. Approximate Computing: State of the Art

FIGURE 2.14: Overview of different approximate FA properties.
Source: Masadeh, Hasan, and Tahar, 2018

3. Building a library of approximate compressors;

4. Building approximate multipliers basic blocks: approximate FAs and com-
pressors are used to design respectively 8x8 array and tree based multipliers.
These will constitute the basic blocks for designing higher-order multipliers
(e.g 16x16);

5. Designing target approximate multipliers: the basic modules described above
are employed to build higher-order multipliers;

6. Selection of design corners: a subset of sample points is selected considering
the quality requirements of the given application.

An image blending application is used by the authors to evaluate in MATLAB
the proposed multiplier designs in terms of SNR and PDP. The results are then com-
pared to 24 different designs reported in [Jiang et al., 2016]. The proposed multipliers
shows a better PDP reduction.

Algorithmic Noise Tolerance and Reduced Precision Redundancy techniques

Algorithmic Noise-Tolerance (ANT) is an architectural level AxC technique based on
the scaling of supply voltage below the critical value Vdd (Voltage Over-Scaling); it
can be applied both to arithmetic and DSP circuits, allowing them to operate with
a scaled Vdd without reducing the original throughput of the system [Hegde and
Shanbhag, 1999; Shim and Shambhag, 2003]. According to this technique, the orig-
inal circuit, called Main DSP (MDSP), is coupled with an Error Control (EC) block,
in charge of limiting the impact of timing-errors introduced by the lowered supply
voltage Vdd. In this scenario, even if the Main DSP operates with a reduced supply
voltage, only a low percentage of the total paths does not satisfy the timing con-
straints.

Reduced Precision Redundancy (RPR) [Shim, Sridhara, and Shanbhag, 2004] is a
particular instance of ANT approach, according to which the Error Control block
contains a reduced-bitwidth replica of the MDSP (Fig. 2.15). Several works in liter-
ature propose effective implementations of RPR, in which the replica is usually de-
signed using ad-hoc procedures and error impact analysis is carried out statistically.

2.2. Strategies for Approximate Computing 21

The latter implies that very simplified assumptions are made on data distribution,
and important aspects as input temporal correlation are not considered.

FIGURE 2.15: Reduced Precision Redundancy ANT Block Diagram.
Source: Pagliari et al., 2015

In [Pagliari et al., 2015], the authors propose a new generalized approach to RPR-
ANT, by building a design tool able to automatically add RPR architectures to ex-
isting gate-level netlists of fixed-point arithmetic and DSP circuits. The proposed
framework uses accurate circuit models of real standard-cell libraries improving ac-
curacy of energy saving and timing degradation estimation, further it takes into ac-
count input dependencies, considering temporal correlation and non-trivial distri-
butions. Moreover the tool is application-agnostic, meaning that it allows to apply
the RPR technique to circuits that had never been considered before; despite this,
according to authors it can still reach comparable results with respect to ad-hoc ap-
proaches.

2.2.6 Design automation Approximate Computing or functional approxi-
mation

This second approach proposes to implement an approximated function instead of
the original, reducing key parameters such as power consumption and providing
acceptable quality (acceptable errors). With respect to the previous approach, func-
tional approximation provides a procedure that can be applied to all problem in-
stances of a given category. All approximation methods based on this approach
have to address two crucial aspects:

• Determine how the approximated function can be obtained from the original
one. Concerning this issue, generally a heuristic procedure is applied to the
original and exact function (hardware or software); the procedure is then re-
peated iteratively in order to improve the approximated function at each iter-
ation, verifying at the same time that the new (approximated) implementation
still satisfies functional and non-functional requirements.

• Determine how to assess the quality of the candidate approximated function
(relaxed equivalence checking). To address this problem usually a TS (Training

22 Chapter 2. Approximate Computing: State of the Art

Set) is applied to the approximated function and the corresponding error is
measured. In any case, this approach can be applied with increased difficulty
when the function to be approximated is complex and only a very small error
can be accepted, due to the fact that the TS need to be too large. For complex
systems it is necessary to calculate the distance from the exact implementation
by defining suitable metrics and checking that the approximated implemen-
tation is equivalent within some bounds, with respect to the chosen metric.
To address this aspect, in [Holık et al., 2016] the authors implement relaxed
equivalence checking algorithms, based on formal verification. In [Vasicek and
Sekanina, 2016] the authors illustrate a circuit approximation method in which
the error is expressed in terms of Hamming distance between the output pro-
duced by the approximated circuit and the output produced by the exact one.
In particular, to perform equivalence checking of two combinatorial circuits,
determining the Hamming distance between the truth table of both circuits,
the author propose to use an auxiliary circuit, as shown in Fig 2.16.

FIGURE 2.16: Determining the Hamming distance of two combina-
tional circuits using a Binary Decision Diagrams (BDD). Source : Va-

sicek and Sekanina, 2016

Examples of functional approximation are ABACUS [Nepal et al., 2014], SALSA
[Venkataramani et al., 2012], SASIMI [Venkataramani, Roy, and Raghunathan, 2013].

ABACUS

In [Nepal et al., 2014] the authors present ABACUS, a methodology for automati-
cally generating approximate designs starting directly from their behavioral register
transfer level (RTL) descriptions, with the idea of obtaining a wider range of possi-
ble approximations. This methodology involves, at first, the creation of an abstract
syntax tree (AST) from the behavioral RTL description of a circuit; then, in order
to create acceptable approximate designs, ABACUS applies variant operators to the
generated AST. These operators include simplifications of data types, approxima-
tions of arithmetic operations, variable to constant substitutions, loop transforma-
tions and transformations of arithmetic expressions. The transformations made by
ABACUS are not limited to a particular circuit but are global in nature since the
behavioral RTL descriptions capture the algorithmic structure of the circuits. Conse-
quently ABACUS can be applied to arbitrary circuits without needing to know the
application domain. The authors integrate ABACUS in a traditional ASIC / FPGA
design flows, as shown in Fig. 2.17.

As said before the behavioral register transfer level (RTL) code (Design Files)
represents the input of ABACUS which produces several approximate code vari-
ants, which are then synthesized at RTL/behavioral level. A simulator is used to

2.2. Strategies for Approximate Computing 23

FIGURE 2.17: Integration of ABACUS in a traditional design flow.
Source : Nepal et al., 2014

verify the functional accuracy of each approximate variant. Finally, each variant
is compiled and synthesized only if it passes the quality specifications check (QoS
check). The produced design is compared with the original one in terms of timing:
if there is a further gain in timing slack in the approximate design (since the critical
path is reduced), voltage scaling is applied until the slack gain is eliminated. In this
way, it is possible to save further power without impacting the design accuracy.

The proposed methodology has been evaluated on four realistic benchmarks
from three different domains (machine learning, signal processing, computer vi-
sion). The results show that the approximated design variants generated by ABA-
CUS allow to save power up to 40%.

2.2.7 Approximate Computing metrics

Performance metrics

Several metrics have been introduced to assess the reliability of approximate circuits
and quantify errors in approximate designs:

• Error rate (ER) or error frequency: it is defined as the fraction of incorrect
outputs out of a total number of inputs in an approximate circuit Breuer, 2004.

• Error significance (ES): it corresponds to the degree of error severity due to
the approximate operation of a circuit:

– the numerical deviation of an incorrect output from a correct one;

– the Hamming distance of the vectors;

– the maximum error magnitude of circuit outputs.

Quality metrics

In order to compare output from approximate computation with the one obtained
from exact computation, trading-off quality loss and energy savings, quality metrics

24 Chapter 2. Approximate Computing: State of the Art

for AxC are defined. The choice of the error metric to be adopted is application-
specific and even within a single application, different metrics can be applied. These
metrics indeed are not mutually exclusive and can be used together to evaluate ap-
plications. Examples of these quality metrics are:

• Relative difference/error from standard output;

• MSE (Mean Squared Error): it measures the average squared difference between
the estimated values and the actual value. It is defined as:

MSE =
1
n

n

∑
i=1

(Xi −Yi)
n

where n represents the number of data points; Xi the observed values and Yi
the predicted values. For model quality it represents the difference between
the individual’s original fitness function and the output of the approximate
model.

• Pixel difference: it is used to calculate the distortion between two images on
the basis of their pixelwise differences. Examples of applications to which this
quality metric can be applied are: particle filter (Rodinia), volume rendering,
Gaussian smoothing, mean filter, dynamic range compression, edge detection,
raster image manipulation etc.

• PSNR (Peak Signal to Noise Ratio): it represents the ratio between a signal’s
maximum power and the power of the signal’s noise. Because many signals
have a very wide dynamic range, PSNR is generally expressed in terms of the
logarithmic decibel scale. Assuming to have a noise-free image X, the PSNR is
defined as:

PSNR = 10log10
MAXI

MSE(X, Y)

where X represents the reference image, Y the test image and MAX_I is the
maximum signal value that exists, the maximum possible pixel value of the
image. For example if the pixels are represented using 8bits per sample, MAX
is 255.

• PSNRB: it is used for measuring the quality of images which consists of block-
ing artifacts. This metric includes the PSNR and BEF (Blocking Effect Factor)
which measures the blockiness of images.

• SNR (Signal to Noise Ratio): this metric is computed as the ratio of the power
of a signal to the power of background noise and it is usually expressed in
decibels.

SNRdB = 10log10
P
N

where P represents the signal power and N the noise power.

• SSIM (Structural Similarity Index): this metric is used to measure quality by cap-
turing the similarity between two images. SSIM measures and computes the
product between three aspects of similarity: Luminance, contrast and struc-
ture.

• Classification/clustering accuracy;

• Correct/incorrect decisions;

2.3. Approximate Memories 25

For many applications several quality metrics can be used to evaluate the quality
loss introduced by the approximation, as an example for k-means clustering appli-
cations both clustering accuracy and mean centroid distance can be employed as
metrics.

2.3 Approximate Memories

In modern digital sstems memory represents a significant contribution to overall
system power consumption [Liu et al., 2012a]. This is mainly going in parallel with
the increasing performance of computing platforms, which put under stress memory
bandwidth and capacity. Applications as deep learning, high definition multimedia,
3D graphic, contribute to the demand for such systems, with added constraints on
energy consumption.

Techniques for reducing energy consumption in SRAM and DRAM memories
have been proposed in many works. A class of very promising approaches, gener-
ally called approximate memory techniques, is based on allowing controlled occur-
rence of errors in memory cells [Weis et al., 2018].

Approximate memories are memory circuits where cells are subject to hardware
errors (bit flips) with controlled probability. In a wide sense the behavior of these
circuits is not different from standard memories, since both are affected by errors.
However, in approximate memories the occurrence of errors is allowed by design
and traded off to reduce power consumption. The important difference between
approximate and standard memory reside in the order of magnitude of error rate
and its consequences: in approximate memories errors become frequent and are not
negligible to software applications.

2.3.1 Approximate Memory Circuits and Architectures

Approximate memory circuits have been proposed in research papers since some
years. By relaxing requirements on data retention and faults, many circuits and ar-
chitectures have demonstrated to significantly reduce power consumption, for both
SRAM and DRAM technologies.

Approximate SRAM

SRAM approximate memories are designed with aggressive supply voltage scaling.
In SRAM bitcells, read and write errors are caused by low read margin (RM) and
write margin (WM). Since process variations affect RM and WM in opposite direc-
tions, the corner defines which is the critical margin (i.e. the slow–fast (SF) corner
makes the bitcell write critical, the fast–slow corner makes it read critical). Under
voltage scaling, WM and RM are degraded, increasing read and write BERs. The
degradation is in general abrupt (BER increases exponentially at lower voltages),
but techniques have been proposed to make such degradation graceful.

In [Frustaci et al., 2015b; Frustaci et al., 2016] the authors propose, in the context
of ETAs, approximate SRAM circuits where voltage scaling is applied to bit cells,
saving energy at the expanse of read/write errors. ETAs, due to their nature, can
tolerate a more aggressive voltage scaling and so a greater BER with respect to er-
ror free applications. Anyway, when the supply voltage of the SRAM circuit scales
down, the BER increases exponentially at voltage values under the minimum oper-
ating voltages. Starting from the consideration that the impact of errors is different

26 Chapter 2. Approximate Computing: State of the Art

for different bit positions, the authors explore, along with voltage scaling, multi-
ple bit-level techniques, which enable dynamic management of the energy-quality
tradeoff. The most important of these techniques are:

• Multiple Vdd. Example it of this techniques is a dual Vdd circuit, in which the
LSBs are powered with a lower Vdd while the other bits keep the nominal Vdd.

• Bit-dropping: It is a bit-level technique which consists in completely disabling
some memory bitlines. The approach showed to be interesting since cells can
be completely powered off or even omitted []. The dropped bitlines corre-
spond to a certain number of LSBs in each word, since the impact of errors is
exponentially lower for smaller bit weights. This can be paired with the con-
sideration that in many applications, such as machine learning, big data and
multimedia, the quality is defined essentially by the MSBs. For SRAM mem-
ory cells the precharge circuit of the selected LSBs is disabled during read and
write operations. This approach is quite different from the traditional dual
Vdd scheme where the supply voltage of both precharge circuits and bit cells
of the selected columns is reduced to a lower value. In [Frustaci et al., 2015b;
Frustaci et al., 2016] the implementation of a bit dropping precharge circuit is
proposed: the drop signal, (corresponding to transistors M1 and M2 in Fig.
2.18), connects the bitline of the approximated cell to ground, eliminating the
dynamic energy.

• Selective negative bitline boosting (SNBB). Negative bitline boosting (NBB)
is an example of write assist technique, which is, in other words, a technique
that aims at improving the energy quality tradeoff in the write critical corner of
the cell [Frustaci et al., 2016]. By setting the bitline voltage to a negative voltage
instead of ground(writing a strong 0 to the corresponding cell) it is possible in
fact to improve the cell behavior during the write operation. Selective negative
bitline boosting applies this approach only to a reduce number of bitcells (the
ones corresponding to MSBs), improving the quality of the MSBs in the write
operations but reducing the cost of NBB techniques. From a circuital point of
view, only two additional transistors are required in the precharge circuit (Fig.
2.19), in order to connect the bitline to a negative voltage or to ground.

Results on some application (i.e. H.264 hardware video decoder) were produced
by modeling the architecture in Matlab and the SRAM bitcell failures were injected
according to the measures on test chips.

In [Cho et al., 2011] a dynamically reconfigurable SRAM array is suggested. The
proposed solution uses a dual voltage architecture where nominal voltage is applied
to cells storing higher order bits while a reduced voltage is applied to cells storing
low-order bits. The number of bits with under voltage power supply is reconfig-
urable at run-time to change the error characteristic. Results are produced by storing
static images in the array of cells and measuring the quality degradation induced by
injected bit-flips, demonstrating that it is possible to achieve 45% savings in memory
power (with only a small reduction, about 10%, in the image quality).

In [Shoushtari, BanaiyanMofrad, and Dutt, 2015] SRAM approximate caches are
explored . The work focuses on relaxing the guard-bands required for masking the
effects of manufacturing variations as a way of reducing leakage energy of SRAM
caches. The proposed approach requires a modification to both traditional hardware
and software components (Fig. 2.21). Errors are allowed by exploiting the tolerance

2.3. Approximate Memories 27

FIGURE 2.18: SRAM bit dropping precharge circuit. Source: Frustaci
et al., 2016

FIGURE 2.19: Sram SNBB precharge circuit. Source: Frustaci et al.,
2016

of specific applications and energy savings up to 74% (in leakage) are claimed. Re-
sults where produced using the gem5 simulator [Binkert et al., 2011] by modifying
the cache architecture, however the details of the models are not given.

Approximate DRAM

Main memory in modern systems is composed of DRAM cells, that store data as
charge on a capacitor. Due to leakage currents, the charge must be periodically re-
stored by a refresh operation, which is usually performed in the background by ded-
icated hardware units (DRAM controllers). This operation degrades performance,
but also wastes energy (for example, when the system is in standby mode, it can
reach up to 50% of total power consumption [Liu et al., 2012a]), a drawback which
is expected to worsen as DRAMs scale to higher capacities and densities. In fact, in
exact DRAMs refresh time interval is set according to the worst case access-statistics
of the most leaky cells. Commercial DRAM modules, for example, have a worst case
retention time of 64ms determined by the leakiest cells in the entire array. This high
refresh rate, which guarantees a storage without errors at the expense of power con-
sumption, could not be required in some applications. As regards eDRAM/DRAMs,

28 Chapter 2. Approximate Computing: State of the Art

FIGURE 2.20: Architecture of dual Vdd memory array. Source : Cho
et al., 2011

FIGURE 2.21: Overview of HW/SW components for approximated
caches. Source : Shoushtari, BanaiyanMofrad, and Dutt, 2015

several techniques to reduce refresh rate have been proposed [Liu et al., 2012a; Liu
et al., 2012b; Teman et al., 2015; Raha et al., 2017; Nguyen et al., 2018].

In [Liu et al., 2012a] the authors propose RAIDR (Retention-Aware Intelligent DRAM
Refresh) to partition DRAM rows in different bins and apply consequently different
refresh rates. In particular, using knowledge of cell retention time, the memory con-
troller uses bloom filters (Fig. 2.22) to classify the rows into the different bins: rows
containing leaky cells are refreshed at normal rate, while most rows are refreshed
with reduced rate (256, 128 or 64 ms) . This approach does not require modifications
in DRAM memory cells but it needs only a little change in the DRAM controller.
Evaluated on a 8 core system with 32bit DRAM, RAIDR allows to achieve a refresh
rate reduction of about 76% with a DRAM power reduction of 16.1% and a perfor-
mance improvement of about 8%.

In [Liu et al., 2012b] the idea of partitioning critical and non-critical data is ex-
plored. An application-level technique named Flikker enables software developers

2.3. Approximate Memories 29

FIGURE 2.22: RAIDR implementation. Source : Liu et al., 2012a

to specify critical and non-critical data in programs, that are then allocated in sep-
arate parts of memory (Fig. 2.23). With respect to the previous work, RAIDR, the
application of a different refresh rate does not depend on the cell retention time but
on data. In particular, regular refresh rate is applied to the portion of exact memory
containing critical data, while the portion containing non-critical data is refreshed
at lower rates. In order to implement the technique, some changes on hardware
architecture and on software support are introduced: software requires the OS to
be aware of exact and approximate DRAM banks, providing a way to allocate non-
critical data in the approximate banks. Analytical models are used to evaluate power
savings, showing that this approach can save about 20%-25% of power consumed by
the memory system in mobile applications.

FIGURE 2.23: Proposed DRAM partitioning according to refresh rate.
Source : Liu et al., 2012b

An extension of Flikker and RAIDR is proposed in Sparkk [Lucas et al., 2014],
where several refresh periods can be applied on different bits depending on their im-
portance. This work is inspired by the consideration that not all bits within a mem-
ory area are critical in the same way and that memory systems, in order to satisfy
requirements on bandwidth and capacity, are composed by multiple DRAM banks.
The authors propose to have multiple CS signals (one for every DRAM bank instead
of one CS shared between all DRAM banks) in order to allow several DRAM chips
of a rank to have different refresh periods for the same row as shown in Fig.2.24.
To support the Sparkk model, it is required to implement a small hardware unit to
control the different refresh rates. The proposed approach has been evaluated sim-
ulating the impact of approximate memory on image data, using PSNR as quality
metric. In particular, Sparkk provides better results than Flikker, having a PSNR im-
provement of about 10dB. Moreover, with respect to Flikker, the approach proposed
by Sparkk is flexible, allowing to get, at the same time, different and configurable
quality levels for approximate memory. This can be useful, for example, to imple-
ment several approximate memory areas and run different applications in parallel,
each one with different requirements on quality level.

30 Chapter 2. Approximate Computing: State of the Art

FIGURE 2.24: Proposed mapping of bits of 4 DRAM chips. Source :
Lucas et al., 2014

In [Teman et al., 2015] the authors abandon the worst case design paradigm,
showing the benefits that can be achieved by relaxing refresh time interval at the
expense of increasing error rates. In particular, tests on 8 chips of GC-eDRAMS show
that, admitting an error rate of 10−3 and relaxing refresh rate from 11ms (worst case
retention time) to 24 ms, 55% of energy can be saved; while an error rate of 10−2

guarantees energy savings up to 75%.
In [Raha et al., 2017], after an experimental characterization of memory errors as

a function of the DRAM refresh-rate, the authors propose a methodology for con-
structing a quality configurable approximate DRAM system. The core idea is to re-
fresh DRAM with a single but reduced rate, characterizing portions of the memory
array and splitting them in several quality bins (Fig. 2.25), based on the frequency,
location and nature of bit errors in each physical page. During program execution,
non-critical data can be allocated to bins sorted in descending order of quality. Ex-
periments were performed on a FPGA board where a soft-processor (Nios II) and a
DDR3 memory controller (UniPHY) are synthesized. The setup included the use of
the lightweight operating system SYNCC/OS-II for memory management and task
creation. A reduction in DRAM refresh power of up to 73% on average is shown.
However, the paper proposes to use the quality bins just in a descending order, en-
suring that lower quality bins are always used as last resource. The work does not
explore the possibility of selecting the quality bins at program level, depending on
data.

FIGURE 2.25: Proposed quality bins. Source : Raha et al., 2017

The specific use of approximate DRAM architectures is studied in [Nguyen et al.,
2018] for deep learning applications, since they are tolerant to the presence of errors
in data. In particular, DRAM organization is modified to support the control of the
refresh rate according to the significance of stored data. Simulations were performed
injecting errors at algorithm level, using random bit flips with uniform distribution,

2.3. Approximate Memories 31

without reference to the internal structure of DRAM cells. Results with GoogleLeNet
and VGG16 show that this approach allows to reduce power consumption up to
70%, with a negligible impact on the accuracy of the classification process.

In [Widmer, Bonetti, and Burg, 2019] the authors propose an FPGA based frame-
work that accurately reproduce errors in eDRAMs. The goal is to provide a way for
the evaluation of error resilience in embedded applications that use eDRAMs work-
ing with sub-critical refresh rate under the DRT. As illustrated by the block diagram
in Fig. 2.26, the eDRAM emulator is composed by:

• a control logic;

• a storage block composed by a set of SRAMs where data and additional infor-
mation are stored. The latter correspond to a data timestamp (Write TS), stored
every time a write operation is performed in the bitcell; an event table contain-
ing one entry for each bit in the DRT map and finally a pointer to this table.
The last two elements are programmed before the emulation is started. In par-
ticular, the DRT map can be obtained from silicon measurements or statistics.

FIGURE 2.26: eDRAM emulator: block diagram. Source: Widmer,
Bonetti, and Burg, 2019

Every time a write operation is performed, a write timestamp is stored. Errors
are injected during the read operations: the bit flip happens only if the delay be-
tween the read and write time exceeds the value stored in the corresponding entry
in the DRT map. This eDRAM emulator is then integrated in an embedded system
built using the Xilinx Vivado 2018b design tool, composed of a MicroBlaze softCPU
and a typical memory size of 1MB of eDRAM. Six different benchmarks have been
analyzed in order to evaluate the impact on quality produced by the refresh rate
relaxation.

Results (Fig. 2.27) show that the number of accesses to exact memory is sig-
nificantly reduced, reducing energy consumption, with only a negligible impact on
quality.

32 Chapter 2. Approximate Computing: State of the Art

FIGURE 2.27: Benchmarks output quality for refuced refresh rate.
Source: Widmer, Bonetti, and Burg, 2019

2.4 Transprecision Computing

As we said, Approximate Computing is a technique which proposes to relax the
specifications on precise computation allowing digital systems to introduce errors
implied by imprecise hardware/software, and trading off quality, in terms of com-
putational accuracy, for energy consumption or speed. Transprecison Computing in-
stead, claims that low power embedded systems should be designed to deliver the
required precision for computation. In particular Transprecison Computing allows to
get a fine-grained control (Fig. 2.28) over approximation in space and time, mean-
ing where and when (e.g. using multiple feedback control loops in both hardware
and software in order to follow the required constraints on the precision of output
results).

FIGURE 2.28: Transprecision Computing paradigm. Source : Malossi
et al., 2018

The first complete Transprecision Computing framework has been developed
in the context of the H2020 European project OPRECOMP, in particular, in order
to show the benefits of this new approach, two demonstrator systems have been
developed ([Malossi et al., 2018]):

• mW Demonstrator: this is a technology demonstrator for transprecision units.
To validate the approach the PULP (Parallel Ultra Low Power, [Rossi et al., 2015])
platform is used, extended with transprecision computing units such as accel-
erators and memory infrastructure.

• kW Demonstrator: this is a functional and scalability demonstrator for the soft-
ware stack. In this case the base platform is one node of a HPC system, ex-
tended with transprecision capabilities.

2.5. Approximate Computing and Machine Learning 33

2.5 Approximate Computing and Machine Learning

In recent years there has been a growing interest in artificial intelligence, due to the
noteworthy progress made in the fields of machine learning (ML) and neural net-
works. In particular, using ML algorithms, computers can find solutions by learning
from a set of data (training set). Compared to the general purpose CPUs, GPUs have
been found to efficiently execute ML algorithms, due to the availability of multiple
simple cores and to the capability of supporting massive parallelism at thread level.
However, despite the ability to support intensive calculations necessary in the train-
ing phase, GPUs cannot be currently adopted for the inference phase on embedded
devices with energy constraints and IoT devices, where the resources available are
limited and the energy budget available is often in sub-Watt range.

This section presents the opportunities and challenges in building hardware ar-
chitectures for ML using the Approximate Computing, since this paradigm could al-
low to decrease the overall system energy/power consumption without impacting
significantly the prediction accuracy.

In [Shafique et al., 2017a] the authors propose a methodology to guide the imple-
mentation of energy-efficient accelerators for Machine-Learning, especially in the
context of Convolutional Deep Neural Networks (DNNs) where quality-/energy-
configurable approximate modules can be employed inside the accelerator data-
path, allowing a high degree of adaptivity. The implementation of DNNs partic-
ularly fit the use of approximate computational modules since the applications for
DNNs are intrinsically resilient to errors. This is essentially due to two reasons:

1. the input vectors are always processed in the same way, despite the intrinsic
complexity of the classification application changes considerably;

2. the training process is an iterative process, so it can be interrupted when an
adequate level of accuracy is reached.

FIGURE 2.29: Methodology for designing energy-effcient and adap-
tive neural network accelerator-based architectures for Machine

Learning. Source: Shafique et al., 2017a

Fig. 2.29 illustrates the proposed methodology, which can be summarized in the
following steps:

• Training: ML libraries as TensorFlows and Caffe can be used for customizing
pre-trained NN for a specific application.

• Fixed Point Analysis: this step is necessary to select an adequate fixed-point
format (Qmn, m-bit for the integer and n-bit for the fractional part). It can be
performed for example using Matlab or a C application.

34 Chapter 2. Approximate Computing: State of the Art

• Approximation Resilience Analysis: this steps consists in the evaluation of the
quantized weights and the architecture in order to explore their resilience prop-
erties. It is necessary in fact to select a particular approximate configuration in
order to build an energy efficient accelerator without reducing the prediction
accuracy. Moreover since the error of the approximate modules depends also
on the data distribution, a preliminary analysis can be performed on the train-
ing data to guide the approximation process. The resilience analysis can be
performed through MonteCarlo simulations or using analytical models of ap-
proximate modules. As the DNN layers and the possible number of approx-
imate configurations increase, the authors propose also the implementation
of a multi-objective evolutionary algorithm to automatically develop energy-
efficient and adaptive accelerators. In particular the CPG approach is used
for the evaluation of the candidate approximate circuits: if the circuit is not
complex, it is possible to evaluate its responses for all input combinations and
determine the prediction error, otherwise for more complex circuits the evalu-
ation is performed using a TS and estimating the resulting error.

• Quality Knobs: these ones allow to control the accuracy-power tradeoff, select-
ing the appropriate approximate hardware modules according to the appli-
cation requirements. Therefore they are required for the implementation of
hardware accelerators that have to be adaptive.

• Re-Training: this step could be performed to update the quantized weights
and/or improve the classification accuracy alleviating the accuracy loss intro-
duced by the approximation.

In Chen et al., 2017 the authors propose DRE, a framework for the evaluation of
data resilience in CNNs. The ultimate goal of this work is to employ the proposed
framework to assess the feasibility of applying AxM techniques to a given CNN,
since memory accesses and data transmissions are crucial aspects in the implemen-
tation of hardware CNNs. In this work approximation models are used to abstract
several AxM techniques in order to make quick evaluations; in particular a wide
range of AxM techniques can be modeled as random errors which are uniformly in-
jected into resilient bits. For off-chip memory reduction instead the AxM techniques
are based on data bit-width scaling [Tian et al., 2015].

Fig. 2.30 illustrates the DRE framework, built on the Caffe platform (the Tool Setup
box in the figure).

The framework is composed by the following four modules:

1. Single Layer Analysis: this module is used to analyze and evaluate the neurons
numerical representation requirement and the weights of each layer. The flow
is as follows (Fig. 2.31):

• A resilient subset of data is selected and transformed in the chosen nu-
merical representation, in order to be able to observe the impact on the
accuracy of the network.

• If the obtained prediction accuracy is acceptable, the bit-width of the cho-
sen numerical representation is reduced by bit truncation. Then the pre-
vious step is repeated.

• if the drop in accuracy is not acceptable, the numerical representation
requirement of this data subset corresponds to the previous chosen bit
width.

2.5. Approximate Computing and Machine Learning 35

FIGURE 2.30: Overview of DRE. Source : Chen et al., 2017

FIGURE 2.31: Flow of Single Layer Analysis. Source: Chen et al., 2017

Through these passages, the numerical representation requirements of neurons
and weights are obtained at each CNN layer.

2. Comprehensive Multi-Layer Analysis: this module provides an analysis of multi
layers, in order to derive a complete numerical representation scheme for all
data subsets

3. Random Error Tolerance Evaluation. The adopted strategy is the same as the one
employed in single layer analysis with the difference that, in addition to bit
truncations, random errors with a given probability are injected into specific
resilient data subsets.

4. Data Resilience Characterization: it gives periodical evaluations of the three mod-
ules, producing a concluding evaluation of data resilience for a given CNN.

As case study, the proposed DRE framework has been applied to four prevalent
CNNs demonstrating that a high degree of data resilience exists in these networks.

36 Chapter 2. Approximate Computing: State of the Art

Simulation results show that for off-chip memory accesses, it is possible to employ
bit-width scaling in order to reduce the amount of data transfer from off-chip mem-
ory to on-chip memory. The authors demonstrate that on average the data volume
can be reduced by 80.38%, with a 2.69% loss in the prediction accuracy. For AxM
with random errors, all the synaptic weights can be stored in the approximate part
when the error rate is less than 10−4. When the error rate is fixed at 10−3, 3 MSBs
must be protected while other LSBs can be stored in the approximate part.

In [Nguyen et al., 2018] an approximate DRAM architecture for deep learning
applications is illustrated. The authors propose to store data in a transposed manner
so that:

• data bits are distributed according to their significances (e.g. all the first MSBs
of data[0], data[1],. . . , data[7], are transposed and stored in the memory loca-
tion at addressed 0, i.e. data[0]) as shown in Fig. 2.32;

• different refresh rate are used depending on the significance of the row.

In particular Fig. 2.32.a shows the typical data storage scheme while Fig. 2.32.b
represents the proposed approximate data storage scheme where data are stored in
a transposed manner. This approximate memory structure requires a minor change
inside the DRAM memory controller: a bit transpose unit (as shown in Fig. 2.32.c)
which is responsible for the data format conversion.

FIGURE 2.32: Approximate memory architecture; (a) conventional
data storage scheme, (b) approximate data storage scheme, (c) system
architecture to support approximate memory access. Source: Nguyen

et al., 2018

The authors propose to use this architecture for deep learning applications, which
in general access 32-bit FP data. According to IEEE-754 standard, each floating-point
data has:

• 1 sign bit;

• 8 exponent bits;

• 23 mantissa bits

The bits corresponding to the sign and the exponent are critical data due to the fact
that the presence of errors in this bits may change significantly the data value. The
23 mantissa bits can be stored in memory rows refreshed at slower rate. The refresh
rate decreases as the row number increases, meaning that that the LSBs are stored in
the rows with higher error (Fig. 2.33).

2.5. Approximate Computing and Machine Learning 37

FIGURE 2.33: Row-level refresh scheme for approximate DRAM.
Source: Nguyen et al., 2018

The simulation results obtained with state-of-the-art networks (GoogLeNet and
VGG-16) show that the power consumption due to refresh rate can be reduced by
69.68%, with a negligible degradation of the classification accuracy.

39

Chapter 3

Approximate Memory Support in
Linux OS

3.1 Introduction

As described in the previous chapter, Approximate Memories are part of the wider
research topic regarding Approximate Computing and error tolerant applications,
in which errors in computation are allowed at different levels (data level, instruction
level, algorithmic level). In general these errors are the result of circuital or architec-
tural techniques (i.e. voltage scaling, refresh rate reduction) which trade off energy
savings for the occurrence of errors in data processing. The ability to support ap-
proximate memory in the OS is required by many proposed techniques which try to
save energy by raising memory fault probability, but the requirements at OS level
have never been described and an actual implementation has never been proposed.
In this chapter an analysis of the requirements and a description of the implemen-
tation of approximate memory management is provided. The proposed approach
allows Linux kernel to be aware of exact (normal) and approximate physical memo-
ries, managing them as a whole for the common part (e.g. optimization algorithms,
page reuse) but distinguishing them in term of allocation requests and page pools
management.

In particular the introduction of approximate memory management allows at
application level to distinguish between critical data, that must be stored in exact
memory, and non-critical data, that can be stored in approximate memory.

Critical data are identified as all program data that cannot accept any level of cor-
ruption without significantly impact the functionality of the application itself as, for
example, variables used in conditional constructs and responsible for control flow,
state variables, pointers. Typically, the memory allocated by the OS for applications
is divided into four parts:

• Code (.text section);

• Static global variables;

• Stack memory;

• Heap memory.

Code must always be considered critical and should never be allowed to be cor-
rupted. Stack memory contains local variables, parameters, return addresses (e.g.
return address of function calls) and register file copies. Due to the variable nature
of this data (some local variables could be tolerant to errors but other data contents
are not), in this work we did not consider the management of an approximate stack
memory.

40 Chapter 3. Approximate Memory Support in Linux OS

Memory for static global variables and the heap memory can instead contain
both critical data and non-critical data, depending on the application. Both memory
spaces are allocated with the same function calls at OS level, the only difference
being that the first is allocated and initialized automatically by the OS while the
second is allocated on request at user program level.

In order to support the management of two different memories (exact and ap-
proximate), the Linux kernel has been extended by adding a new memory area,
called ’ZONE_APPROXIMATE’ and a new dynamic allocator, which has been im-
plemented to ensure that only approximate data are allocated in this portion of mem-
ory. Before going into the details of the implementation, an overview of the Linux
Memory Management is provided.

3.2 Linux Memory Management

3.2.1 Virtual Memory and Address Spaces

All recent operating systems support virtual memory, a memory management tech-
nique that allows a process to have its own address space and to protect its memory
from corruption by other process. This means that the logical addresses seen by
a user-level program do not correspond directly to the physical addresses seen at
hardware level and that every process, considering itself the only one to have access
to the system resources, has its own virtual address space potentially larger than
available physical memory. During program execution, the processor accesses main
memory to load instructions (fetch phase) or to load/save data from/in a memory
location. Virtual memory represents an abstraction layer between the memory re-
quested by an application and the MMU (Memory Management Unit). In a virtual
memory system indeed all the addresses at program level are virtual and these are
translated into physical addresses by the processor through (page tables) managed by
the operating system. This abstraction offers several advantages:

• concurrent execution of several programs, without address space conflicts;

• execution of applications whose address space is larger than available physical
memory;

• each process can run even if code is only partially loaded in memory;

• fast relocation of programs and de-fragmentation of de-allocated physical mem-
ory;

• user level code is machine-independent, meaning that it is not necessary to
know the physical memory organization of a specific architecture to write a
program.

To support this memory management capability, Linux implements paging: virtual
memory is divided into identical blocks called pages and RAM is equally divided
into blocks of the same size called page frames. Therefore Linux internally manages
the following types of addresses:

• User-level virtual addresses: the regular addresses seen at the user-space by a
program. A virtual address consists of an offset and a PFN (virtual page frame
number); when it is necessary to access memory the processor extracts the PFN
and accesses the requested location by applying the correct offset to the physi-
cal page. These addresses can be 32 or 64 bits depending on the architecture.

3.2. Linux Memory Management 41

• Physical addresses, i.e. the addresses used by processor and memory. They can
be 32 or 64 bits.

• Bus addresses, i.e. the addresses used by the memory and the buses of the pe-
ripherals.

• kernel logical addresses, corresponding to the kernel address space. These ad-
dresses map a portion of RAM and they are often handled as physical ad-
dresses. A call to kmalloc returns a kernel logical address.

• kernel virtual addresses. These addresses are similar to kernel logical addresses
as they are mapped to physical addresses but unlike the previous ones, the
mapping is not 1:1. All logical addresses are kernel virtual addresses but the
viceversa is not true. A call to vmalloc returns a kernel virtual address.

3.2.2 Low Memory and High Memory

The difference between kernel logical and virtual addresses emerges significantly in
32-bit architectures, where it is possible to address up to 4GB of memory. For ex-
ample in x86 32-bit architecture the 4GB of virtual memory are typically divided in
user space and kernel space. In the default configuration, 1 GB, the one mapped in
the lower part of memory, contains kernel data structures and kernel code (kernel
space) while the remaining 3GB are reserved for user space. The kernel can directly
manage only the memory that is mapped in its virtual address space (1GB); conse-
quently x86-based Linux systems can operate with a maximum of 1GB of physical
memory (kernel virtual address space minus the kernel space reserved for kernel
code itself.) If physical memory is equal or less than 1GB, then physical memory
is mapped directly into the kernel virtual address space and these addresses, for
which the mapping is 1:1, correspond to kernel logical addresses. In architectures
where physical memory is more than 1GB, to overcome the limitation of having to
map all physical memory in the address space of 1GB, the kernel uses 128 MB of
its own virtual address space to perform a temporary mapping between virtual and
physical addresses in order to access to all available physical memory. In these ar-
chitectures kernel virtual address space is divided into two regions: Low Memory or
Lowmem and High Memory or Highmem. The Lowmem corresponds to the portion
of memory allocated in the first 896 MB and it contains the data the kernel needs
to access more frequently. Being directly mapped into kernel address space (kernel
logical addresses), this region can be accessed immediately by the kernel. Highmem
corresponds instead to the portion of physical memory higher than the address of
896 MB; this region cannot be directly mapped into kernel address space but it is
temporarily mapped in kernel virtual space when the kernel needs to access it (vir-
tual addresses). This temporary mapping of data from highmem to kernel address
space is performed through calls to kmap, kunmap, kmap atomic, kunmap atomic. In
general, data allocated in high memory correspond to data that the kernel accesses
occasionally (including for example page cache, page tables and process memory).
In 64-bit architectures this separation of 1GB/3GB between kernel space and user
space is not needed: as shown in Fig. 3.1 the address space in these case is large
enough (512 GB or more) to allow a separation between kernel space and user space
and to map all the available physical memory in the kernel address space.

42 Chapter 3. Approximate Memory Support in Linux OS

FIGURE 3.1: Kernel address space and User process address space

3.2.3 Physical Memory

Starting from Linux 2.5, kernel supports NUMA (Non Uniform Memory Access) ar-
chitectures. The latter are designed for multiprocessor systems in which CPUs and
RAM memory chips are grouped into "local" nodes (usually each node contains a
CPU and a few RAM chips). The access time to a specific node depends on the dis-
tance between the node to be accessed and the CPU that wants to access it: each
CPU accesses its own local node faster than other nodes local to other processors.
Each node therefore corresponds to a memory bank and it is described, in the kernel
source files, by a struct pglist data (this is also valid for UMA, Uniform Memory Ac-
cess, architectures where a single node is present and the access time to memory is
uniform).

FIGURE 3.2: Nodes, Zones and Pages. Source:[Gorman, 2004]

Each node is divided into memory ranges, called zones which are used by the
Linux Kernel to group pages having similar properties (Fig.3.2). This partitioning
has no physical relevance, but allows the kernel to keep track of pages and over-
comes hardware limitations:

• some hardware devices can perform DMA (Direct Memory Access) only at
certain memory addresses.

3.2. Linux Memory Management 43

• some architectures can address an amount of physical memory greater than
the virtual addressing space. As showed above, it involves that not all physical
memory available is mapped in the kernel address space .

Internally, five primary zones are defined:

1. ZONE DMA: pages within this zone can be used by DMA. As shown in Table
3.1 with some examples, the range of physical memory reserved for this area
varies according to the architecture.

2. ZONE DMA32: this zone is like ZONE DMA but it is the only that can be
accessed by some 32 bit devices.

3. ZONE NORMAL: pages within ZONE NORMAL are directly mapped by the
kernel. Many of the operations performed by the kernel can take place only in
this zone, which consequently is the most critical from the performance point
of view.

4. ZONE HIGHMEM: this zone corresponds to high memory and it is not di-
rectly mapped by the kernel. In x86 architectures this area allows the kernel
to address memory over 900MB, performing special mappings (via the page
tables) for each page the kernel needs to access.

5. ZONE MOVABLE: Unlike memory zones described previously, zone movable
does not have a specific physical range but pages within this zone come from
other memory zones. The scope of this virtual memory zone is to avoid mem-
ory fragmentation.

6. ZONE DEVICE: this zone is used to distinguish the pages belonging to ’device
memory’, having an allocation mechanism different from the standard one. The
’device memory’ has indeed different characteristics compared to RAM memory
in terms of lifetime and performance.

TABLE 3.1: DMA zone, physical ranges

Architecture Physical limit

PARISC, IA64, SPARC < 4G

S390 < 2G

ALPHA Unlimited or 0-16MB

I386, X86 and other architectures < 16MB

Linux memory zones usage and layout can change according to the architecture
on which they are implemented: for example, in architectures where a DMA device
supports transfers over all addressable memory, the DMA zone can be empty and
DMA operations can be performed on pages belonging to ZONE NORMAL. Un-
like zone NORMAL and zone MOVABLE that are always present in the Linux OS,
the other zones can be enabled or not through appropriate #ifdef commands in the
Kernel configuration files. Each memory zone is described by a struct zone declared
in <linux/mmzone.h> source file; the fields of this structure allow to keep track of
some data such as the number of free pages (unsigned long free_pages), the spinlock
to protect the zone from concurrent access, the zone name (char * name, initialized

44 Chapter 3. Approximate Memory Support in Linux OS

during the boot phase in <page alloc.c>), and other useful data for statistics concern-
ing the usage of the pages. An interesting field concerns the watermarks, used by the
kernel as a benchmark to check the right memory occupancy. For each zone three
watermarks are defined: pages_min, pages_low, pages_high. If the available memory is
low, the kernel swap daemon, kswap, starts to free pages and if the pressure is high
the release mechanism takes place in synchronous way. The three watermarks are
used therefore to monitor this pressure (Fig. 3.3). In particular:

• pages_low: when the pages_low number of free pages is reached, kswapd is awak-
ened by the allocator, buddy allocator, to start freeing pages. The value of
pages_low is two times the default value of pages_min.

• pages_min: when pages_min mark is reached, the allocator performs the work
of kswapd synchronously; sometimes this is referred as the direct-reclaim path.

• pages_high: when the kswapd manager has been woken up to start freeing pages,
the daemon does not take into account the zone to be balanced whenpages_high
are free. Once the watermark has been reached, kswapd will go back to sleep.
The default setting for pages_high is three times the value of pages_min.

FIGURE 3.3: Zone watermarks

As physical memory is partitioned into zones to group pages with the same prop-
erty, pages are in turn the basic unit of memory. Each page, whose dimensions vary
according to the architecture (on x86 architectures each page is 4KB), is described by
a struct page, defined in <linux/mm_types.h>.

1 s t r u c t page {
2 // F i r s t double word block //
3 unsigned long f l a g s ;
4 // Atomic f l a g s , some poss ib ly updated asynchronously//
5 union {
6 s t r u c t address space ∗mapping ;
7 // I f low b i t c l e a r , points to inode address space , or NULL. I f

page mapped as anonymous memory ,

3.2. Linux Memory Management 45

8 low b i t i s set , and i t points to anon vma o b j e c t to see PAGE
MAPPING ANoN below .

9 void ∗ s mem; // s l a b f i r s t o b j e c t //;
10 // Second double word //
11 s t r u c t {
12 union {
13 pgoff t index ; // our o f f s e t within mapping.//
14 void ∗ f r e e l i s t ; // s l [aoub] f i r s t f r e e o b j e c t //
15 } ;

This structure allows to keep track of the current state of a page even if a way
to determine which task is using a specific page is not implemented (if the page is a
pagecache, than the rmap structures allow to go back to who is mapping the page in
question). The page descriptor is needed to allow the kernel to distinguish between
page frames that contain pages belonging to user-level processes and frames that
contain kernel code and structures. Moreover the Linux kernel must be able to de-
termine dynamically which page frames are free (a page frame has to be considered
free if it does not contain free data, consequently it is not free if it contains user-level
process data, kernel data, buffered data of a device driver and so on). The struct
fields are organized in blocks of double word, in order to perform atomic double
word operations on some parts of the struct. For example, as shown below, the first
double word block is composed of page flags and a * struct mapping of address space
type. In the following text box the list of page flags, declared in <linux/page_flags.h>,
is reported. These flags are used to describe the state of the page (for example if a
page is present, if it is reserved, if it has been accessed, if an error has occurred and
so on).

1 enum pagef lags {
2 PG_locked , // Page i s locked . Don ’ t touch . //
3 PG_error ,
4 PG_referenced ,
5 PG_uptodate ,
6 PG_dirty ,
7 PG_lru ,
8 PG_active ,
9 PG_slab ,

10 PG_owner_priv 1 , // owner use . I f pagecache , f s may use//
11 PG_arch 1 ,
12 PG_reserved ,
13 PG_private , // I f pagecache , has fs−p r i v a t e data //
14 PG_private_2 , // I f pagecache , has f s aux data //
15 PG_writeback , // Page i s under writeback //
16 PG_head , // A head page //
17 PG_swapcache , // Swap page : swp entry t in p r i v a t e //
18 PG_mappedtodisk , // Has blocks a l l o c a t e d on−disk //
19 PG_reclaim , // To be reclaimed asap //
20 PG_swapbacked , // Page i s backed by RAM/swap //
21 PG_unevictable , // Page i s ’ unev ic tab le ’ //
22 # i f d e f CONFIG_MMU
23 PG_mlocked , // Page i s vma mlocked //
24 # endi f
25 # i f d e f CONFIG_ARCH_USES_PG_UNCACHED
26 PG_uncached , // Page has been mapped as uncached //
27 # endi f
28 # i f d e f CONFIG_MEMORY_FAILURE
29 PG_hwpoison , // hardware poisoned page . Don ’ t touch //
30 # endi f
31 # i f defined (CONFIG_IDLE PAGE_TRACKING) && defined (CONFIG_64BIT)
32 PG_young ,

46 Chapter 3. Approximate Memory Support in Linux OS

33 PG_idle ,
34 # endi f
35 NR_PAGEFLAGS,

3.2.4 Kernel Memory Allocators

It is possible to distinguish several dynamic memory allocators within the Linux
Kernel. Some of the main allocation mechanisms are described below, these alloca-
tors will be also described in the following paragraphs:

• Page-level allocation (Buddy System);

• Contiguous memory allocation (kmalloc);

• Non-contiguous memory allocation (vmalloc).

Page-level allocator (Buddy System algorithm)

All interfaces provided by the kernel to allocate memory are based on a low level
algorithm with page size granularity, called Binary Buddy Allocator. According to
this algorithm, physical memory is divided into power of two size blocks, when a
block of the requested size is not available, a larger block is split in two half (buddies)
and the process is iteratively repeated until a block of the requested size is produced
(see Fig. 3.4). When a block is then released, the Kernel checks if also the "buddy"
block is free; in that case the two blocks are merged again.

FIGURE 3.4: Buddy system allocator

In the Linux kernel, the buddy allocator core routine receives as parameter, among
others, a bit mask (called gfp mask) which is a set of GFP flags (Get Free Page flags)
that allow to direct the allocator behavior. Three types of GFP flags are defined in
the <include/linux/gfp.h> source file:

• ’zone modifiers’ flags: these flags allow to specify the zone for the allocation,
indicating that the kernel should choose memory from the requested zone if
possible. The allocator considers the zone specified in gfp mask as an indica-
tion and, in some cases depending on actual memory utilization and balancing
policies, the request could be satisfied selecting pages belonging to hierarchi-
cally higher zones.

1 # def ine GFP_DMA 0x01u
2 # def ine GFP_HIGHMEM} 0x02u
3 # def ine GFP_DMA32 } 0x04u
4 # def ine GFP_MOVABLE} 0x08u
5 // gpz zone modif iers //

3.2. Linux Memory Management 47

6 # def ine GFP_DMA ((f o r c e _ g f p _ t) GFP_DMA)
7 # def ine GFP_HIGHMEM ((f o r c e _ g f p _ t) GFP_HIGHMEM)
8 # def ine GFP_DMA32 ((f o r c e _ g f p _ t) GFP_DMA32)
9 # def ine GFP_MOVABLE ((f o r c e gfp t) GFP_MOVABLE) // Page i s

movable //
10 # def ine GFP_ZONEMASK (GFP_DMA GFP_HIGHMEM GFP_DMA32

GFP_MOVABLE)

• ’action modifiers’ flags: these flags are used to determine (and change) the be-
havior of the Virtual Memory and establish what the calling process can do.

1 # def ine GFP_WAIT ((f o r c e _ g f p _ t) GFP_WAIT) // Can wait and
reschedule //

2 # def ine GFP_HIGH ((f o r c e _ g f p _ t) GFP_HIGH) // Should a c c e s s
emergency pools ? //

3 # def ine GFP_IO ((f o r c e _ g f p _ t) GFP_IO) // Can s t a r t phys ica l
IO? //

4 # def ine GFP_FS ((f o r c e _ g f p _ t) GFP_FS) // Can c a l l down to
low−l e v e l FS//

5 # def ine GFP_COLD ((f o r c e _ g f p _ t) GFP_COLD) // Cache−cold page
required//

6 # def ine GFP_NOWARN ((f o r c e _ g f p _ t) GFP_NOWARN) // Suppress
page a l l o c a t i o n f a i l u r e warning//

7 # def ine GFP_REPEAT ((f o r c e _ g f p _ t) GFP_REPEAT) // See above//
8 # def ine GFP_NOFAIL ((f o r c e _ g f p _ t) GFP_NOFAIL) // See above

//
9 # def ine GFP_NORETRY ((f o r c e _ g f p _ t) GFP_NORETRY) // See above

//
10 # def ine GFP_MEMALLOC ((f o r c e _ g f p _ t) GFP_MEMALLOC) //Allow

a c c e s s to emergency r e s e r v e s//
11 # def ine GFP_COMP ((f o r c e _ g f p _ t) GFP_COMP) // Add compound

page metadata //
12 # def ine GFP_ZERO ((f o r c e _ g f p _ t) GFP_ZERO) // Return zeroed

page on success //
13 # def ine GFP_NOMEMALLOC ((f o r c e _ g f p _ t) GFP_NOMEMALLOC) // Don

’ t use emergency r e s e r v e s .
14 // This takes precedence over the ∗ GFP_MEMALLOC f l a g i f both

are s e t //
15 # def ine GFP_HARDWALL ((f o r c e _ g f p _ t) GFP_HARDWALL) //Enforce

hardwall cpuset mem a l l o c s //
16 # def ine GFP_THISNODE ((f o r c e _ g f p _ t) GFP_THISNODE) // No

f a l l b a c k , no p o l i c i e s //
17 # def ine GFP_RECLAIMABLE ((f o r c e _ g f p _ t) GFP_RECLAIMABLE) //

Page i s rec la imable //
18 # def ine GFP_NOACCOUNT ((f o r c e _ g f p _ t) GFP_NOACCOUNT) // Don ’ t

account to kmemcg //
19 # def ine GFP_NOTRACK ((f o r c e _ g f p _ t) GFP_NOTRACK) // Don ’ t

t r a c k with kmemcheck //
20 # def ine GFP_NO_KSWAPD ((f o r c e _ g f p _ t) GFP_NO_KSWAPD)
21 # def ine GFP_OTHER_NODE ((f o r c e _ g f p _ t) GFP_OTHER_NODE) // on

beha l f of other node //
22 # def ine GFP_WRITE ((f o r c e _ g f p _ t) GFP_WRITE) // A l l o c a t o r

intends to d i r t y page

• The third set of flags is composed by the combination of some of the action
modifiers flags defined previously. Some of the action modifiers flags in fact are
too low-level to be used individually and consequently it becomes difficult
to determine the correct flag combination for each instance. To overcome this
problem, Linux provides high level flag combinations, as shown, for exmple,in

48 Chapter 3. Approximate Memory Support in Linux OS

the box below.

1 # def ine GFP_NOWAIT (GFP_ATOMIC & GFP_HIGH)
2 //GFP_ATOMIC means both ! wait (GFP_WAIT not s e t) and use

emergency pool //
3 # def ine GFP_ATOMIC (GFP_HIGH)
4 # def ine GFP_NOIO (GFP_WAIT)
5 # def ine GFP_NOFS (GFP_WAIT | GFP_IO)
6 # def ine GFP_KERNEL (GFP_WAIT | GFP_IO| GFP_FS)
7 # def ine GFP_TEMPORARY (GFP_WAIT| GFP_IO| GFP_FS |

GFP_RECLAIMABLE)
8 # def ine GFP_USER (GFP_WAIT | GFP_IO | GFP_FS | GFP_HARDWALL)
9 # def ine GFP_HIGHUSER (GFP_USER | GFP_HIGHMEM)

10 # def ine GFP_HIGHUSER MOVABLE (GFP_HIGHUSER | GFP_MOVABLE)
11 # def ine GFP_IOFS (GFP_IO | GFP_FS)
12 # def ine GFP_TRANSHUGE (GFP_HIGHUSER_MOVABLE | GFP_COMP)
13

As described previously, these flags are always passed as parameters to all the
allocation functions inside the kernel. Regardless of which API is used, the al-
loc_pages_nodemask function, defined in <linux/mm/page_alloc.c>, represents the heart
of the buddy allocator. This function, which is never called directly, analyzes the
zone selected for the allocation and checks if this zone is suitable for allocating the
number of requested pages. If the selected zone cannot support this request, the al-
locator chooses another zone according to a fallback mechanism. The zone order for
the fallback is established at boot time; usually the HIGHMEM zone falls back into
the NORMAL zone, which in turn falls back within the DMA zone. When the num-
ber of free pages reaches the pages_low watermark, the kswapd manager is activated
to release memory. Finally, once the zone has been selected, the buffered_rmqueque
function (defined in page_alloc.c) is called to allocate the requested page block or to
split a larger block satisfying the allocation request. The alloc_pages_nodemask returns
a pointer to the struct page of the first allocated page.

The API free_pages_ok, defined in <linux/mm/page_alloc.c> and never called di-
rectly, implements the buddy system strategy to release pages. This function receives
two key parameters: the struct pointer of the first page of the block to be released
and the logarithmic dimension (order) of the block in question.

Continuous Memory Allocator Kmalloc

Kmalloc is the main method for obtaining memory from Kernel with a granularity
smaller than page size (byte granularity). In particular, it allows the allocation of
memory blocks with physically contiguous addresses and arbitrary length up to a
maximum of 128KB.

1 void ∗ kmalloc (s i z e t _ s i z e , gfp_t f l a g s) {
2 s t r u c t kmem cache ∗ s ;
3 void ∗ r e t ;
4 i f (u n l i k e l y (s i z e >KMALLOC_MAX_CACHE_SIZE))
5 re turn kmal loc_large (s ize , f l a g s) ;
6 s = kmalloc_slab (s ize , f l a g s) ;
7 i f (u n l i k e l y (ZERO _OR_NULL_PTR(s)))
8 re turn s ;
9 r e t = s l a b _ a l l o c (s , f l a g s , RET IP) ;

10 t race_kmal loc (RET_IP , re t , s ize , s−>size , f l a g s) ;
11 kasan_kmalloc (s , re t , s i z e) ;
12 re turn r e t ;
13 }

3.2. Linux Memory Management 49

This function is defined in <linux/slab.h> and receives two parameters:

• The size, which is the size in bytes of the object to be allocated (similarly to
what happens for the malloc at userspace level);

• A flag or a GFP type flag mask, to specify the zone and/or the modes of allo-
cation. The two most common flags passed to this allocation function are the
GFP_ATOMIC flag and the GFP_KERNEL flag. The first is used when the
allocation has high priority and consequently the caller cannot be put to sleep,
but it must be served in short time. For example, an interrupt handler that
requires memory must use this flag to avoid going into sleep or to avoid I/O
operations. Since, in this case, the kernel cannot stop the caller and try to free
up enough memory to satisfy the allocation request, a call with GFP_ATOMIC
flag set has a lower probability of success than one that does not use this flag.
The GFP_KERNEL flag specifies a normal kernel allocation but, with respect
to the previous case, when a call to kmalloc is carried out with this flag, the
caller can go to sleep; consequently it is necessary to use the GFP_KERNEL
only when it is safe to do so. The kernel makes use of the ability to put the
caller on sleep to free up memory, if it were necessary. A call to the kmalloc
with this flag therefore has considerable chance of success.

In case of success, the kmalloc returns a void pointer to a memory block of the
required size. In order t release memory allocated via kmalloc the kfree function is
used, defined in <linuxslab.h>.

1 void ∗ k f r e e (const void ∗x) {
2 s t r u c t page ∗page ;
3 void ∗ o b j e c t = (void ∗) x ;
4 t r a c e k f r e e (RET IP , x) ;
5 i f (u n l i k e l y (ZERO OR NULL PTR(x)))
6 re turn ;
7 page = v i r t to head page (x) ;
8 i f (u n l i k e l y (! PageSlab (page))) {
9 BUG ON(! PageCompound (page)) ;

10 k f r e e hook (x) ;
11 __free_kmem_pages (page , compound order (page)) ;
12 re turn ;
13 }
14 s l a b _ f r e e (page−>s l a b cache , page , o b j e c t , RET IP) ;
15 }

Non Contiguous Memory Allocator vmalloc

If the kmalloc ensures that the pages allocated are contiguous from the point of view
of both physical and virtual addresses, the vmalloc allows the allocation of pages
which are contiguous only in the virtual address space.

1 void ∗ vmalloc {
2 re turn __vmalloc_node (s ize , 1 , gfp_mask , prot ,−1 ,
3 _ _ b u i l t i n _ r e t u r n _ a d d r e s s (0))
4 }

This function, defined in <linux/vmalloc.h> and declared in <linux/mm/vmalloc.c>,
takes as input parameter only size, which corresponds to the amount of memory re-
quested in bytes, and returns a void* pointer to the memory allocated and mapped in

50 Chapter 3. Approximate Memory Support in Linux OS

kernel virtual address space. In case of error, a NULL pointer is returned. The range
of addresses that can be allocated via the vmalloc is delimited by the labels VMAL-
LOC_START and VMALLOC_END, defined in <linux/arch/asm/pgtable.h>. Gener-
ally this range corresponds to a reduced memory area; for example on the 32-bit x86
architecture, where the kernel address space is usually 1GB, the memory area that
can be allocated by vmalloc is 128MB (Fig. 3.5). The memory allocated via vmalloc
(or __vmalloc) is released through the vfree function, defined in <linux/mm/vmalloc.c>.

1 void ∗ vfree {
2 BUG_ON(in i n t e r r u p t ()) ;
3 kmemleak_free (addr) ;
4 __vunmap (addr , 1) ;
5 }

This function receives as input parameter the address addr, starting from which
the previously allocated memory is freed; if addr is NULL no operation is performed.

FIGURE 3.5: The linear address interval starting from PAGE_OFFSET.
Source: [Bovet, 2005]

3.3 Development of approximate memory management in Linux
Kernel

3.3.1 Kernel compile-time configuration menu

Two Linux kernel version have been extended with the support for approximate
memory management, namely:

• Linux kernel 4.3.3 for x86 and ARM architectures (released in December 2015);

• Linux Kernel 4.20 for RISC-V (32 and 64 bits) architectures (released in 2019).

The Linux kernel presents a compile-time configuration, where it is possible to
expose features and declare dependencies. One of the most common user interfaces
to this configuration is menuconfig, a menu interface invoked through the Makefiles
every time the "make menuconfig" command is launched. This interface presents a
series of entries, each of which corresponds to a configuration option. In particular
each entry has its own dependencies, which are visible only if the parent option is en-
abled; moreover for each item there is a short text guide to illustrate what the option
in question entails and when it is convenient to set it. To introduce the capability of
enabling the kernel extension concerning approximate memory support and declare
dependencies, the Kconfig file in Linux/arch/<xxx> (i.e. Linux/arch/x86/Kconfig
for x86 architectures) of the selected architecture has been edited adding the option
to Enable ZONE APPROXIMATE.

3.3. Development of approximate memory management in Linux Kernel 51

1 conf ig ZONE_APPROXIMATE
2 bool ’ Enable approximate memory ’
3 d e f a u l t n
4 −−−help−−−
5 /∗This option enables an approximate area of memory ("APPROXIMATE_ZONE")

: f o r every memory a l l o c a t i o n request , based on the ’GFP_APPROXIMATE ’
f lag , kernel s e l e c t s the APPROXIMATE_ZONE. I f APPROXIMATE_ZONE i s not
enabled , kernel s e l e c t s NORMAL_ZONE.//

As shown in the previous text box, for the Enable ZONE APPROXIMATE item,
the following attributes have been declared:

• type definition: bool. Each configuration option must have a type, which could
be: bool, tristate, string, hex, int.

• default value: n indicates that this attribute is not enabled in kernel for the
current option.

• Help: brief description.

In this way, all code for approximate memory support is implemented under the
#ifconfig ZONE_APPROXIMATE switch, to enable approximate memory support
in Linux it will be sufficient to set this option from the menuconfig menu (Fig.3.6).

FIGURE 3.6: Example of menuconfig menu for x86 architecture

The details of kernel configuration for x86, ARM and RISC-V approximate mem-
ory support will be provided in the following sections.

3.3.2 Creation of ZONE_APPROXIMATE on 32-bit architectures

To identify the memory zones within the system, Linux uses numeric enum con-
stants, defined in the header file <include / linux / mmzone.h>.

1 enum zone_type {
2 # i f d e f CONFIG_ZONE_DMA
3 ZONE_DMA,
4 # endi f
5 # i f d e f CONFIG_ZONE_DMA32
6 ZONE_DMA32,
7 # endi f
8 ZONE_NORMAL,
9 # i f d e f CONFIG_HIGHMEM

10 ZONE_HIGHMEM,
11 # endi f
12 ZONE_MOVABLE,
13 # i f d e f CONFIG_ZONE_DEVICE
14 ZONE_DEVICE,

52 Chapter 3. Approximate Memory Support in Linux OS

15 # endi f
16 __MAX_NR_ZONES
17 } ;

In this list, an item for the ZONE_APPROXIMATE has been added; from now
on, if the support for the memory approximate is enabled, the approximate memory
zone is visible and identifiable by the kernel code.

1 enum zone_type {
2 # i f d e f CONFIG_ZONE_DMA
3 ZONE_DMA,
4 # endi f
5 # i f d e f CONFIG_ZONE_DMA32
6 ZONE_DMA32,
7 # endi f
8 ZONE_NORMAL,
9 # i f d e f CONFIG_HIGHMEM

10 ZONE_HIGHMEM,
11 # endi f
12 ZONE_MOVABLE,
13 # i f d e f CONFIG_ZONE_APPROXIMATE
14 //ZONE_APPROXIMATE i s used to i s o l a t e c r i t i c a l data , t h a t must be

prec i se , from non−c r i t i c a l data , t h a t can be approximate .
15 //Kernel a l l o c a t e s non−c r i t i c a l data in ZONE_APPROXIMATE.
16 ZONE_APPROXIMATE,
17 # endi f
18 # i f d e f CONFIG_ZONE_DEVICE
19 ZONE_DEVICE,
20 # endi f
21 __MAX_NR_ZONES
22 } ;

The ZONE_APPROXIMATE has been defined as the last memory zone in the list
on purpose, because of kernel fallback mechanism. According to this policy, when an
allocation request is scheduled, Linux kernel checks if the selected zone is suitable to
satisfy the request (e.g. there is enough space); if the zone is not suitable, the kernel
allocator falls back to a hierarchically higher zone. In other words, when an alloca-
tion call will requests the ZONE_APPROXIMATE region, if memory pages in this zone
were not available, the request would be satisfied by one of the hierarchically higher
zones (e.g. ZONE_NORMAL). This would result in storing approximate data in exact
memory and cancel possible energy savings, but the functionality of the application
would not be compromised. Moreover, ZONE_APPROXIMATE must be the last one in
hierarchy also if we consider allocation requests for exact memory (ZONE_NORMAL

or ZONE_DMA). In case of a normal (i.e. exact) allocation request, if physical mem-
ory pages in ZONE_NORMAL could not satisfy the request, the kernel must never
select ZONE_APPROXIMATE pages as alternative. In this way critical data, that must
be exact, will never be stored in approximate memory.

In addition to a numeric constant, each zone is also identified by a string corre-
sponding to the zone name. In <linux/mm/page_alloc.c> file, the array zone_names of
MAX_NR_ZONES char pointer elements is defined.

1 s t a t i c char ∗ const zone_names [MAX_NR_ZONES] = {
2 # i f d e f CONFIG_ZONE_DMA
3 "DMA" ,
4 # endi f
5 # i f d e f CONFIG_ZONE_DMA32
6 "DMA32" ,
7 # endi f
8 " Normal " ,
9 # i f d e f CONFIG_HIGHMEM

3.3. Development of approximate memory management in Linux Kernel 53

10 "HighMem" ,
11 # endi f
12 " Movable " ,
13 # i f d e f CONFIG_ZONE_APPROXIMATE
14 " Approximate " ,
15 # endi f
16 # i f d e f CONFIG_ZONE_DEVICE
17 " Device " ,
18 # endi f
19 } ;

In order to properly associate each zone to the corresponding name, the order in
which strings are declared must match the order in which the numeric constants are
associated to the zones.

Finally, another important step is required to complete the creation of ZONE_APPROXIMATE:
the association of a physical address range to this zone. This step, as well as the lay-
out of each memory zone, is architecture dependent, so there may be different sizes
and layouts for approximate memory zones, depending on the architecture.

It should be noticed that, as specified in <include/linux/pageflags.h>, on 32-bit
architectures it is possible to enable at the same time up to four memory zones (in-
cluding ZONE_NORMAL and ZONE_MOVABLE, that are always present). This
is due to the fact that the ZONE_SHIFT macro, used in <include/linux/gfp.h> to
build a zone table for the identification of all the activated memory zones, has to be
less than 2 on 32-bits architectures. This in an important limitation and it is due to
maintain an efficient implementation of the whole OS memory management. As we
will see, it has been overcome in 64-bit architectures.

1 # i f MAX_NR_ZONES < 2
2 # def ine ZONES_SHIFT 0
3 # e l i f MAX_NR_ZONES <= 2
4 # def ine ZONES_SHIFT 1
5 # e l i f MAX_NR_ZONES <= 4
6 # def ine ZONES_SHIFT 2
7 # e l s e
8 # e r r o r ZONES_SHIFT //too many zones configured a d j u s t c a l c u l a t i o n
9 # endi f

The description of architecture-specific approximate memory zone support (x86,
ARM and RISC-V) is addressed in the next subsections.

ZONE_APPROXIMATE on x86 architectures

The layout of Linux memory zones in 32-bits x86 architectures is illustrated in Table
3.2.

TABLE 3.2: 32-bit x86 architecture memory layout

Zone Description Physical Memory

ZONE_DMA DMA pages <16M

ZONE_NORMAL pages that could be normally addressed 896M

ZONE_HIGHMEM pages dynamically mapped > 896M

It can be observed that, in this architecture, there are four memory zones that are
enabled by default. Since, as said before, on all 32-bit architectures it is possible to
enable only up to four memory zones at the same time and since ZONE_NORMAL
and ZONE_MOVABLE must always be present, in order to enable ZONE_APPROXIMATE,
ZONE_HIGHMEM has been disabled. Specifically, it has been chosen to disable

54 Chapter 3. Approximate Memory Support in Linux OS

high memory support preferring to keep active the memory zone reserved for DMA
transfers. This operation is performed in the configuration step through the menu-
config option; in particular from the Processor type and features menu, the item High
Memory Support has been set to OFF. By disabling high memory, also PAE (Physical
Adress Extension) support is automatically set to off; this feature is used in some x86
processors to address more physical memory than the 4GB limit of 32-bit architec-
tures.

ZONE_APPROXIMATE is mapped in the remaining memory space, usually
assigned completely to ZONE_NORMAL. The implementation that has been cho-
sen consists in splitting in half the memory space, in order to have the first 440MB
of exact memory and the following 440MB of approximated memory, as shown in
Table 3.3.

TABLE 3.3: 32-bit x86 memory layout with ZONE_APPROXIMATE

Zone Description Physical Memory

ZONE_DMA DMA pages <16M

ZONE_NORMAL pages that could be normally addressed 16 - 456M

ZONE_APPROXIMATE pages for non critical data 456 - 896M

To implement this scheme, the following source files have been modified:

• <arch/x86/mm/init.c>

• <mm/nobootmem.c>

• <include/linux/bootmem.h>

• <arch/x86/setup/kernel.c>

• <mm/page_alloc.c>

In <arch/x86/mm/init.c> the __init zone_sizes_init function is defined. This rou-
tine allows to associate to each memory zone the upper bound of its physical mem-
ory range. Specifically, the array max_zone_pfns of NR_MAX_ZONES (with NR_MAX_ZONES
equal to 4) elements is instantiated. For each element of the array, indexed with the
constants zone type previously defined, a pfn variable, corresponding to the upper
bound of the zone, is assigned.

1 void _ _ i n i t z o n e _ s i z e s _ i n i t (void) {
2 unsigned long max_zone_pfns [MAX_NR_ZONES] ;
3 memset (max_zone_pfns , 0 , s i z e o f (max_zone_pfns)) ;
4 # i f d e f CONFIG_ZONE_DMA
5 max_zone_pfns [ZONE_DMA] = min (MAX_DMA_PFN, max_low_pfn) ;
6 # endi f
7 # i f d e f CONFIG_ZONE_DMA32
8 max_zone_pfns [ZONE_DMA32] = min (MAX_DMA32_PFN, max_low_pfn) ;
9 # endi f

10 max_zone_pfns [ZONE_NORMAL] = max_normal_pfn ;
11 # i f d e f CONFIG_ZONE_APPROXIMATE
12 max_zone_pfns [ZONE_APPROXIMATE] = max_low_pfn ;
13 # endi f
14 i f d e f CONFIG_HIGHMEM
15 max_zone_pfns [ZONE_HIGHMEM] = max_pfn ;
16 # endi f
17 f r e e _ a r e a _ i n i t _ n o d e s (max_zone_pfns) ;
18 }

3.3. Development of approximate memory management in Linux Kernel 55

All PFN (Page Frame Number)-type variables are declared in the <linux /mm/no-
bootmem.c> and <linux/bootmem.h> files. These variables are used inside the
Linux Kernel to store physical addresses in page units, defined generally as blocks
of 4KB size.

Considering the order in which the zone type constants are defined in mmzone.h,
the third element of the array is associated to the upper bound of zone approxi-
mate (max_zone_pfn). The latter corresponds to end of the low memory and, before
the introduction of approximate memory support, constituted the upper bound of
zone normal. Since, as mentioned previously, the approximate region must be de-
rived from the physical memory range associated to ZONE_NORMAL, a new variable
max_normal_pfn, initialized within the file <arch/x86/kernel/setup.c>, has been de-
fined in the files <linux/mm/nobootmem.c> and <linux/bootmem.h>. In partic-
ular for a 32-bit x86 architecture, the variable max_low_pfn is initialized by calling
the find_low_pfn_rangefunction; once the value of max_low_pfn has been determined,
the variable max_normal_pfn is also initialized. If the support for the approximate
memory is enabled then max_normal_pfn is set to one half of max_low_pfn, otherwise,
being present only the zone normal, the two variables coincide.

1 # i f d e f CONFIG_X86_32
2 // max_low_pfn get updated here
3 f ind_low_pfn_range () ;
4 # e l s e
5 check_x2apic () ;
6 // How many end−of−memory v a r i a b l e s you have , grandma ! //
7 // need t h i s before c a l l i n g r e s e r v e _ i n i t r d //
8 i f (max_pfn > (1UL< <(32 − PAGE_SHIFT)))
9 max_low_pfn = e820_end_of_low_ram_pfn () ;

10 e l s e
11 max_low_pfn = max_pfn ;
12 high_memory = (void ∗) __va (max_pfn ∗ PAGE_SIZE − 1) + 1 ;
13 # endi f
14 # i f d e f CONFIG_ZONE_APPROXIMATE
15 max_normal_pfn =(max_low_pfn) /2
16 # endi f

Once the elements of max_zone_pfns have been initialized, the array is passed
to the free_area_init_nodes function, (defined in <mm/page alloc.c>), in order to de-
termine the lower bounds (identified by the array arch_zone_lowest_possible_pfn) of
physical memory ranges associated to each zone. First it is necessary to compute the
bounds of the zone identified by the numeric constant 0: the lower bound is get by
calling the function find_min_pfn_with_active_regions, while the upper bound corre-
sponds to the first element of the array max_zone_pfn. For the following zones, the
interval is computed by computing, for the i-th zone:

• as upper bound the i-th element of the array max_zone_pfns;

• as lower bound the element (i-1) of the array arch_highest_possible_pfn, corre-
sponding to the upper bound of the previous zone.

If the i-th zone corresponds to ZONE_MOVABLE, since the it is a fictitious zone
and it doesn’t have its own range of physical memory, the process is skipped. There-
fore in case of ZONE_APPROXIMATE, considering that it must be the last memory
zone, its bounds are defined in the following way:

• the lower bound corresponds to the upper bound of ZONE_NORMAL (i-nd
element of arch_highest_possible_pfn);

56 Chapter 3. Approximate Memory Support in Linux OS

• the upper bound corresponds to max_low_pfn, as said previously.

1 void _ _ i n i t f r e e _ a r e a _ i n i t _ n o d e s (unsigned long ∗max_zone_pfn)
2 {
3 unsigned long s t a r t _ p f n , end_pfn ;
4 i n t i , nid ;
5 //Record where the zone boundaries are
6 memset (arch_zone_lowest_possible_pfn , 0 ,
7 s i z e o f (arch_zone_lowest_poss ible_pfn)) ;
8 memset (arch_zone_highest_poss ib le_pfn , 0 ,
9 s i z e o f (arch_zone_highest_poss ib le_pfn)) ;

10 arch_zone_lowest_poss ible_pfn [0] = f ind_min_pfn_with_act ive_regions () ;
11 arch_zone_highest_poss ib le_pfn [0] = max_zone_pfn [0] ;
12 f o r (i = 1 ; i < MAX_NR_ZONES; i ++) {
13 i f (i == ZONE_MOVABLE)
14 continue ;
15 # i f d e f CONFIG_ZONE_APPROXIMATE
16 i f ((i −1)==ZONE_MOVABLE)
17 arch_zone_lowest_poss ible_pfn [i] =
18 arch_zone_highest_poss ib le_pfn [i −2];
19 e l s e
20 arch_zone_lowest_poss ible_pfn [i] =
21 arch_zone_highest_poss ib le_pfn [i −1];
22 # e l s e
23 arch_zone_lowest_poss ible_pfn [i] =
24 arch_zone_highest_poss ib le_pfn [i −1];
25 # endi f
26 arch_zone_highest_poss ib le_pfn [i] =
27 max(max_zone_pfn [i] , arch_zone_lowest_poss ible_pfn [i]) ;
28 pr_ info (" zone:%d max_zone_pfn:% lu \n" , i , max_zone_pfn [i]) ;
29 pr_ info (" zone:%d arch_zone_lowest_poss ible_pfn%lu \n" , i ,
30 arch_zone_lowest_poss ible_pfn [i]) ;
31 }

This final operation completes the creation and configuration of an approximate
memory zone on 32-bits x86 architectures. As for the other memory zones, the ap-
proximate one now has its own physical memory range and it can be identified in
the kernel by the string name or by the corresponding constant zone type. As first
test, after a system boot of the modified kernel, it is possible to examine the out-
put of the kernel ring buffer (Fig. 3.7) in order to check RAM memory mappings
and zone ranges for x86. These logs come from the dmesg command and show that
ZONE_APPROXIMATE has been properly created: the new zone is the last memory
zone, after ZONE_DMA and ZONE_NORMAL, and it is mapped in physical memory
at range 0x1bf8a000-0x37f13fff.

More information concerning ZONE_APPROXIMATE can be obtained through
the cat /proc/zoneinfo command (Fig. 3.8).

For each zone, the memory node (in Fig. 3.8 only node 0 is present because the
target architecture is not NUMA) and some statistics concerning memory zone pages
are reported. On zone approximate 114570 pages are present; considering that every
page on a 32-bit x86 architecture has a size of 4K, it is possible to obtain another
confirmation that 440 MB of RAM has been assigned to the approximate zone.

ZONE_APPROXIMATE on ARM architectures

As said previously, also for ARM architectures ZONE_HIGHMEM has been dis-
abled.

3.3. Development of approximate memory management in Linux Kernel 57

cat /proc/dmesg
...
895MB LOWMEM available
mapped low ram: 0 - 37f14000
low ram: 0 - 37f14000
Zone ranges:
DMA [mem 0x0000000000001000-
0x0000000000ffffff]
Normal [mem 0x0000000001000000-
0x000000001bf89fff]
Approximate [mem
0x000000001bf8a000-
0x0000000037f13fff]
...

FIGURE 3.7: Output of dmesg command

cat /proc/zoneinfo
...
Node 0, zone Approximate
pages free 113570
spanned 114570
present 114570
nr_dirtied 0
nr_written 0
...

FIGURE 3.8: Output of cat /proc/zoneinfo command

Mapping between memory zones and physical address ranges is done in the
<arch/arm/mm/init.c> source file. In particular, in the __init zone_sizes_init func-
tion the array max_zone_pfns of MAX_NR_ZONES elements is defined; each element
of the array is indexed by the zone constant identifier and stores the upper bound of
the corresponding memory zone. The lower bound of a zone corresponds to the up-
per bound of the previous zone, while for the first zone it corresponds to the memory
start address of the specific ARM architecture.

1 void _ _ i n i t z o n e _ s i z e s _ i n i t (void)
2 {
3 unsigned long max_zone_pfns [MAX_NR_ZONES] ;
4

5 memset (max_zone_pfns , 0 , s i z e o f (max_zone_pfns)) ;
6

7 # i f d e f CONFIG_ZONE_DMA
8 max_zone_pfns [ZONE_DMA] = min (MAX_DMA_PFN, max_low_pfn) ;
9 # endi f

10 # i f d e f CONFIG_ZONE_DMA32
11 max_zone_pfns [ZONE_DMA32] = min (MAX_DMA32_PFN, max_low_pfn) ;
12 # endi f
13 max_zone_pfns [ZONE_NORMAL] = max_approx_pfn ;
14

15 # i f d e f CONFIG_ZONE_APPROXIMATE
16 max_zone_pfns [ZONE_APPROXIMATE] = max_low_pfn ;
17 # endi f
18

58 Chapter 3. Approximate Memory Support in Linux OS

19 # i f d e f CONFIG_HIGHMEM
20 max_zone_pfns [ZONE_HIGHMEM] = max_pfn ;
21 # endi f

In order to implement the mapping of ZONE_APPROXIMATE, the max_approx_pfn
variable has been introduced; this one corresponds to the end of ZONE_NORMAL
and so to the start address of the approximate memory region.

• DEVICE TREE FOR APPROXIMATE MEMORY

On ARM architectures, for all new SoCs from 2012, it has become mandatory to
describe the hardware components of the system in a data structure called device tree.
In particular, during the boot process, a ’Device Tree Blob’ (DTB) file is loaded into
memory by the bootloader and passed to the Linux kernel. This DTB file is a tree data
structure containing nodes that describe the system hardware layout to the Linux
kernel, allowing for platform-specific code to be moved out of kernel sources and
replaced with generic code that can parse the DTB and configure the entire system
as required (Fig. 3.9).

FIGURE 3.9: Device tree structure

For ARM architectures all device tree sources are located at the path <arch/ar-
m/boot/dts/...>. Each physical device is indeed described inside the device tree,
in particular it is represented as a node and all its properties are defined under that
node.

The /memory node provides information about addresses and size of physical
memory. This node is usually filled or updated by the bootloader, depending on the
actual memory configuration of the given platform. The memory layout is therefore
described by this node, which presents two attributes:

1. baseaddrX that indicates the base address of the defined memory bank;

2. sizeX that corresponds to the size of the defined memory bank.

In order to support approximate memory management in ARM architectures, a
new DTS file (from which the DTB is generated) has been defined; this file is specific
for each ARM platform and a special node for approximate memory has been added
(Fig.3.10). In particular, this node called approx_mem, collects the information about
the physical address range and the size of approximate memory.

3.3. Development of approximate memory management in Linux Kernel 59

approx_mem {
device_type = memory reg =
<(baseaddr1) (size1)
(baseaddr2) (size2)
...
(baseaddrN) (sizeN)>;
};

FIGURE 3.10: Example of approximate memory node in DTB file

• ARM INTERRUPT VECTORS

Another critical step for supporting adding the approximate memory region on
ARM architecture is its interference with the initialization of ARM interrupt vec-
tors, carried out very early in ARM system boot through the devicemaps_init() routine
(source file <arch/arm/mm/mmu.c>).

In order to boot the primary core, the kernel allocates a single 4KB page as vec-
tor page, mapping it to the location of ARM exception vectors at virtual address
0xFFFF0000 or 0x00000000. When this step is completed, the trap_init function copies
the exception vector table, exception stubs, and helpers from entry-arm.S into the
vector page.

In particular, the allocation of the ARM vectors page is performed by the early_alloc
function allocator. This allocator cannot exclude approximate memory, since it does
not allow to specify the memory zone where the allocation should be satisfied. In
order to ensure that the vectors page is never allocated in approximate memory, the
implementation of a new early_alloc is required. The new early_alloc uses the mem-
block interface (this topic will be discussed in section 3.3.3) and it allows to explicitly
set an address limit (approx_limit variable) for the allocation request, in order to ex-
clude approximate memory. This approx_limit, which corresponds to a physical
address, must be consistent with the start of approximate memory indicated in the
DTS file.

1 # i f d e f CONFIG_ZONE_APPROXIMATE
2 s t a t i c void _ _ i n i t ∗ e a r l y _ a l l o c _ a l i g n e d (unsigned long sz , unsigned long

a l i g n)
3 {
4 void ∗ptr = __va (memblock_alloc_base (sz , a l ign , approx_l imit)) ;
5 memset (ptr , 0 , sz) ;
6 re turn ptr ;
7 }

ARM Versatile Express (Vexpress) Cortex A9 has been chosen as the architecture
for performing tests. These tests were run on the emulation platform AppropinQuo
(see Chapter 4).

Fig. 3.11 shows the memory map of Vexpress Cortex A9, RAM memory can be
present from 0x60000000 to 0x80000000 and from 0x84000000 to 0xA000000. For the
tests it was chosen to a configuration of 128MB+128MB of RAM: the first 128MB
part is exact, starting from address 0x60000000 to address 0x67FFFFFF and the sec-
ond 128MB part, from address 0x68000000 to 0x6FFFFFFF, corresponds to approx-
imate memory. This memory map was used to configure the emulator and also
to set the corresponding kernel dts file. Fig. 3.12 (left) shows the statistics for the
ZONE_NORMAL region, obtained through the zoneinfo system command. The re-
gion contains exact memory and it is composed of 32768 pages; considering that
every page in the ARM architecture is 4KB large, it confirms the availability of

60 Chapter 3. Approximate Memory Support in Linux OS

FIGURE 3.11: Vexpress Cortex A9 board memory map (extract)

128MB of exact memory. The start_pfn number indicates the start address of ex-
act memory in physical pages (393219× 4096 = 0x60000000). Fig. 3.12 (right) shows
the same statistics for the ZONE_APPROXIMATE. The approximate area has 32768
pages; again this confirms that the approximate region area is 128MB large. The
start_pfn number indicates the start address of approximate at address 0x68000000
(425984× 4096 = 0x68000000).

cat /proc/zoneinfo
Node 0, zone Normal
pages free 28036
spanned 32768
present 32768
min 167
low 208
high 250
scanned 0
...
start_pfn: 393216

cat /proc/zoneinfo
...
Node 0, zone Approximate
pages free 32768
spanned 32768
present 32768
min 180
low 225
high 270
scanned 0
...
start_pfn: 425984

FIGURE 3.12: On left: kernel boot logs. On right: zone_approximate
statistics

ZONE_APPROXIMATE on RISC-V 32-bit architectures

The RISC-V processor support has been introduced in Linux kernel starting from
version 4.15. The mainline kernel supports the VIRT-IO board and the HiFive Un-
leashed board, which features the SiFive Freedom U540 SoC, 8GB DDR4, 32MB quad
SPI, and micro-SD card.

The mapping between memory zones and physical ranges is done in the <arch/riscv/m-
m/init.c> source file. In particular, as for ARM architectures, the __init zone_sizes_init
function defines the array max_zone_pfns of MAX_NR_ZONES elements. Again,
each element of the array is indexed by the zone constant identifier and associated
to a pfn variable, storing the upper bound of the corresponding memory zone. The
lower bound of the zone corresponds to the upper bound of the previous zone, while

3.3. Development of approximate memory management in Linux Kernel 61

for the first zone it is defined as the DRAM start address which is, for RISC-V boards,
the address 0x8000000.

1 s t a t i c void _ _ i n i t z o n e _ s i z e s _ i n i t (void)
2 {
3 unsigned long max_zone_pfns [MAX_NR_ZONES] = { 0 , } ;
4

5 # i f d e f CONFIG_ZONE_DMA32
6 max_zone_pfns [ZONE_DMA32] = PFN_DOWN(min (4UL ∗ SZ_1G , max_low_pfn)) ;
7 # endi f
8 # i f d e f CONFIG_ZONE_APPROXIMATE
9 max_low_pfn = max_low_pfn / 4096 ;

10 # def ine s t a r t _ p f n _ n o r m al _ r i s c v 0 x80000
11 # def ine max_normal_riscv (((max_low_pfn − s t a r t _ p f n _ n o r m al _ r i s c v) /2) +

s t a r t _ p f n _ n o r ma l _ r i s c v)
12 max_zone_pfns [ZONE_NORMAL] = max_normal_riscv ;
13 max_zone_pfns [ZONE_APPROXIMATE] = max_low_pfn ;
14 # e l s e
15 max_zone_pfns [ZONE_NORMAL] = max_low_pfn ;
16 # endi f
17

18 f r e e _ a r e a _ i n i t _ n o d e s (max_zone_pfns) ;
19 }

On RISC-V 32-bits architecture, only the ZONE_NORMAL is enabled by de-
fault; ZONE_DMA32 instead should be enabled, as mentioned in the kernel config-
uration files, only on RISC-V 64-bit architectures. In order add ZONE_APPROXIMATE
to the memory map, the start_pfn_normal_riscv variable has been introduced; this
variable corresponds to the offset, with respect to the DRAM start address, from
which the approximate memory should be mapped. The boot messages, showing
the RISC-V memory mapping, are illustrated in Fig. 3.13.

Zone ranges: Normal [mem 0x0000000081000000-0x0000000087ffffff]
Approximate [mem 0x0000000088000000-0x000000008fffffff]
Movable zone start for each node
Early memory node ranges
node 0: [mem 0x0000000080200000-0x000000008fffffff]

FIGURE 3.13: RISC-V Boot messages

3.3.3 Approximate Memory and Early Boot Allocators

Linux early boot allocators are an important function of the kernel and are used dur-
ing the boot process in order to allocate data structures in the initial phase of system
startup, before the main allocators are instantiated. For ARM architectures, the ini-
tialization of all physical zones, including ZONE_APPROXIMATE, takes place in
bootmem_init function. This routine determines the limits of all available physical
memory (PFN limits) and sets up the early memory management subsystem. After
this process, pages allocated by the boot allocator are freed and physical zone limits,
including ZONE_APPROXIMATE, are determined.

At start-up Linux kernel gains access to all physical memory available in the sys-
tem. Before memory zone allocator is set up and running, it can be necessary to
preallocate some initial memory areas for kernel data structures and system-wide
use, taking them from available RAM. To address this requirement, a special allo-
cator called bootmem allocator or memblock allocator, is used. The initialization of this
early allocator is architecture dependent and it is set up in setup_arch routine (Fig.
3.14).

62 Chapter 3. Approximate Memory Support in Linux OS

FIGURE 3.14: Overview of memory allocators. Source:[Liu, 2010]

Once the boot memory management is available, it can allocate areas from low
memory (memory directly mapped in Kernel space), with page granularity. To keep
track of reserved and free pages, the bootmem allocator uses a bitmap: each bit
in this bitmap represents one page and its index in the bitmap represents the page
frame number. In particular a value of ‘0’ in any bit in the bitmap indicates that
the corresponding page is free while a value of ’1’ indicates that the page is in use.
This bitmap, representing all pages available to the bootmem allocator, is created
by init_bootmem_core(); in particular this function takes as input parameter the ad-
dress beyond end of kernel to make sure it doesn’t overwrite kernel text or data.
This bitmap is used to manage only low memory. Later in the startup code, the boot-
mem allocator bitmap is used to determine which memory pages are in use. The
corresponding page structures are marked as reserved. After paging is enabled, the
bootmem allocator is not needed and so the allocator bitmap is freed. The early al-
locator is used only at boot time to reserve and to allocate pages for internal kernel
use. For example, page tables are built from this pool of physical memory pages,
allowing the MMU to be turned on and Linux kernel to switch to virtual memory
management.

The whole mechanism requires that the kernel must be aware of approximate
memory in the early boot phases: approximate memory must be visible in order
to properly instantiate paging and main allocators, but must not be used for kernel
data structures, which contains critical data that cannot be sukject to any form of
corruption. In order to exclude physical memory pages mapped as approximate
from early allocation, the algorithm of the memblock interface has been modified. A
memblock is a structure that stores information of physical memory regions reserved
by Linux kernel during the early bootstrap stage. In particular, memblock manages
two regions: memblock.memory and memblock.reserved. All available physical memory
is added to the memblock.memory region and each time data structures are allocated,
their portion of memory is added to the memblock.reserved region.

The core function of this early allocation is memblock_virt_alloc_internal, which
then calls memblock_find_in_range_node (Fig.3.16).

This routine receives as parameters, among others, the requested memory size
and the lower and upper bounds of the physical region where the memory block
will be allocated. At first, the allocation starts from the lower address bound and the
following allocation requests will proceed to lowest available address starting from

3.3. Development of approximate memory management in Linux Kernel 63

FIGURE 3.15: Memblock memory allocation

FIGURE 3.16: Memblock allocator function tree

the lower bound. The upper bound instead corresponds to the end of the candidate
physical memory range and, if it coincides with the MEMBLOCK_ALLOC_ACCESSIBLE,
it is set to the value of the global parameter memblock_current_limit, which is set to
the end of low memory region, forcing early boot allocation within the low memory
region, that is the only region the kernel can directly access.

In order to include and support the presence of approximate memory, the al-
gorithm has been modified for computing memblock_current_limit (Fig.3.17), forcing
it to be always below the lower limit of the approximate memory physical region.
In this way it is ensured that the bootmem allocator gets free pages only from exact
physical memory.

In order to check the correctness of the new code, it is necessary to analyze the
messages produced by kernel during the boot phase. Considering the zoneinfo
messages analyzed before, particular importance comes from information regard-
ing ‘present’ and ‘managed’ lines. The latter corresponds to pages managed by the
buddy system (the main allocator); they are computed as the number of present
pages minus the number of reserved pages, including those allocated by the boot-
mem allocator.

managed pages = present pages - reserved pages

64 Chapter 3. Approximate Memory Support in Linux OS

FIGURE 3.17: Memblock current limit on architectures with
ZONE_APPROXIMATE

Fig. 3.18 shows, for example, the zoneinfo messages for ARM Vexpress archi-
tecture: since the number of present pages always matches the number of managed
pages, during the boot phase no pages belonging to the zone_approximate were al-
located.

cat /proc/zoneinfo
...
Node 0, zone Approximate
pages free 32768
min 180
low 225
high 270
scanned 0
spanned 32768
present 32768
managed 32768
...

FIGURE 3.18: Output of cat /proc/zoneinfo command

3.4 Allocation in ZONE_APPROXIMATE

In this section the implementation of a custom allocator to dynamically allocate non-
critical data on ZONE_APPROXIMATE is described.

3.4.1 Approximate GFP Flags

All internal functions provided by the kernel to allocate memory pages get a mask of
gfp_flags as parameter, which allows to drive the behavior of the allocator. In order to
be able to specify ZONE_APPROXIMATE as favorite zone for allocation, it is necessary
to define a new gfp_flag, that we called GFP_APPROXIMATE: when this flag is set, the
kernel tries to allocate memory using ZONE_APPROXIMATE pages.

1 //Pla in i n t e g e r GFP bitmasks . Do not use t h i s d i r e c t l y .
2 # def ine ___GFP_DMA 0x01u
3 # def ine ___GFP_HIGHMEM 0x02u
4 # def ine ___GFP_DMA32 0x04u
5 # def ine ___GFP_MOVABLE 0x08u
6 # def ine ___GFP_WAIT 0x10u
7 # def ine ___GFP_HIGH 0x20u
8 # def ine ___GFP_IO 0x40u
9 # def ine ___GFP_FS 0x80u

3.4. Allocation in ZONE_APPROXIMATE 65

10 # def ine ___GFP_COLD 0x100u
11 # def ine ___GFP_NOWARN 0x200u
12 # def ine ___GFP_REPEAT 0x400u
13 # def ine ___GFP_NOFAIL 0x800u
14 # def ine ___GFP_NORETRY 0x1000u
15 # def ine ___GFP_MEMALLOC 0x2000u
16 # def ine ___GFP_COMP 0x4000u
17 # def ine ___GFP_ZERO 0x8000u
18 # def ine ___GFP_NOMEMALLOC 0x10000u
19 # def ine ___GFP_HARDWALL 0x20000u
20 # def ine ___GFP_THISNODE 0x40000u
21 # def ine ___GFP_RECLAIMABLE 0x80000u
22 # def ine ___GFP_NOACCOUNT 0 x100000u
23 # def ine ___GFP_NOTRACK 0 x200000u
24 # def ine ___GFP_NO_KSWAPD 0 x400000u
25 # def ine ___GFP_OTHER_NODE 0 x800000u
26 # def ine ___GFP_WRITE 0 x1000000u
27 # i f d e f CONFIG_ZONE_APPROXIMATE
28 # def ine ___GFP_APPROXIMATE 0 x2000000u
29 # endi f

As shown in the text box, at first a ___GFP_APPROXIMATE bit-mask, corre-
sponding to the integer value 0x2000000u, is defined. This mask should not be called
directly by the kernel code and should not be used in any conditional constructs.
Consequently, within the gfp.h file, a bitwise __GFP_APPROXIMATE is defined by
casting with a type gfp_t the bitmask ___GFP_APPROXIMATE defined previously.

1 # def ine __GFP_DMA ((_ _ f orc e gfp_t)___GFP_DMA)
2 # def ine __GFP_HIGHMEM ((_ _ f orc e gfp_t)___GFP_HIGHMEM)
3 # def ine __GFP_DMA32 ((_ _ f orc e gfp_t)___GFP_DMA32)
4 # def ine __GFP_MOVABLE ((_ _ f orc e gfp_t)___GFP_MOVABLE) /∗ Page i s
5 movable ∗/
6 # i f d e f CONFIG_ZONE_APPROXIMATE
7 # def ine __GFP_APPROXIMATE ((__ f orc e gfp_t)___GFP_APPROXIMATE)
8 # endi f
9 # def ine GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)

Finally, starting from __GFP_APPROXIMATE, the flag GFP_APPROXIMATE is
defined. This zone modifier, as anticipated, is used to select the approximate area as
target for the allocation request.

1 # i f d e f CONFIG_ZONE_APPROXIMATE
2 # def ine GFP_APPROXIMATE __GFP_APPROXIMATE
3 # endi f

The introduction of the GFP bitmask for the approximate zone involves a redefi-
nition of the value of __GFP_BITS_SHIFT, a constant required to define the __GFP_BITS_MASK,
used universally in kernel source files.

1 # i f d e f CONFIG_ZONE_APPROXIMATE
2 # def ine __GFP_BITS_SHIFT 26
3 # e l s e
4 # def ine __GFP_BITS_SHIFT 25 /∗ Room f o r N __GFP_FOO b i t s ∗/
5 # endi f
6 # def ine __GFP_BITS_MASK ((_ _ f orc e gfp_t) ((1 << __GFP_BITS_SHIFT) − 1))

As the bitmask __GFP_APPROXIMATE corresponds the bit 25 in a 32-bit word,
if approximate memory is enabled then the GFP_BITS_SHIFT should be set to 26. As
mentioned above, the GFP flags are always passed as parameter to the functions that
manage page level allocation; in particular all the kernel APIs concerning the alloca-
tion mechanism propagate these flags up to the core function alloc_pages_nodemask,
defined in <linux/mm/page_alloc.c>.

66 Chapter 3. Approximate Memory Support in Linux OS

1 __alloc_pages_nodemask (gfp_t gfp_mask , unsigned i n t order ,
2 s t r u c t z o n e l i s t ∗ z o n e l i s t , nodemask_t ∗nodemask)
3 {
4 s t r u c t zoneref ∗prefer red_zonere f ;
5 s t r u c t page ∗page = NULL;
6 unsigned i n t cpuset_mems_cookie ;
7 i n t a l l o c _ f l a g s = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR ;
8 gfp_t alloc_mask ; //The gfp_t t h a t was a c t u a l l y used f o r a l l o c a t i o n
9 s t r u c t a l l o c _ c o n t e x t ac = {

10 . high_zoneidx = gfp_zone (gfp_mask) ,
11 . nodemask = nodemask ,
12 . migratetype = gfpf lags_ to_migra te type (gfp_mask) ,
13 } ;
14 [. . .]

This function performs the initialization of the alloc_context type struct ac, which
stores the main information for the management of the allocation mechanism. In
particular, the field high_zoneidx, corresponding to the zone chosen to satisfy the allo-
cation request, is initialized using the return value of the gfp_zone function. The latter
in fact, depending on thegfp_bit_mask that receives as a parameter, identify the mem-
ory zone where the allocation should be performed. In order to select the approxi-
mate zone, the implementation of this function, defined in <include/linux/gfp.h>,
must be modified.

1 s t a t i c i n l i n e enum zone_type gfp_zone (gfp_t f l a g s)
2 {
3 enum zone_type z ;
4 i f ((f l a g s & GFP_APPROXIMATE) ==0) {
5 i n t b i t = (_ _ fo rce i n t) (f l a g s & GFP_ZONEMASK) ;
6 z = (GFP_ZONE_TABLE >> (b i t ∗ ZONES_SHIFT)) &
7 ((1 << ZONES_SHIFT) − 1) ;
8 VM_BUG_ON((GFP_ZONE_BAD >> b i t) & 1) ;
9 }

10 e l s e
11 z= ZONE_APPROXIMATE;
12 re turn z ;
13 }

This function checks the result of the AND operation between the gfp flag flags,
received as parameter, and the GFP_APPROXIMATE flag: if the result is 0, the
requested zone is not the approximate one and the identification of the zone for
allocation is done by reading two bits in the GFP_ZONE_TABLE, after scanning a
number of positions equal to the product between the ZONES_SHIFT and a constant
derived from flags. Otherwise, if the resulting value is 1, then the zone requested for
the allocation can be only ZONE_APPROXIMATE. This mechanism, based on the
definition of the GFP_APPROXIMATE flag, allows to allocate pages in approximate
memory only on request: if the Kernel APIs which manage the allocation requests
do not receive the GFP_APPROXIMATE flag, the zone approximate will never be
selected.

Alloc Fair policy

In order to schedule the allocation requests, Linux defaults to the fair allocation policy.
According to this policy, kernel tries to balance allocation requests by interleaving
them between enabled zones, avoiding that a zone is saturated before other zones.
Leaving the original policy, requests for ZONE_APPROXIMATE memory could be di-
verted to ZONE_NORMAL or ZONE_DMA even before ZONE_APPROXIMATE is full,
resulting in sub-optimal allocation strategy. In order to properly handle allocation

3.4. Allocation in ZONE_APPROXIMATE 67

requests for ZONE_APPROXIMATE, kernel allocation fair policy should be disabled
for ZONE_APPROXIMATE (i.e. when GFP_APPROXIMATE flag is set).

1 i n t a l l o c _ f l a g s = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR ;
2 gfp_t alloc_mask ;
3 s t r u c t a l l o c _ c o n t e x t ac = {
4 . high_zoneidx = gfp_zone (gfp_mask) ,
5 . nodemask = nodemask ,
6 . migratetype = gfpf lags_ to_migra te type (gfp_mask) ,
7 } ;
8 i f ((gfp_mask & GFP_APPROXIMATE) != 0)
9 a l l o c _ f l a g s&= ~ALLOC_FAIR ;

This point can be accomplished in the alloc_page_nodemask function, when the
allocation request is processed. In particular, as shown in the box above, the mask
alloc_flags is modified by disabling the corresponding ALLOC_FAIR flag, responsi-
ble for the activation of the policy. The definition of GFP_APPROXIMATE flag and
the changes to the fallback mechanism and fair allocation policy allow to block all
allocations of ZONE_APPROXIMATE pages apart from explicit requests: i.e. if the ker-
nel allocator routines do not get GFP_APPROXIMATE flag explicitly set as parameter,
ZONE_APPROXIMATE will never be selected as memory zone to satisfy the allocation
request.

3.4.2 User level approximate memory allocation

Physical pages within ZONE_APPROXIMATE can be allocated only on request,
meaning that the Linux kernel can select the ZONE_APPROXIMATE to satisfy the
allocation request only when the GFP_APPROXIMATE flag is set (cfr 3.4.1). Con-
sequently, in order to request pages belonging to the approximate memory zone, it
is necessary to find a system call that takes a GFP flag of type zone modifier as input
parameter and that propagates this flag into the allocation API down to the page al-
locator core function (alloc_pages_nodemask). There are two functions inside the ker-
nel that allows to allocate memory specifying directly a gfp flag: the kmalloc function
and the vmalloc function. Since pages allocated by kmalloc are contiguous not only in
the virtual address space but also in the physical address space (see Section 3.2.4), an
allocation mechanism based on vmalloc, which allows to obtain pages that are con-
tiguous only in the virtual address space, has been implemented. Moreover, as this
function can be only directly invoked within the kernel source files, it is necessary
to call it in a new kernel space routine, which then could be exported to user space
level allowing user space applications to request pages in ZONE_APPROXIMATE. As
for the allocation, a similar mechanism must be implemented to release pages allo-
cated dynamically in the approximate areas.

Summing up, in order to support memory allocation in ZONE_APPROXIMATE
at user program level, the following items should be addressed:

1. Implementation, within the kernel, of a memory allocation system call based
on vmalloc in order to specify, through the flag GFP_APPROXIMATE, that the
allocation must take place in the approximate memory zone;

2. encapsulation of the allocation mechanism in a library function that can be
invoked by user space applications;

3. implementation, within the kernel, of a deallocation system call based on vfree
in order to release the approximate pages allocated with the function described
in 1;

68 Chapter 3. Approximate Memory Support in Linux OS

4. encapsulation of the de-allocation mechanism in a library function that can be
invoked by user space applications.

3.4.3 Implementation of the device /dev/approxmem

As said before, memory pages allocated by vmalloc are mapped into kernel virtual
addresses, which do not cover memory valid for user-space application. The most
efficient way to overcome this limitation is to remap the virtual addresses returned
by vmalloc in the address space of the user mode process. To address this, the al-
location mechanism for approximate memory has been implemented inside a new
kernel device called /dev/approxmem, implemented as a kernel module. The device
will keep an image of all the approximate memory requests in the system and at the
same time the same device (Fig. 3.19) will be used to exchange information between
the user space application and the kernel module (i.e. approxmem.ko) running in ker-
nel space. The /dev/approxmem device will export system calls to allocate and free
approximate memory, implementing point 1) and 3) of the previous list.

FIGURE 3.19: Device driver interaction

By managing the approximate memory as a device, it is possible to define ad-
ditional operations (apart from alloc and free requests) as the mmap, which will be
used to remap the virtual addresses returned by the vmalloc in user space addresses.
The steps required to implement the /dev/approxmem are shown below:

1. init and exit functions
Each device driver has two basic entry points: an init function for kernel mod-
ule initialization, and an exit function responsible for freeing the system re-
sources required by the driver. Concerning the former, for built-in drivers, the
ones automatically loaded by the kernel at boot time, the init is used only at
initialization time and it can be later discarded, de-allocating the memory area
reserved for it. This is not true for loadable modules, which are not automati-
cally loaded by the kernel but they can be loaded by the user at run-time.

1 s t a t i c i n t _ _ i n i t approxmem_init (void)
2

Concerning the latter in particular, the init function is invoked through the
insmod or modprob command. This function performs the following operations:

• Major number dynamic allocation. Traditionally the major number identi-
fies the driver associated with the device. Modern Linux kernels allow
more drivers to share the same major number even if most of the devices

3.4. Allocation in ZONE_APPROXIMATE 69

are structured according to the principle major one driver. The driver for
approxmem device is included in the second category. Several device ma-
jor numbers are statically assigned to the most common devices (the list
of these devices, and the corresponding kernel source tree, can be found
in the <documentation/devices.txt> file). As a result, the major number of
the device approxmem could be added directly to this file, choosing a
number that has not yet been assigned to another device. This strategy
is usually recommended when the device will be used only by the user
who created it because, if the driver is shared by more users, conflicts
could arise from choosing a random number. The major number for the
device approxmem is then created dynamically, using the function regis-
ter_chrdev(unsigned int major, const char *name, const struct file operations *
fops). In particular if the first parameter is 0, the function allocates dynam-
ically the major number and returns the allocated number.

1 approxmem_major = r e g i s t e r _ c h r d e v (0 , "approxmem" , &
approxmem_fops) ;

2

There is also a minor number, used by the kernel to identify the specific
device; for the approxmem it has been statically set to 0. Assuming that
the major number 248 has be assigned to the /dev/approxmem, the device
is identified inside the kernel by the pair of numbers (248,0).

• Class Device Registration Each device class defines a type of device, spec-
ifying a set of semantics and a programming interface to which the de-
vices, belonging to this class, must be compliant. A device driver rep-
resents indeed the implementation of this programming interface for a
given device on a given bus. To register the class, the function create_class
is used.

1 approxmem_major = r e g i s t e r _ c h r d e v (0 , "approxmem" , &
approxmem_fops) ;

2

• Device Registration. The last step is the device registration. This operation
is performed calling the function struct device * device_create (struct class
* class, struct device * parent, dev_t devt, void * drvdata, const char * fmt); the
latter creates and register the device through the virtual Linux filesystem
sysfs, which exports the device driver from kernel space to user space.

1 approxmem_device = d e v i c e _ c r e a t e (approxmem_class , NULL,
MKDEV(

2 approxmem_major , 0) , NULL, "
approxmem") ;

3

This function returns the pointer to the device struct in sysfs and creates
the dev file for the approxmem device. If the initialization was successful,
the messages shown in Fig. 3.20 can be obtained using the dmsg com-
mand.

The exit function is executed when the kernel unloads the module using the
rmmod command.

1 s t a t i c void _ _ e x i t approxmem_exit (void)
2

70 Chapter 3. Approximate Memory Support in Linux OS

This function releases the resources allocated previously performing, in re-
verse order, the operations complementary to those carried out by the initial-
ization function. In particular, the steps that must be executed are:

• device removal:
1 device_destroy (approxmem_class , MKDEV(approxmem_major , 0)) ;
2

• device class unregistration:
1 c l a s s _ u n r e g i s t e r (approxmem_class) ;
2

• device class removal
1 c l a s s _ d e s t r o y (approxmem_class) ;
2

• major number unregistration
1 unregis ter_chrdev (approxmem_major , "approxmem") ;
2

2. file_operations struct
All devices are represented inside the Linux Kernel by a file_operations struct,
used to manage all the operations that a driver can perform on the device. The
struct, defined in <linux/fs.h>, is an array of pointers to callback functions: each
field of the structure corresponds to the entry point of a function defined by the
driver to perform a specific operation. The aim of these operations is mainly
to invoke system calls (this is why these functions are called open, mmap, read,
write .. etc.). Comparing it with objects oriented programming languages, it is
possible to consider the device file_operations as an object and the entry points
defined in the struct, as the methods that operate on it. For the device driver
approxmem the struct approxmem_fops has been defined as shown in the box
below.

1 s t a t i c s t r u c t f i l e _ o p e r a t i o n s approxmem_fops ={
2 . open = approxmem_open ,
3 .mmap = approxmem_mmap ,
4 . u n l o c k e d _ i o c t l = approxmem_ioctl ,
5 . r e l e a s e = approxmem_release ,
6 } ;

Operations defined for approxmem device are:

• approxmem_open
1 s t a t i c i n t approxmem_open (s t r u c t inode ∗ inodep , s t r u c t f i l e
2 ∗ f i l e p)

This function is invoked every time the device is opened. The parame-
ters received by this function are a pointer to the inode struct inodep and
a pointer to the struct file filep. Both the structures are defined in <lin-
ux/fs.h>; in particular the struct inode is used internally by the kernel to
represent a device file on the disk while the struct file represents the de-
scriptor of an open file. It is possible to have more struct files representing
several descriptors opened on a single file, but these refer all to a single
structure inode. The latter contains a great deal of information on the file;

3.4. Allocation in ZONE_APPROXIMATE 71

there are two fields in particular that are of interest to the driver: the dev_t
field i_rdev, which contains the actual device number, and the struct field
cdev * i_CDEV, corresponding to the structure used by the kernel to repre-
sent char devices. The struct file instead represents an open file, it is cre-
ated by the kernel when the open function is invoked and then it is passed
to every function that operates on it. When all instances of the files are
closed, the kernel releases the structure. The approxmem_open prints only
the message ’Ready for approximate memory allocation’, indicating that it is
possible to proceed with the allocation in the approximate zone.

• approxmem_mmap
1 s t a t i c i n t approxmem_mmap(s t r u c t f i l e ∗ f i l p , s t r u c t
2 vm_area_struct ∗vma)

The scope of the approxmem_mmap function is to associate a range of user-
space addresses to the device, making sure that when an application reads
or writes at these addresses the device is accessed. This function is called
every time the system call mmap is invoked on the device and it receives
as parameters a pointer to a struct file filp and a pointer to a struct vma
(at user space level one of the parameters received by the mmap is a file
descriptor, all the devices in Linux are in fact accessed as files). Specifi-
cally, the struct file filp, as said before, represents the open file associated
with the device while the struct vma contains the information concerning
the range of virtual addresses used to access the device. The first opera-
tion performed in the approxmem_mmap function is to call vmalloc, passing
the GFP_APPROXIMATE and GFP_USER flags, indicating that the allo-
cation must take place in the ZONE_APPROXIMATE and that the allocated
pages must be accessible to a user-space application. After the allocation
performed by vmalloc, the approxmem_mmap needs to remap, building a
new page table, the addresses returned by vmalloc in the range of the
user-space addresses associated to the approxmem device. This operation
is performed through the remap_pfn_range function and it is repeated until
all the requested memory has been allocated.

1 s t a t i c i n t approxmem_mmap(s t r u c t f i l e ∗ f i l p , s t r u c t
vm_area_struct ∗vma)

2 {
3 s i z e _ t s i z e = vma−>vm_end − vma−>vm_start ;
4 unsigned long s t a r t = vma−>vm_start ;
5 unsigned long pfn ;
6 unsigned long r e t ;
7 void ∗ vmalloc_app ;
8

9 vmalloc_addr=__vmalloc (s ize ,GFP_APPROXIMATE | GFP_USER ,
PAGE_SHARED) ;

10 pr intk (" addr : %x\n" , (unsigned i n t) vmalloc_addr) ;
11 vmalloc_app=vmalloc_addr ;
12 i f (vmalloc_app != NULL) {
13

14 while (s ize >0) {
15 pfn=vmalloc_to_pfn (vmalloc_app) ;
16 i f ((r e t =remap_pfn_range (vma, s t a r t , pfn , PAGE_SIZE ,

PAGE_SHARED)) <0) {
17 re turn r e t ;
18 }
19 s t a r t += PAGE_SIZE ;
20 vmalloc_app+=PAGE_SIZE ;

72 Chapter 3. Approximate Memory Support in Linux OS

21 s ize−=PAGE_SIZE ;
22 }
23

24 re turn 0 ;
25 }
26

27 e l s e
28 re turn −ENOMEM;
29 }

If the value returned by vmalloc is NULL, the operation of remapping
does not proceed and an error message (corresponding to the value of
-ENOMEM) is printed.

• approxmem_ioctl
1 s t a t i c long approxmem_ioctl (s t r u c t f i l e ∗ f i l e p , unsigned i n t cmd,
2 unsigned long arg)

Several device drivers need to perform generic control operations on the
device they are managing and these operations can be supported through
the ioctl function (input/output control), which then invokes the ioctl sys-
tem call. The ioctl function is usually called with three parameters: the
pointer to the struct file filp, to identify the device file on which the op-
eration needs to be performed, an unsigned int cmd, corresponding to
the ioctl number that indicates the command, and finally a third optional
parameter arg of type unsigned long (in this way it can be converted in
any type of data with a cast). The approxmem_ioctl function implements
a switch which selects the correct behavior that the device driver approx-
mem has to perform, depending on the value of the cmd parameter. If cmd
is 0, the operation to be performed is the APPROXFREE_IOCTL; in this
case the parameter arg corresponds to a pointer to the memory address
on which the vfree is called, releasing all the approximate pages allocated
previously. If cmd is 1, the operation to be performed is the APPROX-
GETADDREE_IOCTL; in this case the arg parameter is a long used to
store the value returned by vmalloc. In particular this data will be used by
the user space library function approx_malloc (see Section 3.4.4) to build a
linked list in which the virtual address returned by vmalloc and the corre-
sponding user space address returned by the mmap will be progressively
stored.

• approxmem_release
1 s t a t i c i n t approxmem_release (s t r u c t inode ∗ inodep , s t r u c t f i l e ∗
2 f i l e p)

This function has the opposite role of the approxmem_open and therefore it
is invoked whenever the device is closed by a user space application. As
the approxmem_open, the received parameters are a pointer to the struct in-
odep and a pointer to the struct filep. The only operation performed by the
approxmem_release is the printing of the message ’device approxmem closed’
in order to indicate that the device file approxmem has been properly
closed.

3. Build the approxmem module The building phase produces the following
files:

• approxmem.o object file;

3.4. Allocation in ZONE_APPROXIMATE 73

• approxmem.ko LKM (Loadable Kernel Module) file.

The module can be finally loaded into the kernel by launching the command
sudo insmod approxmem.ko. This kernel module for the approxmem device can
be accessed only with superuser permissions, so any program that wants to
interface with it has to be launched with sudo command. In order to make sure
that the approxmem module is able to be accessed also by a particular user or
group of users, it is necessary to change the module permissions protecting
the file system. To address this, the kernel udev rules are used. For each device
present in the system, there is a file of rules (the file has the extension .rules)
which is read from the udev daemon at system boot time; these rules are then
saved in memory. A .rules file for the device approxmem has been created; in
this file the rules for read and write permissions, even for a user or group user,
are specified. To produce the approxmem.rules file is necessary:

• Identify the sysfs entry for the device, launching from the sys folder the
command find. -name ’approxmem’;

• Identify the KERNEL and FILESYSTEM values to write the .rules file re-
lated to the device. The udevadm command is used for this purpose;

• Write the 99-approxmem.rules file in the /etc/udev/rules.d directory. The con-
tent of the file is shown in the box below.

1 # Rules f i l e f o r the approxmem device dr iver
2 KERNEL == "approxmem" , SUBSYSTEM == "approxmem c l a s s " ,
3 MODE = " 0666 "

As a test, the command: ls -l / dev / approxmem can be launched. It is observed
that now also a user and a user group have the permissions to access the device

Initializing approxmem device
approxmem device registered with major number 248
approxmem class registered correctly
approxmem device class registered correctly

FIGURE 3.20: Creation of device approxmem

3.4.4 Approximate Memory Library: approx_malloc and approx_free

approx_malloc

The approx_malloc function allows a user space application to request the dynamic
allocation of approximate memory, in a similar way as a malloc call.

1 void ∗ approx_malloc (unsigned long s i z e)
2 {
3 void∗ vmaddr ;
4 void ∗ptr ;
5 i n t fd = open (’/dev/approxmem ’ , O_RDWR) ;
6 i f (fd < 0) {
7 p r i n t f (’ Fa i l ed to open the device . . . % s \n ’ , s t r e r r o r (errno)) ;
8 }
9 ptr = mmap(0 , s ize , PROT_READ | PROT_WRITE, MAP_SHARED, fd , 0) ;

10 // p r i n t f (’ p t r i s :%x\n ’ , (unsigned i n t) ptr) ;
11 i f (p t r == 0) {
12 f p r i n t f (s tderr , ’ no memory a v a i l a b l e ! \n ’) ;

74 Chapter 3. Approximate Memory Support in Linux OS

13 re turn NULL;
14 }
15 e l s e {
16 vmaddr = (void ∗) i o c t l (fd , APPROXGETADDRESS_IOCTL, 0) ;
17 a d d _ l i s t (& tab le , ptr , vmaddr , s i z e) ;
18 p r i n t f (’ user :%x v i r t u a l :%x \n ’ , (unsigned i n t) ptr , (unsigned i n t)
19 vmaddr) ;
20 p r i n t _ l i s t (t a b l e) ;
21 re turn ptr ;
22 }
23 c l o s e (fd) ;
24 } ;

As shown in the text box above the function has only one input parameter, corre-
sponding to the size of memory to be allocated. The allocation request is performed
through the mmap function, which receives as parameter the size of memory to be
allocated and the flags to specify the protection and the type of mapping to be per-
formed in the address space of the calling process. In particular mmap is called with
PROT_READ and PROT_WRITE flags, as it is required that the mapped memory
is accessible for read and write operations, while the MAP_SHARED flag indicates
that the type of mapping must be able to be shared by the other processes mapped on
the same file. Once invoked, the mmap calls the file operation mmap, which is specific
for the file identified by the parameter fd. In this case fd corresponds to the file de-
scriptor of /dev/approxmem, therefore the mmmap_approxmem function is invoked. If
successful, this function returns the pointer to the area mapped in the address space
of the running process. Furthermore the vmaddr pointer, returned by vmalloc and
retrieved by the following APPROXGETADDRESS_IOCTL, and the ptr pointer
corresponding to the area mapped by mmap are stored in a linked list to maintain
the correspondence between the kernel virtual address and the mmap address of
the approximate memory just returned. In case of error, if the value returned by
mmap is equal to 0, the message ’no memory available!’ is printed.

approx_free

The approx_free function allows a user space application to release memory previ-
ously allocated in the approximate zone. This function receives as inputs two pa-
rameters: a pointer to the memory to be released (mapped in the process address
space) and the size of memory to be de-allocated. In particular the operation of
de-allocating memory requires to:

• Remove all mappings for the pages mapped in the address space of the pro-
cess, in particular those in the addr + size range;

• release the pages allocated by vmalloc via vfree.

The first operation is performed by calling the syscall munmap, which receives
as input the same parameters of approx_free function. This system call removes the
mappings for the specified range within the process address space; otherwise the
memory region mapped in the address space would be automatically released only
at the end of the process (closing the file descriptor fd instead does not release the
mapping). Concerning the second operation, it is necessary to identify the kernel
virtual address corresponding to the user space addr passed as input parameter to
the approx_free function. In order to transparently implement this operation, the
information in the linked list is scanned: when the addr pointer matches a value in
the list, the corresponding kernel virtual address is retrieved and then passed to the

3.4. Allocation in ZONE_APPROXIMATE 75

APPROXFREE_IOCTL. If the APPROXFREE_IOCTL return value is negative, an
error message is printed, otherwise the fields corresponding to the kernel virtual
address and the corresponding user space address, are removed from the list and
the operation ends successfully.

1 void approx_free (void ∗addr)
2 {
3 i n t r e t _ i o c t l ;
4 addr_ tab le_ t ∗∗ table_app ;
5 long vaddr_free ;
6 p r i n t _ l i s t (t a b l e) ;
7 i n t fd = open (’/dev/approxmem ’ , O_RDWR) ;
8 i f (fd < 0) {
9 p r i n t f (’ Fa i l ed to open the device . . . % s \n " , s t r e r r o r (errno)) ;

10 }
11 i f (addr != NULL) {
12 munmap(addr , s i z e) ;
13 p r i n t f (’ADDR:%x \n ’ , (unsigned i n t) addr) ;
14 table_app = s e a r c h _ l i s t (& tab le , addr) ;
15 i f (table_app != NULL) {
16 vaddr_free =(long) ((∗ table_app)−>vmalloc_addr) ;
17 p r i n t f ("VADDR:%x \n ’ , (unsigned i n t) vaddr_free) ;
18 r e t _ i o c t l = i o c t l (fd , APPROXFREE_IOCTL, vaddr_free) ;
19 i f (r e t _ i o c t l <0)
20 p r i n t f (’ERROR i o c t l ’) ;
21 e l s e remove_l i s t (table_app) ;
22 }
23 }
24 c l o s e (fd) ;
25 }

3.4.5 Initial verification

In order to verify the whole allocation system for approximate memory (user space
library, kernel device interface, kernel internal calls and policies), a testbench appli-
cation has been written. In particular this application calls the approx_malloc library
function in order to request, for three consecutive times, a block of 1000 memory
pages (about 4MB) from ZONE_APPROXIMATE.

1 # include " a_malloc . h"
2 # include < s t d i o . h>
3 # include < s t d l i b . h>
4 i n t main ()
5 {
6 i n t i ;
7 i n t j ;
8 i n t k ;
9 i n t ∗ptr [3] ;

10 f o r (i =0 ; i <3 ; i ++) {
11 ptr [i] = (i n t ∗) approx_malloc (4096∗1000) ;
12 i f (p t r [i] == 0)
13 {
14 f p r i n t f (s tderr , ’ERROR: Out of memory\n ’) ;
15 re turn 1 ;
16 }
17 f o r (k=0 ; k <((4096∗1000)/ s i z e o f (i n t)) ; k++) {
18 ptr [i] [k] = 2614 ;
19 }
20 getchar () ;
21 }
22 f o r (j = 0 ; j < 3 ; j ++) {

76 Chapter 3. Approximate Memory Support in Linux OS

23 approx_free (ptr [j]) ;
24 getchar () ;
25 }
26 re turn 0 ;
27 }

After verifying that the pointers returned by the approx_malloc are valid, the next
step is to force the writing of a numeric constant on all bytes making sure that all
allocated pages have write permission. Finally the approx_free function is invoked to
release approximate memory. This application has been run in x86, ARM and RISC-
V architectures, but only the results concerning the x86 architecture are illustrated
below. During the program execution it is possible to obtain the following prints,
corresponding to the three allocation performed by the approx_malloc. In particular
for each allocation request the linked list under construction is printed, showing the
user space address user, returned by the mmap, and the corresponding kernel virtual
address virtual, returned by vmalloc (Fig. 3.21).

FIGURE 3.21: Bulding the linked list

As shown in the application code, each allocation request is divided from the
other by the getchar() function, in this way the program execution remains blocked
until a keyboard character is entered. After the third allocation request, before en-
tering another character and invoking the approx_free, it is possible to open another
terminal and launch the command sudo cat/proc/vmallocinfo, obtaining the mes-
sages shown in Fig.3.22 1.

FIGURE 3.22: vmallocinfo messages on x86 architecture

These messages confirms that the vmalloc allocates for three consecutive times
1000 pages; the columns on the left print the ranges of virtual addresses where the
allocated memory has been mapped. In particular, it can be observed that the vir-
tual addresses printed in the linked list during the program execution are included
in the ranges of virtual addresses printed by vmallocinfo. As a further test, using
again the second terminal opened during the testbench execution, we can launch
the command: cat /proc/pid/maps (Fig.3.23). By doing so, it is possible to visualize
the ranges of user-space virtual addresses in which the running program has been
mapped. In particular, there are three memory regions within the user address space

1these messages are produced running the application on an x86 architecture with approximate
memory model using the ApprpinQuo emulator (see Chapter 3)

3.4. Allocation in ZONE_APPROXIMATE 77

of the process that have been mapped by the device approxmem using the mmap func-
tion. All of them have been mapped with read and write permissions. Again the
user space addresses printed in the linked list are included in the ranges of virtual
addresses mapped by /dev/approxmem confirming that the allocation mechanism is
working properly.

FIGURE 3.23: Messages of cat / proc / pid / maps

Using the zoneinfo system command the information printed in Fig. 3.24 are ob-
tained, showing some statistics about ZONE_APPROXIMATE before the allocation re-
quest. Before the allocation request the ZONE_APPROXIMATE has 114570 free pages.
Fig. 3.25 shows the same statistics after the first allocation request. It can be seen now
that ZONE_APPROXIMATE has 113570 free pages confirming that the approx_malloc
allocated exactly 1000 pages.

cat /proc/zoneinfo
...
Node 0, zone Approximate
pages free 114570
spanned 114570
present 114570
nr_dirtied 0
nr_written 0
...

FIGURE 3.24: ZONE_APPROXIMATE statistics after boot

cat /proc/zoneinfo
...
Node 0, zone Approximate
pages free 113570
spanned 114570
present 114570
nr_dirtied 0
nr_written 0
...

FIGURE 3.25: ZONE_APPROXIMATE statistics after approx_malloc call

In order to assess stability the OS has been extensively tested with allocation
benchmarks programs on different architectures (x86, ARM, RISC-V), filling the whole
ZONE_APPROXIMATE page set. As expected, from that point on further requests of
ZONE_APPROXIMATE pages caused allocations in ZONE_NORMAL, confirming that
the fallback mechanism is working properly.

78 Chapter 3. Approximate Memory Support in Linux OS

3.5 Quality Aware Approximate Memory Zones in Linux OS

3.5.1 Introduction and 64-bit implementation potentials

As previously said in Chapter 1, in Raha et al., 2015; Raha et al., 2017 the authors
introduce a methodology for designing a quality aware approximate memory sys-
tem based on DRAM. The core idea is to refresh DRAM with a single but reduced
rate, characterizing portions of the memory array and splitting them in several qual-
ity bins, based on the frequency, location and nature of bit errors in each physical
page. During program execution, non-critical data can be allocated to bins sorted in
descending order of quality. The setup included the use of the lightweight operating
system µC/OS-II for memory management and task creation. However, the paper
proposes to use the quality bins in a descending order, ensuring that lower quality
bins (i.e. having a higher level of approximation) are always used as last resource.
The work does not explore the possibility of selecting the quality bins at program
level, depending on data. In this section the notion of quality bins is taken and ap-
plied to approximate memory, implementing their management in the Linux Kernel
OS.

In the previous paragraphs the approximate memory support on 32-bit Linux
OS is described. Approximate memory management has been integrated in the ker-
nel memory management, relying on the internal concept of Linux physical zone.
In this way the Linux kernel is aware of exact physical memory pages (grouped in
ZONE_DMA, ZONE_NORMAL and ZONE_MOVABLE) and approximate physical mem-
ory pages (grouped in a new ZONE_APPROXIMATE), managing them as a whole for
the common part (e.g. optimization algorithms, page reuse, de-fragmentation) but
distinguishing them in terms of allocation requests and page pools management.

Compared to the first implementation, the extension of approximate memory
support to 64-bit architectures has led to new potential ideas, that were precluded
due to the limits of the 32-bit memory management. In particular, the 64-bit ker-
nel can manage larger memory sizes, but also has the ability to support up to 8
memory zones (32-bit kernel is limited to four zones, including the always active
ZONE_NORMAL and ZONE_MOVABLE). In this way it is possible to insert the instan-
tiation and management of up to four approximate zones, each one corresponding
to physical memory pages with different levels of approximation. In this scenario
applications could then allocate approximate memory for their data structures se-
lecting between different levels of approximation, depending on the requirements
on output quality. This could allow to design an architecture where approximate
physical memory, instead of being composed of a unit intercepting a single point in
the energy-quality tradeoff curve, can be split into multiple banks trading off lev-
els of approximation and energy savings. Moreover the potential of having quality
aware memory zones opens the way to further investigations, tailoring allocations
of approximate memory depending on, for example:

• different sensitivity of output quality to errors in input data structures;

• variable-time output quality requirements;

• requirements of different applications in a multitasking environment.

The 64-bit could run in architectures containing several physical memory banks
with different levels of approximation. In this context, the term level of approximation
of a memory will be used in order to classify different approximate memories. This
definition is related to error rate (i.e. higher error rate corresponds to higher level of

3.5. Quality Aware Approximate Memory Zones in Linux OS 79

approximation), but also, depending on approximate memory circuits, to the weight
of bits affected by errors (i.e. on equal conditions, a memory with approximate cells
limited to the least significant bits of a word has a lower level of approximation
Frustaci et al., 2016). The multiple levels of approximation could be realized, for ex-
ample, using several DRAM banks with different refresh rates, lower than required
by specifications.

In particular, the extension to 64-bit architectures makes the following contribu-
tions:

• introduction of approximate memory support larger memory sizes;

• introduction of the capability of configuring up to four approximate mem-
ory zones (in addition to standard Linux memory zones), where each of these
zones corresponds to a physical memory with a certain level of approximation;

• implementation of an internal data allocation scheme, capable of handling sep-
arately the allocation requests in quality aware approximate zones;

• development of a user space data allocation mechanism and support library.

3.5.2 Approximate memory zones on 64-bit architectures

Introducing multiple approximate memory zones within the Linux OS is mainly ar-
chitecture independent, while a reduced number of modifications (as the definition
of the memory map) is required in architecture dependent source files. For the first
implementation, RISC-V 64-bit architecture has been selected as target.

The architecture independent part includes the creation of new memory zones
and the implementation of the corresponding data allocation policy. Both should be
consistent with the requirements of the approximate memory management already
defined in subsection 3.3.2. It should be noticed that, due to the Linux kernel mem-
ory management implementation, on 32-bit architectures it is possible to define and
create up to 4 memory zones, while on 64-bit architectures this limit is extended up
to 8. Considering that ZONE_NORMAL and ZONE_MOVABLE are always enabled and
required, while ZONE_DMA and ZONE_DMA32 could be enabled depending on ar-
chitecture requirements for managing DMA devices, on 64-bit architectures, with the
current implementation, it is possible to create up to 4 zones for approximate mem-
ory (that have been called ZONE_APPROXIMATEx, x = 1...4). The rationale behind
these multiple zones is that each ZONE_APPROXIMATEx is filled with pages backed
by physical memories with different, and decreasing, level of approximation (i.e. the
approximate memory zone with the lowest index corresponds to memory with the
highest level of approximation).

As seen on 32 bit architectures, defining an order is important since it has an
impact on internal allocation policies. The former organization is compliant with
the fallback mechanism of the Linux OS, which is activated if a memory zone is
not able to satisfy an allocation request. In other words, if an allocation request for
memory with a certain level of approximation cannot be satisfied (e.g. because the
requested size is not available), the allocator will fallback to a hierarchically higher
approximate zone, characterized with a lower level of approximation, up to the exact
zones (ZONE_NORMAL, ZONE_DMA, etc.).

The mapping of the layout of approximate memory zones into physical RAM is
architecture dependent. A function inside the kernel computes the available physi-
cal memory; this information is then used in the initialization phase to group physi-
cal memory pages into memory zones. Each zone must be characterized by its start

80 Chapter 3. Approximate Memory Support in Linux OS

pfn and end pfn (page frame number), corresponding to the physical address bounds
of each memory (expressed in as page_number = physical_address/page_size). On
the 64-bit RISC-V architecture two memory zones are present by default: ZONE_DMA32
and ZONE_NORMAL. To introduce quality aware approximate zones, the physical
memory has been partitioned into five parts by modifying the __init zone_sizes_init
function in <arch/riscv/mm/init.c>. The first memory zone corresponds to exact
memory and it will be used for ZONE_DMA32 and ZONE_NORMAL; the others are
used for approximate memory zones (1 to 4). The pfn bounds of these zones are as-
signed statically, depending on the number of quality aware memory zones that are
present (Fig. 3.26).

1 # i f d e f CONFIG_ZONE_APPROXIMATE
2 # def ine s t a r t _ p f n _ n o r ma l _ r i s c v 0 x80000
3 # def ine max_normal_riscv (((max_low_pfn − s t a r t _ p f n _ n o r ma l _ r i s c v) /2) +

s t a r t _ p f n _ n o r m al _ r i s c v)
4 # endi f
5

6 s t a t i c void _ _ i n i t z o n e _ s i z e s _ i n i t (void)
7 {
8 unsigned long max_zone_pfns [MAX_NR_ZONES] = { 0 , } ;
9

10 # i f d e f CONFIG_ZONE_DMA32
11 max_zone_pfns [ZONE_DMA32] = max_dma_pfn_riscv ;
12 # endi f
13

14 # i f defined CONFIG_ZONE_APPROXIMATE && (! defined (
CONFIG_ZONE_APPROXIMATE_2))

15 max_zone_pfns [ZONE_NORMAL] = max_normal_riscv ;
16 max_zone_pfns [ZONE_APPROXIMATE] = max_low_pfn ;
17

18 # e l i f defined (CONFIG_ZONE_APPROXIMATE) && defined (
CONFIG_ZONE_APPROXIMATE_2) && (! defined (CONFIG_ZONE_APPROXIMATE_3))

19 # def ine max_pfn_approx2 (((max_low_pfn − max_normal_riscv) /2) +
max_normal_riscv)

20 max_zone_pfns [ZONE_NORMAL] = max_normal_riscv ;
21 max_zone_pfns [ZONE_APPROXIMATE_2] = max_pfn_approx2 ;
22 max_zone_pfns [ZONE_APPROXIMATE] = max_low_pfn ;
23

24 # e l i f defined (CONFIG_ZONE_APPROXIMATE) && defined (
CONFIG_ZONE_APPROXIMATE_2) && defined (CONFIG_ZONE_APPROXIMATE_3) && (!
defined (CONFIG_ZONE_APPROXIMATE_4))

25 # def ine max_pfn_approx2 (((max_low_pfn − max_normal_riscv) /2) +
max_normal_riscv)

26 # def ine max_pfn_approx3 (((max_low_pfn − max_pfn_approx2) /2) +
max_pfn_approx2)

27 max_zone_pfns [ZONE_NORMAL] = max_normal_riscv ;
28 max_zone_pfns [ZONE_APPROXIMATE_3] = max_pfn_approx2 ;
29 max_zone_pfns [ZONE_APPROXIMATE_2] = max_pfn_approx3 ;
30 max_zone_pfns [ZONE_APPROXIMATE] = max_low_pfn ;
31

32 # e l i f defined (CONFIG_ZONE_APPROXIMATE) && defined (
CONFIG_ZONE_APPROXIMATE_2) && defined (CONFIG_ZONE_APPROXIMATE_3) &&
defined (CONFIG_ZONE_APPROXIMATE_4)

33 # def ine max_pfn_approx2 (((max_low_pfn − max_normal_riscv) /2) +
max_normal_riscv)

34 # def ine max_pfn_approx3 (((max_low_pfn − max_pfn_approx2) /2) +
max_pfn_approx2)

35 # def ine max_pfn_approx4 (((max_pfn_approx2 − max_normal_riscv) /2) +
max_normal_riscv)

36 max_zone_pfns [ZONE_NORMAL] = max_normal_riscv ;
37 max_zone_pfns [ZONE_APPROXIMATE_4] = max_pfn_approx4 ;

3.5. Quality Aware Approximate Memory Zones in Linux OS 81

38 max_zone_pfns [ZONE_APPROXIMATE_3] = max_pfn_approx2 ;
39 max_zone_pfns [ZONE_APPROXIMATE_2] = max_pfn_approx3 ;
40 max_zone_pfns [ZONE_APPROXIMATE] = max_low_pfn ;
41 # e l s e
42 max_zone_pfns [ZONE_NORMAL] = max_low_pfn ;
43 # endi f
44

45 f r e e _ a r e a _ i n i t _ n o d e s (max_zone_pfns) ;

FIGURE 3.26: Configuration of physical memory layout

Moreover, the start pfn of the highest enabled ZONE_APPROXIMATE is used as
the current limit inside the allocation algorithm of the Linux bootmem allocator. This
implementation ensures that pages belonging to ZONE_APPROXIMATEx are never
selected by the kernel to initialize page allocators data structures.

1 # i f d e f CONFIG_ZONE_APPROXIMATE
2 # include <l inux/types . h>
3 phys_addr_t ge t_approx_current_ l imi t (phys_addr_t l i m i t) {
4 phys_addr_t approx_l imit = max_normal_riscv ∗ 4096 ;
5 i f (l i m i t > approx_l imit)
6 l i m i t = approx_l imit ;
7 re turn l i m i t ;
8 }
9 # endi f

3.5.3 Data Allocation

The Linux OS manages each allocation request using the set of GFP flags, in order to
drive the allocation algorithm. These flags are used, among others, to define which
memory zone should be selected for the current request. However, the zone re-
quested by the flag is not completely binding since there are policies (fallbacks) that
allow to go back in the memory zone hierarchy (e.g. in case a memory zone is full).

To correctly manage allocation requests in multiple approximate memory zones,
it was necessary to define new GFP flags, one for each approximate memory zone
(GFP_APPROXIMATEx, x = 1...4).

1 //# i f d e f CONFIG_ZONE_APPROXIMATE
2 # def ine ___GFP_APPROXIMATE 0 x800000u//0 x800000u
3 //# endi f
4 //# i f d e f CONFIG_ZONE_APPROXIMATE_2
5 # def ine ___GFP_APPROXIMATE_2 0 x1000000u
6 //# endi f
7 //# i f d e f CONFIG_ZONE_APPROXIMATE_3
8 # def ine ___GFP_APPROXIMATE_3 0 x2000000u
9 //# endi f

82 Chapter 3. Approximate Memory Support in Linux OS

10 //# i f d e f CONFIG_ZONE_APPROXIMATE_4
11 # def ine ___GFP_APPROXIMATE_4 0 x4000000u

According to the requirements described in the previous sections, the priorities
and fallback mechanism were configured to ensures that:

• the allocation in approximate zones can only take place on explicit request;

• the memory zone hierarchy guarantees that the fallback mechanism will al-
ways move from a higher to a lower level of approximation.

To allow user space applications to request data allocation in different approx-
imate memory zones, a new /dev/approxmem device and a new approx library have
been implemented.

approx library for multiple approximate memory zone

The new approx_malloc function takes as input parameters the size of data that should
be allocated and the level of approximation required. The level parameter is an inter-
nal allocation flag which is propagated inside the kernel and then it is associated to
the GFP flag of the corresponding approximate memory zone.

1 void ∗ approx_malloc (unsigned long s ize , unsigned long l e v e l)

• approxmem dev for multiple approximate memory zone

The main differences with respect to the implementation described in 3.4.3 deal with
the addition of a new IOCTL command, APPROX_GET_FLAGZONE_IOCTL, and
the implementation of the approx_mmap function, as shown in the code boxes below.
Concerning the first, it allows to map the flag for the selection of the approximate
memory zone from the user space approx library to the /dev/approxmem device inside
the kernel. In particular the arg parameter of APPROX_GET_FLAGZONE_IOCTL
corresponds to the internal allocation flag in the approx_malloc and it is used for ini-
tializing a variable gfp_flag.

1 s t a t i c long approxmem_ioctl (s t r u c t f i l e ∗ f i l e p , unsigned i n t cmd, unsigned
long arg) {

2 switch (cmd) {
3 case APPROXFREE_IOCTL :
4 pr intk (" vaddress f r e e :% l x \n" , (long) arg) ;
5 vfree ((const void ∗) arg) ;
6 break ;
7

8 case APPROXGETADDRESS_IOCTL :
9 i f (copy_to_user ((void ∗) arg ,& vmalloc_addr , s i z e o f (void ∗)))

10 re turn −EFAULT ;
11 break ;
12

13 case APPROX_GET_FLAGZONE_IOCTL :
14 g fp _f la g = arg ;
15 break ;
16

17 d e f a u l t :
18 re turn −ENOTTY;
19 }
20

21 re turn 0 ;
22 }

3.5. Quality Aware Approximate Memory Zones in Linux OS 83

The gfp_flag is used in the approx_mmap function to choose the GFP_FLAG for the
allocation request, and so to determine the correct approximate memory zone.

1 s t a t i c i n t approxmem_mmap(s t r u c t f i l e ∗ f i l p , s t r u c t vm_area_struct ∗vma)
2 {
3 [. . .]
4 i f (g f p_ f l ag == 1)
5 vmalloc_addr=__vmalloc (s ize ,GFP_APPROXIMATE | GFP_USER , PAGE_SHARED) ;
6 e l s e i f (g fp _ f l ag == 2)
7 vmalloc_addr=__vmalloc (s ize , GFP_APPROXIMATE_2 | GFP_USER , PAGE_SHARED)

;
8 e l s e i f (g fp _ f l ag == 3)
9 vmalloc_addr=__vmalloc (s ize , GFP_APPROXIMATE_3 | GFP_USER , PAGE_SHARED)

;
10 e l s e i f (g fp _ f l ag == 4)
11 vmalloc_addr=__vmalloc (s ize , GFP_APPROXIMATE_4 | GFP_USER , PAGE_SHARED)

;
12 [. . .]

3.5.4 Initial verification of the implementation

In order to perform an initial verification of the implementation, two approximate
memory zones have been enabled on a 64-bit RISC-V architecture. In particular, the
new kernel can to boot on a RISC-V SiFiveU platform emulated in AppropinQuo
(see 4), with 256MB RAM memory.

FIGURE 3.27: Configuration of physical memory layout on RISC-V
SiFiveU

The 256MB of RAM are partitioned into 128MB of exact RAM, 64MB of approx-
imate memory (level 1 of approximation), 64MB of approximate memory (level 2 of
approximation), as illustrated in Fig. 3.27. The Kernel boot messages are shown in
Fig.3.28: as expected, in addition to the ZONE_NORMAL and the DMA_ZONE32
two approximate memory zones are present, each one of 64 MB.

3.5.5 Verification and allocation tests

In order to verify the correctness of the multiple approximate memory zones allo-
cator and of the new approximate memory library, a new testbench application has

84 Chapter 3. Approximate Memory Support in Linux OS

...
Zone ranges:
DMA32 [mem 0x0000000080200000-0x0000000080ffffff]
Normal [mem 0x0000000081000000-0x0000000087ffffff]
Approximate2 [mem 0x0000000088000000-0x000000008bffffff]
Approximate [mem 0x000000008c000000-0x000000008fffffff]
Movable zone start for each node
Early memory node ranges
node 0: [mem 0x0000000080200000-0x000000008fffffff]
...

FIGURE 3.28: Boot messages printing the physical memory layout

been written. The test is executed in AppropinQuo on a RISC-V64 platform with
512MB of RAM and 4 approximate memory zones enabled. The 512MB of RAM
is split in half: the first half corresponds to exact memory, the second one to the
approximate regions.

FIGURE 3.29: Kernel boot messages for RISCV 64 platform with 4
approximate memory zones

Fig. 3.29 shows the kernel boot messages concerning the mapping of the low
memory and the creation of the four approximate memory zones, each one of 64MB.
The structure of the testbench, as shown in the text box below, is the same as the one
described in 3.4.5: the application first requests 1000 pages from ZONE_APPROXIMATE
(approx_malloc(4096*1000, 1)), then it requests the same number of pages from ZONE_APPROXIMATE2,
ZONE_APPROXIMATE3 and ZONE_APPROXIMATE4.

1 # include " a_mal loc_mult iple . h"
2 # include < s t d i o . h>
3

4

5 i n t main ()
6 {
7 i n t i ;
8 i n t j ;
9 char ∗ptr [1 0] ;

10

11 //TEST ZONE APPROXIMATE 1
12 f o r (i =0 ; i <3 ; i ++) {
13 ptr [i]= (char ∗) approx_malloc (4096∗1000 , 1) ;
14

15 i f (p t r [i]== 0)
16 {
17 f p r i n t f (s tderr , "ERROR: Out of memory\n") ;
18 re turn 1 ;
19 }
20

21 // p r i n t f (" v i r t u a l : %x \n " , (unsigned i n t) ptr [i]) ;
22 f o r (j =0 ; j <(4096∗1000) ; j ++) {
23 // p r i n t f (" v i r t u a l : %x \n " , (unsigned i n t)&ptr [i] [j]) ;
24 ptr [i] [j]+= 2 6 ;
25

3.5. Quality Aware Approximate Memory Zones in Linux OS 85

26 }
27 //∗ptr [i] = 2 5 ;
28 p r i n t f (" %d \n" , ∗ptr [i]) ;
29 p r i n t f (" v i r t u a l : %p \n" , pt r [i]) ;
30

31

32 getchar () ;
33

34 }
35

36 f o r (j =0 ; j <3 ; j ++)
37 approx_free (ptr [j]) ;
38

39 //TEST ZONE APPROXIMATE 2
40 f o r (i =0 ; i <3 ; i ++) {
41 ptr [i]= (char ∗) approx_malloc (4096∗1000 , 2) ;
42

43 i f (p t r [i]== 0)
44 {
45 f p r i n t f (s tderr , "ERROR: Out of memory\n") ;
46 re turn 1 ;
47 }
48

49 // p r i n t f (" v i r t u a l : %x \n " , (unsigned i n t) ptr [i]) ;
50 f o r (j =0 ; j <(4096∗1000) ; j ++) {
51 // p r i n t f (" v i r t u a l : %x \n " , (unsigned i n t)&ptr [i] [j]) ;
52 ptr [i] [j]+= 2 6 ;
53

54 }
55 //∗ptr [i] = 2 5 ;
56 p r i n t f (" %d \n" , ∗ptr [i]) ;
57 p r i n t f (" v i r t u a l : %p \n" , pt r [i]) ;
58

59

60 getchar () ;
61

62 }
63

64 f o r (j =0 ; j <3 ; j ++)
65 approx_free (ptr [j]) ;
66

67 //TEST ZONE APPROXIMATE 3
68 f o r (i =0 ; i <3 ; i ++) {
69 ptr [i]= (char ∗) approx_malloc (4096∗1000 , 3) ;
70

71 i f (p t r [i]== 0)
72 {
73 f p r i n t f (s tderr , "ERROR: Out of memory\n") ;
74 re turn 1 ;
75 }
76

77 // p r i n t f (" v i r t u a l : %x \n " , (unsigned i n t) ptr [i]) ;
78 f o r (j =0 ; j <(4096∗1000) ; j ++) {
79 // p r i n t f (" v i r t u a l : %x \n " , (unsigned i n t)&ptr [i] [j]) ;
80 ptr [i] [j]+= 2 6 ;
81

82 }
83 //∗ptr [i] = 2 5 ;
84 p r i n t f (" %d \n" , ∗ptr [i]) ;
85 p r i n t f (" v i r t u a l : %p \n" , pt r [i]) ;
86

87

88 getchar () ;

86 Chapter 3. Approximate Memory Support in Linux OS

89

90 }
91

92 f o r (j =0 ; j <3 ; j ++)
93 approx_free (ptr [j]) ;
94

95 //TEST ZONE APPROXIMATE 4
96 f o r (i =0 ; i <3 ; i ++) {
97 ptr [i]= (char ∗) approx_malloc (4096∗1000 , 4) ;
98

99 i f (p t r [i]== 0)
100 {
101 f p r i n t f (s tderr , "ERROR: Out of memory\n") ;
102 re turn 1 ;
103 }
104

105 // p r i n t f (" v i r t u a l : %x \n " , (unsigned i n t) ptr [i]) ;
106 f o r (j =0 ; j <(4096∗1000) ; j ++) {
107 // p r i n t f (" v i r t u a l : %x \n " , (unsigned i n t)&ptr [i] [j]) ;
108 ptr [i] [j]+= 2 6 ;
109

110 }
111 //∗ptr [i] = 2 5 ;
112 p r i n t f (" %d \n" , ∗ptr [i]) ;
113 p r i n t f (" v i r t u a l : %p \n" , pt r [i]) ;
114

115

116 getchar () ;
117

118 }
119

120 f o r (j =0 ; j <3 ; j ++)
121 approx_free (ptr [j]) ;
122

123 re turn 0 ;
124

125 }

Before the allocation request, each zone approximate has 64 MB of RAM. Fig.
3.30, 3.31, 3.32, 3.33, show the statistics for each memory zone after the first allocation
request.

cat /proc/zoneinfo
...
Node 0, zone Approximate
pages free 15384
spanned 16384
present 16384
nr_dirtied 0
nr_written 0
...

FIGURE 3.30: ZONE_APPROXIMATE statistics after approx_malloc call

3.5. Quality Aware Approximate Memory Zones in Linux OS 87

cat /proc/zoneinfo
...
Node 0, zone Approximate2
pages free 15384
spanned 16384
present 16384
nr_dirtied 0
nr_written 0
...

FIGURE 3.31: ZONE_APPROXIMATE2 statistics after approx_malloc call

cat /proc/zoneinfo
...
Node 0, zone Approximate3
pages free 15384
spanned 16384
present 16384
nr_dirtied 0
nr_written 0
...

FIGURE 3.32: ZONE_APPROXIMATE3 statistics after approx_malloc call

cat /proc/zoneinfo
...
Node 0, zone Approximate4
pages free 15384
spanned 16384
present 16384
nr_dirtied 0
nr_written 0
...

FIGURE 3.33: ZONE_APPROXIMATE4 statistics after approx_malloc call

89

Chapter 4

AppropinQuo, Full System
Emulator for Approximate Memory
Platforms

4.1 Introduction

This Chapter presents an emulation framework for hardware platforms with ap-
proximate memory units, called AppropinQuo. The specific characteristic of Ap-
propinQuo is to reveal the effects, on the hardware platform and on software, of
errors introduced by approximate memory circuits and architectures. The emulator
allows to execute software code without any modification with respect to the target
physical board, since it includes the CPU, the memory hierarchy and the peripher-
als, capturing as well software-hardware interactions and faults due to approximate
memory units. The final scope is reproducing the effects of errors generated by ap-
proximate memory circuits, allowing to evaluate the impact (quality degradation)
on the output produced by the software. In fact, output quality is related to error
rate, but their relationship strongly depends on the application, the implementation
and its data representation on physical memory.

As said previously in Chapter 2, the idea behind approximate memory circuits
and approximate computing in general is to trade off energy consumption at the
expense of computational accuracy and degradation of output quality. Memory is
accounted for a large part of total power consumption in advanced architectures and
it is supposed to increase as new memory hungry applications migrate toward the
implementation on embedded systems (embedded machine learning, high defini-
tion video codecs, etc.). By relaxing design constraints regarding error probability
on bit cells, researchers have proposed techniques that significantly reduce memory
energy consumption. These techniques, which can be accounted in the general topic
of approximate memory design, are implemented at circuit or architecture level, and
are specific to the memory technology (i.e. SRAM or DRAM memories).

The effective introduction of approximate memory units in a hardware platform
relies on the possibility of using them for allocating selected data structures in soft-
ware applications. Although memory errors may degrade the quality of output re-
sults, the effects can be tolerated by ETAs. The output degradation can be measured
in different ways, depending on the specific output (e.g SNR in case of a digital sig-
nal processing application), however its relationship with respect to approximate
memory parameters (i.e. architectures, error rate, number and weight of affected
bits) is not straightforward since it depends on many factors as the kind of appli-
cation, the implementation details and how data are represented in memory by the
compiler. The result is that it is possible to characterize the behavior of a complex,

90
Chapter 4. AppropinQuo, Full System Emulator for Approximate Memory

Platforms

real world application with respect to the presence of errors introduced by approx-
imate memories only by executing it on the target hardware platform (including
approximate memories), or on an emulator that can model the complete platform.

AppropinQuo allows to run actual applications as on the physical platform, to
expose the effects of specific approximate memory circuits and architectures on out-
put quality and to vary their parameters (e.g error rate, number of affected bits, etc.).
By exploring the approximate memory design space and its effects on the output of a
software application, it is possible to characterize the application behavior, as a step
toward the determination of the trade-off between saved energy and output quality
(energy-quality tradeoff).

4.2 Related Works: Simulation environments for digital plat-
forms

Simulation environments for embedded system platforms are considered funda-
mental tools to support the design and optimization flow, because the typical hard-
ware/software interactions that are present in this field of application make the
debug process, the characterization of performances and the optimization difficult.
These tools allow a complete emulation of the physical platform, including instruc-
tion set architecture (ISA) emulation and hardware units emulation (e.g. memory,
I/O units, timers, etc.).

They are needed, among others, during the first design phases since they pro-
vide the ability to explore different architectures and ideas, allowing to collect data
regarding functionality, performance, energy consumption, with reduced costs and
time compared to physical prototypes. This is true for functional and performance
emulators [Bellard, 2005; Binkert et al., 2011; Jung, Weis, and Wehn, 2015; Burger and
Austin, 1997], energy consumption emulators [Rethinagiri et al., 2014; Chandrasekar
et al., 2012], faults emulators [Parasyris et al., 2014; Höller et al., 2015].

In [Jung et al., 2016] a simulation environment for investigation on approximate
DRAM is presented. The simulator uses the gem5 framework [Binkert et al., 2011]
as functional simulator and includes DRAMSys and DRAMPower [Jung, Weis, and
Wehn, 2015; Chandrasekar et al., 2012]. Thanks to the addition of DRAMSys and
DRAMPower, the emulation environment is capable of modeling data retention
starting from memory physical parameters and producing at run-time power con-
sumption data. The presented results demonstrate that, for the two cases taken as
case study, refresh rate can be completely disabled with a negligible degradation on
output quality. However, the tool is focused on technology parameters and varia-
tions, it is limited to DRAM models and no details are added with respect to the
support for approximate techniques that rely on bit-weights or in general on archi-
tecture level techniques.

The contribution of this work is to fill the gap in hardware platform emulators,
adding specific support for approximate memories, showing the valuable informa-
tion that can be obtained. Even if emulators including faults in memory units have
already been developed, the fault models are not specific to the area of approximate
memories and many effects of approximate memory circuits and architectures can-
not be emulated using general fault models. The models developed in AppropiQuo
include the ability of emulating the effects of different approximate designs and im-
plementations, which depend on the internal structure and organization of memory
cells.

4.3. QEmu Emulator 91

Previous works on approximate memory tend to use ad-hoc or limited solutions
when results are produced, injecting bit flips at algorithmic level (without emulating
the actual hardware platform) or using restricted modifications on existing emula-
tors. While injecting bit flips at algorithmic level can be quite efficient in terms of
emulation speed, if the hardware platform is not emulated all results that depend on
the actual data allocation and implementation can be lost. This is particularly true
for relatively advanced approximate memory strategies, as those using bit-weights
to calibrate fault rates. Moreover, faults that depend on memory accesses (as typical
for SRAMs, see Section 4.5.2) cannot be correctly emulated if the real memory access
patterns are not reproduced.

The AppropinQuo emulator, based on QEmu [Bellard, 2005] (see Section 4.3) and
supporting x86, ARM and RISC-V based platforms, allows to run real applications
and operating system, to analyze application behavior and to expose the effects on
output quality of different memory error rates and approximate techniques. By ex-
ploring the design space and its effects on output, a complete characterization of
the application is possible, allowing the determination of the trade-off between the
level of approximation and output quality. The main contribution of AppropinQuo
indeed is to provide:

• a complete implementation for modeling approximate SRAM;

• DRAM models for approximate memories;

• bit dropping models for SRAM and DRAM.

4.3 QEmu Emulator

4.3.1 Main Concepts

QEmu, which is the acronym for Quick EMUlator, is a hosted hypervisor that allows
to virtualize hardware and quickly emulate different processors. In particular two
operating modes can be distinguished within QEmu:

• User mode emulation allows to run programs compiled for a given CPU on
others CPUs, emulating only the instruction set of the processor and not the
whole system. For example, it can be used for cross-compilation and cross-
debugging. The main features of this mode (application level virtualization) are:

– ability to convert generic Linux system calls, including many ioctl;

– accurate signal handling to remap host signals into guest system;

• Full system emulator allows to emulate a complete system, usually a complete
platform, including the processor and the various peripherals. The advantage
of this approach, (full platform virtualization), is the possibility of running sev-
eral operating systems at a time without restarting the host machine. The main
features of this operating mode are:

– use of a fully software MMU to ensure maximum portability;

– emulation of various hardware devices;

– optional use of in-kenel accelerators, such as the Kernel Loadable Mod-
ules;

– Symmetic Multiprocessing (SMP) also on host systems with only one CPU.

92
Chapter 4. AppropinQuo, Full System Emulator for Approximate Memory

Platforms

For the present scopo of emulating the microprocessor architecture connected
to approximate memory, the full-system approach has been used.

4.3.2 Dynamic Translation: Tiny Code Generator

Concerning the emulator, it is possible to distinguish always a host, corresponding to
the host machine on which the simulator itself is running, and a guest, corresponding
to the emulated system. In this work, the following setups have been used:

• host: (Linux workstation grade machine, x64 architecture)

• guest: (Linux 4.3, 4.19, 4.20 kernel verios, x86, ARM, RISC-V architectures).

The CPU target instructions, corresponding to the emulated guest processor,
must be converted into the instructions of the host CPU: this operation, called dy-
namic translation in QEmu, is performed by the Tiny Code Generator (TCG). Specif-
ically, blocks of target code, called TB (Translated Blocks), are translated in micro-
operations (TCG operations), by the TCG front-end; these micro-operations corre-
spond to an intermediate machine-independent notation (Fig.4.1). The scope of TCG
is to remove the dependencies on the specific version of compiler in use. In fact,
blocks of target CPU instructions are translated to RISC-like TCG instructions (TCG
microops).

The second part of the dynamic translation consists of reconverting the TCG mis-
coops to instructions of the host CPU and this step is performed by the TCG backend.
In the scope of QEmu developers, the TCG approach allows to obtain the best per-
formance in terms of speed since it can translate blocks of target code rather than an
interpretation of single instructions.

FIGURE 4.1: Tiny Code Generator

4.3.3 QEmu SoftMMU

In system emulation mode, QEmu supports a softMMU, which allows to translate a
guest virtual address into a host virtual address for every memory access. Knowing
the guest virtual address, the emulator can reach the corresponding virtual address
of the host and this operation is divided into the following steps:

1. discover the guest physical address from the guest virtual address. This oper-
ation is performed by searching in a table (phys_map) and reading the physical
offset (phys_offset) in the corresponding element;

4.4. Approximate Memory in ApropinQuo 93

2. discover the host virtual address by applying the obtained phys_offset to the
host ram physical address (phys_ram_base).

To speed up this process QEmu uses a softMMU composed of two paths, by
saving in a TLB table the offset to map a guest virtual address to host virtual address.
In particular when a translation is required, QEmu looks first in the TLB table and if
it finds a match in an entry of this table (hit on TLB), it uses it as an offset to obtain
the host virtual address starting from the guest virtual address (Fig.4.2). Otherwise
(miss on TLB) the emulator must consult the phys_map table, obtaining the offset and
then filling the corresponding entry in the TLB table (slowpath) Fig.4.2.

FIGURE 4.2: QEmu SoftMMU

4.4 Approximate Memory in ApropinQuo

4.4.1 QEmu Memory Management

In general, all guest RAM virtual pages used by QEmu at runtime are allocated in
blocks getting it from RAM AddressSpace structure. The internal ram_addr_t type
identify addresses belonging to this space (virtual addresses), while the hwaddr_t
type identify addresses belonging to the physical address space (so read and write
operations will use this type). Each page in physical space belongs to RAM (sytem
MemoryRegion) or to I/O devices (a specific MemoryRegion for each device). In QEmu
the MemoryRegion structure is responsible for managing the operation on the tar-
get emulated memory. In particular QEmu distinguishes between different types of
MemoryRegion:

• regions for pages belonging to RAM;

• regions for pages belonging to the ROM;

• regions for pages mapped as I/O (MMIO). In this case another structure Mem-
oryRegionOps, contained in each MemoryRegion structure, must be initialized.
This additional structure contains the function pointers read and write, that pro-
vide the callback functions used for processing I/O operation on the emulated
address space.

94
Chapter 4. AppropinQuo, Full System Emulator for Approximate Memory

Platforms

A special MemoryRegion, called system_memory, represents the all memory ad-
dress space of the guest machine while the MemoryRegion system_io is used to emu-
late the operation of all memory mapped I/O devices. Both these structures are allo-
cated by the memory_map_init function, called by cpu_exec_init_all directly in QEmu
main.

1 s t a t i c void memory_map_init (void)
2 {
3 system_memory = g_malloc (s i z e o f (∗ system_memory)) ;
4

5 memory_region_init (system_memory , NULL, " system " , UINT64_MAX) ;
6 a d d r e s s _ s p a c e _ i n i t (&address_space_memory , system_memory , "memory") ;
7

8 system_io = g_malloc (s i z e o f (∗ system_io)) ;
9 memory_region_init_io (system_io , NULL, &unassigned_io_ops , NULL, " io " ,

10 65536) ;
11 a d d r e s s _ s p a c e _ i n i t (& address_space_io , system_io , " I /O") ;
12 }

The initialization of guest RAM instead is implemented in each machine specific
file through calls to:

• memory_region_init(MemoryRegion *mr, const char *name, uint64_t size), to initial-
ize a Memory Region that can act as a container for other memory regions;

• void memory_region_init_io(MemoryRegion *mr, const MemoryRegionOps *ops, void
*opaque, const char *name, uint64_t size), to initialize an I/O memory region;

• void memory_region_init_ram(MemoryRegion *mr,const char *name, uint64_t size),
to initialize a RAM memory region.

In AppropinQuo specific units to model approximate memories have been de-
veloped inside the architecture; in particular the approximate memory model is im-
plemented as a QEmu MemoryRegion, mapped in the I/O memory address space,
receiving faults according to the error injection models. The reason to map approx-
imate memory in I/O address space is to intercept read and write accesses at run
time, qhich is required by some fault injection models.

As for the Linux Kernel (see ??), the mapping of AxM into RAM memory re-
gion is specific for each architecture, so this operation is performed in the model of
each architecture, in the same point where the allocation of RAM memory is imple-
mented. This mapping will be briefly described in the following paragraphs.

Approximate memory mapping on PC PIIX, x86 architecture

1 FWCfgState ∗pc_memory_init (PCMachineState ∗pcms ,
2 MemoryRegion ∗system_memory ,
3 MemoryRegion ∗rom_memory ,
4 MemoryRegion ∗∗ram_memory ,
5 PcGuestInfo ∗gues t_ in fo)
6 {
7 i n t l inux_boot , i ;
8 MemoryRegion ∗ram , ∗option_rom_mr ;
9 MemoryRegion ∗ram_below_4g , ∗ram_above_4g ;

10 MemoryRegion ∗approxmem ;
11 FWCfgState ∗ fw_cfg ;
12 MachineState ∗machine = MACHINE(pcms) ;
13 a s s e r t (machine−>ram_size == pcms−>below_4g_mem_size +
14 pcms−>above_4g_mem_size) ;

4.4. Approximate Memory in ApropinQuo 95

15 l inux_boot = (machine−>kernel_ f i lename != NULL) ;
16 ram = g_malloc (s i z e o f (∗ ram)) ;
17 memory_region_allocate_system_memory (ram , NULL, " pc . ram" ,
18 machine−>ram_size ∗2) ;
19 ∗ram_memory = ram ;
20 ram_below_4g = g_malloc (s i z e o f (∗ ram_below_4g)) ;
21 memory_region_ini t_al ias (ram_below_4g , NULL, "ram−below−4g " , ram ,
22 0 , pcms−>below_4g_mem_size) ;
23 memory_region_add_subregion (system_memory , 0 , ram_below_4g) ;
24 approxmem =g_malloc (s i z e o f (∗approxmem)) ;
25 memory_region_init_io (approxmem , NULL, &approxmem_ops , NULL,
26 ’approxmem ’ ,pcms−>below_4g_mem_size) ;
27 p r i n t f ("pcms : %dM \n" , pcms−>below_4g_mem_size > >20) ;
28 memory_region_add_subregion (system_memory , pcms−>below_4g_mem_size ,
29 approxmem) ;
30 approxmem_init (pcms−>below_4g_mem_size) ;
31 e820_add_entry (0 , (pcms−>below_4g_mem_size) ∗2 , E820_RAM) ;

It can be observed that RAM is allocated in the pc_memory_init function as a sin-
gle memory region (MemoryRegion * ram), using aliases to address,within it, smaller
portions of memory (subregions) (for example to distinguish between RAM above
and below the 4G boundary). To introduce approximate memory in the architec-
ture, another MemoryRegion, called approximem, has to be implemented and mapped
as I/O. This operation is performed by calling the function memory_region_init_io,
which receives as parameters the pointer to the memory region to be initialized, the
structure with the callback functions (i.e. read and write) and the size of the region
to be mapped. The RAM is then composed of two memory regions:
• MemoryRegion ram, corresponding to exact memory;

• MemoryRegion approximem, corresponding to approximate memory;

After the initialization of these regions, both are then added as a subregion to
system memory, which, as said before, identifies all memory present in the system.
Finally the approxmem_init is invoked to initialize the approxmem device.

It is possible to note that these two regions are initialized in order to have the
same size, as declared correspondingly in the Linux kernel. The actual amount of
RAM allocated is specified to QEmu and passed to Linux Kernel in the command
line. In particular, the option -m is used to indicate the RAM size corresponding to
the exact memory, while the option -append memmap specifies approximate memory
size.

Since in this architecture memory size is configured by the BIOS with an auto-
matic discovery procedure, approximate memory is not found because it is mapped
as I/O. Therefore, during bootstrap, the BIOS finds only the exact portion of RAM
(e820: BIOS-provided physical RAM map), later ram size is changed to indicate that
another region is present (e820: user-defined physical RAM map), see Fig. 4.3. This
is obtained passing the memmap command line to Linux Kernel.

It is important to observe that hiding the approximate memory region during the
initial boot phase is a requirement of this architecture, since it could be otherwise
used by the bootloader to allocate initial code and structures that are sensitive to
errors (i.e. kernel code, initram filesystem, etc.).

Approximate memory mapping on Vexpress Cortex A9, ARM architecture

In the text box below the initialization of the RAM, and therefore also of the approx-
imate memory region, for the Vexpress ARM platform is shown.

96
Chapter 4. AppropinQuo, Full System Emulator for Approximate Memory

Platforms

FIGURE 4.3: e820 Bios Memory Mapping passed to Linux Kernel

1 s t a t i c void a9_daughterboard_ini t (const VexpressMachineState ∗vms ,
2 ram_addr_t ram_size ,
3 const char ∗cpu_model ,
4 qemu_irq ∗pic)
5 {
6 MemoryRegion ∗sysmem = get_system_memory () ;
7 MemoryRegion ∗ram = g_new (MemoryRegion , 1) ;
8 MemoryRegion ∗approxmem = g_new (MemoryRegion , 1) ;
9 MemoryRegion ∗lowram = g_new (MemoryRegion , 1) ;

10 ram_addr_t low_ram_size ;
11

12 i f (! cpu_model) {
13 cpu_model = " cortex−a9 " ;
14 }
15

16 i f (ram_size > 0 x40000000) {
17 /∗ 1GB i s the maximum the address space permits ∗/
18 f p r i n t f (s tderr , " vexpress−a9 : cannot model more than 1GB RAM\n") ;
19 e x i t (1) ;
20 }
21

22 memory_region_allocate_system_memory (ram , NULL, " vexpress . highmem" ,
23 ram_size) ;
24 low_ram_size = ram_size ;
25 i f (low_ram_size > 0 x4000000) {
26 low_ram_size = 0 x4000000 ;
27 }
28 /∗ RAM i s from 0 x60000000 upwards . The bottom 64MB of the
29 ∗ address space should in theory be remappable to various
30 ∗ th ings inc luding ROM or RAM; we always map the RAM there .
31 ∗/
32 memory_region_ini t_al ias (lowram , NULL, " vexpress . lowmem" , ram , 0 ,

low_ram_size) ;
33 /∗approxmem∗/
34 memory_region_init_io (approxmem , NULL, &approxmem_ops , NULL, "

approxmem" , approx_ram_size) ;
35

36 memory_region_add_subregion (sysmem , 0x0 , lowram) ;
37 memory_region_add_subregion (sysmem , 0 x60000000 , ram) ;
38 /∗Map approximate memory∗/
39 memory_region_add_subregion (sysmem , 0 x60000000 + ram_size , approxmem) ;
40 approxmem_init (approx_ram_size) ;

The implementation is similar to the one already described for the PIIX x86 ar-
chitecture; the main difference concerns how the information about the amount of
approximate memory is propagated into the emulator. Since the boot mechanism is
different and an equivalent to x86 BIOS is not present, it is not necessary to provide
this information to the operating system via the memmap option. The memory map

4.4. Approximate Memory in ApropinQuo 97

information, instead, is intrinsic in the device tree structure (passed to the emulator in
the command line) and it is also specified in the configuration file for the approxmem
device 1.

Approximate memory mapping on VirtIO, RISCV-32 architecture

The solution adopted to map approximate memory on RISC-V32 VirtIO board is
the same used on ARM architecture, since even in this case the size of approximate
memory is specified in the device tree file.

1 memory_region_init_ram (main_mem , NULL, " r i s c v _ v i r t _ b o a r d . ram" ,
2 machine−>ram_size , &e r r o r _ f a t a l) ;
3 memory_region_add_subregion (system_memory , memmap[VIRT_DRAM] . base ,
4 main_mem) ;
5

6 /∗Approxmem∗/
7 memory_region_init_io (approxmem , NULL, &approxmem_ops , NULL, "approxmem" ,

ram_size_approx) ;
8 memory_region_add_subregion (system_memory , memmap[VIRT_DRAM] . base +

ram_size , approxmem) ;
9 approxmem_init (ram_size_approx) ;

This was also repeated for the Si-FiveU board.

Multiple Approximate memories mapping on VirtIO, RISC-V64 architecture

As last implementation, it is illustrated the initialization of multiple approximate
memory regions for the 64-bit RISC-V64 platform VIRT-IO.

1 s t a t i c void r i s c v _ v i r t _ b o a r d _ i n i t (MachineState ∗machine)
2 {
3 [. . .]
4 memory_region_init_ram (main_mem , NULL, " r i s c v _ v i r t _ b o a r d . ram" ,
5 machine−>ram_size / 2 , &e r r o r _ f a t a l) ; // /2
6 memory_region_add_subregion (system_memory , memmap[VIRT_DRAM] . base ,
7 main_mem) ;
8

9 /∗Approxmem∗/
10

11 while (approx_index < approx_mem_regions−>num_approx_regions) {
12 size_approx = (approx_mem_regions−>approx_mem [approx_index] .

approx_config . mem_size) ;
13 i f (approx_index == 0)
14 approx_mem_regions−>approx_mem [approx_index] . approx_base =

memmap[VIRT_DRAM] . base + ram_size /2;
15 e l s e
16 approx_mem_regions−>approx_mem [approx_index] . approx_base =

approx_mem_regions−>approx_mem [
approx_index − 1] . approx_base + size_approx ;

17 approxmem_init (size_approx , &approx_mem_regions−>approx_mem [
approx_index] , approx_mem_regions−> approx_mem [approx_index] .
approx_base , system_memory) ;

18 approx_index ++;
19 }

In this case the information regarding the actual amount of physical memory is
obtained directly from the approxmem configuration file. In particular, the mapping
of the approximate memory regions is implemented as follows:

1. the size of the i-th approximate memory area (ram_size parameter) is obtained;

1The structure and the role of the approxmem configuration file is described in Section 4.4.2

98
Chapter 4. AppropinQuo, Full System Emulator for Approximate Memory

Platforms

2. the physical start address of each approximate memory zone is computed.

• If the approximate memory region is the first one (approx_index = 0) the
start address of this region is given by the base address of the RAM plus
the size of the exact RAM;

• For the next approximate memory zones, the start address is given by the
start address of the previous approximate zone plus its size. Obviously
the information specified in the configuration file must be consistent with
what is implemented in the kernel.

3. Each approximate region is initialized through a specific approxmem_init func-
tion.

4.4.2 Approxmem device in AppropinQuo

The approxmem device is the actual model of approximate physical memory. As pre-
viously exposed, it is mapped in the QEmu I/O MemoryRegion and it is associated
to the corresponding device in Linux Kernel. The implementation is completely ar-
chitecture independent and it has been written in the approxmem.c file. This file has
been added to the QEmu model library, in particular in the root directory where the
files common to all architectures are collected.

In ordert to manage the approxmem devices it is required to define:

1. the approximate_mem structure, which is its descriptor.

1 typedef s t r u c t approximate_mem {
2 MemoryRegion∗ iomem ;
3 approxmem_state approx_state ;
4 approxmem_config approx_config ;
5 hwaddr approx_base ;
6 } approximate_mem ;
7

2. an approximate_mem_regions struct, .

1 s t r u c t approximate_mem_regions {
2 approximate_mem approx_mem [MAX_APPROX_REGIONS] ;
3 i n t num_approx_regions ;
4 }
5

The scope of the struct is to store in the approx_mem[MAX_APPROX_REGIONS]
array the pointers to the descriptors of all the approximate memory regions
present in the architecture. The num_approx_regions contains the number of en-
abled approximate memory regions (as they can ben less than the maximum
allowed). As said in the previous chapter, on 64 bit architectures Linux Ker-
nel allows to declare up to 4 ZONE_APPROXIMATE, so num_approx_regions
can range from 1 to 4. On 32 bits architectures it is possible manage one
ZONE_APPROXIMATE, therefore num_approx_regions will be always set to
1.

3. a state strucTure for a single region, approxmem_state.

1 typedef s t r u c t approxmem_state {
2 void ∗approxmem_ptr ;
3 i n t read_counter ;
4 i n t wri te_counter ;

4.4. Approximate Memory in ApropinQuo 99

5 QEMUTimer ∗ t imer_error_01 ;
6 QEMUTimer ∗ t imer_error_10 ;
7 } approxmem_state ;
8

This structure is used to store the main information concerning the device state.
In particular, the following fields are present:

• a void * approxmem_ptr pointer to refer to the actual memory array;
• an integer variable, read_counter, to count read accesses;
• an integer variable, write_counter, to count the write accesses.
• two pointers to QEmu timer units, timer_error_10 and timer_error_01, used

by some fault models (see Section 4.5.1).

4. approximate memory configuration struct, approxmem_config.
1 typedef s t r u c t approxmem_config {
2 char∗ name ;
3 i n t e r r o r _ a c c e s s _ e n a b l e ;
4 i n t error_t iming01_enable ;
5 i n t error_t iming10_enable ;
6 uint looseness_mask ;
7 a c c e s s _ f a u l t _ c o n f i g a c c e s s _ f _ c o n f i g ;
8 t i m i n g _ f a u l t _ c o n f i g t iming_f_conf ig ;
9 u i n t 3 2 _ t mem_size ;

10 } approxmem_config ;
11

The scope of approxmem_config structure is to store the configuration param-
eters of a single approximate memory region. Essentially, these parameters
allow the user to setup the fault models, configuring the type of injected faults
(error on access, Section 4.5.2, DRAM fault orientation model, Section 4.5.1, bit
dropping Section 4.5.3), the fault rate and the number and position of bits af-
fected (circuit and architectural level techniques concerning approximate mem-
ories work mainly at bit level). In particular, these parameters are:

• name, the name of approximate memory region;
• error_access_enable, to enable error on access model;
• error_timing01_enable, to enable DRAM fault orientation model for anti-

cells;
• error_timing10_enable, to enable DRAM fault orientation model for true-

cells;
• access_f_config a structure which allows to specify the fault rates for error

on read and error on write;
1 typedef s t r u c t a c c e s s _ f a u l t _ c o n f i g {
2 double p_faul t_read ;
3 double p _ f a u l t _ r e a d _ t x ;
4 double p _ f a u l t _ w r i t e ;
5 } a c c e s s _ f a u l t _ c o n f i g ;
6

p_fault_read is to the error probability for error on read operations, p_fault_read_tx
indicates the error probability for transmission error on read operations
and finally p_fault_write is used for the error probability of error on write
operations.The meaning of these error rates will be clarified in Section
4.5.2.

100
Chapter 4. AppropinQuo, Full System Emulator for Approximate Memory

Platforms

• timing_f_config which allows to specify the fault rates for true-cells and
anti-cells in DRAM fault orientation error models;

1 typedef s t r u c t t i m i n g _ f a u l t _ c o n f i g {
2 double p _ f a u l t 0 1 _ p e r _ b i t ;
3 double p _ f a u l t 1 0 _ p e r _ b i t ;
4 i n t n_errors ;
5 } t i m i n g _ f a u l t _ c o n f i g ;
6

The meaning of these fault rates will be discussed in Section 4.5.1.

• size, to specify the size (in MB) of the approximate memory region.

The configuration struct is filled by parsing a .cfg configuration file received
by AppropinQuo emulator through the command line option -approx. The op-
tion has been added on purpose to the standard QEmu options and it allows to
specify the path to the configuration file for the approximate memory models.
For example:

qemu-system-riscv64 -M virt -kernel $APPROX_ROOT/bbl -append ’root=/dev/vda
ro console=ttyS0 mem=256’ -d approx_log -D approx.log -nographic -m 256M -drive
file=’$APPROX_ROOT/rootfs.ext2’,format=raw,id=hd0 -device virtio-blk-device,drive=hd0
-netdev user,id=net0 -device virtio-net-device,netdev=net0
-approx $APPROX_ROOT/config_approx.cfg

An example of configuration file is shown below:

1 # a u t h e n t i c a t o r
2 #APPROXIMATION GROUP: approximate memory parameters
3 # timing_enable_01 : Enable a s i n g l e shot t imer to i n j e c t f a u l t s on

t r a n s a c t i o n 0−>1
4 # timing_enable_10 : Enable a s i n g l e shot t imer to i n j e c t f a u l t s on

t r a n s a c t i o n 1−>0
5 #mask : bitmask to p r o t e c t most s i g n i f i c a n t b i t s from f a u l t−i n j e c t i o n .
6 #mem_size : approximate memory s i z e
7

8 [approximation]
9 t iming_enable_01 =1

10 t iming_enable_10 =0
11 access_enable =0
12 mask=0 x 7 f f f f f f f
13 mem_size=128
14

15 #ACCESS GROUP: e r r o r on a c c e s s parameters
16 # p_faul t_read : f a u l t read p r o b a b i l i t y [Errors/a c c e s s]
17 # p _ f a u l t _ r e a d _ t x : f a u l t read_tx p r o b a b i l i t y [Errors/a c c e s s]
18 # p _ f a u l t _ w r i t e : f a u l t wri te p r o b a b i l i t y [Errors/a c c e s s]
19 # i f p_faul t_read = 1 −−> b i t dropping enable
20 [a c c e s s]
21 p_faul t_read= 1e−30
22 p _ f a u l t _ r e a d _ t x =1e−30
23 p _ f a u l t _ w r i t e =1e−30
24 #TIMING GROUP: timing e r r o r parameters
25 [t iming]
26 # f _ r a t e 0 1 _ p e r _ b i t : f a u l t r a t e per b i t on t r a n s a c t i o n 0−>1[Errors /(

b i t ∗ s)]
27 # f _ r a t e 1 0 _ p e r _ b i t : f a u l t r a t e per b i t on t r a n s a c t i o n 1−>0[Errors /(

b i t ∗ s)]
28 f _ r a t e 0 1 _ p e r _ b i t =1e−5

4.5. Error injection models for approximate memories 101

29 f _ r a t e 1 0 _ p e r _ b i t =1e−1
30 n_errors =1000

If several approximate zones are enabled, each zone will have its own config-
uration file and a corresponding struct storing the state of the specific memory
region. For example, when two approximate memory regions are present:

$APPROX_ROOT/qemu-system-riscv64 -M virt -kernel $APPROX_ROOT/bbl -append
‘root=/dev/vda ro console=ttyS0’ -nographic -m 256M
-drive file=’$APPROX_ROOT/rootfs.ext2’,format=raw,id=hd0
-device virtio-blk-device,drive=hd0
-netdev user,id=net0 -device virtio-net-device,netdev=net0
-approx $APPROX_ROOT/config_approx2.cfg
-approx $APPROX_ROOT/config_approx.cfg -d approx_log -D approx.log

The order the configuration files are passed to the emulator, defines internally
the zone they are used for. Hence, the first is used for the zone with the lowest
level of approximation (in this case approx2) and the second for the one with
the highest level.

5. approximate memory region callbacks
Being mapped as memory I/O, approximate MemoryRegions present a .read
and .write callbacks, that are invoked every time the CPU reads from or writes
to locations belonging to approximate memory. These callbacks are defined
in the MemoryRegionOps structure, associated to the I/O memory when it is
initialized by the memory_region_init_io() function. Moreover, this structure is
used to specify the minimum and maximum access sizes and the endianness
of the device.

1 const MemoryRegionOps approxmem_ops= {
2 . read= (void ∗) read_approxmem ,
3 . wri te= (void ∗) write_approxmem ,
4 . impl = {
5 . min_access_s ize = 1 ,
6 . max_access_size = 4 ,
7 } ,
8 . endianness = DEVICE_LITTLE_ENDIAN ,
9 } ;

10

Finally, a mechanism for logging approximate memory accesses was implemented,
adding the an APPROX severity log to those already present in QEmu. These log
messages allow to trace accesses to approximate memory regions and faults injec-
tion. The APPROX logs are enabled with the following command line options:

-d approx_log -D approx.log

where -d enables output log messages and -D specify the file name (approx.log).

4.5 Error injection models for approximate memories

4.5.1 DRAM orientation dependent models

DRAM memory cells use a single transistor and a single capacitor to store a bit, rep-
resented as charge on the capacitor. Lowering the refresh rate of DRAMs determines

102
Chapter 4. AppropinQuo, Full System Emulator for Approximate Memory

Platforms

that the charge loss induced by leakage current will proceed until discharge. The ef-
fects on bit value depend on the DRAM circuit architecture, and will be discussed
briefly.

In DRAM, single cells are organized in arrays (memory banks) and are connected
to an equalizer and a sense amplifier (Fig. 4.4).

FIGURE 4.4: DRAM true cell and anti cell. Source:Liu et al., 2013

Being differential, every sense amplifier is connected to two bitlines in order to
determine whether the charge of one of them should be interpreted as logical 0 or 1:
when a bitline is activated, the other holds the reference precharge voltage (VDD/2).
The sense amplifier architecture, which is a specific manufacturer design choice, de-
termines the DRAM cells orientation. In particular, the following implementations
are adopted:

• true-cells: cells store a logical value of ‘1’ as VDD and a logical value of ‘0’ as 0V;

• anti-cells: cells store a logical value of ‘0’ as VDD and a logical value of ‘1’ as 0V;

• mixed-cells: a combination of both true-cells and anti-cells.

When lowering refresh rate, the corresponding charge loss appears, at logic level,
as a bit flip, whose orientation depends on the internal DRAM array structure. In
particular, the following errors can emerge and are implemented in our model:

• true-cell error model: when a cell loses charge, a ‘1’ to ‘0’ bit flip is observed;

• anti-cell error model: when a cell loses charge, a ‘0’ to ‘1’ bit flip is observed;

• mixed-cell error model: both ‘1’ to ‘0’ and ‘0’ to ‘1’ bit flip occurs in the array.

The orientation of DRAM cells is specific of each design and usually not known.
The capability of emulating DRAM faults according to its internal structure becomes
indeed fundamental to correctly reproduce the effects on the bit cell and conse-
quently on data at software level. In our model, each bit flip direction is character-
ized by an error probability, in particular fault rates p_01, p_10 are defined, respec-
tively, for the emulation of true-cell and anti-cell error effects (as shown in the pre-
vious section, the values of these error probabilities are specified in the approximate
memory configuration file). In case of mixed cells, both error rate can be specfied.

The probability distribution is assumed uniform in the array of cells, as showed
in many works (e.g. [Mathew et al., 2018]), and expressed as an error rate (errors/(bit×
s)). In particular, after a time interval has elapsed (implemented as a QEmu single-
shot internal timer and whose value is determined by the corresponding error prob-
ability), a callback is invoked, depending on the type of cell. The initialization of the
two timers has been implemented in the approxmem_init function. Going into details,
the timer_new_ns function is used to create a new QEMUTimer object of virtual clock
type (meaning that the timer is active only when the simulation is running) and to
associate it to the corresponding callback. The timer_mod_ns function is used instead
in order to arm the timer for the first time.

4.5. Error injection models for approximate memories 103

1 /∗Approximate memory i n i t ∗/
2 void approxmem_init (unsigned i n t s i z e) {
3 qemu_log_mask (APPROX_MEM, " approximate memory i n i t c a l l !\n") ;
4 approx_state . approxmem_ptr=g_malloc (s i z e) ;
5 approx_state . read_counter =0;
6 approx_state . wri te_counter =0;
7 i f (approx_config . error_t iming01_enable) {
8 qemu_log_mask (APPROX_MEM, " I n i t i a l i z e t imer e r r o r 0−>1\n") ;
9 approx_state . t imer_error_01=timer_new_ns (QEMU_CLOCK_VIRTUAL, (

QEMUTimerCB∗) error_generator_01 ,NULL) ;
10 timer_mod_ns (approx_state . t imer_error_01 , 1 0 0 0) ;
11 }
12 i f (approx_config . error_t iming10_enable) {
13 qemu_log_mask (APPROX_MEM, " I n i t i a l i z e t imer e r r o r 1−>0\n") ;
14 approx_state . t imer_error_10=timer_new_ns (QEMU_CLOCK_VIRTUAL, (

QEMUTimerCB∗) error_generator_10 ,NULL) ;
15 timer_mod_ns (approx_state . t imer_error_10 , 1 0 0 0) ;
16 }
17 }

Depending on which model is enabled (true-cell or anti-cell), the callback gener-
ating the corresponding fault is executed, while, in case of a mixed cells architecture,
both callbacks are invoked. The box below shows the implementation for the anti-
cell callback.

1 s t a t i c void error_genera tor_01 (void)
2 {
3 qemu_log_mask (APPROX_MEM, " approximate memory : e r r o r generator 0−>1

timer c a l l b a c k !\n") ;
4 u i n t 8 _ t ∗approx_array =(u i n t 8 _ t ∗) approx_state . approxmem_ptr ;
5 u i n t 6 4 _ t t ime_expire ;
6 i n t c _ f a u l t s ;
7 f l o a t t ime_f ;
8 hwaddr address ;
9 u i n t 6 4 _ t val ;

10 u i n t 6 4 _ t val2 ;
11

12 t ime_f= −1e9 ∗ (l o g f (1 . 0 − (f l o a t) rand () / (RAND_MAX + 1 . 0)) /
TIMER_F_RATE_01) ;

13 t ime_expire=t ime_f ;
14

15 f o r (c _ f a u l t s = 0 ; c _ f a u l t s < approx_config . t iming_f_conf ig . n_errors ;
c _ f a u l t s ++) {

16 address= (hwaddr) ((rand_32 () % MEMORY_SIZE) & 0xFFFFFFFC) ;
17

18 val= (∗ (u i n t 3 2 _ t ∗)&approx_array [address]) ;
19 val2 = val ^ (approx_config . looseness_mask &(1<<(rand () %32))) ;
20 ∗ (u i n t 3 2 _ t ∗)&approx_array [address]= val2 ;
21 qemu_log_mask (APPROX_MEM, " val :% l l x val2 :% l l x val^val2 :% l l x \n" , val ,

val2 , val^val2) ;
22 }
23

24 timer_mod_ns (approx_state . t imer_error_01 , qemu_clock_get_ns (
QEMU_CLOCK_VIRTUAL) +t ime_expire) ;

25 //qemu_log_mask (APPROX_MEM, " time expire :% l l u %f \n " , t ime_expire ,
t ime_f) ;

26 //qemu_log_mask (APPROX_MEM, " e r r o r generator :% l l u \n " ,
qemu_clock_get_ns (QEMU_CLOCK_VIRTUAL) +t ime_expire) ;

27 }

Since the model is integrated with the looseness level model, faults occur only if the
bit selected to be flipped has a ‘1’ in the corresponding bit position of the looseness

104
Chapter 4. AppropinQuo, Full System Emulator for Approximate Memory

Platforms

mask (see Section 4.5.4). At the end of the routine, the timer is re-armed using as
expire time a value followin a Poisson distrubution depending on fault rate.

4.5.2 SRAM models

SRAM approximate memories are designed with aggressive supply voltage scaling.
In SRAM bitcells, read and write errors are caused by low read margin (RM) and
write margin (WM) [Itoh and Horiguchi, 2009]. Since process variations affect RM
and WM in opposite directions, the corner defines which is the critical margin (i.e.
the slow–fast (SF) corner makes the bitcell write critical, the fast–slow corner makes
it read critical). Under voltage scaling, WM and RM are degraded, increasing read
and write bit error rates (BERs). The degradation is in general abrupt (BER increases
exponentially at lower voltages), but techniques have been proposed to make such
degradation graceful [Frustaci et al., 2014].

Given this behavior, the fault injection model implements an error on access
mechanism, which happens when a cell is activated to perform a read or write oper-
ation. Depending on the access, we distinguish three kind of errors:

• Error on write (EOW): introduced during a write operation, the bit stored in the
cell is flipped with respect to the bit coming from the data bus;

• Destructive error on read (EOR): introduced during a read operation, the bit
stored in the cell is flipped and passed to the data bus (both cell and data bus
contain the corrupted bit);

• Non-destructive error on read (EOR_TX): introduced during a read operation,
the bit stored in the cell is not corrupted during the operation, but it is flipped
when passed to the data bus.

For each one of these access errors, a uniform probability distribution in the array of
cells is assumed, expressed as errors/access.

This fault mechanism is implemented inside the approx_mem memory region ac-
cess callbacks, specified in the corresponding QEmu MemoryRegionOps. As said be-
fore, this structure contains two function pointers, .read and .write, which process
the I/O operations on the emulated memory: each time a read or write operation
is requested to the approximate memory region, the corresponding callback is in-
voked. The fault mechanism for destructive and non-destructive error on read is im-
plemented in the read callback while the fault injection mechanism for error on write
is implemented in the write callback.

As for the DRAM error orientation models, due to the integration with the loose-
ness level model, faults occur only if the bit selected to be flipped has a ‘1’ in the
corresponding bit position of the looseness mask (see Section 4.5.4).

Error on read

Two types of error on read have been implemented:

1. destructive error on read: this type of error is referred as destructive, meaning
that in result of a read operation, the value stored in the cell is corrupted. This
means that the corrupted value will be read again in case of further read oper-
ations.

2. transmission error on read: this type of error is referred as non-destructive, mean-
ing that in result of a read operation, a wrong value is read from the bit cell but

4.5. Error injection models for approximate memories 105

the stored value is preserved. Therefore, subsequent read operations will get
the correct value.

These two types of error are assumed statistically independent (Poisson stochas-
tic process). Consequently, two different independent extractions are performed in
order to determine if errors should occur in the memory cell. As well, during the
same read access, both types of read access errors can occur (destructive and non-
destructive).

1 r_prob = rand_32 () % PF_RAND_R ;
2 i f (r_prob == 0)
3 error_on_read = 1 ;
4 r_prob= rand_32 () % PF_RAND_TX
5 i f (r_prob == 0)
6 e r r o r _ t x = 1 ;

The box above illustrates the stochastic extraction concerning the two types of er-
ror; in particular, P_FAULT_R and P_FAULT_TX indicate respectively the fault rates
for destructive error on read and read transmission errors. In this case, the probabil-
ity respective probability is given by 1/FAULT_RATE_x.

Inside the routine that implements the error model, debug printouts have also
been inserted (Fig. 4.5) in order to display, during the execution of an application,
the actual value that is read and to print an error message any time a fault is injected.

FIGURE 4.5: Error on Read debug messages produced during execu-
tion

Error on write

When a write operation is performed, just one type of error can occur. The error
on write is always a permanent error: in case of fault, a wrong value is written in
the bit cell, corrupting the data. As for read operations, a stochastic extraction with
probability 1/PF_RAND_W is performed to determine if during the access the error
should be introduced.

1 w_prob=rand_32 () % PF_RAND_W;
2 i f (w_prob==0)
3 error_on_wri te =1;

4.5.3 Bit dropping fault model

Bit dropping is a bit-level technique which consists in completely disabling some
memory bitlines. It has been shown to be interesting since cells can be completely
powered off or even omitted [Frustaci et al., 2016; Yang et al., 2016; Frustaci et al.,
2015a]. The dropped bitlines are always the LSBs in a data word, since the impact
of errors is exponentially lower for smaller bit weights. This can be paired with
the consideration that in many applications, such as machine learning, big data and

106
Chapter 4. AppropinQuo, Full System Emulator for Approximate Memory

Platforms

multimedia, the quality is defined essentially by the MSBs. The technique is in-
dependent of technology and can be applied to both SRAM and DRAM memory
circuits [Yang et al., 2016].

For SRAM memory cells the precharge circuit of the selected LSBs is disabled
during read and write operations. This approach is quite different from the tradi-
tional dual VDD scheme where the supply voltage of both precharge circuits and
bitcells of the selected columns is reduced to a lower value. In [Frustaci et al., 2016;
Frustaci et al., 2015a] an implementation of SRAM bit dropping precharge circuit
is proposed: the drop signal, (corresponding to transistors M1 and M2 in Fig. 4.6),
connects the bitline of the dropped cell permanently to ground, eliminating dynamic
energy consumption.

FIGURE 4.6: SRAM precharge circuit for bit-dropping technique.
Source:Frustaci et al., 2015a

In DRAM memories instead, the refresh operation is completely disabled on
dropped bitlines. In [Jung et al., 2015] the authors demonstrate that, for dedicated
applications, the refresh operation can be switched off with a negligible impact on
the application performance.

In our model, bit dropping is implemented as follows:

• in SRAMs, when a word in memory is read or written and the bit dropping is
enabled, a given subset of bits is always set to ‘0’.

• in DRAMs, when a word in memory is read or written and the bit dropping
is enabled, a given subset of bits is set to ‘0’ or ‘1’ depending on memory cell
orientation distribution.

This fault injection mechanism is implemented in the read and write callbacks
of the approx_mem device: every time a read or write operation is performed in the
approximate memory, if the bit dropping error model is enabled, a specified number
of bits is always set to ‘0’ or ‘1’, depending on memory technology. The number of
dropped bits is defined by the looseness mask, a configurable parameter described in
the following section.

4.6. Quality aware selective ECC for approximate DRAM and model 107

4.5.4 Memory looseness level and fault models

Bit level approximate techniques have been introduced in order to exploit the expo-
nential weight that bits assume in data words. Effectively, the approach introduces a
new level of freedom in the approximate memory design space, that can be explored
in search of better trade-offs.

As said in the previous section, a fault in a cell that is part of the most significant
bits (MSBs) has a larger impact on the stored value, with respect to a fault occurring
in one of the least significant bits (LSBs). In [Frustaci et al., 2016] selective voltage
scaling is proposed in order to modulate error rate, at the cost of an increment in
circuit complexity; in [Lucas et al., 2014] DRAM banks are reorganized and refresh
rate modulated in order to obtain a similar effect. Considering results, the technique
appears effective but the actual implementation is dependent on the microprocessor
ISA and its data representation and organization in memory.

In order to support the emulation of bit level techniques, the concept of looseness
level and looseness mask have been inserted in AppropinQuo. The looseness level
(i.e. the number of bit that are affected by errors in a data word) is implemented by
introducing a 32-bit configurable mask (constant for the whole memory array) that
is applied to every 32-bit word in memory (Fig.4.7). Its scope is the selection of bits
affected by faults (i.e. the MSBs). The bits inside a word are not affected by faults
when the corresponding bit in the looseness mask is set to zero (i.e. with a looseness
mask set to 0x0FFFFFFF, the 4 MSBs are exact, while the 28 LSBs are affected by
faults). The structure of the looseness mask allows to effectively tune approximation
at bit level for 32-bit, 16-bit and 8-bit data.

FIGURE 4.7: Example of Looseness Mask on Big Endian architecture

It should be underlined that having a single looseness mask defined for the
whole approximate memory array means having a single looseness level for the
array. This is mainly due to the consideration that practical implementations are
limited to this configuration, since it already is has a large impact in the design of
the whole memory layout. Another consideration specific to this model is that MSBs
and LSBs in memory are not uniquely defined but depend on microprocessor ISA
(i.e. data endianess) and also data size (i.e. in a 32 bit memory word 8 bit data are
packed in groups of four and stored in the same word). The choice of defining the
memory looseness level using a 32 bit looseness mask provide the flexibility required by
the above mentioned cases.

4.6 Quality aware selective ECC for approximate DRAM and
model

This section describes an innovative technique that can be applied to approximate
DRAMs under reduced refresh rate. It allows to trim error rate at word-level, while

108
Chapter 4. AppropinQuo, Full System Emulator for Approximate Memory

Platforms

still performing the refresh operation at the same rate for all cells. The number of
bits that are protected is configurable and depends on output quality degradation
that can be accepted by the application.

4.6.1 Bit dropping for LSBs, bit reuse and selective ECC

The proposed approach results from the exploration of the relation between output
quality and BER on the LSBs and MSBs. LSBs in a data word can be dropped and set
to a constant value (i.e. 0) with a marginal impact on output quality degradation. It
is a technique that is proposed since it achieves energy savings with a simple circuit
implementation (bit cells are powered off or even omitted).

Previous works have proposed to use selective ECC in SRAMs to reduce errors
in MSBs.

1. by enlarging memory words as in classical ECC memory systems (i.e. 32bit
memory word are expanded to 36bit, introducing 4bit ECC) [Lee et al., 2013];

2. by reusing LSB dropped bits [Frustaci et al., 2015a].

The contribute of the work is

1. to design selective ECC specific for approximate DRAM memory systems;

2. to tailor selective ECC to the specific application, by first analyzing its output
quality degradation related to bit error rate, looseness level and dropped bits.

4.6.2 Quality aware selective ECC

The idea of quality aware selective ECC consists of a two step process. First, an appli-
cation is analyzed in order to find the desired tradeoff between output quality and
approximate memory parameters (i.e. error rate, level of approximation, dropped
bit); then an error correcting code is chosen in order to reduce error rate in a specific
portion of data bits. In order to avoid increasing memory requirements with addi-
tional ECC bit, bit dropping and reuse is always considered for the additional check
bits required by ECC.

ECC codes for approximate memories

In order to reduce hardware complexity, (n,k) SEC (single error correcting) Ham-
ming codes were considered. In this notation, k indicates the number of protected
bits (data bits), while n is the code length, including additional check bits. We note
that Hamming codes can provide also error detection (e.g. double error detection,
typically), but for our scope error detection is not used: in case of detected errors,
program execution would continue as for undetected errors in approximate mem-
ory. Table 4.1 summarizes the most common SEC Hamming codes. We note that, as
a general rule, increasing the number of data bits k produces more efficient codes,
since the rate k/n increases. However, larger k are effective at very small error rates
(as is common in exact memories). In approximate memories typical error rates are
much larger (i.e. from 104 to 10−2errors/(bit × s) [Stazi et al., 2019]) and, as con-
sequence, shorter codes are desirable since enlarging n increases the probability of
multiple errors within the same word, which cannot be corrected.

As described in section 4.5.4 Looseness Level represents the concept of having a
certain number of exact MSBs in an approximate data word. As an example, Table

4.6. Quality aware selective ECC for approximate DRAM and model 109

TABLE 4.1: List of Hamming codes

#Check bits (n-k) #Total bits (n) #Data bits (k) Name Rate

2 3 1 Hamming(3,1) 1/3
3 7 4 Hamming(7,4) 4/7
4 15 11 Hamming(15,11) 11/15
5 31 26 Hamming(31,26) 26/31
6 63 57 Hamming(63,57) 57/63

TABLE 4.2: FIR, output SNR [dB]

Looseness
Level

Fault rate [errors/(bit× s)]
10−1 10−2 10−3 10−4

12 MSBs 70.5 83.4 93.5 104.2
8 MSBs 46.5 59.6 69.3 80.3
4 MSBs 22.6 35.3 45.5 56.4
1 MSB 4.6 17.2 27.6 38.2

of dropped bits
4 LSBs 8 LSBs 12 LSBs 16 LSBs

134.7 122.4 106.1 82.2

4.2 (left) reports results obtained on a 32 bit integer FIR filter, showing how Loose-
ness level (i.e. the number of exact MSBs) can impact output SNR.

Instead of using exact DRAM cells for MSBs, the idea is to use a single, and
slower, refresh rate for all cells, while using SEC ECC in order to reduce error rate
in MSBs. In this way, MSBs are still affected by errors, but their error rate is reduced
with respect to LSB cells.

4.6.3 Impact of bit dropping and bit reuse

Table 4.2 (right) reports results obtained on the same 32 bit integer FIR filter, showing
how bit dropping (i.e. powering them off and reading them as ’0’) impacts output
SNR. As already confirmed in literature, output SNR is only slightly dependent on
LSBs. Instead of powering them off, these LSBs can be effectively reused as checkbits
for the MSBs, without requiring additional bits.

4.6.4 Implementation

Given the list of Hamming codes in Table 4.1, it appears that the most suitable for
our application are Hamming (3,1),(7,4) and (15,11). This choice depends on two
factors: first we assume to protect single 32 bit words in memory, in order to reduce
the impact on read/write speed; infact, protecting with a single code larger data
would require multiple read/write accesses on the entire data. Secondly, given the
relatively high bit error rate of approximate memories, longer SEC codes tend to fail
due to the rising probability of multiple errors.

Fig. 4.8 shows the formats considered for 32 bit data, where k MSBs are pro-
tected by SEC ECC, 32− n bits are left unprotected and n− k dropped and reused
as checkbits. Assuming a uniform error probability pe for each bit, expressed as
errors/(bit× s), the probability of having i errors in a set of n bits is:

Pe(n, i) =
(

n
i

)
pi

e(1− pe)
n−i;

110
Chapter 4. AppropinQuo, Full System Emulator for Approximate Memory

Platforms

FIGURE 4.8: 32 bit ECC data format in approximate memory

TABLE 4.3: BER for 32 bit data in approximate memory

Hamming (3,1) word

ECC prot. unprot. drop
1 bit 29 bit 2 bit

9.42E-03 1.00E-01 -

9.93E-05 1.00E-02 -

9.99E-07 1.00E-03 -

1.00E-08 1.00E-04 -

1.00E-10 1.00E-05 -

Hamming (7,4) word

ECC prot. unprot. drop
4 bit 25 bit 3 bit

2.29E-02 1.00E-01 -

2.90E-04 1.00E-02 -

2.99E-06 1.00E-03 -

3.00E-08 1.00E-04 -

3.00E-10 1.00E-05 -

Hamming (15,11) word

ECC prot. unprot. drop
11 bit 15 bit 4 bit

3.92E-02 1.00E-01 -

6.45E-04 1.00E-02 -

6.94E-06 1.00E-03 -

6.99E-08 1.00E-04 -

7.00E-10 1.00E-05 -

Considering the SEC ECC code, protected bits will contain errors for i ≥ 2; hence:

Pecce(n) =
n

∑
i=2

Pe(n, i) =
n

∑
i=2

(
n
i

)
pi

e(1− pe)
n−i;

In order to get a measure of the improvement, we can find the equivalent er-
ror rate peqe, considered as the error rate that n bits (without ECC) should have to
produce the same Pecce(n).

Peqe(n) =
n

∑
i=1

Pe(n, i) = 1−
0

∑
i=0

Pe(n, i) = 1− (1− peqe)
n;

Equivalent bit error rate peqe for ECC protected bits can be obtained with Peqe(n) =
Pecce(n):

peqe = 1− n
√

1− Pecce(n);

Assuming 32 bit data stored in approximate memory, Fig. 4.8 resumes how se-
lective ECC could be applied using Hamming (3,1), (7,4) and (15,11) codes. The most
appropriate choice depends on the application; for example, according to Table 4.2,
a range from 8 to 12 protected MSBs results in an output SNR between 60dB to 93dB,
while dropping 4 LSBs does not significantly impacts SNR. In this case Hamming
(15,11) seems the most suitable choice.

Table 4.3 reports effective error rates that would result on data considering the
previous Hamming codes. It shows that MSBs protected by SEC codes expose and
equivalent BER significantly lower than unprotected bits. According to the previous
example, Hamming (15,11) and a BER of 10−3 on cells produces an equivalent BER
of 6.94× 10−6 on MSBs.

Due to the relatively high error rates in approximate memories, SEC codes re-
duce but do not eliminate errors on MSBs. This is completely acceptable since the
scope is to improve output quality by reducing the impact of faults, but they are still
tolerated by the application.

4.7. Verification of fault models 111

Future works will implement the technique in simulation models and apply it to
error tolerant applications, allowing the characterization and the comparison with
respect to previous techniques.

4.7 Verification of fault models

In order to evaluate the correctness of the developed fault-injection models, a suite of
configurable benchmarks has been implemented. They are resumed in the following
list:

• bench_access, an application that stresses fault injection models related to error
on accesses (Section: 4.7.1);

• bench_spontaneous_error, an application that stresses fault injection models re-
lated to the DRAM orientation fault models (Section:4.7.2);

• bench_dropping, an application to test the bit dropping models (Section: 4.7.3).

4.7.1 Error on access models verification

The bench_access application allows to evaluate the fault injection mechanism related
to memory accesses. The algorithm implemented is the following:

1. an array of n integers is allocated in an approximate memory buffer (x is a
parameter configured by the user from the command line);

2. all the n integer locations are initialized to 0 (write access in approximate mem-
ory);

3. all the samples integer are read (reading in approximate memory);

4. the value is read exactly one time and then stored in a local variable: if it is
different from zero, an error occurred and the errors counter is incremented.

Table 4.4 shows the obtained results. The benchmmark was run varying the ar-
ray size n and the error probabilities (EOR, EOW, EOR_TX, see Sections 4.5.2); the
looseness mask was kept constant and set to 0x00FFFFFF.

It is possible, for example, to consider the first row of the table: 105 integers have
been allocated in approximate memory, setting all fault rates to 10−3 [errors/access]
(meaning statistically one error every 1000 accesses). The “#errors” column of the
table shows that 227 errors occured when the application runs with this setup. The
result confirms the correctness of the implementation since, according to this spe-
cific configuration, about 300 errors should occur. However considering that the
looseness mask protects the most significant 8 bits, the expected number of errors is
300× 0.75 = 225. The same considerations hold for the first three rows. Considering
now the fourth row, where only EOR (destructive error) are enabled, the benchmark
reports 78 errors occurrence. This result is again correct because the expected errors
are 100 × 0.75 = 75. Therefore the application and the obtained results allow to
validate the correctness of the implemented fault models.

4.7.2 DRAM orientation model verification

The bench_spontaneous_error application allows to evaluate the fault injection related
to the DRAM orientation model. The algorithm implemented is the following:

112
Chapter 4. AppropinQuo, Full System Emulator for Approximate Memory

Platforms

TABLE 4.4: bench_access results, fixed Looseness Level

Looseness
Level

EOR Fault
(rate)

EOR_tx fault
rate

EOW Fault
rate

#
errors

#
integers

0X00FFFFFF 10−3 10−3 10−3 227 105

0X00FFFFFF 10−3 10−3 10−3 22 104

0X00FFFFFF 10−3 10−3 10−3 2 103

0X00FFFFFF 10−3 0 0 78 105

0X00FFFFFF 10−3 0 0 10 104

0X00FFFFFF 10−3 0 0 2 103

0X00FFFFFF 10−2 0 0 735 105

0X00FFFFFF 10−2 0 0 69 104

0X00FFFFFF 10−2 0 0 8 103

0X00FFFFFF 10−1 0 0 7502 105

0X00FFFFFF 10−1 0 0 764 104

0X00FFFFFF 10−1 0 0 72 103

1. an array of n integers is allocated in an approximate memory buffer. The user
specifies from command line the number n and a delay t between a write and
a read operation;

2. all the n elements of the array are initialized to 0xFFFFFFFF (write access in
approximate memory);

3. a wait(t) function is invoked, suspending the execution until the specified time
interval is elapsed;

4. at the end of the time interval all the elements od the array are read (read access
in approximate memory);

5. each bit read as zero indicate the occurrence of errors and the errors counter is
incremented.

The scope of the application is to run with only the DRAM orientation model
enabled (otherwise read and write accesses in approximate memory would inject
further errors). Table 4.5 shows the obtained results. The benchmark was launched
varying the number n and the error rate (fault_rate_10, i.e error due to leakage in
DRAM true cells); the looseness mask is kept constant and set to 0x00FFFFFF.

Considering the looseness mask set to 0x00FFFFFF expected #errors is:

#errors = 8× array_size× t× f ault_rate× 0.75;

Also in this case the obtained results allow to validate the correctness of the im-
plemented fault models.

4.7.3 Bit dropping model verification

The bit_dropping application allows to evaluate the fault injection model related to
memory bit dropping. The algorithm implemented is similar to the one imple-
mented in the bench_access application. The application has been executed varying

4.7. Verification of fault models 113

TABLE 4.5: bench_spontaneous_error results (Wait time t = 1000ms)

Array size (byte)
Level

Fault Rate
[Errors/bit*s]

#
errors

1MB 10−6 6

10MB 10−6 58

100MB 10−6 603

1MB 10−3 5980

10MB 10−3 60353

100MB 10−3 598322

the looseness level parameter in the model, which in this case indicates the number of
dropped bits.

TABLE 4.6: bench_dropping results

Looseness
Level

Peak
signal[dB]

PSNR
(dB)

0X0000000F 186.64 167.69

0X0000001F 186.64 161.45

0X0000003F 186.64 155.69

0X0000007F 186.64 149.56

0X000000FF 186.64 143.21

0X00000FFF 186.64 119.71

Table 4.6 shows the obtained results. In particular, the third column is filled with
the computed PSNR (section 2.2.7) while the second column illustrates the Peak Sig-
nal (the reference for PSNR). It corresponds to the maximum value that the signal
can assume, therefore it is obtained when no bits are dropped (looseness Level =
0x00000000). The Peak signal has been computed in the following way:

PeakSignal[db] = 10 log(MAX_INT2)
= 20 log(MAX_INT) = 20 log(231)

= 186.64

It is possible to consider, as an example, the data in row 1: the obtained PSNR is
167.69 dB when the Looseness Level is set 0x0000000F (all bytes are protected except
for the most significant byte). This is exactly what expected since, from the theory of
truncation error, truncating n = 4 bits correspond to a rms error of of 18.89 db:

RMS_trunc_error[db] = 10 log((n− 1)(2n− 1)/6)

115

Chapter 5

Exploiting approximate memory in
applications and results

5.1 Introduction

This chapter represents the final step of this work, where eventually it was possible
to write and execute real world applications and exploit approximate memory for
data structures. Since we run on top of Linux OS, every application that has already
been written and run on it can potentially be modified in order to allocate approxi-
mate memory for some of its data structures, with the sole limitation that this data
must be error tolerant. The interest was addressed toward high memory consum-
ing application and toward signal processing applications, that typically manifest
tolerance to errors in their input data.

Once the applications were ready, they were run on an emulated approximate
system, meaning an emulated hardware platform containing approximate memories
(AppropinQuo) plus a running Linux operating system with approximate memory
management support. This setup allows to evaluate the impact of the different levels
and strategies of approximation (i.e. emulating different approximate memory cir-
cuit by varying fault rate, error injection models, looseness level) and allows to mark
the dependency between the approximate hardware configuration and degradation
of output quality of the application.

This exploration and characterization is important since it is not possible to eas-
ily predict how output quality is degraded considering only approximate memory
parameters. This is due to the fact that results do not depend only on the level of
approximation but also depend on the specific target application and, as important
remark, on the implementation of the application and how it is translated by the
compilation toolchain into machine code and machine data structures.

In particular, this chapter presents the results of two different works and investi-
gations:

• section 5.2 presents the study, the implementation and analysis of the impact
of approximate memory on a H.264 software video encoder. After a phase
of study, the code was internally modified in order to allocate selected data
buffers in approximate memory. After compilation and link with the approx-
imate alloc library, it was executed into an Intel x86 approximate platform
(Linux AxM OS + AppropinQuo emulator). Results showing degradation in
output video frames were produced, using approximate SRAMs and approxi-
mate DRAMs.

• section 5.3 presents the implementation of a software FIR filter with buffered
input and output data. It represents a classical real-time application which re-
ceives a stream of data, apply filtering and send it to the output device. The

116 Chapter 5. Exploiting approximate memory in applications and results

specific input data that were processed are, actually, audio signals that can be
listened to before and after filtering. Application performance were character-
ized in terms of output SNR.

• section 5.4 try to perform an analysis in a more complex case study, considering
the concept of quality aware approximate memory zones which will be defined
later. The application is still a digital FIR filter working on audio signals. This
case study opened the way to the exploration of a new concept: the presence of
memory zones with different level of approximation and the allocation of non-
critical data structures of error tolerant applications depending on sensitivity
to errors and desired output quality.

5.2 Impact of Approximate Memory on a H.264 Software Video
Encoder

The contribution of this work is to propose a strategy for selecting error tolerant data
structures and then allocate them in approximate memory, in order to extensively
study the impact on the quality of H.264 video streams. Since the level of approx-
imation (and hence power savings) is dependent on the amount of errors that the
application requirements can tolerate, the results allow to discover a relationship
between video output quality and hardware fault rate, which is the final metric to
guide the relaxation of hardware design constraints to save power (energy quality
tradeoff Huang, Lach, and Robins, 2012).

The activity has been developed in three phases which correspond to the follow-
ing steps:

1. Analysis of the x264 application. First of all the x264 source code (Section 5.2.1)
was analyzed in order to distinguish between the portions of code that could
be approximated and the ones that have to be kept exact (see Section 5.2.2).

2. Code modification (introduction of AxM allocations) and verification. Once non-
critical data have been identified, allocation on approximate memory are in-
troduced in the x264 code (Section 5.2.2).

3. Evaluation and results. This phase was performed running the approximate
x264 encoder on top of Linux in the AppropinQuo emulator, using different
input video samples (both standard resolution and full HD videos) (see Section
5.2.3).

5.2.1 H.264 video encoding and the x264 encoder

H.264 (Fig.5.1), or MPEG-4 AVC is a video compression format developed especially
for use in high definition video systems. One of the main goals of H.264 is the capa-
bility of providing good video quality at substantially lower bit rates than previous
standards at the cost of additional computational complexity. Such complexity has
been accompanied by the advancements in process technology that enabled the dif-
fusion of high-performance (embedded) multimedia hardware platforms.

Due to its characteristics and flexibility, it is currently adopted in many video ap-
plications, ranging from HDTV broadcast to HD consumer products, portable video
systems, including smartphones and internet streaming. Moreover it constitutes the
core of many web video services, such as Youtube, Facebook, Vimeo, and Hulu and
it is widely used by television broadcasters and ISPs. Because of its widespread use

5.2. Impact of Approximate Memory on a H.264 Software Video Encoder 117

FIGURE 5.1: H.264 high level coding/decoding scheme

and computational requirements, advanced platforms for its efficient implementa-
tion, in terms of cost, power, quality, have been proposed. Research has been con-
ducted on processing units and memory subsystems [Asma, Jarray, and Abdelkrim,
2017].

H.264 Encoder

In order to produce a compressed H.264 bitstream, the H.264 encoder perform the
following operations:

1. Prediction. it generates block prediction by motion estimation. The video frame
is processed by the encoder in unit of a macroblock1. Based on the previously
coded data, the encoder makes a prediction of the current block from both
the current frame, intra-prediction, and from the other frames that have already
been coded, inter-prediction (Fig.5.2). Finally the encoder subtract this predic-
tion from the macroblock forming a residual.

FIGURE 5.2: H.264 inter-frame and intra-frame prediction

2. Transformation and quantization. Using a 4x4 or 8x8 integer operation2, the en-
coder transforms a block of residual samples: it converts the difference be-
tween the true value and the prediction into a set of coefficients. Each of these
coefficients represents a weighting value for a basis pattern; combining to-
gether these coefficients it is possible to re-build the block of residual samples.

3. Bitstream encoding. the compressed bitstream is obtained encoding the data
produced by the video coding process. In particular these data, called syntax
elements, include:

116x16 displayed pixels
2an approximate form of the DCT

118 Chapter 5. Exploiting approximate memory in applications and results

• quantized transform coefficients;

• information used by the decoder to re-create the prediction;

• information dialing with the compression tools used during encoding and
also the structure of the compressed data;

• information concerning the full video sequence.

H.264 Decoder

The decoding process is performed in three steps:

1. Bitstream decoding. After receiving the H.264 bitstream, syntax elements are de-
coded, extracting the information required to reverse the coding process (e.g.
prediction information, quantized transform coefficients, etc.) and re-create
the original video sequence.

2. Rescaling and inverse transform. The second step is to re-scale the quantized
transform coefficients, by multiplying each coefficient for an integer value restor-
ing the original scale. Then an inverse transform is applied to recreate each
block of residual data: combining all these blocks together, the residual mac-
roblock is restored.

3. Reconstruction. The decoder creates an identical prediction for each macroblock,
adding this prediction to the decoded residual in order to reconstruct the de-
coded macroblock.

H.264 data fault resilience

Data fault resilience of H.264 algorithm has already been studied [Rehman et al.,
2011; Shafique et al., 2017b], however, the approaches consider unwanted and ran-
dom faults due to unreliable hardware platforms (smaller feature size of transistors,
lower threshold voltage, and tighter noise margins render the modern multimedia
platforms more susceptible to soft errors). These faults (manifested as spurious bit
flips) can be characterized in terms of statistical probability, but cannot be controlled
at data level (i.e. allowed only on data that are more tolerant to errors).

During this work, as typical in approximate computing, faults are intentionally
allowed on selected data structures and with controlled and higher probability than
the former works.

The x264 software video encoder

The x264 encoder is a free software library and application for encoding video streams
into H.264 [Merritt and Vanam, 2006]; it can be downloaded directly from VideoLAN
official website [VideoLan] either as binary executable or as tarball collection of source
code files. Due to its availability it has become one of the most widely used H.264
encoder in free and commercial applications, as well as in recent research works [De
Cock et al., 2016].

An example of x264 command line is shown below:
./x264 –o output/test.264 input/bus_qcif_15fps.y4m

During the video processing, the x264 prints on the terminal some useful infor-
mation concerning the encoding process as it can be observed in Fig.5.3, where some
information (e.g. video resolution, number of encoded frames) are highlighted.

5.2. Impact of Approximate Memory on a H.264 Software Video Encoder 119

FIGURE 5.3: x264 encoding information

TABLE 5.1: Heap memory usage

video resolution x264 option (preset) peak heap[MB] peak usefulheap [MB]

176X144 medium 15.6 15.4

704X576 veryfast 57.2 49.6

1920X1080 ultrafast 90.1 77.8

1920X1080 superfast 216.0 192.1

1920X1080 veryfast 269.0 238.6

Analysis of x264 heap memory usage

Heap memory usage in x264 has been characterized for different video resolutions
and encoding options. Heap memory is commonly used by applications for the
dynamic allocation of large memory buffers during data processing, which, for the
x264 encoder and in general for ETAs, are good candidates to approximate memory
storage.

It is expected larger memory requirements for higher resolution video, but also
for different encoding options. Encoding options in x264 set a tradeoff between
encoding speed and output quality (considering the same bitrate) and are another
source of increasing memory requirements. For practical use these options are grouped
in presets ranging from high-speed/low-quality (ultrafast preset) to extremely low-
peed/high-quality (slow preset).

Table 5.1 reports memory usage for different input video resolutions and encod-
ing options, showing the expected dependency on them. Peak heap represents mem-
ory peak allocation while useful heap is the actual memory used for application data;
the difference being memory consumed by allocation size rounding and administra-
tive byte associated with each allocation. We note that not all heap can be allocated
in approximate memory, since part of its data, typically called critical data, could be
not tolerant to errors. A strategy for selecting candidates for approximate memory
allocations is then required, and it is described in the following section.

120 Chapter 5. Exploiting approximate memory in applications and results

88.69% (250,198,526B) (heap allocation functions) malloc/new/new[], -alloc-fns,
etc.
->88.03% (248,347,652B): x264_malloc
| ->70.33% (198,419,648B): x264_frame_new
| | ->70.33% (198,419,648B): x264_frame_pop_unused
| | ->41.92% (118,246,016B): x264_encoder_encode
| | | ->41.92% (118,246,016B):encode_frame
| | | ->41.92% (118,246,016B): main
| | |
| | ->12.18% (34,360,128B): x264_encoder_open_152
| | | ->12.18% (34,360,128B):main
| | |
| | ->12.18% (34,360,128B): x264_encoder_encode
| | |
| | ->04.06% (11,453,376B): x264_encoder_encode
| |
| ->08.82% (24,883,200B):x264_encoder_open_152
| | ->08.82% (24,883,200B):main
| |
| ->04.47% (12,603,136B): x264_macroblock_cache_allocate
...
| ->04.41% (12,441,668B): x264_encoder_open_152
...

FIGURE 5.4: Memory allocation profiling: Massif output

5.2.2 Approximate memory data allocation for the x264 encoder

In order to select candidate data structures for approximate memory allocation, the
x264 memory usage traces have been analyzed during execution (memory profil-
ing). All called functions were traced with respect to heap memory allocation and
then analyzed in order to determined which data can be classified as non-critical for
program execution.

The profiling has been performed using the Valgrind debug and profiling suite
[Nethercote and Seward, 2007] and in particular the heap profiler tool called Massif.
An example of command line for analyzing encoder allocation is shown below:
valgrind –tool=massif –time-unit=ms –detailed-freq=1 – massif-out-file=massif_out ./x264
–o output/test.264 input/ bus_qcif_15fps.y4m

In Fig. 5.4 is reported an extract (peak memory sample) of Massif output for the
encoding of a 1920x1080 resolution video and veryfast option setting. The following
analysis is valid for other preset options and resolutions since, apart from absolute
memory usage, relative percentages remain similar.

From the profiling reported it is possible to deduce that the total amount of useful
heap memory, since the x264 application starts, is about 239MB. The largest part of
heap memory allocation is indeed handled by function x264_malloc, which covers
about 88.03% of total allocated heap memory. The function x264_frame_new, which
calls x264_malloc, covers 70.33% of heap allocations.

The next step involved the analysis of source code in order to identify the ac-
tual data allocated by these functions. First the x264_malloc is analyzed, since it is
responsible of the allocation of a large amount of heap memory. This function is im-
plemented in <common/common.c> source file and it is used to allocate heap memory
aligning data to 64 bytes.

1 void ∗x264_malloc (i n t i _ s i z e) {
2 u i n t 8 _ t ∗ a l ign_buf = NULL;
3 # i f HAVE_MALLOC_H
4 [. . .]

5.2. Impact of Approximate Memory on a H.264 Software Video Encoder 121

5 a l ign_buf = memalign (NATIVE_ALIGN, i _ s i z e) ;
6 # e l s e
7 // a l l o c a t i o n code before approx_malloc ’ s use
8 // u i n t 8 _ t ∗buf = malloc (i _ s i z e + (NATIVE_ALIGN−1) + s i z e o f (void ∗∗)) ;
9 // a l l o c a t i o n on approximate memory

10 u i n t 8 _ t ∗buf = approx_malloc (i _ s i z e + (NATIVE_ALIGN−1) + s i z e o f (void
∗∗)) ;

11 i f (buf) {
12 a l ign_buf = buf + (NATIVE_ALIGN−1) + s i z e o f (void ∗∗) ;
13 a l ign_buf −= (i n t p t r _ t) a l ign_buf & (NATIVE_ALIGN−1) ;
14 ∗ ((void ∗∗) (a l ign_buf − s i z e o f (void ∗∗))) = buf ;
15 }
16 # endi f
17 i f (! a l ign_buf)
18 x264_log (NULL, X264_LOG_ERROR , ’ malloc of s i z e %d f a i l e d \n ’ , i _ s i z e) ;
19 re turn al ign_buf ; }

By this analysis it is possible to discover that this function is too generic, handling
also allocation of critical data structures. It could be classified as critical in x264, for
example, data regarding encoder behavior, frames analysis, color space bits depth
setting and encoding bitrate control. These data are critical because they are respon-
sible of program control flow, which cannot be altered randomly by faults without
completely compromising the encoding algorithm.

The second candidate is the x264_frame_new function, which is implemented in
<common/frame.c>; it requests about 64% of x264_malloc allocated heap, moving these
allocations to approximate memory would result indeed in reducing more than one
half of the requirements for exact memory.

The analysis of the function x264_frame_new revealed that this routine is used to
create and allocate frames for encoding or decoding the video, in the form of frame
structures called x264_frame_t (defined in <common/frame.h>).

1 typedef s t r u c t x264_frame {
2 /∗ ∗/
3 u i n t 8 _ t ∗base ; /∗ Base pointer f o r a l l malloced data in t h i s frame . ∗/
4 i n t i_poc ;
5 i n t i _ d e l t a _ p o c [2] ;
6 i n t i_ type ;
7 i n t i_ forced_type ;
8 i n t i_qpplus1 ;
9 i n t 6 4 _ t i _ p t s ;

10 i n t 6 4 _ t i _ d t s ;
11 i n t 6 4 _ t i_ reordered_pts ;
12 i n t 6 4 _ t i_dura t ion ; /∗ in SPS t i m e _s c a le u n i t s (i . e 2 ∗ t imebase u n i t s)

used f o r v f r ∗/
13 f l o a t f_durat ion ; /∗ in seconds ∗/
14 [. . .]
15 /∗ f o r u n r e s t r i c t e d mv we a l l o c a t e more data than needed
16 ∗ a l l o c a t e d data are s tored in b u f f e r ∗/
17 p i x e l ∗ b u f f e r [4] ;
18 p i x e l ∗ b u f f e r _ f l d [4] ;
19 p i x e l ∗buffer_ lowres [4] ;
20 [. . .]
21 # i f HAVE_OPENCL
22 x264_frame_opencl_t opencl ;
23 # endi f
24 } x264_frame_t ;

For each of these frames, the code allocates a heap space large enough to contain
the whole picture buffer and other information, depending on encoder options. In
particular the x264_frame_t structure, among others, stores data concerning frame

122 Chapter 5. Exploiting approximate memory in applications and results

encoding options, colors space information, buffers for frame pixels, motion vector
buffers and rate control; some of this information is involved in the encoding control
flow and must be still kept exact. Conversely, buffers for frame pixels are optimal
candidates for approximate memory, because introducing errors in them does not al-
ter program execution flow. Further analysis showed that image pixels are grouped
into three different buffers, containing the pixel value for each color component,
each 1-byte large (8-bit per pixel). In particular these buffers are:

• pixel *buffer[4]: contains image pixel data to be encoded;

• pixel *buffer_fld[4]: contains image pixel data when using fields, instead of
frames, for interlaced encoding;

• pixel *buffer_lowres[4]: contains image pixel data of a low resolution version of
reference frame. This is used to increase speed during stream decoding.

Each of these buffers is composed of three elements: one for each colorspace
component plus an extra one that is never used during encoding, but it is used for
data alignment and memory access efficiency. This analysis regarding internal data
representation was revealed to be important for the optimization of approximate
memory techniques, as will be discussed in the following section.

Once candidate buffers for approximate memory allocation were identified, chang-
ing the code in order to move them to approximate memory was straightforward,
since in the target platform it is completely managed by the OS Stazi et al., 2017. The
only ad-hoc coding was required since x264 forces internally address aligment on
some memory requests, by the definition od a PREALLOC macro. This was repeated
for approximate memory alloc calls, introducing the macros APPROXMALLOC
and APPROXFREE. These macros use approx_malloc and approx_free function calls
(see Section 3.4.4) jointly with a data alignment mechanism. This manual alignment
was implemented reusing and adapting the code of PREALLOC, implemented in the
x264_frame_new function, and of x264_malloc function. In particular, the alignment
of allocation size is taken from PREALLOC implementation while the allocation and
alignment of the buffer from the x264_malloc function.

1 [. . .]
2 # i f d e f APPROX
3 # def ine APPROXMALLOC(al ign_buf , s i z e) \
4 do{\
5 s i z e _ t r e s i z e = ALIGN(s ize , NATIVE_ALIGN) ;\
6 u i n t 8 _ t ∗buf = approx_malloc (r e s i z e + (NATIVE_ALIGN−1) + s i z e o f (void

∗∗)) ;\
7 i f (buf) {\
8 a l ign_buf = buf + (NATIVE_ALIGN−1) + s i z e o f (void ∗∗) ;\
9 a l ign_buf −= (i n t p t r _ t) a l ign_buf & (NATIVE_ALIGN−1) ;\

10 ∗ ((void ∗∗) (a l ign_buf − s i z e o f (void ∗∗))) = buf ;\
11 }\
12 } while (0)
13 # def ine APPROXFREE(p) (approx_free (∗ (((void ∗∗) p) − 1)))
14 # endi f
15 [. . .]

As can be in the tex box above, in the APPROXMALLOC macro the original
malloc call has been replaced by approx_malloc but the alignment commands are
the same of x264_malloc function. APPROXFREE has the same implementation of
x264_free where the free routine is replaced with an approx_free call.

An extract of the new x264_frame_new implementation is reported in the text box
below.

5.2. Impact of Approximate Memory on a H.264 Software Video Encoder 123

1 s t a t i c x264_frame_t ∗x264_frame_new (x264_t ∗h , i n t b_fdec) {
2 x264_frame_t ∗ frame ;
3 [. . .]
4 i f (i _csp == X264_CSP_NV12 || i_csp == X264_CSP_NV16) {
5 i n t chroma_padv = i_padv >> (i_csp == X264_CSP_NV12) ;
6 i n t chroma_plane_size = (frame−>i _ s t r i d e [1] ∗ (frame−>i _ l i n e s [1] + 2∗

chroma_padv)) ;
7 # i f d e f APPROX
8 APPROXMALLOC(frame−>b u f f e r [1] , chroma_plane_size ∗ s i z e o f (p i x e l)) ;
9 # e l s e

10 PREALLOC(frame−>b u f f e r [1] , chroma_plane_size ∗ s i z e o f (p i x e l)) ;
11 # endi f
12 [. . .]
13 }
14 f o r (i n t p = 0 ; p < luma_plane_count ; p++) {
15 i n t luma_plane_size = a l i g n _ p l a n e _ s i z e (frame−>i _ s t r i d e [p] ∗ (frame−>

i _ l i n e s [p] + 2∗ i_padv) , d i s a l i g n) ;
16 i f (h−>param . analyse . i _ s u b p e l _ r e f i n e && b_fdec) {
17 [. . .]

5.2.3 Experimental setup

The x264 encoder, modified to allocate selected data buffers in approximate memory,
was compiled and executed in the AppropinQuo emulator, running Linux kernel ver-
sion 4.3 with support for approximate memory management and built for an Intel
x86 architecture.

Input test files were selected from the Xiph.org Video Test Media (derf’s collec-
tion) Montgomery, 1994. Given the large number of choices available, input video
samples for test were selected with different resolutions, color and characterized by
moving and still parts. A list of them is present in Table 5.2.

TABLE 5.2: Test videos from derf’s collection

name resolution lenght [frames]

ducks_take_off 1080p 500

dinner 1080p 950

crowd_run 1080p 500

blue_sky 1080p 217

bus CIF(176x144) 75

claire QCIF 494

flower CIF 250

The tests were executed configuring the approximate memory model in Appropin-
Quo for DRAM memories using slower refresh rate [Liu et al., 2012a; Raha et al.,
2017] and for SRAM memories considering voltage scaling. Different fault rates (er-
ror probability) and bit level error masking (looseness level) were also explored.

As for DRAM, the range of fault rates was chosen according to a refresh rate
increase ranging from 8x (256ms) up to 400x (25s), while bit level error masking
allows to take into account more advanced approximate techniques that distinguish
between bit weights (the quality of the user experience in multimedia application
is mainly defined by the most significant bits [Kwon et al., 2012; Gong et al., 2012;
Chang, Mohapatra, and Roy, 2011]).

124 Chapter 5. Exploiting approximate memory in applications and results

Results are provided in terms of user perceived video quality, comparing original
and coded frames. In particular, as quality metric, Peak signal-to-noise ratio (PSNR)
was used, defined as the ratio between the maximum pixel value and rms of cor-
rupting noise that affects the fidelity of its representation [Winkler and Mohandas,
2008].

All tests were executed with the x264 veryfast preset option, since this setting
provides a good balance between encoding processing time and quality.

In order to produce reference values, first the original x264 encoder, with buffers
allocated in exact memory, was run. As quality metric, peak signal-to-noise ratio
(PSNR) was used, defined as the ratio between the maximum pixel value and rms of
corrupting noise that affects the fidelity of its representation Winkler and Mohandas,
2008.

5.2.4 Impact on output using approximate DRAM and power saving con-
siderations

The results illustrated in this subsection are referred to HD videos (1980x1080 reso-
lution) selected from the Xiph.org Video Test Media (derf’s collection) Montgomery,
1994 with the following features:

• overall number of frames: 500;

• frame per seconds [fps]: 50;

• duration [s]: 10;

• input file format:YUV4MPEG (.y4m) . This format is used as a raw, color-
sensitive video format before compression; in particular it stores a sequence
of uncompressed YCbCr images that make up the video frame by frame.

.
The global PSNR mean value, obtained on output videos using exact compres-

sion was 29.69 dB. This value should be considered an upper bound to evaluate the
x264 performances with the present settings. Tests were executed considering an
approximate DRAM composed by true-cells, varying fault rate and bit level error
masking (looseness level).

Table 5.4 shows the results of the same decoding using approximate memory.
Global PSNR values are reported for each fault rate/looseness level combination.
Fig. 5.5 and Fig. 5.6 provide a visual result of user perceived video quality, compar-
ing the original frame (Fig. 5.5a and Fig. 5.6a) and the same frame using different
approximate memory error rates and looseness levels. In particular, Fig. 5.5 refers to
an error rate of 10−4 and three different looseness levels (0x0F0F0F0F, 0x1F1F1F1F,
0x3F3F3F3F). For this fault rate, a looseness level set to 0x3F3F3F3F (figure 5.5d)
(which allows errors on the six LSBs of each 8-bit pixel data), still produces an out-
put visually very close to the original frame. Lowering the looseness level does not
have a significant impact on output while implying a larger number of exact bit cells.
Fig. 5.6 is obtained for a fault rate set to 10−3; in this case we can see that, for higher
looseness levels (i.e. 0x3F3F3F3F, Fig. 5.6d), differences in output quality are starting
to be noticeable.

It is possible to observe that for a fault rate of 10−3 errors/(bit× s) and a loose-
ness mask set to 0x0F0F0F0F (i.e. error allowed on four LSBs), PSNR is 29.13 dB,
or about 0.5 dB under the exact case, confirming good tolerance to errors. The table
shows also that, with the same fault rate, all masks more protective than 0x0F0F0F0F

5.2. Impact of Approximate Memory on a H.264 Software Video Encoder 125

(A) Exact frame (B) Looseness Mask 0x0F0F0F0F

(C) Looseness Mask 0x1F1F1F1F (D) Looseness Mask 0x3F3F3F3F

FIGURE 5.5: x264, output frame with different Looseness Levels and
fault rate 10−4 [errors/(bit× s)]

(A) Exact frame (B) Looseness Mask 0x0F0F0F0F

(C) Looseness Mask 0x1F1F1F1F (D) Looseness Mask 0x3F3F3F3F

FIGURE 5.6: x264, output frame with different Looseness Levels and
fault rate 10−3 [errors/(bit× s)]

126 Chapter 5. Exploiting approximate memory in applications and results

TABLE 5.3: Video Output PSNR [dB]

Looseness
mask

Fault rate [errors/(bit× s)]
10−2 10−3 10−4

0x3F3F3F3F 19.97 25.18 28.84
0x1F1F1F1F 24.47 28.01 29.43
0x0F0F0F0F 27.35 29.13 29.59
0x07070707 28.96 29.52 29.63
0x03030303 29.47 29.61 29.64
0x01010101 29.61 29.64 29.64

TABLE 5.4: x264, video output PSNR [dB] for approximate DRAM
(true cells)

Looseness
mask

Fault rate [errors/(bit× s)] Bit
dropping10−2 10−3 10−4 10−5 10−6

0xFFFFFFFF 10.87 16.02 22.98 27.99 29.41 _
0x7F7F7F7F 15.30 20.34 26.90 29.25 29.60 _
0x3F3F3F3F 19.97 25.18 28.84 29.56 29.63 _
0x1F1F1F1F 24.47 28.01 29.43 29.62 29.65 _
0x0F0F0F0F 27.35 29.13 29.59 29.64 29.65 24.14
0x07070707 28.96 29.52 29.63 29.65 29.65 26.30
0x03030303 29.47 29.61 29.64 29.65 29.65 28.32
0x01010101 29.61 29.64 29.64 29.65 29.65 29.34

(i.e 0x07...07, 0x03...03, 0x01...01) produce very close outputs, but would result in
larger energy consumption (since they imply a larger portion of exact bits). Fig. 5.6
shows the visible effects, for 0x0F0F0F0F and 0x3F3F3F3F bit masks, on a portion of
a frame.

Simulations with fault rate set to 10−2 errors/(bit × s), which is the worst case
tested, illustrate that the 0x0F0F0F0F mask produces a PSNR value about 2 dB under
the exact case, resulting in more visible effects of corruption on the output. Fig. 5.7
plots output PSNR for an extended fault rate range.

Power saving considerations

Actual power saving related to the application of our test cases can be extracted
assuming as reference the results showed in [Raha et al., 2017]. Refresh power is
dependent on refresh rate, if we assume a 10−3 error rate, a 60x increase in refresh
period can be allowed. A looseness mask set to 0x0F0F0F0F means that half the cells
must be exact while the other half can be approximate memory. In these tests, data
structures selected to be allocated in approximate memory are about 60% of total
data, resulting in a system where, globally, about 30% are approximate memory cells
while 70% are exact memory cells.

According to this partition, and considering only refresh power, it is possible to
expect a normalized refresh power in the range of 0.3-0.5 [Raha et al., 2017] with
respect to the original exact implementation.

5.2. Impact of Approximate Memory on a H.264 Software Video Encoder 127

FIGURE 5.7: Video Output PSNR graph [dB]

5.2.5 Impact on output using approximate SRAM

The results illustrated in this section are referred to low resolution videos (176x144
resolution), selected again from the Xiph.org Video Test Media (derf’s collection)
Montgomery, 1994 with the following features:

• overall number of frames: 75;

• frame per seconds [fps]: 15;

• duration [s]: 5;

• file format:YUV4MPEG.

.

FIGURE 5.8: DRAM cell retention time distribution. Source:Liu et al.,
2012a

128 Chapter 5. Exploiting approximate memory in applications and results

TABLE 5.5: x264, video output PSNR [dB] for approximate SRAM
(error on access)

Looseness
mask

Fault rate [errors/access]
10−3 10−4 10−5 10−6 10−7

0xFFFFFFFF 38.65 47.58 56.75 63.48 64.41
0x7F7F7F7F 44.17 53.92 61.70 64.41 64.41
0x3F3F3F3F 50.14 59.58 63.92 64.41 64.42
0x1F1F1F1F 56.09 62.67 64.34 64.42 64.42
0x0F0F0F0F 61.79 64.11 64.41 64.43 64.44

Tests were executed considering an approximate SRAM, where errors occurs
both on read (destructive and non-destructive) and write accesses. As for the previ-
ous case, the original x264 encoding was first run obtaining a global PSNR value of
64.46 dB for the exact algorithm.

Table 5.5 shows the global PSNR for several fault rate/looseness level combina-
tions; in particular simulations were performed setting the fault rates (EOW, EOR,
EOR_TX) to the same value just to reduce the number of cases presented in the table.

The effects of these PSNR values can be compared visually by looking at output
frames: Fig. 5.9 shows the same frame obtained with exact compression (top left),
and with three different fault rates using the higher looseness level (i.e all bits cells
are affected by errors). As expected, the output quality for 10−6 (top right) is not
much different from the exact one. This consideration can also be extended to the
case of 10−4 (bottom left), which presents only minor artifacts despite it is more than
15dB under the exact PSNR. Finally the output frame obtained with a fault rate of
10−2 (bottom right) is the only one that clearly exhibits artifacts due to approximate
memory.

5.2.6 Considerations on the results and possible future analysis

In the previuos section it was we presented an analysis of the x264 software video
encoder and the impact of using approximate memory for storing its error tolerant
data structures. The work started by profiling memory usage and finding a strategy
for selecting error tolerant data buffers. After that the modified application was
run on the AppropinQuo emulator, for several combination of fault rates (derived
from actual refresh rate reduction strategies) and fault masking at bit level (looseness
level).

Results show the importance of exploring the relation between these parameters
and output quality. For example, leaving some of the MSBs exact demonstrated to
be an effective way of allowing error probabilities up to 100x higher with the same
output quality and an estimated refresh period increase in the order of 60x.

Since leaving exact a portion of memory cells reduces global energy savings,
this knowledge is also fundamental in order to drive research on hardware tech-
niques specifically tailored to the application, revealing the tradeoff between de-
signing more aggressive approximate circuits and the number of bit cells that must
be kept exact.

Further works can consider better allocation strategies in order to increase the

5.3. Study of the impact of approximate memory on a digital FIR filter design 129

FIGURE 5.9: x264, output frame coded with exact (top left) and ap-
proximate SRAM (0xFFFFFFFF looseness mask), fault rate 10−6 (top

right), 10−4 (bottom left) and 10−2 (bottom right) [errors/access].

fraction of data allocated in approximate memory and more advanced DRAM ar-
chitectures for embedded systems, as DRAMs chips with integrated ECC units. An-
other important aspect is a more accurate quantification of power savings, which
could be obtained by integrating a power consumption model in the approximate
DRAM memory model.

5.3 Study of the impact of approximate memory on a digital
FIR filter design

In this section the impact of different approximate memory configurations on a sig-
nal processing application (digital FIR filter) is shown. The digital FIR filter consists
of 100 taps implemented using 32-bit integer arithmetic. The FIR structure is shown
in Fig. 5.10; it is possible to note the presence of two buffers,input and output, whose
dimensions can be configured by user.

Since this is a generic implementation, audio signals were selected as input (ex-
tracted from uncompressed WAV file, 44100 Hz cample rate, single-channel and 16-
bit samples. During operation the FIR application performs the following opera-
tions:

• copy the samples in the input buffer, until it is full;

• perform filtering;

• copy the output buffer in the output file until it is empty;

• repeat from step 1 until end of input file.

130 Chapter 5. Exploiting approximate memory in applications and results

FIGURE 5.10: Digital FIR architecture

The input buffer, output buffer and internal tap registers are allocated in approx-
imate memory, for a total of about 200KByte of memory space. The filter coefficients
instead, being very sensitive to errors (even small variations produce large move-
ment in the position of poles), are considered critical and consequently allocated in
exact memory. The text box below lists the FIRConfig function, responsible for the
configuration of the filter, including the allocation of buffers.

1 DATA_TYPE∗ FIRconfig (char∗ f i lename , unsigned i n t ∗ ord , DATA_TYPE∗∗ IR ,
unsigned i n t ∗ s ize_ input ,

2 DATA_TYPE∗∗ buf fer_ in , DATA_TYPE∗∗ buf fer_out) {
3

4 FILE∗ fp ;
5 char i n s i z e [1 0 2 4] ;
6 char order [1 0 2 4] ;
7 char c o e f f b u f f e r [1 0 2 4] ;
8

9 i n t f ;
10 DATA_TYPE∗ r e g f i l e ;
11 DATA_TYPE∗ impulsive_r ;
12 DATA_TYPE∗ b uf fe r1 ;
13 DATA_TYPE∗ b uf fe r2 ;
14 unsigned i n t f i r _ o r d e r , i n b u f f _ s i z e ;
15

16 i f ((fp=fopen (fi lename , " r ")) ==NULL) {
17 re turn NULL;
18 }
19

20 f g e t s (i n s i z e , s i z e o f (i n s i z e) , fp) ;
21 i n b u f f _ s i z e = s t r t o l (i n s i z e , NULL, 1 0) ;
22

23 f g e t s (order , s i z e o f (order) , fp) ;
24 f i r _ o r d e r = s t r t o l (order , NULL, 1 0) ;
25

26 ∗ord = f i r _ o r d e r ;
27

28 //B u f f e r s a l l o c a t i o n
29 bu f f e r 1 = approx_malloc (KBYTE∗ i n b u f f _ s i z e) ;
30 bu f f e r 2 = approx_malloc ((KBYTE∗ i n b u f f _ s i z e) +(f i r _ o r d e r −1)∗ s i z e o f (

DATA_TYPE)) ;
31 r e g f i l e = approx_malloc (s i z e o f (DATA_TYPE) ∗ f i r _ o r d e r) ;
32 memset (r e g f i l e , 0 , s i z e o f (DATA_TYPE) ∗ f i r _ o r d e r) ;
33

34 impulsive_r = malloc (s i z e o f (DATA_TYPE) ∗ f i r _ o r d e r) ;
35

5.3. Study of the impact of approximate memory on a digital FIR filter design 131

36 f o r (f =0; f < f i r _ o r d e r ; f ++) {
37 f g e t s (c o e f f b u f f e r , s i z e o f (c o e f f b u f f e r) , fp) ;
38 s s c a n f (c o e f f b u f f e r , "%d" , &impulsive_r [f]) ;
39 }
40

41 f c l o s e (fp) ;
42

43 ∗ s i z e _ i n p u t= i n b u f f _ s i z e ∗KBYTE ;
44 ∗ IR=impulsive_r ;
45 ∗ b u f f e r _ i n =b uf fe r1 ;
46 ∗buf fer_out=bu f f e r 2 ;
47

48 s_of_outbuf f = ((KBYTE) ∗ i n b u f f _ s i z e) +(f i r _ o r d e r −1)∗ s i z e o f (DATA_TYPE) ;
49

50 re turn r e g f i l e ;
51 }

For the set of simulations, the following configuration was chosen:

• Data type (for coefficients and audio samples): integer, i.e. fixed point;

• FIR filter with 100 taps, integer coefficients generated with MATLAB [Shampine
and Reichelt, 1997], low-pass filter);

• input and output buffer size: 100KB each;

• input .wav audio files: 44100Hz sample rate, 16-bit samples, single channel.

The tests were run by executing the application inside AppropinQuo (on top of
Linux OS) using the following command line:

.fir -fir FIRp -out output -in input

where FIRp indicates the file containing the coefficients and output and input corre-
spond respectively to the output and input files. The quality metric for this appli-
cation is the output SNR; it is measured considering noise as the difference between
the output of the exact filter and the output of the approximate filter.

As a common consideration on the value of minimum required SNR, this strictly
depend on application. Since, in this case, the filtering is applied to an audio signal,
a value from 60dB to 90dB could be considered of interest by most applications.

In the following, the results concerning the impact on output using approximate
DRAM (Section 5.3) and approximate SRAM (Sections 5.3, 5.3) are shown. Several
simulations were executed by varying error rate and looseness level. In particular, to
assess the influence of each key parameter (error rate and looseness level) on the
SNR two groups of simulations were performed:

• simulations with a constant looseness level and variable fault rate to evaluate
the impact of the fault rate on the SNR;

• simulations with variable looseness level and constant fault rate to evaluate
the variation of the SNR in response to the variation of the looseness level.

Impact on output using approximate DRAM

Fig. 5.11 shows the output SNR, with respect to the exact case, for an hardware
platform using approximate DRAM memory. In the hypothesis of a memory circuit
consisting of anti-cells, different error rates and looseness levels are explored. As
reference, an error rate of about 10−3 is obtained in case of a 60x increase in refresh

132 Chapter 5. Exploiting approximate memory in applications and results

period [Raha et al., 2017]. The figure also shows that looseness level can be used in
order to rise SNR orthogonally to error rate, at the cost of keeping some bits exact.
As expected in this application, each exact bit as an impact of about 6dB on SNR.

FIGURE 5.11: FIR, output SNR [dB] for approximate DRAM (anti
cells)

Impact on output using approximate SRAM

Table 5.6 reports the output SNR in case of an approximate SRAM memory. The
SRAM parameters are explored in the corners, i.e. cells affected only by:

1. error on write (EOW);

2. destructive error on read (EOR);

3. non destructive error (EOR_TX).

In this case, due to the access pattern of the application, it is possible to note that
the EOW and the EOR_TX cases produce higher SNR than the EOR case. Again, by
modulating looseness level, higher SNR values can be obtained for the same error
rate.

Impact on output using approximate SRAM with bit dropping

Table 5.7 reports the output SNR in case of the bit dropping technique applied to an
approximate SRAM. The first column lists the value of the SNR obtained by keeping
28 bits exact and dropping the first four LSBs. Further columns were obtained by
increasing the number of dropped bits four at a time. The results confirm that LSB
dropping is a valid approach in case of high BER (as can happen in case of VDD
scaling at voltages below the minimum operating voltage Frustaci et al., 2016), since
it completely eliminates the energy associated with dropped bitlines.

5.4. Quality aware approximate memories, an example application on digital FIR
filtering

133

TABLE 5.6: FIR, output SNR [dB] for SRAM

Looseness
Level

Fault rate [errors/(bit× s)]
10−1 10−2 10−3 10−4

EOW
0x0000FFFF

94.6 107.3 117.6 127.3
EOR 90.6 104.2 114.9 125.0

EORnd 94.5 107.2 117.5 127.5
EOW

0x000FFFFF
70.5 83.4 93.5 104.2

EOR 66.4 80.3 90.9 101.4
EORnd 74.2 84.0 94.1 103.7
EOW

0x00FFFFFF
46.5 59.6 69.3 80.3

EOR 42.6 56.3 66.8 77.5
EORnd 45.9 59.8 69.9 79.9
EOW

0x0FFFFFFF
22.6 35.3 45.5 56.4

EOR 18.9 32.9 42.8 53.4
EORnd 25.2 33.0 45.8 56.0
EOW

0x7FFFFFFF
4.6 17.2 27.6 38.2

EOR 1.0 14.8 24.9 35.5
EORnd 6.2 17.5 27.8 37.8

TABLE 5.7: FIR, SNR [dB] for SRAM bit dropping

of dropped LSBs

4 bits 8 bits 12 bits 16 bits 20 bits 24 bits 28 bits

134.7 122.4 106.1 82.2 52.9 28.2 4.0

5.4 Quality aware approximate memories, an example appli-
cation on digital FIR filtering

In this section it is presented a first analysis of the application of quality aware mem-
ory allocation, applied to digital FIR filter application, working on audio signals.
We chose again the software FIR filter, set to 69taps and implemented in C language
using 32 bit integer arithmetic described in Section 5.3. The application has been
implemented in order to allocate the input and output buffers (indicated in green in
Fig. 5.10) and the tap registers (showed in blue) in different approximate memory
zones. They are respectively ZONE_APPROXIMATE1 and ZONE_APPROXIMATE2 and
they have distinct approximate levels (ZONE_APPROXIMATE1 has an higher level of
approximation (i.e. higher error rate) than ZONE_APPROXIMATE2). This choice is
due to the fact that, in the implementation, the input and output buffer locations are
accessed less frequently with respect to the tap registers. The text box below show
the relevant code regarding the allocatio of the above mentioned data structures.

1 /∗Buf fer a l l o c a t i o n ∗/
2 /∗A l l o c a t i o n in ZONE_APPROXIMATE ∗/
3 b uf fe r1 = approx_malloc (KBYTE∗ i n b u f f _ s i z e , 1) ;
4 /∗A l l o c a t i o n in ZONE_APPROXIMATE ∗/
5 b uf fe r2 = approx_malloc ((KBYTE∗ i n b u f f _ s i z e) +(f i r _ o r d e r −1)∗ s i z e o f (

DATA_TYPE) , 1) ;

134 Chapter 5. Exploiting approximate memory in applications and results

6 /∗A l l o c a t i o n in ZONE_APPROXIMATE 2 ∗/
7 r e g f i l e = approx_malloc (s i z e o f (DATA_TYPE) ∗ f i r _ o r d e r , 2) ;
8 memset (r e g f i l e , 0 , s i z e o f (DATA_TYPE) ∗ f i r _ o r d e r) ;
9

10 impulsive_r = malloc (s i z e o f (DATA_TYPE) ∗ f i r _ o r d e r) ;

Again, the application was executed on top of Linux Kernel in AppropinQuo, con-
figured in order to the following architecture:

• RISC-V 64-bit CPU, for which the kernel was compiled;

• RISC-V SiFiveU platform, with 256MB RAM memory;

• the 256MB RAM are partitioned into 128MB exact RAM, 64MB approximate
memory (level 1), 64MB approximate memory (level 2);

• destructive error on read (EOR), destructive error on write (EOW).

Table 5.8 reports the relevant data. The input and output buffers size is 100Kbyte
(they contain 25,000 32-bit samples), while the tap registers size is 276 bytes (for 69
32-bit registers). Access tracing reveals that, as expected, the tap registers array is
accessed about two orders of magnitude more than the input and output buffers.

Different combinations of levels of approximation for ZONE_APPROXIMATE1 and
ZONE_APPROXIMATE2 have been analyzed. Considering the order showed in Fig.
3.26, fault rate of ZONE_APPROXIMATE1 will be higher or equal than that of ZONE_APPROXIMATE2.
A starting point is when fault rates are equal, since it corresponds to the case of hav-
ing just one ZONE_APPROXIMATE for all non-critical data.

Table 5.9 and Table 5.10 show the results considering the two opposite corners of
an approximate SRAMs, EOR and EOW. As quality metric, we used SNR, measured
considering noise as the difference between the output of the exact filter and the
output of the approximate filter. The diagonal values correspond to the case of a
single ZONE_APPROXIMATE for all approximate data; on a row, moving from the
diagonal to the adiacent element, reveals that if tap registers are allocated in memory
with a fault rate 10 times lower, a gain of 7 to 8 dB in SNR is obtained for the EOR
case. This gain is quite repeatable across all cases, while further reducing fault rate of
factors of 100, 1000, etc. produces minor advantages. Table 5.10 shows how the same
concept is valid in the EOW corner, but, since in this case application tap register are
read are about twice than write accesses, SNR gain is 6 to 7 dB.

This study opens a new point of research, the presence of more that one level of
approximation in memory and possibility of optimize the allocation of non-critical
data for a specific implementation. In this case study the allocation was performed
manually, but further investigations could go in the direction of an automatic strat-
egy for the allocation of data, looking for an optimal point in the quality-energy
tradeoff curve.

Future works will target more complex applications requiring larger memory
size, exploring the use of multiple approximate zones. Automatic allocation strate-
gies will also be considered as a way of reaching more significant savings.

5.4. Quality aware approximate memories, an example application on digital FIR
filtering

135

TABLE 5.8: FIR, access count on approximate data structures

buffer_in buffer_out tap regs

size [bytes] 100,000 100,000 276

#read/location 196 196 10,035,200

#write/location 196 196 5,017,601

#total_reads 4,900,000 4,900,000 692,428,800

#total_writes 4,900,000 4,900,000 346,214,469

TABLE 5.9: FIR, output SNR [dB] for SRAM, EOR

Fault rate (buffers)
[errors/access]

Fault rate (taps) [errors/access]

10−2 10−3 10−4 10−5 10−6

EOR 10−2 32.9 37.52 43.64 44.17 44.19

EOR 10−3 _ 42.8 50.92 53.57 53.96

EOR 10−4 _ _ 53.4 60.85 63.84

EOR 10−5 _ _ _ 63.09 71.01

EOR 10−6 _ _ _ _ 72.92

TABLE 5.10: FIR, output SNR [dB] for SRAM, EOW

Fault rate (buffers)
[errors/access]

Fault rate (taps) [errors/access]

10−2 10−3 10−4 10−5 10−6

EOW 10−2 35.3 41.18 43.94 44.12 44.1

EOW 10−3 _ 45.5 52.17 53.34 53.79

EOW 10−4 _ _ 56.4 61.58 63.19

EOW 10−5 _ _ _ 65.69 69.84

EOW 10−6 _ _ _ _ 78.11

137

Chapter 6

Synthesis Time Reconfigurable
Floating Point Unit for
Transprecision Computing

6.1 Introduction and previous works

In this chapter the design and the implementation of a fully combinatorial floating
point unit (FPU), using VHDL hardware description language, is presented. The
FPU can be reconfigured at synthesis time in order to use an arbitrary number of
bits for the mantissa and exponent, and it can be implemented in order to sup-
port all IEEE-754 compliant FP formats but also non-standard FP formats, exploring
the tradeoff between precision (mantissa field), dynamic range (exponent field) and
hardware physical resource requirements.

This work is inspired by the consideration that, in modern low power embed-
ded systems, the execution of floating point operations represents a significant con-
tribution to energy consumption (up to 50% of the energy consumed by CPU). In
[Tagliavini et al., 2018] experimental results show that 30% of the energy consump-
tion is due to FP operations and an additional 20% is caused by moving FP operands
from memory and registers and viceversa. Several works try to overcome the limita-
tions of fixed-format FP types: for example in [Bailey et al., 2002; Fousse et al., 2007]
multi-precision arithmetic software libraries for performing computations on num-
bers with arbitrary precision are proposed. In particular, these libraries (APREC and
MPFR) are mainly used where a high dynamic range is required and they cannot be
adapted for the exploration of FP types with less than 32 bits length. In fact since
these libraries use an entire machine word for the exponent, they can’t reproduce
the behavior of FPUs with reduced precision formats since the tuning the dynamic
range is not possible. The Softload library [Hauser, 1996] implements all the IEEE-
754 FP types, allowing to accurate emulate the operations performed by a HW FPU.
This library can be easily extended to support FP types with arbitrary precision. The
drawback of this implementation is that the program execution are very slow since
all the computation are performed in software. In [Tagliavini et al., 2018] the au-
thors present a transprecision FPU capable of handling 8-bit and 16-bit operations
in addition to the IEEE-754 compliant formats (Fig. 6.1). In this scenario, the adop-
tion of multiple FP formats, with a tunable number of bits for the mantissa and the
exponent fields, is very interesting for reducing energy consumption and, simplify-
ing the circuit, area and propagation delay. Adopting multiple FP formats on the
same platform complies with the concept of transprecision computing, since it allows
fine-grained control of approximation while meeting the required constraints on the
precision of output results.

138
Chapter 6. Synthesis Time Reconfigurable Floating Point Unit for Transprecision

Computing

FIGURE 6.1: Block diagram of the FPU hardware datapath.
Source:[Tagliavini et al., 2018]

6.2 Floating Point representation, IEEE-754 standard

The IEEE floating point standard IEEE-754 [Kahan, 1996] is a technical standard for
floating-point computation, originally established in 1985 by the Institute of Electri-
cal and Electronics Engineers (IEEE).

The IEEE-754 standard defines:

• a basic and an extended format;

• representation of special numbers: zero, negative and positive infinity, and
NaN (Not a Number);

• precision, monotony and identity requirements for conversions between deci-
mal numbers and binary floating point numbers;

• five types of exceptions and their management;

• operations of sum, subtraction, product, division, square root, comparison,
rest, integer to FP, FP to integer conversion and conversion between different
floating point formats;

• four types of rounding;

• rounding accuracy.

X = (−1s)× 1.mb × be (6.1)

According to Equation 6.1 a floating point number consists of three fields: a sign
bit (s), a biased exponent(e) and a mantissa (m).

Depending on the number of bits associated to the mantissa m and the exponent
e, IEEE-754 standard defines several representation formats, that differ on dynamic
range of representable numbers (determined by the exponent) and on precision (de-
termined by the mantissa). In particular, indicating with k the total number of bits of
the floating point number and with p the number of bits of the mantissa including
the hidden bit (implicit bit), the FP number has:

6.3. Design of the reconfigurable Floating Point Unit 139

• 1 bit for sign determination;

• (p-1) bits dedicated to the mantissa;

• (k-p) bits dedicated to the exponent;

IEEE-754 defines half precision floating-point format with 1 sign bit, 5-bit expo-
nent, and 11-bit mantissa, single precision format with 1 sign bit, 8-bit exponent, and
23-bit mantissa and double precision format with 1 sign bit, 11-bit exponent, and 52-bit
mantissa (Fig. 6.2). The advantage of floating-point over fixed-point is to extend the
range of numbers that can be represented with the same number of bits, providing
robustness to overflows.

FIGURE 6.2: IEEE 754 Precision formats

In the floating point representation there is not a one-to-one correspondence be-
tween real numbers and floating point numbers, meaning that a real number x can be
represented by different triplet, e.g. sign1, exponent1, mantissa1 .. signn, exponentn, mantissan
while a single triplet represent only one real number. To overcome this limitation,
two different formats have been defined, based on the biased exponent concept1:

• normalized number: e 6= 0, 1 <= m < 2;

• denormalized number: e 6= 0, 0 <= m < 1.

6.3 Design of the reconfigurable Floating Point Unit

The primary goal of this work is the design and implementation of a fully com-
binatorial and reconfigurable FPU using VHDL hardware description language at
Register Transfer Level (RTL). The unit allows to perform operations on floating
point numbers in any format with a maximum length of 64 bits and with an arbi-
trary number of bits dedicated to the exponent and to the mantissa fields. In this
way, it is possible to support floating point operations fully compliant with those
defined by the IEEE-754 standard (double-precision, single-precision and half-precision)
and operations with non standard precision formats.

The FPU has been designed as reconfigurable at synthesis time by declaring the
length of all signals and variables as function of two generic types, m and e, used
respectively for defining the length of the mantissa and the exponent.

The hardware architecture has been designed trying to satisfy the following tar-
gets:

• reduced area occupation;

1a biased exponent is obtained by adding a constant (bias) to the exponent to make the range of the
exponent non negative.

140
Chapter 6. Synthesis Time Reconfigurable Floating Point Unit for Transprecision

Computing

• low power consumption.

The FPU is fully combinatorial, in order to be inserted in a CPU 1-cycle pipeline
stage. The implemented operations are:

• sum;

• subtraction;

• multiplication;

• conversion from floating point to integer;

• conversion from integer to floating point.

The HW description of the FPU architecture has been divided into sub-blocks
and the Floating_Point_Unit_core block represents the top unit. It is illustrated in the
following section.

6.3.1 Top unit Floating_Point_Unit_core

Fig. 6.3 represents the Floating_Point_Unit_core internal diagram. The FPU core can
be divided into three different part: on top there are the blocks that receive and
process the input signals (operand1 and operand2).

The FPU does not support operations between denormalized numbers (expo-
nent seto to zero and mantissa different from 0), because they would led to a larger
use of logic and therefore of area occupation in exchange for a marginal increase in
accuracy. The approach is indeed the same one used in the VFP of ARM processors:
all denormalized numbers in input to the FPU are directly approximated to 0. The
check on the two operands is performed by the block flush_to_zero (Fig.6.3): if the
inputs are denormalized then the block replaces the operands with bits composed
by all 0, with the exception of the most significant bit (which corresponds to the bit
sign). In the middle layer there are the blocks responsible of the computation. In
particular the main blocks are:

• adder: it performs the algebraic sum of the two input operands;

• right shifter: it is necessary to align the mantissa of the two operands when
performing addition or subtraction;

• multiplier: performs the multiplication between the mantissa of the two input
operands when the operation to be performed is a multiplication, otherwise
the output at the multiplier will be 0;

• normalizer: it is used to correctly handle the hidden bit, ensuring the the first
bit different from 0 corresponds to the hidden bit.

Finally the bottom part is composed by all blocks (e.g. trunk, round, etc.) that
prepare the output result.

Fig. 6.4 shows the FPU external interface.
Specifically, the FPU input signals are:

• operand1 [(m+e) - 0]: bit vector, first operand

• operand2 [(m+e) - 0]: bit vector, second operand

6.3. Design of the reconfigurable Floating Point Unit 141

FIGURE 6.3: Floating Point Unit Core architecture

142
Chapter 6. Synthesis Time Reconfigurable Floating Point Unit for Transprecision

Computing

FIGURE 6.4: External interface of FPU core

TABLE 6.1: Operation codes

code Operation

000 sum
001 subtraction
010 multiplication
011 _
100 integer to float
101 float to integer
110 _
111 _

• operation [0-2]; bit vector, it encodes the type of operation requested (Table 6.1);

• control [5-0], bit vector which configures the unit behavior during computation.
It is used for passing sign during integer to float conversion and it determines
whether exceptions are enabled on the status port. In particular:

– control[0]: unused;

– control[1]: ’1’ exceptions are enabled on the output port, ’0’ exceptions are
disabled;

– control[2]: ’1’ attributes sign ’-’ to the result of integer-float conversion, ’0’
attributes sign ’+’ to the result of integer-float conversion.

– control[3]: unused;

– control[4]: unused;

– control[5]: unused;

The output signals are:

• result [(m+e) - 0], bit vector which provides the result of the performed oper-
ation. Again, its length depends on the number of digits for exponent and
mantissa (e and m parameters).

• status [15 - 0], bit vector which contains information regarding occurred excep-
tions. In particular:

– status [0]: flag_invalid_operation. ’1’: operation is invalid, ’0’ operation is
valid.

– status [1]: flag_inexact_result. ’1’: rounding error or underflow error, ’0’
result is exact.

6.3. Design of the reconfigurable Floating Point Unit 143

– status [2]: unused. Default: 0.

– status [3]: flag_overflow.’1’ overflow occurs, ’0’ no overflow.

– status [4]: flag_underflow.’1’ underflow occurs, ’0’ no underflow.

– status [5]: ’1’ result is zero. ’0’ result is different from 0.

– status [6]: ’1’ operand1 has a negative sign. ’0’ operand1 doesn’t have a
negative sign.

– status [7]: ’1’ operand1 is 0. ’0’ operand1 is different from 0.

– status [8]: ’1’ operand2 is 0. ’0’ operand2 is different from 0.

– status [9]: operand1 is 8. ’0’ operand1 is different from 8.

– status [10]: operand2 is 8. ’0’ operand2 is different from 8.

– status [11]: operand1 is sNaN. ’0’ operand1 is different from sNaN.

– status [12]: operand2 is sNaN. ’0’ operand2 is different from sNaN.

– status [13]: operand1 is qNaN. ’0’ operand1 is different from qNaN.

– status [14]: operand2 is qNaN. ’0’ operand2 is different from qNaN.

– status [15]: unused. Default: 0.

The FPU supports the following exceptions:

• inexact result: A result is inexact when its value cannot be represented by the
floating point format in use. It is known indeed that between two successive
numbers of a given interval there is a gap of representation, if the result falls
just into that gap, it will be rounded, causing a certain amount of information
to be lost. The inexact exception affects both m and e.

• invalid operation: the result is set to qNaN. This exception can be triggered in
the following cases:

– one of the two operands is equal to sNaN (signaling NaN).

– conversion from float to integer if one of the operands is equal to NaN,

8or if it has to be converted in an integer which exceeds the intervals of
representable numbers.

– the operand is not in the target format.

– Adding plus infinity to minus infinity, subtracting an infinity from itself:
+ 8- (+ 8),+ 8+ (- 8), - 8+ (+ 8), - 8- (- 8);

– Multiplying infinity by zero: (+/- 0) x (+/- 8);

– Dividing zero by zero, or dividing infinity by infinity: (+/- 0) / (+/- 0);
(8) / (8).

• underflow: the result of the operation can not be represented in a normalized
format since it is too small.

• overflow: the result of the operation can not be represented in a normalized
format since it is too large. This happens, for example, adding the largest rep-
resentable number to itself.

When a case of underflow is detected, the result is set to 0, when instead an
overflow occurs, the result is set to infinity. As far as the exception of an invalid
operation is concerned, the result is set to NaN.

144
Chapter 6. Synthesis Time Reconfigurable Floating Point Unit for Transprecision

Computing

TABLE 6.2: List of analyzed formats

#bit sign #bit exponent #bit mantissa Total bits

1 5 10 16 (IEEE half precision)
1 6 11 18
1 5 12 18
1 6 13 20
1 5 14 20
1 7 16 24
1 6 17 24
1 8 23 32 (IEEE single precision)
1 10 37 48
1 9 38 48
1 11 52 64 (IEEE double precision)

6.4 Experimental Results

6.4.1 Testing

The testing phase, performed immediately after the FPU design, represented an im-
portant step in order to assure that the computational unit operates according to its
design specifications and produces the correct results. To verify the behavior of the
designed FPU core for a variety of inputs, a testbench has been built. The testbench
inserts input test vectors, automatically generated by a C program, into the FPU and
then compares the results processed by the computational core with the output pro-
duced by the C program (using hardware FP). All validation steps were performed
simulating the FPU at behavioral level using Modelsim SE 10.1c.

6.4.2 Synthesis Setup

After testing at behavioral level, the FPU was synthesized considering as target a Xil-
inx Kintex-7 FPGA (device xc7k325tfbv900-2) using Xilinx Vivado Design Suite. Since
the unit is reconfigurable, multiple implementations were produced after having
defined of the FP formats of interest.

Considering a FP number of predefined length, the partition of bits between the
mantissa and the exponent fields has an impact on the represented numbers, enforc-
ing a trade-off between dynamic range and precision; in particular the number of
bits in the exponent field affects the range of numbers that can be represented while
in the mantissa field sets the precision of the represented number.

The point of interest in this work was centered on reduced precision non-standard
formats from a minimum of 16 bits and under 32 bits; this choice is supported by the
consideration that IEEE single precision format (32-bit) is often not necessary for ap-
plications in embedded domains while IEEE half precision can be affected by serious
underflow/overflow problems.

Maintaining a proportion between mantissa and exponent bits similar to the
IEEE-754 standard formats, reduced precision formats of interest have been deter-
mined. Table 6.2 lists all formats taken under investigation, as we can see there are
both standard and non-standard FP formats.

6.4. Experimental Results 145

Since the FPU is fully combinatorial, it does not have an input clock signal. As
timing constraint for the project, a virtual clock, which is not connected to any de-
sign object, was used. The virtual clock constraint was extensively used to force the
optimizations during synthesis, in order to obtain the maximum speed for each con-
figuration (FP format). In order to obtain data that reflect the effective proportions
in gates number and area occupation, the synthesis was configured with hardware
DSP blocks disabled. In this way the synthesizer can use only logic gates blocks.

This setup was required in order to compare the resources required by different
FP formats, which otherwise would have been implemented using DSP blocks.

6.4.3 Results

Number of gates and resources

Table 6.3 shows the results gathered from the Utilization report. This report has been
produced after the implementation of the FPU core at 40 MHz clock speed (25 ns is
the minimum period obtained for the single precision FP format) and it collects data
regarding number of LUTs and slices used in the unit. It can be seen that the reduced
precision FP formats allow to significantly limit hardware resources (Fig. 6.5).

TABLE 6.3: Resources @ 40MHz clock with DSP disabled

Precision #slice #LUT % resources rel.
to single precision

half 191 624 37.9%
m11_e6 198 664 39.2%
m12_e5 209 730 41.5%
m13_e6 238 796 47.2%
m14_e5 243 807 48.2%
m16_e7 299 1037 59.3%
m17_e6 238 1114 67.0%
single 504 1787 100%

FIGURE 6.5: Resources with DSP disabled @40MHz

It is possible to observe that the occupation of resources increases as the total
number of bits required by each precision grows. Starting from half precision, whose

146
Chapter 6. Synthesis Time Reconfigurable Floating Point Unit for Transprecision

Computing

requirements are about 38% with respect to single precision, the range of FP preci-
sions under interest result in takes between about 39% and 67% with respect to single
precision resource count. Considering instead FP formats with the same number of
bit, but differently distributed between mantissa and exponent, there is a slightly
lager number of LUTs required for the FP precisions that reserve more bits for the
mantissa than to the exponent.

FIGURE 6.6: Resources with DSP disabled @40MHz: from half to dou-
ble precision

Fig. 6.6 shows the same results extended to double precision.

Propagation delay and speed

Propagation delay results, extrapolated from the Timing Summary Report produced
after each implementation, are illustrated in Table 6.4.

TABLE 6.4: Propagation delay for reduced precision FP formats

Precision Propagation delay [ns]

half 20
m11_e6 20
m12_e5 20
m13_e6 20
m14_e5 20
m16_e7 21
m17_e6 21
single 25

m37_e10 25
m38_e9 25
double 29

We can see that, for half precision and for FP precisions between 18 and 20 bits,
propagation delay is reported constant at 20 ns, that is 25% better than single preci-
sion. Single precision presents a propagation speed of 25ns, which limits the operat-
ing frequency under 40 MHz; finally, implementing for double precision introduces
an increase in propagation time of about 45% with respect to the best case.

6.5. Conclusion and Future works 147

Power consumption

Data illustrated in Table 6.5 are taken from the Power Report after the implementation
step at 40MHz (25ns).

TABLE 6.5: Power consumption @40MHz

Precision Total on chip power [W] Dynamic [W] Static [W]

half 0.167 0.008 0.158
m11_e6 0.167 0.009 0.158
m12_e5 0.168 0.010 0.158
m13_e6 0.169 0.010 0.158
m14_e5 0.169 0.011 0.158
m16_e7 0.171 0.013 0.158
m17_e6 0.172 0.013 0.158
single 0.177 0.019 0.158

The power consumption has been estimated through the high-level power mod-
els of Vivado. The obtained results reveal a very high and constant leakage power
consumption for the whole chip, while the dynamic power consumption has a sig-
nificant dependency on the actual resource count (i.e. the number of LUT/slices
required by the FPU). It is possible to see that reduced FP precisions consume up to
a half with respect of single precision power consumption. However, this estimate
are not completely suitable for our purposes, since leakage power reduction cannot
be estimated.

6.5 Conclusion and Future works

This chapter presented the design of a FPU, which can be synthesized with arbitrary
precision FP formats. It has been shown that a FPU with reduced precision is a
good solution for low-power and low-cost microprocessor systems. The savings in
terms of resource occupation, for the analyzed formats, range from about 38% for
the m17_e6 format up to 63% for the m11_e6 format with respect to single precision.
Moreover, reducing precision has also considerably decreased propagation delay. In
particular, the propagation delay on reduced-precision implementations was about
20 ns, with a gain of about 25% and 45% with respect to single and double precision
formats.

In future works, synthesizing the FPU on ASIC will allow more accurate estima-
tion of area occupation and speed gain and will also add an estimate and a compar-
ison on power consumption, which did not appear to be reliable using a FPGA as a
target.

149

Chapter 7

Conclusion

Reducing power consumption in digital architectures gained a prominent role in
research since almost two decades, especially when the shrinking of physical de-
vices allowed by technology started to rise important design issues regarding the
increased power density. The problem has been further amplified by application
requirements, demanding increasingly amounts of processing power and memory
size (e.g. high definition multimedia, high speed communication, big data applica-
tions) and working environment factor (e.g portable and battery operated systems).

Based on a deep dive analysis on the State of the Art, it can be concluded that
Approximate Computing and Transprecision computing are promising approaches
to achieve power reduction, by relaxing design requirements on computational ac-
curacy and allowing controlled errors to be introduced during processing. These
paradigms can be considered as a real low-power digital design approaches, since
they break the established tradeoff between performance and power consumption,
reducing the second without impacting the first.

The aim of this research has been to explore design and programming techniques
for low-power microprocessor architectures based on the Approximate Computing
and Transprecision Computing paradigms. After studying the current State of the
Art, with particular focus on techniques dealing with approximate memories, the
work evolved toward four major directions:

1. the introduction of approximate memory management within the Linux Ker-
nel and the implementation of a custom library for approximate memory data
allocation in user space applications;

2. the development of an emulator for the exploration and characterization of
microprocessor platforms with approximate memory units;

3. the implementation and analysis of the impact of approximate data allocation
on Error Tolerant Applications;

4. the implementation of a fully reconfigurable FPU for low power applications,
according to the Transprecision Computing paradigm.

The results obtained in each of those four fields are summarized below.

7.1 Approximate Memory management within the Linux Ker-
nel

The first contribution of this research has been the introduction, at the operating sys-
tem level, of approximate memory management for 32-bit and 64-bit architectures.
An analysis of the current State-of-the-Art revealed that the ability to support ap-
proximate memory in the OS is required by many proposed techniques which try to

150 Chapter 7. Conclusion

save energy by raising memory fault probability, but the requirements at OS level
have never been described and an actual implementation has never been proposed.
The solution implemented in this research activity makes the following contribu-
tions:

• implementation of a mechanism that allows the Linux Kernel to be aware of ex-
act (normal) and approximate physical memories, managing them as a whole
for the common part but distinguishing them in term of allocation requests
and page pools management;

• implementation of an interface library that allows user-space applications to
straightforwardly request the dynamic allocation of data in approximate mem-
ory;

• implementation on 64 bit architectures of a mechanism to allocate approxi-
mate data in separate memory zones according to quality requirements. The
potential of having quality aware memory zones opens the way to further in-
vestigations, tailoring allocations of approximate memory depending on, for
example:

– different sensitivity of output quality to errors in input data structures;

– variable-time output quality requirements;

– requirements of different applications in a multitasking environment.

In this context the following features have been developed:

– the capability of configuring up to four approximate memory zones (in
addition to standard Linux memory zones), where each zone corresponds
to physical memory with a certain level of approximation;

– an internal data allocation scheme, capable of handling separately the al-
location requests in quality aware approximate zones;

– a user space data allocation mechanism and support library. Applications
can select the level of approximation of their data structures, trading off
more efficiently the approximation level of data (and, hence, energy con-
sumption) output quality.

The extended Linux kernel has been built and extensively tested on different
32/64 bits hardware architectures (x86, ARM, Risc-V) showing the correctness of the
implementation and of the fallback allocation policies.

A possible future work will be the design of a hardware platform with approxi-
mated DRAM cells (e.g. DRAM banks with reduced refresh rate). Booting the kernel
on such platform would expose ZONE_APPROXIMATE memory pages to real hard-
ware faults allowing to experimentally validate the whole technique against power
consumption reduction.

The oz745 dev platform by Omnitek (Fig. 7.1) has been identified as the board
to address this goal. The oz745 mounts the xc7z045ffg900-3 Xilinx Zinq 7000 SoC,
consisting of an ARM Cortex–A9 dual core processor and an FPGA. The peculiarity
of this board is that multiple DRAM memories are available on board: a memory that
is interfaced directly with the processor and a memory which is interfaced with the
FPGA. The idea is to implement approximate memory on the memory mapped on
the FPGA, by configuring the registers of its DRAM controller to reduce the refresh
rate under the nominal value.

7.2. Models and emulator for microprocessor platforms with approximate memory151

FIGURE 7.1: Omnitek board where approximate DRAM cells could
be introduced

7.2 Models and emulator for microprocessor platforms with
approximate memory

The second contribution has been the development of an emulator for embedded
platforms with approximate memory. Error injection models for approximate mem-
ory have been implemented, deriving them from approximate memory circuits pro-
posed in literature for DRAMs and SRAMs. They include the ability of emulating
the effects of different approximate designs and implementations, which depend on
the internal structure and organization of the cells. The contributions of this work
are:

• a complete implementation for modeling approximate SRAM (EOR, EOR_nd,
EOW fault models);

• a complete implementation of DRAM models for approximate memories (cell-
orientation fault models);

• a complete implementation of bit dropping fault models for both SRAM and
DRAM;

• a preliminary implementation of models for ECC protected cells.

The benefits derived by this work are the possibility of exploring the design space
regarding approximate memories, showing its effects on output quality and provid-
ing a complete characterization of the application, allowing a step toward the deter-
mination of the trade-off between saved energy and output quality. The fault models
have been introduced in a modular way in the emulator, in order to allow extensions
as new techniques and circuits for approximate memories will be proposed.

In particular, as a future work, the introduction of energy consumption models
for approximate memories in the emulator will allow to explore and directly de-
termine the energy-quality tradeoff given the combination of an application and an

152 Chapter 7. Conclusion

approximate hardware platform. In fact, having a simulation environment which
allows the exploration of different solutions in terms of performance and power
consumption is one of the basic requirements of embedded system design, since
producing many hardware prototypes would require time and a vast economic ef-
fort. Moreover, the hardware prototypes would not even have the flexibility of a
simulation environment, resulting in limited possibilities for design exploration, in
the effort to find the best solution for a particular problem.

7.3 Impact of approximate memory allocation on ETAs

The third contribution has been the study of the impact of approximate memory al-
location on ETAs. The introduction of approximate memory support in Linux kernel
and the development of a hardware emulator for platforms containing approximate
memory allow to write programs using approximate memory and execute them,
emulating a system where faults can be injected at run time with predefined statis-
tical properties. In this way, it is possible to evaluate output degradation on real
input data and study the relationships between output quality and memory cell er-
ror probability/configuration. In fact, knowing the tolerable level of hardware er-
rors is an important step to validate and tune approximate circuits and architectures,
eventually quantifying energy savings.

In particular two Error Tolerant classes of applications have been developed and
studied, and their effects on output quality have been analyzed:

1. the H.264 video encoder;

2. signal processing applications (digital filters), working on audio signals.

Concerning the first one, the contribution of this work has been to propose a
strategy for selecting error tolerant data structures and to study the impact of faults
on the quality of the decoded output H.264 video stream. While data fault resilience
of H.264 has already been studied considering unwanted and random faults due to
unreliable hardware platforms, an analysis considering controlled hardware faults
and the corresponding energy quality tradeoff has never been proposed in literature.
The strategy for selecting error tolerant data buffers has been found by profiling
the application memory usage through the memory profiling suite called Valgrind.
Then the modified application was run on the AppropinQuo emulator, for several
combination of approximate memory parameters (e.g. fault rate, fault masking at
bit level (looseness level)).

The obtained results show the importance of exploring the relation between these
parameters and output quality, since the grade of approximation (and hence power
savings) is dependent on the amount and the kind of errors that the application can
tolerate. For example, leaving some of the MSBs exact in memory cells demonstrated
to be an effective way of allowing error probabilities up to 100x higher with the
same output quality. Since leaving exact a portion of memory cells reduces global
energy saving, this knowledge is also fundamental in order to drive research on
hardware techniques specifically tailored to the application, revealing the tradeoff
between designing more aggressive approximate circuits and the number of bit cells
that must be kept exact.

Future works can consider better allocation strategies in order to increase the
fraction of data allocated in approximate memory and more advanced DRAM ar-
chitectures for embedded systems, as DRAMs chips with integrated ECC units. An-
other important aspect is a more accurate quantification of power savings, which

7.4. Transprecision FPU implementation 153

could be obtained, as said before, by integrating a power consumption model in the
approximate DRAM memory model.

Regarding other applications, a signal processing benchmark consisting in a dig-
ital FIR filter was implemented and fed with audio samples. It was possible to eval-
uate the impact on SNR when input and output buffers, along with tap registers, are
allocated in approximate memory. A variant of this benchmark has been developed
for analyzing the impact on output (SNR) when quality aware approximate memory
zones are present. In this case, the application allows to explore the allocation of dif-
ferent data structures depending on sensitivity to errors and desired output quality.
The obtained results reveal that, even with just two levels of approximation quality
and manual allocation strategy, output SNR can be risen by moving a small number
of more sensitive data to a portion of memory with lower level of approximation,
while leaving the large and less sensitive buffers on memory with higher level of ap-
proximation. As future work in this direction, more complex applications could be
targeted, where partitioning of data in multiple quality zones is not directly evident.
Automatic allocation strategies will also be considered as a way of reaching more
significant savings.

7.4 Transprecision FPU implementation

The last contribution has been the design and implementation of a fully reconfig-
urable FPU, which can be synthesized to work with reduced precision formats tai-
lored to the application, as required by the Transprecision Computing paradigm.
The obtained results show that this approach is a promising solution that can be
adopted in all low-power and/or low-cost microprocessor systems requiring signif-
icant area and energy saving.

The analysis reveals that a FPU working with non-standard reduced precision
formats (e.g. formats with lengths between 18 bit and 24 bit) allows to sensibly lower
area and gates requirements, while still producing sensible advantages (in terms of
precision and overflow robustness) with respect to fixed-point arithmetic.

The savings in terms of resources, for the analyzed FP formats, range from about
38% for m17_e6 format and reach about 63% for m11_e6 format with respect to IEEE-
754 single precision. Reducing precision considerably decreased propagation de-
lay. In particular, the propagation delay on reduced-precision implementations was
about 20 ns, with a gain of about 25% and 45% with respect to single and double
precision formats on the same technology.

Since the synthesis target was an FPGA, estimates concerning power consump-
tion were found to be less significant (leakage power consumption could not be pre-
dicted). In fact, the power consumption, as reported by Vivado, was characterized
by a large leakage value due to the whole chip, while differences in dynamic power
consumption were evident.

Future works will add the following contributions:

• synthesis of the FPU on ASIC. It will allow more accurate estimate of area
occupation and speed gain and will also add an estimate and a comparison
on power consumption, which revealed to be not reliable using an FPGA as
target;

• development of a wrapper for the block Floatig_Point_Unit_core which exposes
an interface based on standard IEEE-754 formats, in order to transparently in-
sert the reduced precision FPU is in an existing ISA;

154 Chapter 7. Conclusion

• implementation of multi-cycle FP operations, as for example the division.

155

Appendix A

Linux kernel files for approximate
memory support

A.1 Patched Kernel files

#gfp flag for zone approximate
include/linux/gfp.h

#Approximate Zone creation
include/mm/mmzone.h

#Approximate zone fallback + Alloc fair policy
mm/page_alloc.c

#Enable zone approximate messages
mm/vmstat.c
include/linux/vm_event_item.h

#Approximate memory system call
include/uapi/asm-generic/unistd_32.h
generated/uapi/asm/unistd_32.h
arch/x86/entry/syscall/syscall_32.tbl
include/linux/syscall.h
kernel/sys.c
kernel/sys_ni.c

#Prototype and call to function for bootmem allocator (Exclude zone approximate from
bootmem allocator)
include/linux/memblock.h
mm/memblock.c

#i386 approximate memory support
arch/x86/Kconfig
arch/x86/kernel/setup.c
arch/x86/mm/init.c
mm/nobootmem.c
include/linux/bootmem.h

#ARM approximate memory support
arch/arm/Kconfig
#Added device tree with approximate memory (makefile)

156 Appendix A. Linux kernel files for approximate memory support

arch/arm/boot/dts/Makefile
#Setup memory zones (Approximate zone) and patch for bootmem allocator (Ex-
clude zone approximate from bootmem allocator)
arch/arm/mm/init.c
#Interrupt vectors
arch/arm/mm/mmu.c
#Device tree (Register approximate memory)
arch/arm/boot/dts/vexpress-v2-ca9

#RISCV approximate memory support
arch/arm/riscv

#Setup memory zones (Approximate zone) and patch for bootmem allocator (Ex-
clude zone approximate from bootmem allocator)
arch/riscv/mm/init.c

A.2 New Kernel source files

#Approx mem device driver
drivers/char/approxmem.c
drivers/char/approxmem_multizone.c
drivers/char/Makefile
drivers/char/Kconfig

A.3 Approximate Memory Configuration (Make menucon-
fig)

1. Enable approximate memory;

2. Kernel features–> High Memory support–> off ;

3. Device driver–>character devices–>Device approximate memory (Load approximate
memory module.Depends on ZONE_APPROXIMATE, if ZONE_APPROXIMATE
is enabled, approximate memory device = M)

157

Appendix B

AppropinQuo: list of approximate
memory models

B.0.1 QEmu 2.5.1 patched files for approximate memory support

• Parser of approximate memory configuration

• qemu-options.hx

• vl.c

• approximate memory in x86 architectures

• hw/i386/pc.c

• approximate memory in ARM architectures

• hw/arm/boot.c

• hw/arm/arm-vexpress.c

• approximate memory in RISCV architectures

• hw/riscv/virtio.c

• hw/riscv/sifive.c

• approximate memory log utilities

• qemu/util/log.c

• qemu/include/log.h

• Makefile.obj

B.0.2 New QEmu 2.5.1 source files

• approximate memory model

• approxmem.c

• approxmem.h

• approxmem_multiple.c

• approxmem_multiple.h

• approximate memory scripts and configuration file

158 Appendix B. AppropinQuo: list of approximate memory models

• qemu_run.sh

• qemu_run_arm.sh

• qemu_run_riscv.sh

• qemu_run_riscv64.sh

• approx_config.cfg

159

Appendix C

Transprecision FPU: list of vhd files

• FPU_CORE_comb.vhd

• shift_dx_core_comb.vhd

• moltiplicatore_core_comb.vhd

• normalizzatore_core_comb.vhd

• sommatore_core_comb.vhd

161

Appendix D

Publications and Presentations

• Stazi, G., Menichelli, F., Mastrandrea, A., Olivieri, M. (2017, June). "Introducing
approximate memory support in Linux Kernel" In Ph. D. Research in Microelec-
tronics and Electronics (PRIME), 2017 13th Conference on (pp. 97-100). IEEE.

• Menichelli, F., Stazi, G., Mastrandrea, A., Olivieri, M. (2016, September). "An
Emulator for Approximate Memory Platforms Based on QEmu." In International
Conference on Applications in Electronics Pervading Industry, Environment
and Society (pp. 153-159). Springer, Cham.

• Stazi, G., Menichelli, Adani, L. , F., Mastrandrea, A., Olivieri, M. "Impact of Ap-
proximate Memory Data Allocation on a H.264 Software Video Encoder" (Frankfurt
2018, June, In ATCET2018: Approximate and Transprecision Computing on
Emerging Technologies, ISC HIGH PERFORMANCE).

• Stazi, G., Menichelli, F., Mastrandrea, A., Olivieri, M. "Approximate Memory
support for Linux Early Allocators in ARM architectures" (Pisa 2018, September,
In International Conference on Applications in Electronics Pervading Industry,
Environment and Society).

• Stazi, G.,Silvestri, F. , Menichelli, F., Mastrandrea, A., Olivieri, M. "Synthesis
Time Recongurable Floating Point Unit for Transprecision Computing"(Pisa 2018,Septem-
ber, In International Conference on Applications in Electronics Pervading In-
dustry, Environment and Society).

• Stazi, Giulia, et al. ‘AppropinQuo: A Platform Emulator for Exploring the Approx-
imate Memory Design Space.’ 2018 New Generation of CAS (NGCAS). IEEE,
2018.

• Stazi, Giulia, et al. ‘Full System Emulation of Approximate Memory Platforms with
AppropinQuo.’ Journal of Low Power Electronics 15.1 (2019): 30-39.

• Stazi, Giulia, et al. ‘Quality Aware Approximate Memory in RISC-V Linux Kernel.’
2019 15th Conference on Ph. D Research in Microelectronics and Electronics
(PRIME). IEEE, 2019.

• Stazi, G., Menichelli, F., Mastrandrea, A., Olivieri, M. "Quality aware selective
ECC for approximate DRAM"(Pisa 2019,September, In International Conference
on Applications in Electronics Pervading Industry, Environment and Society).

• Stazi, G., Menichelli, F., Olivieri, M. "The first porting of Linux OS support for Ap-
proximate Memory management on RISC-V"(The RISC-V Workshop, ETH Zurich,
11-13 June 2019).

163

Bibliography

Amdahl, Gene M (1967). “Validity of the single processor approach to achieving
large scale computing capabilities”. In: Proceedings of the April 18-20, 1967, spring
joint computer conference. ACM, pp. 483–485.

Asma, Ben Hamida, Nedra Jarray, and Zitouni Abdelkrim (2017). “Low-Power Hard-
ware Design of Binary Arithmetic Encoder in H. 264”. In: International Journal of
Advanced Computer Science and Applications 8.7, pp. 412–416.

Bailey, David H, Hida Yozo, Xiaoye S Li, and Brandon Thompson (2002). ARPREC:
An arbitrary precision computation package. Tech. rep. Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States).

Bellard, Fabrice (2005). “QEMU, a fast and portable dynamic translator.” In: USENIX
Annual Technical Conference, FREENIX Track, pp. 41–46.

Bellotti, F., R. Berta, A. De Gloria, and L. Primavera (June 2009). “Enhancing the
Educational Value of Video Games”. In: Comput. Entertain. 7.2, 23:1–23:18. ISSN:
1544-3574. URL: http://doi.acm.org/10.1145/1541895.1541903.

Benini, Luca, Francesco Menichelli, and Mauro Olivieri (2004). “A class of code com-
pression schemes for reducing power consumption in embedded microprocessor
systems”. In: IEEE Transactions on Computers 53.4, pp. 467–482.

Binkert, Nathan, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sar-
dashti, et al. (2011). “The gem5 simulator”. In: ACM SIGARCH Computer Archi-
tecture News 39.2, pp. 1–7.

Bovet, Cesati (2005). Understanding the Linux Kernel 3 edition. O’Reilly Media. ISBN:
0596005652.

Breuer, M (2004). “Error-tolerance and related test issues”. In: Asian Test Symp.
Burger, Doug and Todd M Austin (1997). “The SimpleScalar tool set, version 2.0”. In:

ACM SIGARCH computer architecture news 25.3, pp. 13–25.
Burns, Ellie (2016). An Introduction To Reducing Dynamic Power. URL: https://semiengineering.

com/an-introduction-to-reducing-dynamic-power/.
Chandrasekar, Karthik, Christian Weis, Yonghui Li, Sven Goossens, Matthias Jung,

Omar Naji, Benny Akesson, Norbert Wehn, and Kees Goossens (2012). “DRAM-
Power: Open-source DRAM power & energy estimation tool”. In: 22. URL: URL:
http://www.drampower.info.

Chang, Ik Joon, Debabrata Mohapatra, and Kaushik Roy (2011). “A priority-based
6T/8T hybrid SRAM architecture for aggressive voltage scaling in video ap-
plications”. In: IEEE transactions on circuits and systems for video technology 21.2,
pp. 101–112.

Chen, Linbin, Jie Han, Weiqiang Liu, and Fabrizio Lombardi (2016). “On the design
of approximate restoring dividers for error-tolerant applications”. In: IEEE Trans-
actions on Computers 65.8, pp. 2522–2533.

Chen, Yuanchang, Yizhe Zhu, Fei Qiao, Jie Han, Yuansheng Liu, and Huazhong
Yang (2017). “Evaluating data resilience in cnns from an approximate memory
perspective”. In: Proceedings of the on Great Lakes Symposium on VLSI 2017. ACM,
pp. 89–94.

http://doi.acm.org/10.1145/1541895.1541903
https://semiengineering.com/an-introduction-to-reducing-dynamic-power/
https://semiengineering.com/an-introduction-to-reducing-dynamic-power/
URL: http://www.drampower.info
URL: http://www.drampower.info

164 Bibliography

Chippa, Vinay K, Srimat T Chakradhar, Kaushik Roy, and Anand Raghunathan
(2013). “Analysis and characterization of inherent application resilience for ap-
proximate computing”. In: Proceedings of the 50th Annual Design Automation Con-
ference. ACM, p. 113.

Cho, Minki, Jason Schlessman, Wayne Wolf, and Saibal Mukhopadhyay (2011). “Re-
configurable SRAM architecture with spatial voltage scaling for low power mo-
bile multimedia applications”. In: IEEE transactions on very large scale integration
(VLSI) systems 19.1, pp. 161–165.

De Cock, Jan, Aditya Mavlankar, Anush Moorthy, and Anne Aaron (2016). “A large-
scale video codec comparison of x264, x265 and libvpx for practical VOD applica-
tions”. In: Applications of Digital Image Processing XXXIX. Vol. 9971. International
Society for Optics and Photonics, p. 997116.

Esmaeilzadeh, Hadi, Adrian Sampson, Luis Ceze, and Doug Burger (2012). “Archi-
tecture support for disciplined approximate programming”. In: ACM SIGPLAN
Notices. Vol. 47. 4. ACM, pp. 301–312.

Esmaeilzadeh, Hadi, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam,
and Doug Burger (Feb. 2013). “Power Challenges May End the Multicore Era”.
In: Commun. ACM 56.2, pp. 93–102. ISSN: 0001-0782. URL: http://doi.acm.org/
10.1145/2408776.2408797.

Fousse, Laurent, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zim-
mermann (2007). “MPFR: A multiple-precision binary floating-point library with
correct rounding”. In: ACM Transactions on Mathematical Software (TOMS) 33.2,
p. 13.

Frustaci, Fabio, Mahmood Khayatzadeh, David Blaauw, Dennis Sylvester, and Mas-
simo Alioto (2014). “13.8 A 32kb SRAM for error-free and error-tolerant appli-
cations with dynamic energy-quality management in 28nm CMOS”. In: Solid-
State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International.
IEEE, pp. 244–245.

Frustaci, Fabio, David Blaauw, Dennis Sylvester, and Massimo Alioto (2015a). “Better-
than-voltage scaling energy reduction in approximate SRAMs via bit dropping
and bit reuse”. In: Power and Timing Modeling, Optimization and Simulation (PAT-
MOS), 2015 25th International Workshop on. IEEE, pp. 132–139.

Frustaci, Fabio, Mahmood Khayatzadeh, David Blaauw, Dennis Sylvester, and Mas-
simo Alioto (2015b). “SRAM for error-tolerant applications with dynamic energy-
quality management in 28 nm CMOS”. In: IEEE Journal of Solid-State Circuits 50.5,
pp. 1310–1323.

Frustaci, Fabio, David Blaauw, Dennis Sylvester, and Massimo Alioto (2016). “Ap-
proximate SRAMs With Dynamic Energy-Quality Management”. In: IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 24.6, pp. 2128–2141.

Gong, Na, Shixiong Jiang, Anoosha Challapalli, Sherwin Fernandes, and Ramalingam
Sridhar (2012). “Ultra-low voltage split-data-aware embedded SRAM for mobile
video applications”. In: IEEE Transactions on Circuits and Systems II: Express Briefs
59.12, pp. 883–887.

Gorman, Mel (2004). Understanding the Linux Virtual Memory Manager. Prentice Hall.
ISBN: 0131453483.

Gupta, Sumitha and Sukanya Padave (2016). “Power Optimization for Low Power
VLSI Circuits”. In: International Journal of Advanced Research in Computer Science
and Software Engineering 6.3.

Gupta, Vaibhav, Debabrata Mohapatra, Sang Phill Park, Anand Raghunathan, and
Kaushik Roy (2011). “IMPACT: imprecise adders for low-power approximate

http://doi.acm.org/10.1145/2408776.2408797
http://doi.acm.org/10.1145/2408776.2408797

Bibliography 165

computing”. In: Proceedings of the 17th IEEE/ACM international symposium on Low-
power electronics and design. IEEE Press, pp. 409–414.

Gupta, Vaibhav, Debabrata Mohapatra, Anand Raghunathan, and Kaushik Roy (2013).
“Low-power digital signal processing using approximate adders”. In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 32.1, pp. 124–
137.

Han, Jie and Michael Orshansky (2013). “Approximate computing: An emerging
paradigm for energy-efficient design”. In: 2013 18th IEEE European Test Sympo-
sium (ETS). IEEE, pp. 1–6.

Hardavellas, N., M. Ferdman, B. Falsafi, and A. Ailamaki (2011). “Toward Dark Sili-
con in Servers”. In: IEEE Micro 31.4, pp. 6–15.

Hauser, John R (1996). “Handling floating-point exceptions in numeric programs”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS) 18.2, pp. 139–
174.

Hegde, Rajamohana and Naresh R Shanbhag (1999). “Energy-efficient signal pro-
cessing via algorithmic noise-tolerance”. In: Proceedings. 1999 International Sym-
posium on Low Power Electronics and Design (Cat. No. 99TH8477). IEEE, pp. 30–35.

Hennessy, John L. (2018). Future of Computing. URL: https : / / web . stanford . edu /
~hennessy/.

Holık, Lukáš, Ondrej Lengál, Adam Rogalewicz, Lukáš Sekanina, Zdenek Vašıcek,
and Tomáš Vojnar (2016). “Towards formal relaxed equivalence checking in ap-
proximate computing methodology”. In: 2nd Workshop on Approximate Computing
(WAPCO’16), p. 48.

Höller, Andrea, Armin Krieg, Tobias Rauter, Johannes Iber, and Christian Kreiner
(2015). “QEMU-based fault injection for a system-level analysis of software coun-
termeasures against fault attacks”. In: Digital System Design (DSD), 2015 Euromi-
cro Conference on. IEEE, pp. 530–533.

Huang, Jiawei, John Lach, and Gabriel Robins (2012). “A methodology for energy-
quality tradeoff using imprecise hardware”. In: Proceedings of the 49th Annual De-
sign Automation Conference. ACM, pp. 504–509.

Itoh, Kiyoo and Masashi Horiguchi (2009). “Low-voltage scaling limitations for nano-
scale CMOS LSIs”. In: Solid-State Electronics 53.4, pp. 402–410.

Jiang, Honglan, Cong Liu, Naman Maheshwari, Fabrizio Lombardi, and Jie Han
(2016). “A comparative evaluation of approximate multipliers”. In: 2016 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH). IEEE, pp. 191–
196.

Jung, Matthias, Christian Weis, and Norbert Wehn (2015). “DRAMSys: a flexible
DRAM subsystem design space exploration framework”. In: IPSJ Transactions on
System LSI Design Methodology 8, pp. 63–74.

Jung, Matthias, Éder Zulian, Deepak M Mathew, Matthias Herrmann, Christian Brug-
ger, Christian Weis, and Norbert Wehn (2015). “Omitting refresh: A case study for
commodity and wide i/o drams”. In: Proceedings of the 2015 International Sympo-
sium on Memory Systems. ACM, pp. 85–91.

Jung, Matthias, Deepak M Mathew, Christian Weis, and Norbert Wehn (2016). “Ef-
ficient reliability management in SoCs-an approximate DRAM perspective”. In:
Design Automation Conference (ASP-DAC), 2016 21st Asia and South Pacific. IEEE,
pp. 390–394.

Kahan, William (1996). “IEEE standard 754 for binary floating-point arithmetic”. In:
Lecture Notes on the Status of IEEE 754.94720-1776, p. 11.

Kernel, The Linux. Energy Aware Scheduling. URL: https://www.kernel.org/doc/
html/latest/scheduler/sched-energy.html.

https://web.stanford.edu/~hennessy/
https://web.stanford.edu/~hennessy/
https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html

166 Bibliography

Kwon, Jinmo, Ik Joon Chang, Insoo Lee, Heemin Park, and Jongsun Park (2012).
“Heterogeneous SRAM cell sizing for low-power H. 264 applications”. In: IEEE
Transactions on Circuits and Systems I: Regular Papers 59.10, pp. 2275–2284.

Lee, Insoo, Jinmo Kwon, Jangwon Park, and Jongsun Park (2013). “Priority based er-
ror correction code (ECC) for the embedded SRAM memories in H. 264 system”.
In: Journal of Signal Processing Systems 73.2, pp. 123–136.

Liu, Hao-Ran (2010). Physical Memory Management in Linux. URL: https://hzliu123.
github.io/linux-kernel/Physical%20Memory%20Management%20in%20Linux.
pdf.

Liu, Jamie, Ben Jaiyen, Richard Veras, and Onur Mutlu (2012a). “RAIDR: Retention-
aware intelligent DRAM refresh”. In: ACM SIGARCH Computer Architecture News.
Vol. 40. 3. IEEE Computer Society, pp. 1–12.

Liu, Jamie, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu (2013). “An
experimental study of data retention behavior in modern DRAM devices: Impli-
cations for retention time profiling mechanisms”. In: ACM SIGARCH Computer
Architecture News. Vol. 41. 3. ACM, pp. 60–71.

Liu, Song, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G Zorn (2012b).
“Flikker: saving DRAM refresh-power through critical data partitioning”. In:
ACM SIGPLAN Notices 47.4, pp. 213–224.

Lucas, Jan, Mauricio Alvarez-Mesa, Michael Andersch, and Ben Juurlink (2014).
“Sparkk: Quality-scalable approximate storage in DRAM”. In: The memory forum,
pp. 1–9.

Malossi, A Cristiano I, Michael Schaffner, Anca Molnos, Luca Gammaitoni, Giuseppe
Tagliavini, Andrew Emerson, Andrés Tomás, Dimitrios S Nikolopoulos, Eric Fla-
mand, and Norbert Wehn (2018). “The transprecision computing paradigm: Con-
cept, design, and applications”. In: 2018 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE). IEEE, pp. 1105–1110.

Masadeh, Mahmoud, Osman Hasan, and Sofiene Tahar (2018). “Comparative study
of approximate multipliers”. In: Proceedings of the 2018 on Great Lakes Symposium
on VLSI. ACM, pp. 415–418.

Mastrandrea, Antonio, Francesco Menichelli, and Mauro Olivieri (2011). “A delay
model allowing nano-CMOS standard cells statistical simulation at the logic level”.
In: Ph. D. Research in Microelectronics and Electronics (PRIME), 2011 7th Conference
on. IEEE, pp. 217–220.

Mathew, Deepak M, Martin Schultheis, Carl C Rheinländer, Chirag Sudarshan, Chris-
tian Weis, Norbert Wehn, and Matthias Jung (2018). “An Analysis on Retention
Error Behavior and Power Consumption of Recent DDR4 DRAMs”. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2018. IEEE.

Merritt, Loren and Rahul Vanam (2006). x264: A high performance H. 264/AVC encoder.
URL: http://neuron2.net/library/avc/overview_x264_v8_5.pdf.

Montgomery, C et al. (1994). Xiph. org Video Test Media (derf’s collection). URL: https:
//media.xiph.org/video/derf.

Natarajan, Vithyalakshmi, Ashok Kumar Nagarajan, Nagarajan Pandian, and Vinoth
Gopi Savithri (2018). “Low Power Design Methodology”. In: Very-Large-Scale In-
tegration, p. 47.

Nepal, Kumud, Yueting Li, R Iris Bahar, and Sherief Reda (2014). “ABACUS: A tech-
nique for automated behavioral synthesis of approximate computing circuits”.
In: 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
pp. 1–6.

https://hzliu123.github.io/linux-kernel/Physical%20Memory%20Management%20in%20Linux.pdf
https://hzliu123.github.io/linux-kernel/Physical%20Memory%20Management%20in%20Linux.pdf
https://hzliu123.github.io/linux-kernel/Physical%20Memory%20Management%20in%20Linux.pdf
http://neuron2.net/library/avc/overview_x264_v8_5.pdf
https://media.xiph.org/video/derf
https://media.xiph.org/video/derf

Bibliography 167

Nethercote, Nicholas and Julian Seward (2007). “Valgrind: a framework for heavy-
weight dynamic binary instrumentation”. In: ACM Sigplan notices. Vol. 42. 6.
ACM, pp. 89–100.

Nguyen, Duy Thanh, Hyun Kim, Hyuk-Jae Lee, and Ik-Joon Chang (2018). “An Ap-
proximate Memory Architecture for a Reduction of Refresh Power Consumption
in Deep Learning Applications”. In: Circuits and Systems (ISCAS), 2018 IEEE In-
ternational Symposium on. IEEE, pp. 1–5.

Olivieri, M., R. Mancuso, and F. Riedel (May 2007). “A Reconfigurable, Low Power,
Temperature Compensated IC for 8-segment Gamma Correction Curve in TFT,
OLED and PDP Displays”. In: IEEE Trans. on Consum. Electron. 53.2, pp. 720–724.
ISSN: 0098-3063. URL: http://dx.doi.org/10.1109/TCE.2007.381751.

Organization, VideoLan. VideoLan. URL: https://www.videolan.org/index.it.html.
Pagliari, Daniele Jahier, Andrea Calimera, Enrico Macii, and Massimo Poncino (2015).

“An automated design flow for approximate circuits based on reduced preci-
sion redundancy”. In: 2015 33rd IEEE International Conference on Computer Design
(ICCD). IEEE, pp. 86–93.

Palem, Krishna V (2003). “Energy aware algorithm design via probabilistic comput-
ing: from algorithms and models to Moore’s law and novel (semiconductor) de-
vices”. In: Proceedings of the 2003 international conference on Compilers, architecture
and synthesis for embedded systems. ACM, pp. 113–116.

Parasyris, Konstantinos, Georgios Tziantzoulis, Christos D Antonopoulos, and Niko-
laos Bellas (2014). “GemFI: A fault injection tool for studying the behavior of ap-
plications on unreliable substrates”. In: Dependable Systems and Networks (DSN),
2014 44th Annual IEEE/IFIP International Conference on. IEEE, pp. 622–629.

Pennisi, Agatino. Low Power Principles. URL: https://www.unirc.it/documentazione/
materiale_didattico/599_2007_60_1102.pdf.

Pilo, Harold, Chad A Adams, Igor Arsovski, Robert M Houle, Steven M Lamphier,
Michael M Lee, Frank M Pavlik, Sushma N Sambatur, Adnan Seferagic, Richard
Wu, et al. (2013). “A 64Mb SRAM in 22nm SOI technology featuring fine-granularity
power gating and low-energy power-supply-partition techniques for 37% leak-
age reduction”. In: 2013 IEEE International Solid-State Circuits Conference Digest of
Technical Papers. IEEE, pp. 322–323.

Platt, Susan (2018). Metamorphosis of an industry, part two moores law. URL: https://
www.micron.com/about/blog/2018/october/metamorphosis-of-an-industry-
part-two-moores-law.

projektovanje. Low Power Design in VLSI. URL: http://leda.elfak.ni.ac.rs/education/
projektovanjeVLSI/predavanja/10%20Low%20Power%20Design%20in%20VLSI.
pdf.

R., Kavya (2016). Optimization Techniques for Low Power VLSI Design. URL: https://
pdfs . semanticscholar. org / Optimization - Techniques - for - Low - Power- VLSI -
Design.

Raha, Arnab, Hrishikesh Jayakumar, Soubhagya Sutar, and Vijay Raghunathan (2015).
“Quality-aware data allocation in approximate DRAM”. In: Proceedings of the
2015 International Conference on Compilers, Architecture and Synthesis for Embedded
Systems. IEEE Press, pp. 89–98.

Raha, Arnab, Soubhagya Sutar, Hrishikesh Jayakumar, and Vijay Raghunathan (2017).
“Quality configurable approximate DRAM”. In: IEEE Transactions on Computers
66.7, pp. 1172–1187.

Rehman, Semeen, Muhammad Shafique, Florian Kriebel, and Jörg Henkel (2011).
“ReVC: Computationally reliable video coding on unreliable hardware platforms:

http://dx.doi.org/10.1109/TCE.2007.381751
https://www.videolan.org/index.it.html
https://www.unirc.it/documentazione/materiale_didattico/599_2007_60_1102.pdf
https://www.unirc.it/documentazione/materiale_didattico/599_2007_60_1102.pdf
https://www.micron.com/about/blog/2018/october/metamorphosis-of-an-industry-part-two-moores-law
https://www.micron.com/about/blog/2018/october/metamorphosis-of-an-industry-part-two-moores-law
https://www.micron.com/about/blog/2018/october/metamorphosis-of-an-industry-part-two-moores-law
http://leda.elfak.ni.ac.rs/education/projektovanjeVLSI/predavanja/10%20Low%20Power%20Design%20in%20VLSI.pdf
http://leda.elfak.ni.ac.rs/education/projektovanjeVLSI/predavanja/10%20Low%20Power%20Design%20in%20VLSI.pdf
http://leda.elfak.ni.ac.rs/education/projektovanjeVLSI/predavanja/10%20Low%20Power%20Design%20in%20VLSI.pdf
https://pdfs.semanticscholar.org/Optimization-Techniques-for-Low-Power-VLSI-Design
https://pdfs.semanticscholar.org/Optimization-Techniques-for-Low-Power-VLSI-Design
https://pdfs.semanticscholar.org/Optimization-Techniques-for-Low-Power-VLSI-Design

168 Bibliography

A case study on error-tolerant H. 264/AVC CAVLC entropy coding”. In: Image
Processing (ICIP), 2011 18th IEEE International Conference on. IEEE, pp. 397–400.

Rethinagiri, Santhosh Kumar, Oscar Palomar, Rabie Ben Atitallah, Smail Niar, Os-
man Unsal, and Adrian Cristal Kestelman (2014). “System-level power estima-
tion tool for embedded processor based platforms”. In: Proceedings of the 6th
Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools. ACM,
p. 5.

Rossi, Davide, Francesco Conti, Andrea Marongiu, Antonio Pullini, Igor Loi, Michael
Gautschi, Giuseppe Tagliavini, Alessandro Capotondi, Philippe Flatresse, and
Luca Benini (2015). “PULP: A parallel ultra low power platform for next genera-
tion IoT applications”. In: 2015 IEEE Hot Chips 27 Symposium (HCS). IEEE, pp. 1–
39.

Roy, Kaushik and Sharat C Prasad (2009). Low-power CMOS VLSI circuit design. John
Wiley & Sons.

Roy, Pooja, Rajarshi Ray, Chundong Wang, and Weng Fai Wong (2014). “Asac: Au-
tomatic sensitivity analysis for approximate computing”. In: Acm Sigplan Notices.
Vol. 49. 5. ACM, pp. 95–104.

Sampson, Adrian, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman (2011). “EnerJ: Approximate data types for safe and
general low-power computation”. In: ACM SIGPLAN Notices. Vol. 46. ACM, pp. 164–
174.

Shafique, Muhammad, Rehan Hafiz, Muhammad Usama Javed, Sarmad Abbas, Lukas
Sekanina, Zdenek Vasicek, and Vojtech Mrazek (2017a). “Adaptive and energy-
efficient architectures for machine learning: Challenges, opportunities, and re-
search roadmap”. In: 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
IEEE, pp. 627–632.

Shafique, Muhammad, Semeen Rehman, Florian Kriebel, Muhammad Usman Karim
Khan, Bruno Zatt, Arun Subramaniyan, Bruno Boessio Vizzotto, and Jörg Henkel
(2017b). “Application-Guided Power-Efficient Fault Tolerance for H. 264 Con-
text Adaptive Variable Length Coding”. In: IEEE Transactions on Computers 66.4,
pp. 560–574.

Shampine, Lawrence F and Mark W Reichelt (1997). “The matlab ode suite”. In:
SIAM journal on scientific computing 18.1, pp. 1–22.

Shim, Byonghyo and NR Shambhag (2003). “Performance analysis of algorithmic
noise-tolerance techniques”. In: Proceedings of the 2003 International Symposium on
Circuits and Systems, 2003. ISCAS’03. Vol. 4. IEEE, pp. IV–IV.

Shim, Byonghyo, Srinivasa R Sridhara, and Naresh R Shanbhag (2004). “Reliable
low-power digital signal processing via reduced precision redundancy”. In: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 12.5, pp. 497–510.

Shoushtari, Majid, Abbas BanaiyanMofrad, and Nikil Dutt (2015). “Exploiting partially-
forgetful memories for approximate computing”. In: IEEE Embedded Systems Let-
ters 7.1, pp. 19–22.

Stazi, Giulia, Francesco Menichelli, Antonio Mastrandrea, and Mauro Olivieri (2017).
“Introducing approximate memory support in Linux Kernel”. In: Ph. D. Research
in Microelectronics and Electronics (PRIME), 2017 13th Conference on. IEEE, pp. 97–
100.

Stazi, Giulia, Antonio Mastrandrea, Mauro Olivieri, and Francesco Menichelli (2019).
“Full System Emulation of Approximate Memory Platforms with AppropinQuo”.
In: Journal of Low Power Electronics 15.1, pp. 30–39.

Bibliography 169

Tagliavini, Giuseppe, Stefan Mach, Davide Rossi, Andrea Marongiu, and Luca Benin
(2018). “A transprecision floating-point platform for ultra-low power comput-
ing”. In: 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, pp. 1051–1056.

Teman, Adam, Georgios Karakonstantis, Robert Giterman, Pascal Meinerzhagen,
and Andreas Burg (2015). “Energy versus data integrity trade-offs in embed-
ded high-density logic compatible dynamic memories”. In: Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition. EDA Consortium,
pp. 489–494.

Tian, Ye, Qian Zhang, Ting Wang, Feng Yuan, and Qiang Xu (2015). “Approxma:
Approximate memory access for dynamic precision scaling”. In: Proceedings of
the 25th edition on Great Lakes Symposium on VLSI. ACM, pp. 337–342.

Varadharajan, Senthil Kumaran and Viswanathan Nallasamy (2017). “Low power
VLSI circuits design strategies and methodologies: A literature review”. In: 2017
Conference on Emerging Devices and Smart Systems (ICEDSS). IEEE, pp. 245–251.

Vasicek, Zdenek and Lukas Sekanina (2016). “Evolutionary design of complex ap-
proximate combinational circuits”. In: Genetic Programming and Evolvable Machines
17.2, pp. 169–192.

Venkataramani, Swagath, Kaushik Roy, and Anand Raghunathan (2013). “Substitute-
and-simplify: A unified design paradigm for approximate and quality config-
urable circuits”. In: 2013 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE). IEEE, pp. 1367–1372.

Venkataramani, Swagath, Amit Sabne, Vivek Kozhikkottu, Kaushik Roy, and Anand
Raghunathan (2012). “SALSA: systematic logic synthesis of approximate circuits”.
In: Proceedings of the 49th Annual Design Automation Conference. ACM, pp. 796–801.

Weis, Christian, Matthias Jung, Éder F Zulian, Chirag Sudarshan, Deepak M Mathew,
and Norbert Wehn (2018). “The Role of Memories in Transprecision Comput-
ing”. In: Circuits and Systems (ISCAS), 2018 IEEE International Symposium on. IEEE,
pp. 1–5.

Widmer, Marco, Andrea Bonetti, and Andreas Burg (2019). “FPGA-Based Emulation
of Embedded DRAMs for Statistical Error Resilience Evaluation of Approximate
Computing Systems”. In: Proceedings of the 56th Annual Design Automation Con-
ference 2019. ACM, p. 36.

Winkler, Stefan and Praveen Mohandas (2008). “The evolution of video quality mea-
surement: From PSNR to hybrid metrics”. In: IEEE Transactions on Broadcasting
54.3, pp. 660–668.

Yang, Xinghua, Nanyang Huang, Yuanchang Chen, Fei Qiao, and Huazhong Yang
(2016). “A priority-based selective bit dropping strategy to reduce DRAM and
SRAM power in image processing”. In: IEICE Electronics Express 13.23, pp. 20160990–
20160990.

Yang, Zhixi, Ajaypat Jain, Jinghang Liang, Jie Han, and Fabrizio Lombardi (2013).
“Approximate XOR/XNOR-based adders for inexact computing”. In: 2013 13th
IEEE International Conference on Nanotechnology (IEEE-NANO 2013). IEEE, pp. 690–
693.

	Declaration of Authorship
	Abstract
	Introduction
	Need for Low Power Circuit Design
	Source of Power Dissipation
	Approximate Computing
	Contribution and thesis organization

	Approximate Computing: State of the Art
	Approximate Computing: main concepts
	Strategies for Approximate Computing
	Algorithmic and programming language Approximate Computing
	Instruction level Approximate Computing
	Data-level Approximate Computing
	ETAs - Error Tolerant Applications
	Approximate Computing ad hoc
	Approximate Adders
	Approximate Multipliers
	Algorithmic Noise Tolerance and Reduced Precision Redundancy techniques

	Design automation Approximate Computing or functional approximation
	ABACUS

	Approximate Computing metrics
	Performance metrics
	Quality metrics

	Approximate Memories
	Approximate Memory Circuits and Architectures
	Approximate SRAM
	Approximate DRAM

	Transprecision Computing
	Approximate Computing and Machine Learning

	Approximate Memory Support in Linux OS
	Introduction
	Linux Memory Management
	Virtual Memory and Address Spaces
	Low Memory and High Memory
	Physical Memory
	Kernel Memory Allocators
	Page-level allocator (Buddy System algorithm)
	Continuous Memory Allocator Kmalloc
	Non Contiguous Memory Allocator vmalloc

	Development of approximate memory management in Linux Kernel
	Kernel compile-time configuration menu
	Creation of ZONE_APPROXIMATE on 32-bit architectures
	ZONE_APPROXIMATE on x86 architectures
	ZONE_APPROXIMATE on ARM architectures
	ZONE_APPROXIMATE on RISC-V 32-bit architectures

	Approximate Memory and Early Boot Allocators

	Allocation in ZONE_APPROXIMATE
	Approximate GFP Flags
	Alloc Fair policy

	User level approximate memory allocation
	Implementation of the device /dev/approxmem
	Approximate Memory Library: approx_malloc and approx_free
	approx_malloc
	approx_free

	Initial verification

	Quality Aware Approximate Memory Zones in Linux OS
	Introduction and 64-bit implementation potentials
	Approximate memory zones on 64-bit architectures
	Data Allocation
	approx library for multiple approximate memory zone

	Initial verification of the implementation
	Verification and allocation tests

	AppropinQuo, Full System Emulator for Approximate Memory Platforms
	Introduction
	Related Works: Simulation environments for digital platforms
	QEmu Emulator
	Main Concepts
	Dynamic Translation: Tiny Code Generator
	QEmu SoftMMU

	Approximate Memory in ApropinQuo
	QEmu Memory Management
	Approximate memory mapping on PC PIIX, x86 architecture
	Approximate memory mapping on Vexpress Cortex A9, ARM architecture
	Approximate memory mapping on VirtIO, RISCV-32 architecture
	Multiple Approximate memories mapping on VirtIO, RISC-V64 architecture

	Approxmem device in AppropinQuo

	Error injection models for approximate memories
	DRAM orientation dependent models
	SRAM models
	Error on read
	Error on write

	Bit dropping fault model
	Memory looseness level and fault models

	Quality aware selective ECC for approximate DRAM and model
	Bit dropping for LSBs, bit reuse and selective ECC
	Quality aware selective ECC
	ECC codes for approximate memories

	Impact of bit dropping and bit reuse
	Implementation

	Verification of fault models
	Error on access models verification
	DRAM orientation model verification
	Bit dropping model verification

	Exploiting approximate memory in applications and results
	Introduction
	Impact of Approximate Memory on a H.264 Software Video Encoder
	H.264 video encoding and the x264 encoder
	H.264 Encoder
	H.264 Decoder
	H.264 data fault resilience
	The x264 software video encoder
	Analysis of x264 heap memory usage

	Approximate memory data allocation for the x264 encoder
	Experimental setup
	Impact on output using approximate DRAM and power saving considerations
	Power saving considerations

	Impact on output using approximate SRAM
	Considerations on the results and possible future analysis

	Study of the impact of approximate memory on a digital FIR filter design
	Impact on output using approximate DRAM
	Impact on output using approximate SRAM
	Impact on output using approximate SRAM with bit dropping

	Quality aware approximate memories, an example application on digital FIR filtering

	Synthesis Time Reconfigurable Floating Point Unit for Transprecision Computing
	Introduction and previous works
	Floating Point representation, IEEE-754 standard
	Design of the reconfigurable Floating Point Unit
	Top unit Floating_Point_Unit_core

	Experimental Results
	Testing
	Synthesis Setup
	Results
	Number of gates and resources
	Propagation delay and speed
	Power consumption

	Conclusion and Future works

	Conclusion
	Approximate Memory management within the Linux Kernel
	Models and emulator for microprocessor platforms with approximate memory
	Impact of approximate memory allocation on ETAs
	Transprecision FPU implementation

	Linux kernel files for approximate memory support
	Patched Kernel files
	New Kernel source files
	Approximate Memory Configuration (Make menuconfig)

	AppropinQuo: list of approximate memory models
	QEmu 2.5.1 patched files for approximate memory support
	New QEmu 2.5.1 source files

	Transprecision FPU: list of vhd files
	Publications and Presentations
	Bibliography

