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Abstract

We present a new approach to Parallel Discrete Event Simulation (PDES), where we enable
the execution of so-called cross-state events. During their processing, the state of multiple
concurrent simulation objects can be accessed in read/write mode, as opposed to classical
partitioned accesses. This is done with no pre-declaration of this type of access by the
programmer, hence also coping with non-determinism. In our proposal, cross-state events
are supported by a speculative runtime environment fully transparently to the application
code. This is done through an ad-hoc memory management architecture and an extension of
the classical Time Warp synchronization protocol. This extension, named Event and Cross-
State (ECS) synchronization, ensures causally-consistent speculative parallel execution of
discrete event applications by allowing all events to observe the snapshot of the model
execution trajectory that would have been observed in a timestamp-ordered execution of
the same model. An experimental assessment of our proposal shows how it can significantly
reduce the application development complexity, while also providing advantages in terms of
performance.

Keywords: Discrete Event Simulation, Parallelization Techniques, Synchronization
Transparency, Multicore Computing

1. Introduction

Traditionally, Parallel Discrete Event Simulation (PDES) has been based on the ex-
plicit partitioning of the entire simulation model into distinct simulation objects (or Logical
Processes—LPs) [1] to be dispatched concurrently. Simulation objects’ states are disjoint,
and memory accesses during event processing are restricted to the state of the simulation ob-
ject which is executing the event. Interactions across concurrent objects are only supported
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by exchanging timestamped simulation events via messages. Proper synchronization mech-
anisms are used in order to ensure timestamp-ordered execution of events at each individual
object, which is a sufficient (although not necessary [2]) condition for causal consistency.

Such classic approach fits traditional computing environments based on (large-scale)
clusters of machines that embed loosely coupled CPUs. Indeed, partitioning the simula-
tion model was the only feasible approach to exploit the computing power offered by this
type of (distributed-memory) platforms, in order to speedup the execution of demanding
applications.

More recent architectural trends slide towards multi/many-core technology. Here, the
same physical memory is directly shared across a (large) set of tightly-coupled cores. This set
can be large enough to provide an individual machine with the computing power needed to
cope with demanding discrete event simulation models. This paradigm shift has driven the
reshuffle of last-generation PDES platforms, in order to meet the peculiarities and potential
of highly parallel shared-memory machines. Particularly, this has been done by relying on
multi-threading, where all the worker threads operating within the PDES system share a
common address space and can take care of executing simulation events scheduled to any
object. However, literature proposals along this direction have been mostly focused on how
to improve the runtime behavior of the PDES system via the optimization of platform-level
tasks. Some of these proposals target the management of event exchange across simulation
objects (e.g. via shared-memory suited approaches [3, 4]), or the (dynamic) binding of the
simulation objects to the different worker threads depending on their actual computation
demand (e.g. via load-sharing paradigms [5]).

Yet, none of these proposals had reflections on how PDES applications are actually coded.
In fact, in the supported programming models each object still has its own disjoint state,
and the execution of an individual event only allows to access the state of the destination
object in data separation with respect to the other objects. In other words, no possibility is
provided to access the state of multiple simulation objects, while atomically processing an
individual event.

In this article, we introduce a new programming model to code PDES applications,
along with the runtime support to make consistent their concurrent execution on parallel
architectures. In this model, simulation objects can access, while processing any simulation
event, the state of an arbitrary set of other simulation objects. In other words, our proposal
augments the traditional PDES paradigm with so called cross-state events, which take place
as atomic actions (potentially) touching in read and/or write mode any memory location
currently associated with the memory image of any simulation object. The runtime support
to handle cross-state events allows an effective exploitation of parallelism, since it supports
the concurrent execution of both traditional and cross-state events on a multi-threaded
PDES environment.

The motivations behind our proposal already stand out in the literature. Several results
exactly point to the importance of allowing shared access to the same data in PDES systems
while concurrently processing events at different simulation objects (see, e.g., [6, 7]). In this
sense, cross-state events avoid the burden to pass (large) data structures produced during
the execution of some event at simulation object A as the payload of a newly-scheduled event
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destined to object B. Indeed, the data can be directly accessed (e.g. via pointers) from the
state of object A while processing the scheduled event at the destination object B. This
simplifies the job of the application programmer, avoiding the need to manually implement
complex marshalling operation of the (possibly scattered) data to be sent as payload of the
scheduled event.

Even more important, cross-state events allow to dynamically “cluster” different simula-
tion objects at the logical execution point of a single event, so that application coding can be
extremely simplified. This is because any activity (e.g. simulation-state transition) logically
involving more that one object can be implemented in a single event handler, atomically ac-
cessing the states of all the objects involved in the cluster, rather than being partitioned into
multiple activities that are coordinated via explicit event scheduling across the objects—this
is what occurs in classic PDES, based on full state disjointness.

At the same time, guaranteeing a correct (i.e. causally-consistent) execution when deal-
ing with cross-state events requires proper application-transparent synchronization mecha-
nisms to be put in place, which we describe in this article. Overall, the contributions in this
article can be summarized as follows:

1. We describe the methodology behind the fully-transparent runtime detection of cross-
state events, involving any number of simulation objects. This is done taking as a refer-
ence x86-64 architectures running Linux, although the concepts can be easily adapted
to different architectures and operating systems—all the architectural facilities which
are exploited are available on most systems, nowadays. As it will be shown, the run-
time identification of cross-state events is fundamental, when application-transparency
is pursued.

2. We discuss a synchronization protocol for speculative (optimistic) PDES systems,
which we name ECS (Events and Cross-State) synchronization, which takes into ac-
count both traditional and cross-state events. This protocol, which can be seen as an
extension of classical Time Warp synchronization [8], allows the parallel run to be-
have in a way which is equivalent to one where all simulation events are processed in
non-decreasing timestamp order at any individual simulation object they touch, while
being allowed to access any valid memory location belonging to the state of the whole
simulation model—namely, any memory location logically belonging to the state of
some object. At the same time, our protocol allows to run simulation events destined
to different simulation objects concurrently, still transparently to the programmer.

Both the cross-state event detection methodology and the synchronization protocol have
been implemented1 within ROOT-Sim (the ROme OpTimistic Simulator), an open source
simulation library supporting the development and execution of PDES models relying on
ANSI/ISO-C programming.

The remainder of this article is organized as follows. In Section 2 we briefly discuss
the fundamentals of Time Warp synchronization for PDES. The management of cross-state

1The source code is available at https://github.com/HPDCS/ROOT-Sim.
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events and the ECS synchronization scheme are presented in Section 3. The results of an
experimental assessment are provided in Section 4. In Section 5 we discuss related literature
results.

2. Recap of Time Warp Synchronization

In this section, we briefly present the foundations of Time Warp synchronization. The
interested reader is invited to find a more comprehensive discussion in [1, 8].

In PDES systems, each simulation object is associated with its own view of simulation
time, known as Local Virtual Time (LVT), which is used to locally track the advancement
of the computation along the logical-time axis. The execution of an event can mark an
update to its state, and moves the LVT to the timestamp of the processed event. It is the
responsibility of the underlying runtime environment to track changes of the LVT of some
object when dispatching the event to be processed [1]. While processing some event, new
timestamped events destined to any concurrent object can be generated and injected into
the system. At the same time, state transitions caused by event processing at the different
objects can occur concurrently.

Classical PDES correctness rules are based on enforcing non-decreasing timestamp-
ordered state transitions at the different simulation objects [1]. Under this enforcement,
each simulation object in the system has a coherent view of the flow of logical time.

In the speculative (optimistic) approach to synchronization, also known as Time Warp [8],
events are stored by the runtime environment into per-simulation-object event lists, each of
which is logically partitioned into a future-event list and a past-event list. The future-
event list stores events not yet processed, while the past-event list records already-processed
events. Each simulation object is eligible for dispatching along some thread running within
the PDES platform unless its future-event list is empty. Once dispatched, the object is
allowed to process the minimum-timestamp event kept by its future-event list. Such an
event is then moved to the past-event list.

In Time Warp, a simulation object is scheduled for execution without any safety ver-
ification of causal consistency of its next-to-be-processed event. Hence, timestamp-order
violations might arise, since a simulation object may receive an event (produced by another
object) with a timestamp lower than its LVT. If a timestamp-order violation is detected,
all the events that were executed out of timestamp order are rolled back by the runtime
environment—they are moved back from the past-event list to the future-event list. Also,
the LVT of the object is pushed back to the timestamp of the last event executed in correct
order, and the object’s state is restored to its value prior to the timestamp order violation,
which is achieved by either relying on traditional checkpointing methods (see, e.g, [9–11])
or by the means of reverse computing approaches (see, e.g., [12, 13]), where reverse versions
of the event processing routines are executed when rolling back processed events.

For the classical scenario where simulation-object states are disjoint, restoring the system
to a correct state entails restoring individual object states independently, with no risk of
domino effect. In particular, if dependencies occurred due to the scheduling of some event
between a rolling back object Oa and another one Ob, these dependencies are undone via
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so called anti-events2. More in detail, an anti-event is generated for each event injected in
the system by Oa during the portion of the computation to be rolled back, and is used to
retract the originally injected event. Upon the delivery of an anti-event associated with an
already executed event by Ob, the recipient also rolls back. Instead, if the event has not
yet been executed, the anti-event has the only effect to “annihilate” the originally injected
event. This operation typically occurs within the runtime environment. After rolling back,
any simulation object resumes the execution of the events from its future-event list.

A concept that is relevant to optimistic synchronization is Global Virtual Time (GVT),
which is defined as the smallest timestamp among those of (i) unexecuted events already
inserted into the simulation objects’ event lists, (ii) events being executed, (iii) events/anti-
events in transit from source to destination. Since no simulation object can ever rollback
to a logical time preceding the GVT [8], the GVT value indicates the commitment horizon
of the speculative computation. It is used both to execute actions that cannot be subject
to rollback, such as displaying of intermediate results [14, 15], and for recovering memory.
Specifically, event buffers with timestamps lower than the GVT value will never be reused
after a rollback, therefore the runtime environment can discard them from the past-event
lists of the simulation objects. The same happens to obsolete state information, if any,
maintained to support state recoverability. The action of recovering memory after GVT
calculation is typically referred to as fossil collection.

As hinted, in our approach we target optimistic PDES platforms relying on the multi-
threading paradigm, which have been shown to provide a set of benefits and to support
optimized resource usage policies (see, e.g., [4, 16–18]) when compared to the traditional
counterpart where parallelization is achieved by running a set of single-threaded processes
within the simulation platform. Hence, we target the scenario where multiple threads can
take care of dispatching whichever simulation object for execution which takes place by
simply calling an event handler, with proper input parameters, along that thread. It is still
possible to rely on temporary binding schemes between objects and worker threads in order
to cope with, e.g., locality and other performance-related aspects.

3. Cross-State Events

3.1. Outline

The programming model enabled by cross-state events allows to bypass state disjointness
in event processing. This enriches the traditional PDES programming model significantly.
We provide such a support fully transparently to the programmer, who is therefore allowed
to design simulation models able to access memory locations within any simulation objects’
state in read/write mode. The programmer is also provided with the illusion that memory
accesses are performed as if the events were dispatched for processing in non-decreasing
timestamp order. In other words, the event-handling routine can be coded under the as-
sumption that any memory access it performs is related to the current simulation time of

2An anti-event is a “negative copy” of the corresponding event, or of its digest.
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the event dispatched for processing. This corresponds to the LVT of the simulation object
targeted by the event. On the other hand, we still enable parallelism in the execution in
combination with speculation.

To make the programming model clearer, we show in the code snippet below a C example
of an event handler in a PDES model implemented by relying on cross-state events. The
event handler takes control as a callback function invoked by the underlying PDES runtime
library. As typical of PDES-style coding rules, this function has a set of input parameters:
the identifier of the object (obj) for which event processing is taking place and the state base
pointer (state) which is the address of the data structure starting from which the object is
allowed to access any other dynamically-allocated buffer belonging to its state via pointers.
It also takes the timestmap of the currently dispatched event, and the event payload.

1 void ProcessEvent(object id obj, state t ∗state, time t event timestamp, event payload t event) {
2

3 char ∗p, q;
4 ...
5 p = event.reference;
6

7 q = ∗p; // reading the content of memory location pointed by the ‘reference’ field in the event payload
8 ...
9 ∗p = q ; // writing the content of memory location pointed by the ‘reference’ field in the event payload

10 ...
11 }

This can result in a cross-state event because we find statements where in-place pointer-
based accesses to memory occur both in read (line 7) and write mode (line 9). In the example,
the target memory locations for the accesses are taken from the payload of an event that has
been scheduled for the simulation object identified by obj. These memory locations might
correspond to memory buffers included in the state of the object that generated the event,
which can be different from the one which runs it, identified by obj in the code snippet.
More generally, a cross-state event is a simulation event scheduled for some simulation object
A, for which the corresponding processing steps lead to accessing in read/write mode the
state of one or multiple simulation object(s) distinct from A.

This is an innovative programming model not supported by any literature proposal.
Indeed, reference PDES systems (e.g. [19, 20]) allow the programmer to rely only on the
base pointer to the state of the simulation object that is the target of the event (namely
state) to implement memory read/write operations. Also, the above example shows how
in our solution we do not require any annotation in the code of the event handler. In other
words, the programmer does not need to discriminate whether a memory access will refer to
the local state of the simulation object targeted by the event, or to some remote object. We
do not impose/require any a-priori indication of whether some event scheduled by the PDES
application is a cross-state one or not. Hence we rely (and enable) pure runtime tracking
of the occurrence of such type of events while the PDES run is in progress. Overall, the
support for the correct handling of the memory accesses is fully transparent in our proposal,
thus masking to the application developer any complication related to the possibility for two
different objects targeted by a cross-state event to be concurrently scheduled for execution
along two different threads.

Our solution is therefore significantly different from shared-data management approaches
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Figure 1: A scheme of state accesses to a simulation object with cross-state events.

like, e.g., Transactional Memory (TM), where code portions that might just potentially
access the same data concurrently along different threads must be explicitly annotated.
This is for example what happens when relying on the TM support offered by the gcc

compiler.
Even more important, TM-style synchronization mechanisms to handle concurrent shared-

data accesses are devised to achieve data consistency via isolation. Rather, a cross-state
event does not only need to be managed via isolated accesses involving multiple objects
along a same thread. It also needs to access object states that are aligned in simulation
time to the timestamp of the cross-state event—namely, the LVT of the object processing
the event. This is another reason for common TM support to be unsuited for the purpose
of speculative PDES with cross-state events.

In Figure 1, we provide a schematic representation of the capabilities of the approach
we propose. As depicted, we enable a single simulation object to advance in simulation
time (still according to a speculative scheme), and to be the target of concurrent threads’
memory operations. One of these threads is in charge of dispatching events destined to that
simulation object—the simulation object is currently bound to that thread. These events
are denoted as “local events” in the picture. On the other hand, other threads in charge
of dispatching other simulation objects can anyhow process some cross-state events that
require to access the state of the former simulation object. These events lead to a kind of
remote access by those threads. In our proposal we provide mechanisms allowing:

A. the transparent runtime detection of remote accesses;

B. the realignment of the state of the simulation object targeted by a remote access
to the simulation time corresponding to the timestamp of the cross-state event that
determines the remote access, and the correct operation of threads in their concurrent
activities within the extended Time Warp synchronization involving cross-state events.

Point A is addressed via a PDES-oriented state management architecture that controls
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the way memory is delivered to keep the states of the simulation objects, and performs oper-
ating system tasks enabling the PDES runtime environment to track those remote accesses
caused by the processing of cross-state events. In our solution we deal with object states
kept into the heap, although we do not explicitly consider Thread Local Storage (TLS).
This is because the state of the simulation objects in modern and general-purpose multi-
threaded PDES systems is intrinsically not private to specific threads, since objects can be
dynamically re-bound to different threads for load-balancing purposes (see, e.g., [21, 22]).
Our state management architecture is presented in Section 3.2. Point B is dealt with via the
extension of the Time Warp synchronization protocol, which we name ECS synchronization.
This is presented in Section 3.3. We emphasize again that, although our proposal targets
Linux systems on the x86-64 architecture, the concepts it is based on are general and valid
for other systems and architectures.

An important point to emphasize is that the state management architecture we present
only deals with accesses to virtual addresses, and is fully transparent to the actual physical
placement of the virtual pages hosting the states of the simulation objects. This implies
that literature optimizations for placing virtual pages onto physical frames can be combined
with our support for cross-state events. Indeed, our integration of this support within the
ROOT-Sim platform coexists with the NUMA (Non Uniform Memory Access) optimizations
already present in this runtime library [23]. With respect to this point, we stress again that
our state management architecture is not a competitor of literature proposals for optimizing
memory accesses in PDES on multi-core machines (like for example the ones presented
in [3, 20]). Rather, it is an orthogonal means to enable an application programming model
that was not supported by any literature proposal. Overall, our primary objective is to
provide the programmer with a flexible way to develop models, while still guaranteeing
adequate performance by the parallel run.

3.2. Object States Management and Memory Access Tracking

In our state management architecture, virtual memory is destined for usage by any sim-
ulation object (e.g. for allocating buffers belonging to the object state) according to stocks.
More in detail, when the object requests new memory buffers, the memory management ar-
chitecture reserves an interval of page-aligned virtual memory addresses (the stock) via the
standard mmap POSIX API. Memory allocation is supported to the application programmer
via the standard malloc API, transparently redirected at compile/link time to a proper
memory allocator—see Appendix A for details.

To understand how the stock abstraction can be used to track memory accesses related
to cross-state events, let us consider the case of the IA32e paging scheme offered by x86-64
architectures—this is the paging scheme of x86-64 processors which is exploited by 64-bit
versions of Linux. As shown in Figure 2, any 64-bit logical address has only 48 valid bits,
which are used as access keys for a 4-level paging scheme, ultimately supporting pages of
4KB in size. The top level page table is called PML4 (or also PGD—Page General Directory)
and keeps 512 entries. All the other page tables, operating at lower levels, also have 512
entries each.
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Figure 2: The IA32e paging scheme with 4KB pages in x86-64 processors.

In our design, the stock of virtual memory pages used to allocate memory buffers for the
state of a given simulation object corresponds to the set of contiguous virtual pages whose
virtual-to-physical memory translation is associated with a single entry of the second-level
page table, which is called PDP (Page Directory Pointer), and whose entries are referred to
as PDPTE. Note that a single stock corresponds to 5122 pages, for a total of 1GB of virtual
memory. Hence, a single stock allows to manage object states up to 1GB of (dynamic)
memory. On the other hand, reserving multiple stocks for a same simulation object will lead
to manage object states reaching multiple gigabytes in size.

To interact with this memory management system, our architecture relies on a driver
implemented into a Loadable Kernel Module for the Linux kernel. This driver creates a
special device file which can be handled via ad-hoc ioctl commands supported by our
driver. The SET VM RANGE command allows the driver to register the stocks to be reserved,
and their association to the simulation objects (which are identified via classical unique
numerical identifiers, as in typical PDES platforms). When this command is issued, the
state of driver changes, and a kernel-level map, accessible in constant time, is set up. Here,
for each reserved stock (logically related to one entry of a PDP page-table) the identifier of
the simulation object destined to use that stock is recorded. In Figure 3 we show an example
where a given PDP table has its 0-th entry (hence the corresponding stock of virtual memory
pages) reserved for object x, and its 1-st entry reserved for object y.

Thanks to this organization, if simulation object x accesses any virtual address included
in the stock reserved for object y, we know that such a memory access (which can be either
in read or write mode in our execution model) is occurring outside the boundaries of its
local state, and is actually involving the state of another object. Therefore, we are in the
presence of a cross-state event.

The main problem to cope with to exploit the stocks as the means to capture whether
the generic simulation object x (currently dispatched for execution along any worker tread,
noted as WTi, in the PDES platform) is involved in a cross-state event is related to how to
determine that event processing gives rise to a memory reference falling outside the bound-
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Figure 3: Example of association between stocks of virtual memory pages and simulation objects.

aries of the stocks currently reserved for object x. Classical memory protection mechanisms
supported by the operating system (and related segmentation-fault handling schemes) are
not suited for our purposes. Indeed, we cannot simply protect a-priori the accesses to stocks
that are reserved for simulation objects other than x upon dispatching x along any worker
thread WTi. This is because these simulation objects might be requested to run concur-
rently with respect to x along other worker threads, which all share the same page table and
experience the same protection rules as WTi. Overall, preventing WTi to access the stocks
not reserved for simulation object x upon dispatching it (e.g. via the mprotect POSIX
API) would lead to a change of the state of the page table so that any other thread would
not be allowed to access those stocks. This definitely hampers concurrency, also leading to
unneeded memory faults—by threads running objects other than x—in contexts where the
object x does not require any access to “remote” stocks while processing the event.

Similarly, addressing the above problem via (user-transparent) code instrumentation
would require to instrument memory-write3 and also memory-read instructions. This would
lead to (non-minimal) overhead to be paid even in case no cross-state access, although
admissible, will ever occur—this renders the tracking of memory operations pointless on the
side of synchronization tasks related to the management of cross-state events.

To cope with this issue, we have devised a memory management architecture where any
worker thread WTi is associated with a sibling PML4 page table, whose entries point to
sibling PDP page tables. By default, the entries of the sibling PDP page tables, which are
associated with the stocks that have been destined for usage by the simulation objects, are
all set to NULL. This means that they do not allow to reach the lower-level page tables,
hence not allowing access to any already allocated stock. Therefore, any attempt to access
the stocks will lead to a memory fault. On the other hand, when WTi dispatches simulation
object x for event execution, the entries of the PDP sibling tables that correspond to the
virtual-memory stocks destined for usage by x are “opened” to correctly allow the retrieval

3This is typically done when supporting transparent incremental checkpointing in speculative PDES
platforms [24, 25].
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Figure 4: Example scenario where the memory stock associated with simulation object x is opened for access
onto a sibling PDP page table.

of the lower-level page tables that contain the actual virtual-to-physical memory mapping
(or tell that the pages are not present, e.g., they are swapped-out pages). This is done by
copying the corresponding entries of the original PDP tables onto the destination entries of
the sibling PDP page tables—see Figure 4 for an example scenario where the stock associated
with simulation object x is again related to the 0-th entry of a given PDP page table. In
our architecture, this operation can be executed via the ioctl SCHEDULE ON PGD command.

By using this command, the worker thread switches to what we refer to as simulation-
object mode, where the only accessible stock is the one associated with the dispatched object
(x in the example discussion), while the other stocks are not accessible in any way, given
that their corresponding entries into the sibling PDP page tables are still set to NULL.
As depicted in Figure 4, this operation also updates the CR3 register (namely, the page
table pointer register in x86-64 processors). This allows to switch to the sibling PML4 for
virtual-to-physical address resolution purposes.

Having different sibling PML4 tables, associated with the different concurrent worker
threads, allows to concurrently dispatch and execute different simulation objects—this is
done by having each worker thread open the access to the stocks associated with the object
it is currently dispatching—while still having the possibility to determine whether any of
the dispatched objects is keeping its memory references within its own stocks.

Two additional points must be discussed. First, having all the stocks closed for access
by the worker thread, except the one(s) related to the dispatched object, leads (as noted
before) to memory faults in case of a memory access to stocks other than open one(s),
namely in case of the occurrence of a cross-state dependency across concurrent simulation
objects. However, these faults cannot be tracked (and handled) via classical segmentation-
fault handling given that the “remote” stocks have already been validated via mmap, and the
Linux kernel would simply lead the fault to reallocate the whole chain of page table entries
for mapping the accessed virtual page in memory. This would bring the whole system into
an inconsistent state where for the same virtual page multiple chains of page tables (and
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Figure 5: The state diagram for switch operations between original and sibling PML4 page tables.

thus physical frames) are present. This is something not directly handled by the Linux
kernel, except if using invasive patches. To prevent this, when loading the external module,
we also change the Interrupt Descriptor Table (IDT), directly accessible via the IDT register,
to make the pointer to the page-fault handler point to a custom handler, rather than the
original do page fault kernel function. If the fault is not related to accesses to remote
stocks within the sibling paging scheme, then the original handler is invoked. Otherwise,
the custom handler pushes control back to user mode in order to let the PDES platform
actuate synchronization policies to handle cross-state events, as we shall discuss later when
presenting ECS synchronization.

Upon a memory-fault occurring on sibling PDP entries because of cross-state dependency
materialization, the faulting thread is put back into what we call platform mode, which
implies that it is switched back to the original PML4. This is done to let this thread
operate any memory access required to reconcile the execution of the concurrent objects
according to ECS synchronization. This aspect will be treated in detail in the next section.
On the other hand, if event processing at the currently-dispatched object ends, the worker
thread can switch back to platform mode on demand—hence gaining again access to any
memory location or data structure supporting the parallel execution—by using the ioctl

UNSCHEDULE ON PGD command implemented within the driver. In Figure 5, we show the
state diagram where the events causing the switch between simulation-object and platform
modes are depicted.

Second, our architecture needs anyway to co-exist with the kernel scheduler, which poses
issues on the side of managing the sibling PML4. Particularly, all the threads within a same
Linux process share the same memory management information (the so called memory
context), including the pointer to the original page table. This pointer is used by the
kernel scheduler upon re-dispatching the thread after it has been context-switched off the
CPU. Particularly, this pointer is reloaded into the page-table pointer register CR3 upon the
occurrence of a context switch that gives control to the thread. However, if the thread was
executing in simulation-object mode, CR3 would need to be filled with the address of the
sibling PML4 (instead of the original page table).

Rather than providing a recompiled version of the kernel directly embedding a custom
schedule function for correct management of the CR3 register (which would reduce the us-
ability of our system), our Linux module adopts a dynamic patching approach based on the
kprobe facility supported by Linux. It allows to inject an execution flow variation such that
control goes to a schedule hook() routine in the module right before the kernel’s sched-

ule() function would execute its finalization part (i.e., stack realignment and return). In
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this way, the actual final part of the scheduling process is under the control of our external
module. The schedule hook() function simply executes the same return actions originally
planned by the kernel’s schedule() function. However, patching the original scheduler in
this way allows the hook to take control when the decision about what thread needs to take
control of the CPU-core4 is already finalized.

The schedule hook() function implements the CR3 custom manager. This manager
checks whether the CPU-scheduled thread is running into simulation-object mode (which
can be done by checking per-thread meta-data that were setup via SCHEDULE ON PGD) and,
in the positive case, it loads the sibling PML4 pointer into the CR3 register (thus persisting
in the simulation-object mode when running the thread).

3.3. ECS Synchronization

In this section we describe ECS synchronization, which ensures causal consistency for
speculative PDES runs involving cross-state events. ECS synchronization has two goals.
First, letting each simulation object process its events in non-decreasing timestamp order,
in accordance with the reference correctness criterion for PDES platforms only entailing
event dependencies. Second, allowing any cross-state dependency occurring at simulation
time t—due to the occurrence of a cross-state event at that time—to let the involved object
accessing remote stocks to observe the state snapshot that would have been observed at
simulation time t in a timestamp-ordered run.

ECS synchronization can be seen as an extension of Time Warp synchronization based
on the following two innovations:

• the introduction of temporary object blocking phases, which may lead to temporary
block of the execution of an already dispatched simulation event at a certain object;

• the introduction of so called rendez-vous events, which are system-level events not
causing updates on the destination object state, rather only driving block and unblock
actions for processing activities at the concurrent objects. These are exploited to
temporarily disable a simulation object to perform updates to its state along the
simulation-time axis, given that its state snapshot is currently being accesses by a
cross-state event (namely, it is involved in what we have referred to as a cross-state
dependency).

3.3.1. Rendez-vous Events

In our proposal, each simulation object x is associated with a cross-state dependency set
which we refer to as CSDx. It records the identifiers of all the simulation objects towards
which x has materialized a cross-state dependency during the processing of a single event.
CSDx is initialized as empty upon dispatching object x for the execution of any new event,
and gets possibly updated while processing this same event (if it reveals as a cross-state

4It has actually already taken control of the CPU-core, since we are returning from the CPU-scheduling
step.
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one). ECS synchronization exploits the ad-hoc memory management architecture that we
presented in order to detect that simulation object x is accessing a remote memory stock,
namely the stock associated with object y, in either read or write mode, while processing
its currently dispatched event ex. The identity of the object towards which the cross-state
dependency is being materialized (y in our example discussion) is also known, given that
the custom memory-fault handler we designed, which pushes the faulting thread back in
platform mode, notifies such an identifier into the thread user-mode stack. The memory
fault occurrence gives rise to the following algorithmic steps:

1. The execution of ex is temporarily suspended by having object x transitioning into a
block state;

2. A rendez-vous unique identifier is generated and assigned to the event ex, which we
refer to as rvid(ex);

3. A special rendez-vous event ervy is scheduled for object y, marked with timestamp equal
to the timestamp of event ex, and with its identifier. We formally express this with
the notations ts(ervy ) = ts(ex) and rvid(ervy ) = rvid(ex).

Rendez-vous events are not generated by the application layer, rather they are platform-
generated events. Hence they do not have any associated processing rule at the application
level. Nevertheless, ECS rendez-vous events are incorporated into the event list of the
destination object (kept at the PDES platform level) as if they were traditional events,
which is done for synchronization purposes.

Given that we are targeting speculative synchronization, a rendez-vous event may be
a straggler event (if its timestamp is lower than the timestamp of some already processed
event at the destination simulation object), thus possibly causing a rollback. Overall, rendez-
vous events need to be processed at the destination according to timestamp-order (possibly
when resuming after a rollback), and the processing actions are platform-level ones given
that, as hinted above, no application level processing rule is—and needs to be—specified for
rendez-vous events in ECS.

When a simulation object y is dispatched for processing a rendez-vous event ervy , ECS
performs the following algorithmic steps:

1. Object y is put into a block state;

2. A special rendez-vous acknowledgment event ervax is scheduled for object x, marked
with no-timestamp but with the same rendez-vous identifier of ervy , formally rvid(ervax ) =
rvid(ervy ).

On the other hand, when the rendez-vous acknowledgement event ervax is delivered to the
destination simulation object x, ECS performs the following steps:

1. It inserts the identifier of the sender object, namely y, into CSDx.

2. It unblocks the simulation object x so that it can be eventually re-scheduled along some
worker thread (which can lead to resuming the execution of the originally-interrupted
event ex).
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object local identifier current rendez vous;

upon dispatching event ex at object x do
1. CSDx = ∅;
2. current rendez vousx = null;
3. rvid(ex) = null;

upon faulted access to the memory stock of object y by object x do
1. ex = get current event(x);
2. if (rvid(ex) = null){
3. mark = get unique id();
4. rvid(ex) = mark;
5. }
5. ervy = instantiate rendez vous event();
6. ts(ervy ) = ts(ex);
7. rvid(ervy ) = rvid(ex);
8. send ervy to object y;
9. current rendez vousx = rvid(ex);
10. block execution of object x;

upon dispatching rendez-vous event ervy at object y do
1. source = get sender(ervy );
2. ervax = instantiate acknowledgment event();
3. rvid(ervax ) = rvid(ervy );
7. send ervax to object x;
8. current rendez vousy = rvid(ervy );
9. block execution of object y;

upon the receipt of the rendez-vous acknowledgement event ervax at object x do
1. if (current rendez vousx 6= rvid(ervax )) return;
2. source = get sender(ervax );
3. CSDx = CSDx ∪ source;
4. unblock object x;

upon ending the execution of event ex at object x do
1. ∀k ∈ CSDx

2. eubk send x = instantiate unblock event();
3. rvid(eubk ) = rvid(ex);
4. send eubk to object k;

upon the receipt of the unblock event eubk at object k do
1. unblock object k;

upon the resuming execution of object x after a block phase do
1. ∀k ∈ CSDx

2. open access to memory stock associated with k;

Figure 6: Pseudo-code for the management of rendez-vous events.
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At this point, we know that simulation object y is blocked, thus not being currently
allowed to process its events. Hence, the snapshot of its state is available to simulation object
x for read/write operations, such as the operation that originally gave rise to the cross-state
event’s memory fault. However, upon re-dispatching object x (which leads to resuming the
processing of ex), the involved worker thread cannot move into simulation-object mode by
only opening the stock(s) associated with x into the sibling page tables. Indeed, we also
need to open access to the stock(s) associated with object y. In our architectural support,
this can be easily achieved via the SCHEDULE ON PGD command, since is allows to get a set of
identifiers whose stocks need to be opened within the sibling page tables. In particular, when
re-dispatching object x, the SCHEDULE ON PGD command is issued with the set x∪CSDx as
input, which for our example discussion, contains the identifiers of both objects x and y.

The above algorithmic steps can be iterated in case cross-state dependencies are materi-
alized towards multiple simulation objects while processing the event ex, which will lead to
the scenario where simulation object x can be rescheduled multiple times (while processing
ex) with an incrementally enlarged set of open stocks. Once a remote memory stock (as-
sociated with a distinct object) becomes open for access by object x during the processing
phase of event ex, any access to this stock by x will not cause any additional memory fault
while processing the same event.

To finalize the processing of ex, we need to notify that the stocks associated with simula-
tion objects towards which cross-state dependencies have been detected are no longer locked
for access by object x. Hence, the owner simulation objects can resume their processing
activities. This is done through the following steps, carried out at the end of the execution
of ex at object x:

1. an unblock-event eubk is sent towards any object k whose identifier is in CSDx. These
events are again not marked with a timestamp, but with the rendez-vous identifier of
the event ex originating the cross-state dependency;

2. upon the delivery of eubk , the recipient simulation object is simply put back as ready
for being dispatched (hence exiting the block state).

In Figure 6, we report the pseudocode for the management of rendez-vous events. Two
important notes. First, an event which generates a rendez-vous keeps the same rvid mark
for all the possibly additional rendez-vous it will generate, in order to have a unique logical
identifier for the rendez-vous, independently of the actual group of participating objects.
Second, when a rendez-vous is triggered by some object x, the rvid value is recorded in
the per-object variable current rendez vous, so that if a rendez-vous acknowledgement is
received with an rvid value that does not match the current one seen by the simulation
object, then the processing of the acknowledgment is simply skipped. This is related to the
management of rollbacks in the speculative run, which we discuss in the next section.

In Figure 7, we show a timeline illustrating how ECS manages a cross-state event ex
processed by simulation object x. With no loss of generality, the represented scenario refers
to the case of two objects involved in the cross-state event, which are handled, in terms of
CPU-dispatching, by different threads operating within the PDES system. The red bars
indicate the wall-clock-time intervals along which the simulation objects x and y involved
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Figure 7: An example time-line of ECS

in the rendez-vous are blocked. Object x is blocked up to the point in time where the
state of object y is ready for being consistently accessed by the thread that processes the
event ex. In the meanwhile the thread in charge or processing the events destined to object
y can CPU-schedule some object different from y. After the event is processed, object y
stays blocked again up to the receipt of the ECS unblock event eubx . Afterwards, both the
objects can proceed processing their events concurrently along different threads. Clearly, in
a scenario where the cross-state event hits a simulation object that is handled by the same
thread that is processing the event, all ECS tasks are run along that same thread.

3.3.2. Dealing with Rollbacks

ECS targets speculative processing, where object blocking is never caused by native event
dependencies, rather by the need for executing memory read/write operations in multiple
stocks as an atomic action (within a rendez-vous). Thus, some care must be taken when
handling rollbacks. In particular, when we process an event ex that gives rise to a rendez-
vous event ervy , we need to define rules to handle the rollback of either object x or object y at
a simulation time t′ < ts(ex)—or equivalently t′ < ts(ervy ). The peculiarity of this scenario
is related to fact that ex and ervy are both causally related to each other. Particularly, if ex
is rolled back, then we need to rollback ervy given that object x may have performed updates
on the memory stocks destined to keep the state of simulation object y while processing
ex. On the other hand, the processing outcome of ex is affected by values possibly read
by object x from the stocks destined to y at time ts(ex). If these values change due to a
rollback of object y at a simulation time preceding ts(ervy ), the updated values should have
been observed while processing ex by object x.

To handle such a mutual dependency, we devise the following scheme. When the event
ex is rolled back, we simply send a classical anti-event for the rendez-vous event ervy that
was scheduled while processing ex. Given that ervy was incorporated into the event list of the
destination object y, the arrival of the anti-event gives rise to a classical annihilation that
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possibly rolls back y to the latest processed event with timestamp less than ts(ervy ).
The only additional aspect to consider is the effect of the rendez-vous anti-event on

the destination object y in case it is still locked in the original rendez-vous. This scenario
may occur because the source object x may experience a rollback leading to squashing the
currently issues rendez-vous—this might be requested for progress of the run. In this case,
no unblock event will be notified to y, and the effects of receiving the anti-event will be
exactly that of pushing y out of the block state, as if the unblock event for the rendez-vous
were received.

On the other hand, if the rollback is originated on object y, and pushes it to a simulation
time less than ts(ervy ) (which leads to undoing the execution of ervy ), the following actions
are taken. A special rendez-vous-restart event ervrx , marked with the original rendez-vous
identifier rvid(ex) is sent out towards object x. This special event annihilates the processing
of the original instance (while not removing it from the input queue), which leads to ulti-
mately undoing ervy via an anti-event. When processed after the rollback, ex will generate a
new instance of rendez-vous marked with a new unique identifier, so no mismatch will occur
in any annihilation phase for rendez-vous events associated with different incarnations of
their generating event. This also avoids cycles in the annihilation process.

Furthermore, all the other types of events used in ECS, such as acknowledgment and
unblock events (see Figure 6), are not incorporated into the event lists of the simulation
objects. Thus they are inherently ephemeral, and do not require particular care in the
rollback scheme. Assuming FIFO communication across the objects (as can be typical of
multi-thread PDES platforms [4]), these events can be simply discarded at the recipient side
if the rendez-vous associated with their corresponding identifier (e.g. rvid(ex) in case of the
acknowledgement event sent to x upon the rendez-vous) is no longer in place.

Appendix B discusses correctness aspects of the presented ECS rollback scheme, partic-
ularly by the side of progress.

4. Experimental Study

4.1. Test-bed Platform

We integrated ECS within the open source ROOT-Sim package [26], particularly the
symmetric multi-threaded version presented in [4]. A few relevant modifications to this
simulation platform have been made for integration purposes. Most relevantly, we have
created stack separation across the different simulation objects, by locating the stack of
each object in the initial part of a stock of memory destined for object usage. This is done
in a fully application-transparent manner. Further, execution resume in the different stacks,
by also providing the correct processor and stack image, has been supported via modified
versions of the setjmp and longjmp POSIX APIs. These ad-hoc APIs take into account
the fact that an event can be theoretically descheduled at any memory-access instruction,
including points which are not “safe” from a calling convention point of view. Further
details on these aspects are discussed in Appendix C. They have also been used as the
support to squash the stack when a rollback occurs while the simulation object is in the
block state—this eventually leads the object to resume execution in a different context.
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The application transparent facilities that have been used in our implementation to save
and restore the states of the simulation objects are offered by the DyMeLoR library [25, 27],
which has been integrated with the new memory management based on stocks. In particular,
the memory segments from which DyMeLoR takes the chunks to be delivered for dynamic
memory allocation by a given simulation object—and keeps the corresponding map for
log/restore operations—correspond to the stocks of memory destined for that object usage.
We recall that relying on DyMeLoR as actual memory allocator is fully transparent also
by the side of memory management API since the application programmer is still allowed
to use the classical ANSI/ISO-C memory allocation functions. In fact, in the ROOT-Sim
architecture, these are transparently redirected to functions internal to DyMeLoR.

As for the (temporary) binding of simulation objects to threads, we still relied on the
policies already supported in ROOT-Sim [22], which are aimed at optimizing the sharing of
the overall simulation workload across the threads operating in the PDES system along the
whole lifetime of the simulation run. The simulation objects currently bound to a given
worker thread are dispatched according to the Lowest Timestamp First policy. However,
when running with ECS, the simulation objects that are in the block state are not considered
in the dispatching process (thus being again eligible for dispatching only after exiting the
block state). In any case, the blocking of an object does not imply blocking the activities of
the thread taking care of it, since this thread is allowed to dispatch other objects and/or to
run platform-level tasks.

We have run experiments on a 32-core HP ProLiant server equipped with four 2GHz
AMD Opteron 6128 processors and 64GB of RAM. Each processor has 8 physical cores that
share a 12 MB L3 cache (6MB per each 4-cores set), and each core has a 512KB private L2
cache. The machine is equipped with 64 GB of RAM—organized in 8 NUMA nodes—and
runs Linux 3.2. A ROOT-Sim configuration with 32 symmetric worker threads has been used
in all the experiments, with GVT and fossil collection taking place each one second. We
have not used more than 32 worker threads (so we have never exceeded the total number
of physical cores) to avoid interference effects which could impair performance [28]. All the
models used for the experimentation are available online in the ROOT-Sim repository.

4.2. Experimental Data

This section is divided in two parts. We initially provide data for an evaluation of the
overhead due to the core memory management facilities underlying cross-state events and
ECS. To this end, we use a simulation model of a Personal Communication System (PCS)
natively entailing disjointness of memory accesses by the different simulation objects—thus
not exploiting at all ECS facilities, although paying the cost for the associated memory
management support—which has been parameterized so as to achieve various runtime dy-
namics. After, we present data related to the assessment of the whole innovative approach to
PDES—based on cross-state events—by relying on a multi-robot exploration model. In this
part of the study, we also compare the runtime behavior of models exploiting ECS (imple-
mented by relying on cross-state events) to the counterpart exclusively based on traditional
PDES programming (only relying on event-dependencies via simulation objects’ cross-event
scheduling).
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Figure 8: Relative speed-up by the parallel run without and with ad-hoc memory management vs the
sequential run.

4.2.1. Pure Overhead Assessment

We evaluated the overhead induced by the memory management architecture supporting
cross-state events by relying on a PCS model with 1024 wireless cells covering a square
region, each one managing up to 1000 wireless channels. It models interference across
different channels within a same cell and power management upon call setup/handoff in
a high fidelity fashion according to the specification provided in [29]. This same model
has been already used to assess the multi-threaded version of ROOT-Sim where we have
integrated ECS, and its detailed description can be found in [30]5. Two specific aspects
are relevant for this study: 1) each simulation object models an individual cell, and the
interactions between objects exclusively take place via handoff events of mobile devices
across different cells—hence, as hinted before, memory accesses while processing the events
at the different simulation objects are intrinsically disjoint; 2) the average granularity (CPU
requirement) of the events is directly proportional to the wireless channel utilization factor,
since the more channels are busy, the more complex is the calculation of interference and
Signal-to-Interference Ratio (SIR) while simulating power regulation.

We have run this model with three different configurations for the channel utilization
factor, namely 25%, 50% and 75%, which gave rise to average granularity of the simulation
events ranging from the order of 30 to 100 microseconds on the used computing platform.
Also, we considered three different execution settings: a classical sequential execution (based
on a calendar queue event scheduler), a parallel execution where no ad-hoc memory manage-
ment facility is activated, and a parallel execution where we rely on the innovative memory

5The source code is anyhow available within the ROOT-Sim models’ repository.

20



 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10

S
p
e
e
d
u
p

Percentage of Fictitious Rendez-Vous

Figure 9: Relative speed-up by the ad-hoc memory management architecture vs the classical parallel run.

management architecture needed to support cross-state events and ECS. The latter setting
entails switching between object-mode and platform-mode at each processed event—because
of the need for managing the access to different memory stocks—with refill of the CR3 reg-
ister and implicit squash of the TLB. This setting allows us to assess the pure mode-switch
overhead operated by the support for ECS as evaluated in a scenario where ECS is useless
since no cross-state event is ever detected in the native simulation model implementation.

In Figure 8, we show the variation of the speedup (vs the sequential run) we observed for
simulating on the order of 1 million (committed) events in the different parallel execution
modes (each sample is the average over 10 runs based on different random-generation seeds).
By the data, we see how the maximal loss in performance by the ad-hoc memory management
architecture switching between platform and object modes is on the order of 9% and is
observed for the case of finer grain simulation events—namely, for the case of 25% utilization
factor. Such a performance penalty almost disappears for coarser grain configurations.

Then, we modified the PCS model in order to generate fictitious cross-state events peri-
odically. When one fictitious cross-state event occurs, the executing object simply performs
a dummy read operation into the state of an adjacent cell. However, we do not really en-
able ECS synchronization, as the dummy read access is not important for the correctness
of the simulation and can be executed out of timestamp order. Therefore, we only trap
the access and open the stock associated with the object hit by the read operation. In
this way we are able to assess the overhead induced by the identification at runtime of a
cross-state event, when also including the management of memory faults and the activation
of the ECS handler. For this experiment, we considered the PCS configuration with wireless
channel utilization factor set to 50%, and we varied the frequency of occurrence of the fic-
titious cross-state events between 1% and 10% of the total number of events processed. In
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Figure 9, we show the relative speedup achieved by the configuration with ad-hoc memory
management and fault handling upon the occurrence of fictitious cross-state events vs the
configuration with no ad-hoc memory management. By the results, the ad-hoc architecture
induces a speed-down that, as expected, increases with respect to the frequency of fictitious
cross-state events. Note that the speed-down is not only caused by the overhead for handling
the memory faults. It is also due to the switch between platform and object modes, which is
mandatory in order to create the per-thread memory view needed to trap the access to the
state of other simulation objects. However, the speed-down is quite limited for relatively in-
frequent fictitious cross-state events, and becomes non-negligible only when moving towards
scenarios with relatively frequent cross-state occurrences (10% of the processed events).

On the other hand, the whole ad-hoc memory management architecture has been de-
signed and realized to provide, transparently to the application code, a unique innovative
support to handle cross-state dependencies in presence of concurrent objects. Hence the
loss of performance in contexts where the model to be executed exhibits intrinsically dis-
joint accesses across different object-states (such as for the configurations in Figure 8) is
the unavoidable price to be paid for the achievement of a runtime environment offering the
above-mentioned level of transparency.

4.2.2. Effectiveness Assessment

To assess programmability and performance advantages provided by cross-state events
and ECS synchronization, we have implemented a multi-robot exploration and mapping
simulation model, according to the results in [31]. Specifically, a group of robots is set out
into an unknown space, with the goal of fully exploring it. The map is constructed during
the exploration, relying on the notion of exploration frontier. By keeping a representation
of the explored world, the robot is able to detect which is the closest unexplored area it can
reach, computes the fastest way to reach it and continues the exploration.

The robots explore independently of each other until one coincidentally detects another
robot. Whenever two robots enter a proximity region, they perform three different actions:

1. they use their sensors to estimate their mutual physical position—recall that they are
just in proximity ;

2. they verify the goodness of their position hypothesis by creating a meeting point in
the explored part of the region, and trying to meet again there;

3. if the hypothesis is verified, they exchange the data acquired during the exploration,
thus reducing the exploration time and allowing for a more accurate decision of the
actions to be taken.

If step 2 succeeds (i.e., the robots actually meet again), it means that the estimation of
their respective position is correct. Therefore, they can form a cluster and start exploring
the environment in a collaborative way. Specifically, this collaborative exploration can take
place in two different ways. On the one hand, they jointly define (by relying on cost and
utility functions, as defined in [31]) their next exploration targets, so that they can minimize
the time required for a complete environment exploration. On the other hand, they might
decide to make a guess about the position of other robots (the total number of which is
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known) which are not part of the cluster yet. In the latter case, one of the robots (the one
for which the utility/cost ratio is convenient) targets the hypothesized position. If a robot
is found there, the aforementioned steps are carried out, so as to increase the knowledge of
the environment.

When implementing a PDES simulation model for this scenario, three main hindrances
are found. First, discovering the presence of a nearby robot can be difficult. In fact, ei-
ther the robots must communicate to each other their current position—thus exponentially
increasing the number of exchanged messages (events) which in turn can limit the perfor-
mance of the simulation—or they have to notify it to specific simulation objects (i.e., the
regions), again increasing the number of messages/events exchanged. Second, to estimate
the respective position of the agents, various simulation events could be required. Third,
exchanging map information could entail a data transfer non-negligible in size, posing a huge
burden on the communication subsystem. Additionally, all these programmatic steps are
not straightforward, as they force the modeler to reason according to the state-separation
paradigm proper of PDES.

On the other hand, relying on cross-state events and ECS allows for a completely-
transparent synchronization of the simulation objects involved in any mutual state update,
which therefore simplifies the development process of the simulation model. In our imple-
mentation we rely on two different types of simulation objects, namely active ones (imple-
menting the robots) and passive ones (implementing regions of the explored environment).
More specifically, the environment is represented as a square region, divided into hexagonal
cells. This choice allows us to define a meaningful mobility model for the agents, and at
the same time allows us to define proximity regions which are used by the agents to detect
the presence of other robots in the nearby. Also, periodic events occurring into any cell
are envisaged as the basis for modeling the evolution (inside the cell) of any phenomenon
characterizing the dynamic change in the state of the explored region.

At simulation startup, each passive simulation object creates random obstacles (which
prevent the agents from reaching any neighbor cell), mimicking a rescue scenario where
an open space is modified by an accident and the robots are used to explore it for rescue
activities. At the same time, each passive object instantiates in its private simulation state
(by relying on a standard call to malloc()) a presence bitmap. Each bit is associated with a
specific robot, and its value is associated with the robot being in the cell or not. By relying
on a fast bitmap scan, each robot (thus each active simulation object) is able to discover
which robots are present in the cell. Finally, the passive object registers its simulation state
by storing a pointer in a global array called states[], thus allowing any other simulation
object to directly access (and/or modify) it. This is done by relying on a code block where the
modeler is not required to rely on any platform-specific API, as illustrated in the following
code snippet which is executed upon initializing the simulation model.

1 // Allocated state
2 state = malloc(sizeof(agent state type));
3

4 for(i = 0; i < 6; i++) {
5 if(isValidNeighbour(me, i)) {
6 // With a random probability, an obstacle prevents from getting there
7 if(Random() < OBSTACLE PROB) {
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8 state−>neighbours[i] = −1;
9 } else {

10 state−>neighbours[i] = GetNeighbourId(me, i);
11 }
12 } else {
13 state−>neighbours[i] = −1;
14 }
15 }
16 // Allocate the presence bitmap
17 state−>agents = malloc(BITMAP SIZE(n prc tot − num cells));
18 bzero(state−>agents, BITMAP SIZE(n prc tot − num cells));
19 // Register the state in a global array. This is forbidden in traditional PDES
20 states[me] = state;

isValidNeighbour() tells whether a cell is placed on the boundary of the square re-
gion, GetNeighbourId() performs hexagonal-to-linear coordinates conversion for detecting
a neighbour id, num cells is a variable defined by the model (and initialized at simulation
startup by the user) which tells how many cells must be used to represent the square region,
BITMAP SIZE is a model-defined macro which converts the number of agents to be repre-
sented into the bitmap to a number of sequential bytes providing the relative number of
bits, n prc tot is a variable initialized at simulation startup which tells the total number of
simulation objects in the current run, and me is a unique integer used to identify a specific
simulation object, passed as input from the ROOT-Sim runtime environment to callbacks
giving control to the application for event processing (as in most traditional simulation
frameworks).

Thanks to cross-state events and ECS, when an agent enters a hexagonal cell (the id of
the cell is piggy-backed on the event), registering its presence in the cell (which corresponds
to a different concurrent object) is as simple as:

21 state−>current cell = event content−>cell;
22

23 // Register the position of the robot in the cell. This is inconsistent in traditional PDES
24 cell = (cell state type ∗)states[state−>current cell];
25 cell−>present agents++;
26 SET BIT(cell−>agents, me − num cells);

Then, the agent has to collect information about the environment—which in our model is
represented by the obstacles in the current cell—and has to detect the presence of additional
robots. Since we have direct access to the cell’s state thanks to cross-state events and ECS,
this can be easily done by reading this information from it:

27 // Mark the cell as explored and ”discover” the surroundings. This is inconsistent in traditional PDES
28 state−>visit map[state−>current cell].visited = true;
29 memcpy(&state−>visit map[state−>current cell].neighbours, cell−>neighbours, sizeof(unsigned int) ∗ 6);
30

31 // Is there any other robot in the cell?
32 if(cell−>present agents > 1) {
33 <scan the bitmap>
34 }

In case one robot is found in the cell, then the agent simply “merges” its view of the
environment. This can be easily done by relying again on the states[] array, provided that
each robot registers a pointer to its private state in it at simulation startup:

35 robot = (agent state type ∗)states[robot index];
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36 for(j = 0; j < num cells; j++) {
37 if(robot−>visit map[j].visited) {
38 memcpy(&state−>visit map[j], &robot−>visit map[j], sizeof(map t));
39 } else if (state−>visit map[j].visited) {
40 memcpy(&robot−>visit map[j], &state−>visit map[j], sizeof(map t));
41 }
42 }

No notion of parallelism is present in the shown code snippets from the simulation model,
yet (by relying on cross-state events and ECS) the ROOT-Sim platforms is able to run the
simulation model in parallel. We emphasize that the simulation model is written in an
easy-to-manage style, without the need for respecting any PDES-related constraint, except
for the signature of the event handlers, which is compliant with the one adopted by the
ROOT-Sim platform.

To provide more details, ECS is triggered in different lines of the above code snippets.
In particular, lines 25 and 32 trigger the synchronization with a cell (i.e., the current cell
hosting the robot), while lines 37, 38, and 40 synchronize with another robot, namely one
of the (possibly multiple) robots found to be in the cell. It is interesting to note that lines
25 and 32 access the state in different ways, the former being a read/write operation, the
latter being simply a read operation. Similarly, line 37 accesses the state in read mode, while
lines 38 and 40 entail writing multiple bytes of memory. Nevertheless, despite the multiple
accesses, ECS requires executing the synchronization protocol (via rendez-vous events) only
once per each other simulation object the state of which is being accessed while processing
the current event.

As for runtime performance, we simulated a region of 4096 cells, and we changed the
number of robot units moving around to 100, 500, and 1000. Higher values (500 and 1000
agents) give rise to average agent density into the explored space on the order of 0.12 and
0.24 per cell, respectively. Although these values might be above realistic settings, especially
for cells modeling regions with non-minimal size, they help assessing how the performance of
the ECS support for easy of programming and transparent parallelization scales vs variations
of the ratio between the number of passive simulation objects (the cells) and the number
of active ones (the agents). On the other hand, the configuration with 100 agents gives
rise to an average density of per-cell agents of 0.02, realistically representing cases where,
e.g., a reduced number of highly-specialized agents is employed for the exploration of a
non-minimally sized region.

In Figure 10, we report the execution time of the simulation model for the three different
cases, and for different amounts of ROOT-Sim worker threads (8, 16, and 32) deployed on
top of the used multi-core computing system. We also report the execution time for run-
ning the very same application code sequentially, again on top of a classical calendar-queue
scheduler. By the data we see how the parallel runs provide speedup that ranges between
30 and 35, which also linearly scales while varying the number of worker threads in the
parallel simulation platform. This demonstrates the effectiveness of ECS in delivering ade-
quate parallel performance, beyond providing supports for easy of programming. Also, the
implementation patterns used in our model can constitute a reference for different scenarios
entailing both passive (region) and active (agent) simulation objects.
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Finally, in Figure 11, we report performance data for a comparison between the above
described ECS-based implementation of the simulation model, and one that exclusively relies
on the classical PDES paradigm only performing fully disjoint accesses to the object states
by the threads. In this variant, information sharing across the different objects while the
simulation run proceeds is only based on events’ exchange—the information to share at a
given simulation time is piggybacked on the timestamped events as their payload. These
exchanges take place whenever two (or more) robots meet in the map, and they have to
merge their knowledge. In particular, every robot sends to any other robot in the just-
formed cluster an event piggybacking the information associated with the whole portion of
the environment that has been explored so far. Upon processing such a message, a robot
scans the payload and installs in its own private state all the information which is not
present yet. In the plots, we refer to this implementation of the model as TR (Traditional),
as opposed to the ECS-based one. For this comparative study we also vary the number
of robots exploring the target area in the simulation (‘R’ in the plots) and the number of
threads used to carry out the parallel runs. The reported data points still come from an
average over 10 different runs, all executed with different random-generation seeds.

By the results, we can see that independently of the number of robots and the number
of active worker threads, ECS-based synchronization provides a performance increase with
respect to the traditional PDES run, which ranges from 19% to 58%. Anyhow, a more
notable aspect is that when the number of robots increases, a more parallel execution—with
increased numbers of worker threads—gives rise to a higher gap between ECS-based and
traditional PDES. These phenomena are related to the fact that the event-exchange and the
memory copy costs have a more prominent effect that is adverse to traditional PDES. On the
other hand, ECS-based synchronization better scales with respect to both the model size and
the used computing system power (number of CPU-cores). It is also important to emphasize
that the variant of the simulation model based on traditional PDES requires much more code
to be written by the simulation model’s developer, which has also to manually implement
some form of marshalling of the simulation state, in order to transmit its content as an event
payload using the API of the underlying runtime environment. To provide a quantification
of the benefits on programmability, we have that the ECS-based version of code has 25%
less lines of code with respect to the traditional version not exploiting cross-state events6.

By the whole experimentation, we can conclude that cross-state events, and the associ-
ated ECS synchronization protocol, have the twofold benefit of delivering a non-negligible
performance increase, anytime that the amount of data to be accessed across two objects is
non-minimal, while enabling in any case a much simpler programming model.

5. Related Work

Several studies in the literature have been aimed at coping with the issue of state dis-
jointness across concurrent objects in PDES systems, so as to allow some form of data (hence

6Line counting refers to the versions of the two different models implementations available in the “models”
branch of the ROOT-Sim respository.
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state) sharing. The work in [32] discusses how state sharing might be emulated by using a
separate simulation object hosting the shared data and acting as a centralized server. This
proposal also introduces the notion of version records, where multi-versioning is used for
shared data maintenance in order to cope with read/write operations occurring at different
logical times, and to avoid unneeded rollbacks of the centralized server in case of optimistic
synchronization. This is an approach similar to the one proposed in [6], where a theoret-
ical presentation of algorithms to implement a Distributed Shared Memory mechanism is
provided in terms of protocols to keep replicated instances of a variable coherent. In partic-
ular, one of the provided algorithms proposes to implement variables as multi-version lists
where write operations install new version nodes and read operations find the most suitable
version. The above approaches are different from what we propose given that read/write ac-
cess to shared variables is mapped to message-passing (namely, event schedule operations),
while we support in-place access to any (by default sharable) buffer within the simulation
object states, e.g., via pointers. Also, in our proposal sharing is not limited to a particular
memory slice (such as the state image of the centralized server), while we allow access, and
hence sharing, of any memory buffer representing a portion of the whole simulation model
state. Also, by design the above approaches are strongly oriented to distributed simulation
environments, while we target the trend of shared-memory/multi-core machines.

In [33], the notion of state query is introduced, where a simulation object needing the
value of a portion of the state that belongs to a different object can issue a query message
to it and then waits for a reply containing the suitable value. If this value is later detected
to be no longer valid, an anti-message is sent so as to invalidate the query. Again, this
approach relies on message passing, and is not transparent to the application programmer,
who needs to embed the usage of query messages within the application code.

The work in [34] proposes to integrate the support for shared state in terms of global
variables, by basing the architecture on [35]. Although this proposal supports in-place
read/write operations as we do (i.e., simulation objects directly access the only copy of the
data, avoiding a commit phase at the end of the execution of an event), it provides no
transparency, as the application-level code must explicitly register a simulation object as a
reader/writer on shared variables. Our proposal avoids this limitation by also allowing the
sharing of dynamically-allocated buffers, for which pre-declaration of the potential need to
access cannot be raised at startup (hence intrinsically leading actual access to be determined
as a function of the specific execution trajectory while running the application).

The issue of transparency has been tackled in [36], where shared data are allowed to be
accessed by concurrent objects without the need for pre-declaring the intention to access.
This has been achieved via user transparent software instrumentation, in combination with a
multi-version scheme, either allowing the redirection of read operations to the correct version
of the data (on the basis of the timestamp) or forcing rollbacks of causally inconsistent reads.
This solutions is targeted at the management of global variables. Instead, our proposal
is suited for data sharing of dynamically allocated memory chunks logically incorporated
within the state of each individual simulation object, while still providing parallelism and
synchronization transparency.

In the context of the High-Level-Architecture (HLA), proposals for supporting shared-
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state can be found in [7, 37]. They are again targeted at distributed environments, since they
are based on a middleware component which relies on a timestamp-ordering approach for
implementing a request/reply protocol. Additionally, these approaches are targeted at the
conservative synchronization protocol, where there is no need to detect and handle causality
violations, while we target optimistic synchronization.

The work in [16] proposes a framework targeted at multi-core machines and based on
Time Warp, where so called Extended Logical Processes (Ex-LP), defined as a collection of
LPs, have public attributes that are associated with variables which can be accessed by LPs
in other Ex-LPs. The work proposes to handle the accesses to shared attributes by relying
on a specifically targeted Transactional Memory (TM) implementation, where events are
mapped to transactions and the actual implementation of the TM is based on [34]. One
core difference between our proposal and the one in [16] is that the latter requires a-priori
knowledge of the attributes to be shared, which need to be a-priori mapped to TM man-
aged memory locations. This also requires explicit annotations within the application code.
Rather, our proposal allows for sharing any memory area within the heap, without the need
for a-priori knowledge of whether some sharing on a specific area can occur. This increases
the level of transparency. In fact, the programmer is allowed to let any simulation object
that takes control touch any valid memory location within the global simulation state with-
out the need for any particular care. Overall, we “transactify” the access to memory chunks
across different concurrent objects without the need for marking data portions subject to
transactional management by the programmer.

6. Conclusions

We have presented a new approach to PDES based on the introduction of cross-state
events. These events can access the state of multiple concurrent simulation objects, thus
being particularly useful in contexts where the PDES application is based on sharing infor-
mation across the objects along the model execution. In the traditional PDES paradigm,
only entailing disjoint accesses to the simulation object states, such a sharing would need
to be supported via the exchange of events with proper payloads. This not only hampers
performance, as we have shown in the experimental assessment of our new proposal, but
rather can also impact the application programming complexity—this is due to the need for
coding the calls to some event-scheduling API and the packing/unnpacking of event pay-
loads. On the contrary, we offer a runtime support for cross-state events, which also enables
speculative event processing, such that the programmer does not need to use any specific
API or programming rule in order to implement cross-state events—namely, to directly share
information across concurrent simulation objects—in his application. He can simply code
the application modules letting them perform in-place accesses (e.g. pointer-based accesses)
to whatever simulation object state. This is a fully new solution compared to any literature
approach devoted to the study of data/information sharing in PDES.

Overall, our protocol for runtime handling of cross-state events, which we called ECS
(Event and Cross-State) synchronization, allows breaking the classical limit of PDES, where
any event processing handler can access memory limited to the local state of an individual
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simulation object. Rather, with ECS the application is allowed to touch (in either read or
write mode) any valid memory location currently representing any portion of the overall
simulation model state. This capability has been achieved thanks to the design and im-
plementation of an innovative memory management architecture, which creates per-thread
views of memory protection and tracks memory accesses towards specific simulation object
states, for transparent handling by ECS, in an efficient manner. Our proposal targets PDES
platforms to be run of top of shared memory multi-core machines, which nowadays repre-
sent mainstream (off-the-shelf) architectures. We again emphasize that cross-state events
are transparently handled at runtime in our architecture, which jointly enables concurrency
and speculative processing of events across the simulation objects as in classical speculative
PDES.
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Appendix A. Additional Memory Management Details

Let us discuss two aspects related to the actual memory allocation support for the ap-
plication code and to safety of dual-mode execution (platform vs simulation-object) in the
presence of third party libraries. As for the first aspect, we integrated the memory man-
agement architecture with the DyMeLoR open source allocator [25, 27], explicitly targeting
memory allocation needs in speculative PDES platforms. It intercepts dynamic memory
calls by the simulation object (e.g. malloc calls) and handles them by managing (and deliv-
ering to the simulation object) memory chunks located into a pre-reserved memory segment.
DyMeLoR also keeps bitmaps to determine the currently in use and dirty chunks, which al-
lows to take (incremental) snapshots and restoring past states of the simulation object in
case of rollbacks within the speculative processing scheme (while allowing dynamic memory
to be used by the object). Integration of DyMeLoR with the currently presented architecture
has been straightforward given that, rather than relying on actual malloc implementations
for pre-reserving the segment destined to allocate the chunks for a given simulation object,
in the integrated architecture we let DyMeLoR rely on the stock allocator. Hence, the vir-
tual memory segment managed by DyMeLoR corresponds to the stock of virtual memory
pages supported in the presented architecture. We note that identifying dirty chunks in
DyMeLoR relies on compile/link time instrumentation of memory write instructions within
the application level code. The outcoming memory access-tracking scheme is completely
different from the support we are offering for cross-state events tracking, which is able to
intercept read access (not only write access) to whichever application destined memory area
without the need for instrumenting all the memory read instructions.

As for the second aspect raised above, DyMeLoR is shipped with wrappers for ANSI/
ISO-C stateless libraries, so that any memory allocation by these libraries (such as strdup)
is still handled by DyMeLoR according to the above depicted scheme. Also, the third-party
library interfaces are redirected to an actual logic which is statically linked to the application
code, hence not requiring intervention by the dynamic linker. This automatically avoids page
table updates while running in simulation-object mode which would otherwise be caused on
sibling page tables by memory mapping actions by the dynamic linker (in case the shared
libraries were invoked by the application code while running in simulation-object mode).

In our overall architecture we also offer re-implemented versions of core stateful libraries,
such as strtok, by mapping their global variables onto specific stocks. This allows treating
the state of the stateful library in a similar manner with respect to the state of a generic
(although passive) simulation object. Hence, according to the ECS synchronization scheme,
the state of the library will be accessed and manipulated in a causal-consistent manner within
speculative execution (and the associated rollback scheme), depending on what events will
give rise to cross-state access involving the “library object”7.

7Library functions that can directly interact with non-rollbackable services of the operating system kernel,
such as printf, need ad-hoc management approaches similar to the one proposed in, e.g., [14]. These
approaches can be anyhow integrated with our software architecture given that they are based on orthogonal
speculation and recoverability techniques (service interception and delay-until-commit policies for actual
finalization of the service).
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Appendix B. Ensuring Progress within ECS

Care must be taken to avoid deadlocks, livelocks, and the domino-effect in the rollback
scheme involving rendez-vous events. Let us first consider the deadlock/livelock issue. A
deadlock may arise in case of rendez-vous events cyclically involving a set of simulation
objects, where the rendez-vous associated with the minimal timestamp along the cycle leads
the simulation object raising this rendez-vous to wait for the rollback of a different object
that is, in its turn, in the block state due to a different rendez-vous it issued, which still
needs to be completed. An example situation of this type is shown in Figure B.12, where
object x issues at time t1 a rendez-vous towards object z, which is waiting for object y to
reach time t3 for a rendez-vous between z and y. On the other hand, object y is waiting for
x to reach time t2 for a rendez-vous with it.

To avoid deadlock scenarios, we can simply adopt the rule that, in case a rollback needs
to be executed by a simulation object x which is currently blocked due to a rendez-vous it
generated while processing an event ex, this object is simply resumed from the block state
by also squashing the finalization of the rendez-vous (this will lead to manage the rollback
of the rendez-vous as explained above, e.g., by issuing the anti-event for the already sent
out rendez-vous event). In other words, with our solution a rendez-vous event e with a
timestamp lower than that of another rendez-vous event e′ preëmpts the access to the state
of the target simulation object with respect to e′. By the deadlock theory, no deadlock is
possible when using preëmption.

We note that resuming from a block state implies that the current stack seen by the
object also needs to be refilled with correct information (since, upon resuming, its context
will no more be the processing context for the rendez-vous generating event). We note
that this is a problem similar to the one of restoring the correct stack of the object upon
resuming the processing of a rendez-vous generating event that lead it into the block state (so
that the worker thread currently executing this object passes control to a different object,
which needs to operate on a proper stack image). Details on how we handled this issue
in our implementation, where the cross-state events tracking architecture and ECS have
been integrated into the ROOT-Sim open source optimistic simulation platform, have been
discussed in Appendix C.

We also note that annihilating the rendez-vous event via the corresponding anti-event
(as discussed in Section 3.3.2) is safe even in case the destination object is currently blocked
waiting for the finalization of the rendez-vous. In fact, it can be simply resumed from the
block state (again with proper stack image manipulation) and can be rolled back, thus
possibly altering its state image safely given that the image does no more need to be locked
for the access by a different object in a rendez-vous.

We note however that unblocking the object generating a rendez-vous so as to prevent
deadlock in case a rollback is required may, in its turn lead to livelock. Specifically, live-
lock may in principle arise in case of simultaneous events materializing circular cross-state
dependencies across multiple simulation objects. Each object x along the circle, executing
an event ex at simulation time ts(ex), is hit by another object due to a cross-state memory
faulting access at the same simulation time, which may lead to request the rollback of the
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Figure B.12: Example scenario with deadlock originated by a rendez-vous generating event at time t1
processed by simulation object x.

events generating the rendez-vous circularly. This is known to possibly lead the rollback
circle to reappear indefinitely [38]. To overcome this problem, we need a priority manage-
ment scheme for simultaneous events, that needs to be reflected also on the management of
rendez-vous events. Particularly, if we have two events ex and ey such that ts(ex) = ts(ey),
and we have a priority scheme telling that ex → ey (namely, ey is identified as causally
dependent on ex), then we need to enforce that any rendez-vous event ervy generated by ex is
also causally related to ey according to ervy → ey. This way, the rendez-vous occurrences that
are caused by events having the same timestmap are anyway sequentialized according to the
priority scheme. We note however, that the guarantee of progress in (speculative) PDES
systems in the presence of simultaneous events is a more general problem, with respect to
what we might experience in ECS, and has been already extensively studied in literature
[39]. Hence different literature solutions for tie-breaking simultaneous events (see, e.g., [40])
can be exploited for integration with ECS according to the scheme suggested above.

The final issue to cope with is the domino-effect in the rollback scheme, which as hinted
is not an issue at all for the case of disjoint accesses to the simulation object states—
as in traditional Time Warp. We consider the classical case where rolling back the state
image of a simulation object is achieved via checkpointing—state saving— which is a widely
diffused and studied scheme. In more detail, by the ample literature on log/restore in
optimistic PDES systems (see, e.g., [9, 10, 41]), we know that sparse state saving, which
avoids logging the simulation object state after the processing of each event, allows for
optimizing the performance tradeoff between logging cost and restore cost. However, state
restore at time t requires the simulation object to be rolled back to the latest state log with
time less than or equal to t, and then to fictitiously reprocess intermediate events up to
t in a silent mode (namely with no interactions with other objects), which is also known
to as coasting-forward. In ECS this is no longer possible since a coasting-forward event
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Figure B.13: Example scenario with domino-effect due to a rollback originated on simulation object x.

might be a rendez-vous generating event. Hence, in order for this to be re-processed, the
simulation object originally hit by the rendez-vous also needs to rollback at the time of the
rendez-vous, so as to provide its state snapshot for correct access by the object performing
coasting-forward. It is easy to show that this may lead the originally rolling-back object to
rollback further back along simulation time, according to the domino-effect. An example is
shown in Figure B.13, where in order to execute the coasting-forward involving event ex at
object x, we need to reconstruct the snapshot of object y at time ts(ex). But this leads to
the need for processing ey in coasting forward, which in turn leads x to restore its state to a
time less than ts(ey). To avoid the need for executing coasting-forwards leading to rollback
interactions with other objects (thus avoiding the domino-effect), our approach is based on
complementing the selected sparse state saving algorithm by forcing the log of the state of a
simulation object right after the processing of a rendez-vous generating event. This will lead
to the scenario where no rendez-vous generating event will ever be included in the sequence
of events between two subsequent logs of the same simulation objects. Hence no rendez-vous
generating event will need to be re-processed in any coasting-forward phase. On the other
hand, a rendez-vous generated event also needs to be excluded by any coasting-forward,
since for these events the rendez-vous source object may have performed updates into the
state of the target object. To avoid a rendez-vous generated event to be included in any
coasting-forward phase, we can again force a state log of the involved object right after the
event is processed. These forced logs also allow coping with non-determinism of cross-state
events given that no support is required for allowing them to be re-playable.

Appendix C. Management of Contexts

We discuss here the technical details related to the interruption of the execution of a cross-
state event, once it is detected by our state management system. In the most general case,
an execution context is the program state at a certain point of the lifetime of the application.
This state is composed of the CPU image and program variables. The former entails all CPU
registers, which allow to determine what is the next instruction to be executed (the program
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counter), and which keep values commonly computed by the currently executed function,
and all control registers which allow the hardware architecture and the operating system
to correctly interact with the available hardware resources (e.g., MMU-related registers to
correctly drive a virtual-to-physical address translation). The latter entails all the variables
kept in the data sections, in the heap, and in the stack.

In our cross-state event architecture, multiple contexts should be available at the same
time within the same multi-threaded application. Moreover, the multi-threaded application
should be able to switch from one execution context to another at any point—namely,
either when a cross-state event is detected, or when a remote simulation object is correctly
realigned to a certain simulation time due to the occurrence of a cross-state event. This
means that there are no “safe points” in which one context could be saved, rather the context
switch might happen after the execution of any machine instruction, since memory accesses
might happen everywhere, also due to some non-determinism in the application’s code.
The contexts we need to manage cannot therefore be associated with multiple concurrent
operating system’s threads. Rather, they are logically bound to a single operating system’s
thread, and we rely on multiple User-Level Threads (ULTs), each one associated with a
simulation object, which can be activated by any worker thread—namely, at any time a
worker thread can “jump” to the execution flow of any ULT. Given that simulation objects’
program variables stored in the heap are transparently managed by the multi-threaded
nature of the simulation engine and state management facilities (see, e.g., [25]), we rely on
the following code snippet to setup a new execution context for a certain simulation object.
This is freely inspired by the work in [42], although it has been carefully optimized for
symmetric multithread PDES systems.

void context_create(LP_context_t *context, void (*entry_point)(void *), void *args, void *stack, size_t stack_size) {

struct sigaction sa;

struct sigaltstack ss;

struct sigaltstack oss;

bzero((void *)&sa, sizeof(struct sigaction));

sa.sa_handler = context_create_trampoline;

sa.sa_flags = SA_ONSTACK;

sigfillset(&sa.sa_mask);

sigdelset(&sa.sa_mask, SIGUSR1);

sigaction(SIGUSR1, &sa, NULL);

ss.ss_sp = stack;

ss.ss_size = stack_size;

ss.ss_flags = 0;

sigaltstack(&ss, &oss);

context_creat = context;

context_creat_func = entry_point;

context_creat_arg = args;

context_called = false;

raise(SIGUSR1);

sigaltstack(&oss, NULL);

context_switch_create(&context_caller, context);

}

The context create function stores the information related to this new execution flow
(namely, the CPU context and the stack’s location in memory) within the LP context t
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structure. To setup this new context, we rely on POSIX signals raised by the worker thread
which is in charge of setting up the context for a certain simulation object. To allow the new
context to live in a different stack, we rely on the POSIX-compliant sigaltstack() API,
which asks the underlying operating system to run a signal handler within a separate stack.
This stack can be allocated using any memory allocator, and is passed to the context create

function as an argument. Then, the context create function stores a function pointer
(entry point) and a pointer to a vector of arguments (args) both passed as arguments to
the context create function into two TLS variables. This allows to concurrently run the
creation of multiple ULTs by multiple worker threads, which allows to reduce the overhead
to startup the simulation.

The worker thread then issues a call to the Posix raise() API, to kill itself with the
SIGUSR1 signal. Given that the context create function earlier posted the context -

create trampoline() function as the signal handler, control is passed to it. The source of
the context create trampoline function is as follows:

static void context_create_trampoline(int sig) {

(void)sig;

if(context_save(context_creat) == 0)

return;

context_create_boot();

}

The behavior of this function is quite straightforward if we correctly catch what the
context save() call does. This function (which we shall discuss later) is similar in spirit
to the traditional Posix setjmp() API. In particular, the purpose of this function is to
store the whole CPU state of the running thread. We recall that this signal handler is run
using a different stack (the one passed via the stack parameter to context create), so
the image saved by context save actually stores in rsp a pointer to the top of the new
stack. Similarly to setjmp, the context save function returns 0 when called directly, while
it returns a user-specified value whenever the context is later restored. Since at this time
we are directly calling context save, the return value is 0 and the return statement is
executed so that control returns to context create. We note that this return statement
completes the execution of the manually-activated signal handler, so the operating system
returns the control to context create in a state which is no longer related to the signal
which was raised.

At this point, context create relies again on sigaltstack to restore the previous set-
ting (namely, new signals are not run in the previously-specified different stack) and it issues
a call to context switch create, which relies on special versions of the Posix-compliant
setjmp()/longjmp() API we have developed, and is implemented as the following macro:

#define context_switch_create(context_old, context_new) \

if(set_jmp(context_old) == 0) \

long_jmp(context_new, 1)

Basically, the purpose of this macro is to store the current execution context in the
context old variable, and to restore the context stored in context new. This can be done
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Figure C.14: Steps taken to setup a ULT— 1©: a signal is raised towards a signal handler using a separate
stack, 2©: the CPU context is saved, and control is returned to complete the signal handler, 3©: context
is changed explicitly, returning to the signal handler although in regular execution mode, 4©: a function is
called to store a local copy of the ULT entry point and arguments, 5©: context is switched back again, to
restore the original execution flow, 6©: eventually the context is switched again, to activate the ULT, 7©:
ULT’s entry point is called.

safely by checking again for the return value 0 from set jmp, which is returned exactly when
context switch create is referenced for the first time (i.e., we don’t restore context -

new when we return from context new due to an additional context switch). Therefore,
once context switch create is referenced by context create, control is returned again to
context create trampoline. At this time, since the second argument of long jmp in con-

text switch create is 1, the check for 0 is not satisfied, and the execution flow continues.
We emphasize that this invocation to long jmp already changes the stack, bringing back
the stack which was setup by the operating system due to the sigaltstack call earlier in
context create. Nevertheless, the execution is not related to a signal handler now.

Next a call to context create boot() is issued. This implements the last step in the
construction of the ULT context upon starting up the simulation, and is declared as a
noreturn function. This is due to the fact that the final goal of ULTs in our system is to
run simulation objects, which have a lifetime as long as the whole simulation, and therefore
they are realized using a private main loop which never ends—if a simulation object has no
scheduled events, then its context is simply not reactivated by the worker thread in charge
of its execution. The implementation of context create boot is as follows:

static void context_create_boot(void) __attribute__ ((noreturn));

static void context_create_boot(void) {

void (*context_start_func)(void *);

void *context_start_arg;

context_start_func = context_creat_func;

context_start_arg = context_creat_arg;

// Go back where the thread was created, being ready to restart from here when the ULT is scheduled!
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context_switch(context_creat, &context_caller);

// Magically start the thread

context_start_func(context_start_arg);

// you should never reach this!

abort();

}

By relying on it, the worker thread makes a copy of the ULT entry point and its arguments
(which were temporarily stored in a TLS variable) in a couple of local variables. These local
variables are actually persistent to further context changes exactly because each ULT has its
own stack. At this point, everything is ready to activate the ULT, but this is postponed to
the time instant the simulation object has to be activated for event processing—this will be
done by calling the local function pointer context start func(). Control is now returned to
the worker thread by issuing a call to context switch, which restores the previous context,
namely the one at the end of context create. The latter function then returns, and the
normal execution flow is restarted. Nevertheless, the argument context of context create

can now be used to reactivate the ULT (with a separate stack) whenever an event bound to
the simulation object should be CPU-dispatched. Figure C.14 summarizes the steps which
we have just described.

We shall now discuss how it is possible to explicitly switch among two different execution
contexts, in our architecture. The main problem we had to face is related to context-
switch management upon any possible memory-access assembly instruction generated by
the compiler from the application code. To understand this issue, we must consider the fact
that computing architectures rely on calling conventions to change the control flow between
functions. Calling conventions usually divide general purpose registers between caller-save
and callee-save registers. The former category encloses all the registers which, upon a
function call, are not guaranteed to be saved by the called function—after the function’s
return point, their content might be clobbered. On the other hand, callee-save registers are
those which are guaranteed to be saved by the called function before using them, so that
the previous content can be restored before the function returns. It is the responsibility
of compilers to coherently handle calling conventions, allowing as well for code reuse (e.g.,
in the context of libraries) on a same architecture. On x86-64, which has been used as a
reference architecture for the presentation of our proposal, calling conventions are dictated
by the System V AMD64 ABI. In this calling convention, callee-save registers are rbp, rbx,
and r12–r15, any other general purpose register is caller-save.

Since compilers are assumed to be consistent with calling conventions, traditional imple-
mentations of setjmp/longjmp POSIX API functions leverage them to reduce their internal
execution time. In particular, a setjmp is regarded by the compiler as a function call,
therefore any required caller-save register is pushed before issuing that call. This allows
setjmp to store the execution context keeping only callee-save registers rbp, rbx, r12–r15,
along with the program counter rip and the status register rflags. No other register must
be copied, since when control is returned after the call to setjmp, any required caller-save
register is restored by the code generated by the compiler. Once again, we emphasize that
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this (correct) behaviour is triggered by the fact that the compiler sees a function call, and
enforces calling conventions.

In our scenario, such a function call is missing. In particular, we can change the flow
of the program at any point, whenever a memory-access instruction targets the state of a
remote simulation object. Therefore, the compiler has no clue about what registers could
be clobbered, and it never emits instructions to store their value. Anyway, they might be
required to be saved at any point in the program. Therefore, traditional setjmp/longjmp
API simply do not work in our approach.

We therefore rely on ad-hoc versions of these functions, which are calling convention-
agnostic, meaning that they save the whole CPU state. Although this is a bit more costly,
it is mandatory to enforce correctness in the execution. As an additional note, x86 CPUs
offer a plethora of additional registers, e.g. those related to floating-point instructions. By
the definition of the calling conventions, they are all caller-save, so they must be explicitly
saved/restored by our context switch facilities. We report in the following code snippet
the source for the set jmp() function, which is at the heart of the implementation of the
set jmp which we have previously shown. It is directly implemented in assembly, due to
efficiency reasons and because it explicitly breaks standard x86-64 calling conventions.

To understand the organization of this function, we note that its C-like signature is
long long set jmp(exec context t *env), thus it takes as its only argument a pointer
to an exec context t structure, which keeps enough space to store the whole CPU state.
According to System V AMD64 ABI, the first argument of a function (in case it is a pointer)
is passed via the rdi register—when we enter the set jmp function, thus, we have already
lost the possibility to save its value, so this should be handled in a different way.

.align 4

.globl _set_jmp

.type _set_jmp, @function

_set_jmp:

pushq %rax # save rax, it will point to the context

pushq %r11 # save r11, it will be used as the source

lahf # Save status flags on stack

seto %al

pushq %rax

# Save the context

movq %rdi, %rax # rax points to the context

movq 16(%rsp), %r11 # r11 keeps the ’old’ rax

movq %r11, (%rax) # rax is the first field of the context

movq %rdx, 8(%rax)

movq %rcx, 16(%rax)

movq %rbx, 24(%rax)

movq %rsp, 32(%rax)

addq $16, 32(%rax) # saved rsp must point one quadword above the old return address

movq %rbp, 40(%rax)

movq %rsi, 48(%rax)

movq 32(%rsp), %r11 # old ’rdi’ was pushed by the surrounding macro

movq %r11, 56(%rax)

movq %r8, 64(%rax)

movq %r9, 72(%rax)

movq %r10, 80(%rax)

movq 8(%rsp), %r11 # r11 keeps the ’old’ r11

movq %r11, 88(%rax) # r11 is the 12-th field of the context
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movq %r12, 96(%rax)

movq %r13, 104(%rax)

movq %r14, 112(%rax)

movq %r15, 120(%rax)

movq (%rsp), %rdx # (%rsp) is flags

movq %rdx, 136(%rax)

movq 24(%rsp), %r11 # Save the original return address

movq %r11, 128(%rax)

# Now save other registers. fxsave wants memory aligned to 16 byte.

# The context structure is aligned to 16 bytes. We have 18 8-byte

# registers, so the next address is correctly aligned.

fxsave 144(%rax)

addq $24, %rsp

xorq %rax, %rax # return 0 because the context is being created

ret

The idea behind our construction of this context-save facility is to move the content of
all CPU registers in a memory buffer. To this end, we must use some register as a “pointer”.
This register is rax, so in order to preserve its value we first push its content to the stack.
We then use rax to save the status register. We rely on three fast instructions rather than on
the x86 pushf one because pushf has the drawback to flush the whole CPU pipeline, which
is a cost which we do not want to pay at all. The trick relies in that lahf stores everything
that is needed to restore ALU-related bits, except the signed overflow flag, which is anyhow
saved in the low part of rax using the seto instruction. We can then save all registers to
the buffer: this is done via a couple of mov instructions (we recall that the pointer to the
buffer was passed via %rdi). Some register’s content must be reconstructed, such as the
stack pointer %rsp, since we executed within this function a couple of push instructions.
Nevertheless, since we know the number of pushes, we can determine the offset to apply to
the current value of %rsp. Similarly, we clobbered the %rax register to save the content of
the status flags, but we pushed it beforehand, so we can retrieve it from the stack. Similarly,
since we issued a call to set jmp, we can retrieve the original program counter’s value from
the stack.

To save the remainder of the CPU state, we must save all other caller-save registers
which are used to support all floating-point instructions. Manually saving them could be
difficult and performance-unfair, as the number of these registers is large, and they cannot
be accessed using traditional mov instructions. Therefore, we rely on the fxsave instruction,
which is offered by x86 architectures to save very quickly all registers used for floating-point
and vectorized instructions.

To complete the execution of our context-save procedure, we return 0, to be compliant
with the original semantic of setjmp—by the calling convention the return value is always
stored into rax. Nevertheless, we still have to discuss how we can save the original value of
rdi, which is clobbered by the function call due to calling conventions. In fact, context -

switch does not call set jmp directly, rather it relies on the set jmp macro which is defined
as follows:

#define set_jmp(env) ({\

int _set_ret;\
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__asm__ __volatile__ ("pushq %rdi"); \

_set_ret = _set_jmp(env); \

__asm__ __volatile__ ("add $8, %rsp"); \

_set_ret;\

})

This macro evaluates the return value of set jmp, making it compliant in its turn with
the original setjmp, but before issuing the call to set jmp, it pushes the value of rdi on
the stack (and similarly removes it from the stack after the call returns). In fact, looking at
the code of set jmp, we explicitly retrieve the original value of rdi from the stack, since it
was pushed by the surrounding macro.

To discuss how we can restore a previously-saved context, we first emphasize that the
actual program counter’s value that we have saved in the CPU context is the address of
the first instruction after the call to set jmp, namely the instruction that stores set -

jmp’s return value into set ret in the macro. Therefore, to discriminate whether we are
returning from a set jmp to a longjmp (or equivalent) we can play with this return value.
Nevertheless, care must be taken to restore as well the actual original value of rax, which
is used to store the return value. First, we introduce the C-like signature of our long jmp

(which is presented in the next code snippet) as attribute (( noreturn )) void -

long jmp(exec context t *env, long long val), where val allows to specify the return
value that we want to use as the return value of our “fake” invocation of set jmp upon a
context restore. This value is stored into the rsi register, as per the calling conventions.

.align 4

.globl _long_jmp

.type _long_jmp, @function

_long_jmp:

movq %rdi, %rax # rax points to the context

movq 128(%rax), %r10 # This is the old return address

movq 32(%rax), %r11 # r11 is the old rsp

movq %r10, 8(%r11) # restore the old return address

movq %rsi, (%r11) # Put on the old stack the desired return value

movq 8(%rax), %rdx # rdx is the second field of the context

movq 16(%rax), %rcx

movq 24(%rax), %rbx

movq 32(%rax), %rsp

movq 40(%rax), %rbp

movq 48(%rax), %rsi

movq 64(%rax), %r8

movq 72(%rax), %r9

movq 80(%rax), %r10 # Finish to restore GP registers

movq 88(%rax), %r11

movq 96(%rax), %r12

movq 104(%rax), %r13

movq 112(%rax), %r14

# Restore FLAGS

movq 136(%rax), %rax # this is flags

addb $0x7f, %al # Overflows if OF was set

sahf

# Restore remaining rdi and r15

movq %rdi, %rax # rax now points again to context
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movq 56(%rax), %rdi

movq 120(%rax), %r15

fxrstor 144(%rax) # Restore other registers

movq 32(%rax), %rsp # (possibly) change stack

popq %rax # Set the desired return value

ret # do the long jump

In our implementation, we play a bit with the “other” stack, namely the stack of the
destination ULT. This can be done since we can extract from the stored execution context
the value of rsp before having restored it in the current CPU state. In our code, register
r11 is used to this end. In this way, while executing on the current stack, we can read/write
values to the destination stack. In fact, we use this facility to make a copy of val (stored in
the rsi register) on the destination stack. This frees the rsi register, which can be restored
along with all other registers. To move the return value from the stack to rax, we just
issue a pop rax instruction just before returning from long jmp. To restore rflags, we
use a triplet of instructions in a way similar to what we did in the context-save procedure,
considering that addb $0x7f, %al generates an overflow only if the overflow flag was set
during the context-save procedure. After this point, we must ensure that no arithmetic/
logical instructions are executed. To restore floating-point registers, we use the companion
fxrestor instruction.

To actually perform the context switch, we use a trick similar to what we did to restore
rax. In particular, we read from the saved context the old program counter’s value, and we
push that on the destination stack. Therefore, once the stack is changed, on the top of the
stack we find exactly the address of the instruction next to the call to the corresponding
set jmp. A ret instruction will “jump” to the program counter’s value of the destination

CPU context. In order to have the long jmp restore the actual original value of rax, it can
be called as long jmp(context new, (context new)->rax).
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