Density Estimation of Multivariate Samples using Wasserstein
Distance

ABSTRACT

Density estimation is a central topic in statistics and a fundamental task of ma-
chine learning. In this paper, we present an algorithm for approximating mul-
tivariate empirical densities with a piecewise constant distribution defined on a
hyperrectangular-shaped partition of the domain. The piecewise constant distri-
bution is constructed through a hierarchical bisection scheme, such that locally,
the sample cannot be statistically distinguished from a uniform distribution. The
Wiasserstein distance has been used to measure the uniformity of the sample data
points lying in each partition element. Since the resulting density estimator requires
significantly less memory to be stored, it can be used in a situation where the in-
formation contained in a multivariate sample needs to be preserved, transferred or
analysed.
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1. Introduction

Estimating the probability density function generating a data sample is a long-
established concept and a fundamental topic in statistics, as it is a key issue in several
problems of a broad range of disciplines such as physics, engineering, biology or eco-
nomics. Nowadays, more than ever before, big data applications and simulation-driven
approaches increasingly require scientists and researchers to analyse datasets with mil-
lions of entries. It is thus of primary importance to have procedures able to efficiently
capture information contained in large samples. This paper introduces a nonparametric
algorithm for estimating the empirical density with a piecewise constant distribution
defined on a hyperrectangular-shaped partition of the domain. The algorithm starts
with a trivial partition, a single box containing all the observations, and recursively
grows it with bisections until the sample space is divided into regions where a stopping
criterion is met. Our procedure design can be classified into adaptive partitioning den-
sity estimation methods [I] and framed within Density Estimation Trees, an approach
formalized by [2] that is the analogue of Classification and Regression Trees [3] for
density estimation.

Piecewise constant distributions are a flexible and concise class of distributions
useful to construct summary structures for large data sets. They can approximate dis-
tributions with any shape, since the number of components scales with the complexity
of the approximated distribution, and at the same time they can be represented or
compressed very efficiently.

Our algorithm aims at generating a piecewise constant distribution such that data
points inside hyperrectangles are sufficiently uniformly scattered and any further par-
titioning of the domain does not provide additional information about the underlying



density perspective. The uniformity is judged via a Wasserstein distance based hy-
pothesis testing and a given hyperrectangle is not bisected when the hypothesis of
uniformity is not rejected with a given significance level. The underlying reasoning of
our procedure is comparable to [4] and [5].

Figure [I] outlines the process of the algorithm, which ceases to bisect the domain
when the stopping rule is met in all hyperrectangles. To improve the algorithm imple-
mentation, the uniformity of the sample points within each hyperrectangle is initially
tested only on marginals, and once this condition is satisfied, also at a joint level (see
details below).
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Figure 1. Sketch of algorithm phases: the domain is recursively partitioned until it is divided into regions
where the stopping condition is met.

The Wasserstein distance, which arises from the idea of optimal transportation, has
long been established as an important tool in probability theory and more recently has
spread to both statistical theory and applications. Indeed, the Wasserstein distance
is a powerful framework to compare two probability distributions and exhibits the
distinctive ability to capture the geometry of the underlying space of the data, i.e.
it incorporates a ground distance in comparison to other statistical distances, such
as Kullback-Leibler, Hellinger, x? or Total Variation, that, on the contrary, neglect
how close two outcomes might be on the sample space. Moreover, the Wasserstein
metric yields a map that specifies how to transform one probability distribution into
the other. Last but not least, it can be applied to distributions with non-overlapping
supports and compare two distributions even when one is discrete and the other is
continuous.

However, the uptake of this probability distance as a statistical tool exhibits two
major challenges. First, its distributional limits on spaces other than the real line are
not fully known and fragmentary. Second, almost any application of the Wasserstein
distance involves extensive computational effort. In this work we address both of these
matters. Indeed, as mentioned above, the Wasserstein distance has been used as test
statistic for verifying the uniformity hypothesis in a given hyperrectangle, which may
contain a large multivariate sample. In the literature, the so-called Lo-Wassertein
distance (the square root of the Wasserstein distance of order 2) has been adopted
by [0] to introduce a goodness-of-fit hypothesis test between a fixed distribution and
a location-scale family of probability distributions. To the knowledge of the authors
other publications involving the topics of Wasserstein distance and hypothesis tests
are [7] and [8]. The former introduced the Wasserstein distance in nonparametric two-



sample or homogeneity testing, the latter in uniformity and distributional property
testing.

Piecewise constant distributions can be also seen as histograms with adaptive band-
widths for each dimension. Hence, our methodology can be considered as an estimation
technique of multivariate histograms with data-dependent partitions [9]. Other pub-
lications involving histograms and Wasserstein distance are [10] and [I1]. The former
describes a strategy for constructing an optimal piecewise linear approximation of
a univariate empirical distribution with a predetermined number of segments, using
the Wasserstein distance of order 2 as goodness-of-fit measure. The latter presents
a method to compute the Wasserstein distance of order 1 between a pair of two-
dimensional histograms. Compared with these analyses, our algorithm can handle
datasets with any dimension, the number of buckets is not fixed a priori, and the
Wasserstein distance is a central element in the adaptive procedure for building the
histogram.

This work, which has been inspired by [I2] and represents an extension of their
results to the multivariate setting, is organized as follows. In Section [2] we introduce
piecewise constant distributions, the compatibility condition and other basic concepts
which are essential to the work. Section [3| after defining the Wasserstein distance,
presents the admissibility criteria, which determine the stopping rule of our parti-
tioning algorithm, and details the characteristics of the Wasserstein distance based
hypothesis test. In Section [d] the algorithm scheme for building a piecewise constant
estimator is defined. Finally, in Section [5|illustrations and results of the algorithm run
are presented; conclusion follows in Section [6]

2. Piecewise constant distributions

In this section, we define the class of random variables with a piecewise constant
(PWCQC) distribution that is used as an approximation to the empirical distribution
function of a given sample.

Definition 2.1. Consider a sample (X1, X, ...,X,,) of real random vectors X : Q —
R?, with common distribution function F(t) = P(X; < t), where i = 1,...,n. The
empirical cumulative distribution function F': R? — [0,1] is defined as:

. 1 — 1 —
Ft) = - Z;]l {(X; <t} = nz;]l {(Xi1 <ty,e Xig < ta}, (1)
1= 1=

where 1 { } denotes the indicator function and n € N is the sample size.

Definition 2.2. A hyperrectangle Q, C R? is the Cartesian product of d intervals:

Qs = 1lg1 X Is,?v ceey XIs,dv (2)

where I ; = (asj,bs ;] and —oco < as; < bsj < 400, for j =1, ...,d, with the conven-
tion that I, ; = {as;} if as; = bs ;.

Definition 2.3. Given a set of S € N disjoint hyperrectangles Q@ = {Qs : s =1, ..., 5}
and probability weights p = (ps : s = 1,...,5) € Rgo, such that Zle ps = 1, a
random vector Y :  — R? has a PWC distribution, Y ~ PWC(p, Q), if its cumulative



distribution function G : R% — [0, 1] can be written as
S d
Git)=P(Y <t)=> p. [[ H1, &), (3)

s=1 j=1

where the function Hy : R — [0, 1] is defined as follows:

0 ift<a,
Hit)=q 1~ Hbst (4)
[ else.

Remark 2.4. Two special cases can be distinguished.

e Continuous case: In the case that a, ; # bs ; for all j, in each s, Y is an absolutely
continuous random vector and the probability density function g : R? — [0, c0)
can be expressed as

S
o) =S pt (1€ Q) 17 (5)
s=1

(Qs)’

where A\(Qs) = H?:l(bs,j — as,5) denotes the d-volume of Q.
e Discrete case: If as; = bs; for all j, in each s, the hyperrectangles are points,
and Y is a discrete random vector, whose probability mass function can be

represented by

ift=
0  otherwise.

In the situation where only some, but not all hyperrectangles Qs consist of points, Y

is a mixed random vector. When a,; = bs; for some s, the probability distribution

does not have a density function.

Example 2.5. Figure [2] shows the cumulative distribution function G of a PWC
distributed random vector for the continuous and the discrete cases.



Continuous case Discrete case

Figure 2. Cumulative distribution function of a two-dimensional PWC distributed random vector in the
continuous case (plot on the left) and in the discrete case (plot on the right).

Definition 2.6. A PWC distribution is said to be compatible with the empirical
distribution of (X1, Xo,...,X,), if the following conditions hold:

a) Exist s such that X; € Qq, for all 7,

Ns

b) ps————Z]l{X € Qs},for all s.
n

The above requirements represent the compatibility condition between Y ~ PWC(p, Q)
and X ~ F ie. for all s, P(X € Q5) =P(Y € Qy), since ps counts the elements of the
sample that lie in Q.

Setting all ps according to Definition makes the PWC distribution a d-
dimensional histogram [9].

Example 2.7. Figure l 3| outlines the compatibility condition in R? between Y ~
PWC(p, Q) and X ~ F, with n = 12. The former is a continuous random vector and
bluish shaded areas indicate rectangles Qs, s = 1,...,.S, where the density is positive;
the latter has discrete support and its realizations are denoted by blue dots. Plot a):
compatible. Plot b): not compatible, since there is i such that x; ¢ Qs for all s, in fact
two of the sample realizations lie within no hyperrectangle. Plot c): not compatible,

1 n
since for example py # — > 1 {x; € Q4} = 0; according to the compatibility condition,
n ;=1

1=
given that none of the sample realizations is in rectangle Q4, Y density should be equal
to 0 in there.
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Figure 3. Illustration of the compatibility condition in R? for a sample of n = 12 data points. In plot a)
the PWC distribution is compatible with the observed sample. Conversely, in plot b) and plot ¢) the PWC
distributions are not compatible.

Intuitively, a distribution is said to be PWC if it can be defined on a set of hyper-
rectangles, on which the probability is constant.

Remark 2.8. It can be noted that if T : Q@ — {1,2,...,5} and Us : Q — @, are
independent random variables, with P(T" = s) = p, and U, ~ Ug,, i.e. the (contin-
uous) uniform random vector on Qg, for s = 1,2,...,.S, then Y ~ PWC(p, Q) can be
considered as a mixture of uniform distributions:

S
Y =D 1{T =s}U,, (7)

where the mixing weights are (ps : s = 1,...,.5), above-mentioned. The representation
of Formula emphasizes that, conditioned on @), Y is a uniform random vector on
Qs, i.e. P(Y =9y|Y € Q) =P(U; = v).

This representation plays a major role in the design of our algorithm and points
out a useful property of the class of PWC distributions: its moments can be computed
analytically.

Lemma 2.9. Let Y ~ PWC(p, Q) and k > 0, then the kth raw moment E [Yk] is
expressed by:

E [Yﬂ - (E [Yﬂ L= 1,...,d>,

k+1
Ds Qg ; (8)

p k+1 bsjj — Qs,j

k+1
bs7] B

)

B[] =

where 7 =1, ...,d.

Proof. The result derives from the fact that Y; can be considered as a mixture of



uniform distributions with mixing weights (ps : s =1, ..., 5):

s S » phtl _ k1
E|Yf| =E Y 1{T = s} UL; | =E[E[U,IT]] = s Zsj "% g
J sz_; { s} [E J‘ 1] - k+1 bes—as; 9)

where Us ; ~ Uy, ;. In fact, the kth raw moment for a convex combination of distribu-
tions is the convex combination of the kth raw moments, provided that they exist, of
the component distributions. O

Lemma 2.10. From Lemma it can be noted that the expected value pj and the
variance of Y; boil down to:

S
a&. _|_b87A

Hy=) pa—to = (10)

s=1

and
+ 02+ ag b b ’
s, jbs 5] _i_aS’A
Var(Y;) =E[Y, Zps ’] >~ (ZPsW) - (11)
s=1

Lemma 2.11. Furthermore, the covartance between the ith and jth marginals, is equal
to:

S S S
(as,i + bs,i) (as,j + bs,j) (as,i + bs,i) (as,j + bs,j)
Cov(Y:,Y;) = ps i =D P Y pe
s=1 s=1 s=1
(12)
which shows that Y has a dependence structure, even though it is constructed from
independent components.

Proof. The result derives from the so-called law of total covariance:
Cou(Yi,Yj) = E[Cou(Y;, Yj|T)] + Cov (E[Y;|T], E [Y;|T])
[ Y3 T]E [Y;[T]] — E [E [Y;|T]) E [E [Y;|T]]
S S
as a4t bs )i (as,j + bs,j) (as,i + bs,i) (as,j + bs,j)
- z ! -3 pani e §, (g Hhey)
s=1 s=1
(13)

where the term E [Cov(Y;, Y;|T')] is equal to zero because the component distributions
have independent marginals. O

3. Wasserstein distance

We now introduce the Wasserstein distance, a function defined on a given metric
space that allows us to quantify the proximity between two probability distributions.
This distance function is the basis of the methodology that determines when a PWC
distribution is an admissible approximation of an empirical distribution (see below).



Definition 3.1. Given a metric space (Rd, ¢), with metric ¢, for any two probability
measures F, G on R?, the Wasserstein distance between F' and G is defined by:

WEG) = inf El(X.Y). (14)

The Wasserstein distance is thus the minimum expected distance among all pairs of
random variables X and Y whose fixed marginal distributions are F' and G respectively.
Minimizers are called optimal transport plans or optimal couplings. For the sake of
completeness we mention that Definition holds true for Polish metric spaces and
can be extended to the Wasserstein distance of order ¢ € [1,00). Here we focus on the
Wasserstein distance of order 1, given by Formula , and we restrict ourselves to

1/p
the cases where c is a f,-norm, i.e. c(z,y) = (Z;l:l(:nj - yj)p) , due to its natural

interpretation as the earth mover’s distance [13], and implementation simplifications.
An exhaustive dissertation on the topic, containing also some historical context, can
be found in [14].

Definition 3.2. It can be shown that Formula has the following dual expression:

e - sy o fom}, o

where ¥ denotes the set of all functions ¢ : R? — R, such that |1 (y) — ¥ (z)| < c(z,y).
Equations and are equivalent (see Remark 6.5. in [14]).

3.1. Admissibility criteria

Admissibility criteria specify the conditions required for a PWC distribution to be an
admissible approximation of F'. These rules are consistent with the essential assump-
tion of piecewise constant distributions that their distribution conditioned on each
hyperrectangle is a uniform, and arise from the fact that a uniform distribution on
a hyperrectangle has two peculiar attributes: it has uniform marginals and these are
mutually independent.

3.1.1. Marginal admissible approximation

Definition 3.3. Given a hyperrectangle Qs, let F; and F s,j denote, respectively,
the cumulative distribution function of X; in I ;, and the empirical cumulative dis-
tribution function of the sample projection on I, ;. We define the null hypothesis

H 7 Fe;=U; (16)

5,57

and the test statistic
W(Fs;,Ur.), (17)

which is the Wasserstein distance in Qs between the sample projection on the jth
dimension, i.e the jth marginal, and the uniform density on I ;.



The above hypothesis test is aimed at verifying, using a Wasserstein distance based
test statistic, that the jth margin of the sample contained in Q)5 is uniformly spread
over I ;.

Definition 3.4. We define Y ~ PWC(p,Q) to be a marginal admissible
approximation of F, if it is compatible and none of the null hypotheses

{HS SI g = 1,..,58,7=1,.., d} is rejected. This means that with a significance level
a € [0,1], for all s and j:

P (W(FyjUs,,) > wey | H;™) > a (18)

where w, ; denotes the observed value of the test statistic in I ;.

In other terms, Definition states that Y ~ PWC(p, Q) is a marginal admissible
approximation of F when F s,j cannot be distinguished in a statistically significant
manner from a uniform distribution on I ;, with a predefined significance level «, in
each and every hyperrectangle (), and dimension j.

When Y ~ PWC(p, Q) is a marginal admissible approximation of F , the first dis-
tinctive feature of uniform distributions is met: in each hyperrectangle, the margins
of the sample contained in it do not significantly differ from the uniform distribution.

We introduce the following hypothesis test in addition to the one above.

3.1.2. Admissible approximation
Definition 3.5. Given a hyperrectangle )5, consider the random vector [NJS Qs — C,
where C' = [0,1]%, as the following transformation of X in Qs:

U, = (Hy,,(X1), Hy, ,(X2), ..., H1, ,(X4)) - (19)

Furthermore, let 'y and F, denote, respectively, the cumulative distribution function
of U and the empirical cumulative distribution function of the transformed sample.
We define the null hypothesis

Hf: Fs = Ug, (20)
and the test statistic
W(Fsa UC)? (21)

which is the Wasserstein distance between the transformed sample and the uniform
density on set C.

The hypothesis test introduced by Definition is aimed at verifying, using a
Wasserstein distance based test statistic, that the transformed sample is uniformly
spread over C.

Definition 3.6. We define Y ~ PWC(p, Q) to be an admissible approzimation of
F, if it is a marginal admissible approximation, and none of the null hypotheses
{H§ :s=1,...,5} is rejected. This means that with a significance level o € [0, 1],



for all s:
P <W(FS, Uc) > ws | Hg) > a (22)

where w, denotes the observed value of the test statistic in ().

In other terms, Definition states that Y ~ PWC(p, Q) is an admissible approxi-
mation of F' when the transformed sample cannot be distinguished in a statistically
significant manner from a uniform distribution on C', with a predefined significance
level «, in each and every hyperrectangle.

According to Definition the marginal admissibility condition is required for a
piecewise constant distribution to be also an admissible approximation of F. Given this
fact, in each @, it stands to reason that sample margins are uniformly distributed on
I j, for all j, and consequently, by applying the transformation Hy, , they are uniform
on [0, 1]. Hence, the joint uniformity assumption can be tested against the transformed
sample, which lies in C' and retains the dependence structure of the original sample.

Intuitively, we want to detect distributions with uniform marginals at first, and
secondarily exclude, between these, those that have not a joint uniform distribution.
Evidently, not all distributions with uniform marginals have mutually independent
marginals, and not all distributions with mutually independent marginals have uniform
marginals.

Example 3.7. Figure 4| contrasts the marginal admissible and the admissible con-
ditions in R?. X realizations are denoted by blue dots and the bluish shaded square
indicates the support of Y ~ PWC(p, Q). Plot a) displays a sample uniformly spread
out over the square. Conversely, plots b) and c) depict samples whose margins are
close to uniforms, but joint distributions are not. In these cases, the PWC distribution
is only a marginal admissible approximation of the empirical distribution.

a) admissible approximation b) marginal admissible approximation c) marginal admissible approximation

X Y

Figure 4. Illustration of the admissibility conditions in R2. Plot a) represents an admissible PWC distribution,
whereas plots b) and ¢) show PWC distributions which are only marginal admissible.

Finally, it has to be noted that testing the marginal admissibility condition in a par-
ticular )5 involves a set of statistical inferences simultaneously, and hence the multiple
comparisons or multiple testing problem occurs, i.e. the more inferences are made, the
more likely erroneous inferences are to occur. Different procedures are available in
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statistics for adjusting p-values and controlling the so-called Family Wise Error Rate
(FWER), namely the probability of at least one false positive (type I error). Whilst
on one hand this approach seems appropriate, since a single significant p-value across
Hé ®J establishes that @), is not marginal admissible, on the other hand it would in-
crease the probability of false negative (type II error). In our context, we consider more
important to ensure that non-uniformity is identified, rather than to limit uniformity
to not being detected.

3.2. Wasserstein distance hypothesis testing

The Wasserstein distance has been receiving increasing attention from the research
community and has found different utilization in statistics, including clustering [I5] and
PCA [I6]. Nevertheless, practical applications remain tentative because its numerical
calculation is very arduous, especially when d > 1: explicit coupling results are only
known for multivariate Gaussian and elliptic distributions [I7]. Recent publications
have proposed a wide range of approaches to find efficient solvers that address the
Wasserstein distance computation problem. When d = 1, by contrast, the Wasserstein
distance has a closed-form expression and is easier to handle.

In the algorithm we propose, for practical purposes, we need an efficient and agile
scheme: the overall computation can be extremely demanding, considering both the
complexity of the Wasserstein distance calculation in itself, and the fact that it may
need to be determined possibly numerous times. A decisive factor, in this respect, is
that we verify the marginal admissibility condition at first, and the (joint) admissi-
bility condition only after the former is already met. Hence, during the initial phase
of the algorithm, we deal with Wassertein distance between one-dimensional distri-
butions: this aspect considerably lightens the load of the calculation, especially when
the number S of partitioning hyperrectangles is still limited and large samples could
be situated within these. The algorithm successively moves to the hypothesis tests of
Definition regarding the joint uniformity when PWC(p, Q) is already a marginal
admissible approximation and the initial sample should be sufficiently partitioned into
smaller datasets within each bucket.

When testing Hj */ and H hypotheses, the distribution of the test statistic under
the null hypothesis entails the so-called empirical Wasserstein distance I/V(F7 F), ie.
the distance between the empirical measure F' of a sample drawn from F and F itself,
and especially the case where F' is a uniform density. It is a well-known consequence of
the strong law of large numbers that if the first moment of F' is finite, then W(F, F)
converges to 0, almost surely, as the sample size approaches infinity (see [14], Cor.
6.11). However, getting hypothesis tests based on the (empirical) Wasserstein distance
is severely hampered by a lack of inferential tools. Determining the exact rate of
convergence and distributional limits, which give a genuine perspective for practicable
inference, is the subject of a large body of literature, but despite the considerable
interests in the topic, results have remained elusive and the problem of constructing
confidence intervals for the Wasserstein distance is in general unsolved.

3.2.1. One-dimensional setting

In the one-dimensional setting, when c is any /,-norm, the optimal coupling attaining
the minimum in is known explicitly [I§], and the Wasserstein distance can be

11



expressed in the following form:

1 00
W(F,G):/O F—l(t)a—l(t)|dt:/_ |F(z) — G(2)|dz, (23)

where the last equality is obtained by the Fubini-Tonelli Theorem. The formula shows
that the Wasserstein distance corresponds to the area between the two quantile func-
tions or, equivalently, to the area between the two cumulative distribution functions
of the two random variables.

In addition, for measures on R, a rather complete theory regarding rates of con-
vergence and distributional limit is available [19], and the following result applies for
testing the marginal admissibility condition.

Theorem 3.8. Consider a sequence of n independent random variables uniformly
distributed on I = (a,b], a < b € R, then as n — oco:

WFU[
ﬁ( /wwt (24)

where B(t),0 <t <1 denotes a Brownian bridge process, that is, a centred Gaussian
process with continuous sample paths and covariance E[B(s)B(t)] = min {s,t} — st.

Proof. The statement follows from Theorem 1.1 in [I9] by substituting the quantile
function associated to Uy and applying the scaling property of the Wasserstein distance
[20], i.e. W(eX,eY) = |e]W(X,Y) for any scale € € R and random variables X and
Y. Here, for the sake of simplicity, we used random variables within the Wasserstein
distance expression, in contrast with the notation of the paper. O

Theorem provides us with a theoretical instrument for testing any Hj*’ hy-
pothesis. The observed value of the test statistic, to compare with the critical one,
is derived from the Wasserstein Distance between a uniform distribution on I, ; and
the respective sample margin. In this circumstance, Formula can be represented
through a specific closed-form expression that can be derived from Theorem 3.3 in
[12]. Given a sample X ~ F of size n, such that a < Xy < ... < X,y < b, and a

uniform random variable on I = (a,b], then W (F,U;) is equal to:

n+1 n+1 i i
Wi = 3w =3 [T g (5w {a- Bof] o)

where
= i—-1 Xz —a
= 5 A,
Bi = Xy — Xi-1), (26)
X(i—1/2) = X(i-1)

5i: )
b—a

and X(;y,7 = 1,...,n, are the order statistics of the sample. Note that we set Xg) = a,
X(ny1) =band X109y = (X + Xi-1))/2.
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We have therefore the analytical tools required to check the marginal admissible
condition.

Algorithm 3.9. Marginal admissible hypothesis testing.
For each hyperrectangle Qs where the marginal admissibility condition is checked:

(1) For each dimension j = 1,...,d, compute the observed test statistic w,; and
compare it with the respective a-level critical value w, using Theorem and
Formula .

(2) If any ws; > wa, HS *J is rejected, split Q5 and go back to , else the sample
is considered to have uniform marginals.

3.2.2. Multidimensional setting

When testing Hj hypotheses we are in a multidimensional regime. However, as men-
tioned above, inferential tools for Wasserstein distances are elusive when d > 2, and
hence complications arise for checking the joint admissibility condition. For measures
on R?, there are, indeed, only few distributional results, none of which can be suc-
cessfully employed in our framework (see e.g. [21I22]). With regard to the question
of quantifying the rate of convergence of W(F , F), the major findings regarding our
context are given by the works of [23], who considers the uniform distribution on
the unit square, and [24]25], for the uniform distribution in higher dimensions on a
d-dimensional unit cube.

The solution we propose to obtain critical values of the test statistic distribution
under H is meant to guarantee a feasible implementation of the algorithm. It would be,
in fact, possible to test the joint admissibility condition by obtaining, via simulation,
an approximated distribution of the test statistic under the null hypothesis for each
hyperrectangle ;. However, according to the authors, this modus operandi comes at
too high a (computational) cost, which can undermine the whole scheme workability,
especially when ng is not a small value. The idea we propose combines two components:
a reference simulated distribution of the test statistic under the null hypothesis and the
results of rate of convergence for empirical Wasserstein distances concerning uniform
densities. The procedure steps are detailed below.

Algorithm 3.10. Reference test statistic critical value. Before the algorithm is
initiated, for @ € [0,1] and d € Z™:

(1) Draw N samples of size m from the uniform distribution on C = [0, 1]¢.

(2) Compute the Wasserstein distances W = (wy, w2, ..., wn) between each sample
and Ug.

(3) Determine the critical value w, as the (1 — a)-level empirical quantile of W.

Algorithm 3.11. Admissible hypothesis testing. For each hyperrectangle Qs
where the admissibility condition is checked:

(1) Compute the observed test statistic ws and scale the value with the appropri-
ate order of convergence of the empirical Wasserstein distance (see below) for
considering the actual number of data points ng lying in Q).

(2) Compare the value w, thus obtained with wq; if ws > we, HY is rejected and Qs
has to be split, else the sample is considered as uniform on Qs.

With the above steps, an approximation of the a-level critical value of the test
statistic under Hf is obtained, without simulating for each hyperrectangle sample size

13



ng the test statistic distribution under the null hypothesis.

A heuristic rule for setting the sample size m of Algorithm ism = |logn|, where
|-] is the floor function and log the natural logarithm. The reason for this is that m
should be an arbitrary positive integer that allows for a relatively fast computation
of the simulated distribution of the test statistic. The number of simulation N is
determined in such a way that there is at least 90% confidence that the estimated
quantile does not differ by more than 1% from the true value (see [26] Section 5.2).

The order of convergence adjustments, previously disclosed, are provided by [23]
and [25]. In particular, for a uniform random vector defined on C' = [0, 1]¢, where
d > 2, the limiting behaviour of the empirical Wasserstein distance is given by

O(n~Y2logn'/?), ifd=2,

27
O(n=1/%), if d > 2, 27)

W(E,Ug) = {

where O is the Big O(micron) notation and n is the sample size. The authors have
confirmed through a simulation study the reliability of the above-mentioned approach.

It can be noted that, as the algorithm proceeds, the power of the hypothesis tests
tends to diminish, i.e. the number of true positive correct inferences reduces. The
reason for this is that the partitioning set Q grows in size and consequently the sample
size ng in its every element affected by the bisection technique decreases. This situation
leads to a design less susceptible to overfitting, since makes it more likely for the
algorithm to stop partitioning hyperrectangles.

With regard to the Wasserstein distances in Algorithm and Algorithm we
make the computation a discrete problem: the uniform density is approximated with a
quasi-random low-discrepancy sequence to evenly cover the d-dimensional hypercubic
space. The number of elements in the sequence scales with d and is set equal to 10
When both measures involved are discretized (finite weighted sums of Dirac masses),
the Wasserstein distance formulation fits into a discrete setting and its calculation
becomes a Linear Assignment Problem [27]. The reason for modifying the original
problem is the flexibility of discrete solvers: these consist of combinatorial optimization
algorithms, based on the linear programming formulation, that work for any dimension
d and for almost any ground metric ¢ [28]. In order to accelerate this type of solvers, the
entropic-regularized approach [29] adds an entropic penalization to the original optimal
transport formulation and has been shown to be extremely efficient to approximate
Wasserstein distances at a low computational cost. In this regard, one of the most-used
method for solving the resulting regularized optimization problem is represented by
the Sinkhorn algorithm and its recent refinements [30/31]. We adopted this approach,
which has a complexity of O(n?logn), i.e. in nearly linear time in the input size n?
[30], for approximating the optimal transportation distance.

Example 3.12. Figure [9| illustrates approximation of the Wasserstein distance in
R?, with fo-norm as ground metric, between a sample of size n = 5 and the uniform
distribution on [0,1]2. The latter is represented with a quasi-random low-discrepancy
sequence that covers the square area and is indicated with black dots. The approxi-
mated value of the Wasserstein distance is represented by the average length of the
azure lines mapping the observations to the target points.
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a) sample observations b) quasi-random sequence c) Wasserstein distance

Figure 5. Illustration of the approximated Wasserstein distance between a sample of size n = 5 and the
uniform distribution on the unit square, when the ground metric is the £2-norm. Plots a) and b) highlight the
sample and the quasi-random low-discrepancy sequence serving as the uniform distribution, respectively. The
optimal coupling associated to the (approximated) Wasserstein distance is displayed in plot c).

4. Algorithm

For obtaining an admissible PWC approximation of the sample we opted for a top-
down algorithm with recursive layout that starts with a single axis-aligned hyperrect-
angle enclosing the entire observations, and builds a hierarchical partition by splitting
an existing hyperrectangle into two non-overlapping ones. The recursive partitioning
is repeated until the admissibility condition is met in each region of the partition.

The dimension along which the split is executed is chosen according to a specific
bisection technique. As each bisection concerns only a single dimension, the regions
in the resulting partition always have axis-parallel boundaries. In addition, since the
bisection of each hyperrectangle is independent from the bisection of the other partition
elements, the algorithm enables a high degree of parallelism.

Finally, it should be noted that the algorithm is compatible with the divide-and-
conquer design paradigm: it works by repeatedly breaking down a problem into sub-
problems of the same type, until all of these come to a halt.

4.1. Initialization

The algorithm starts with a single box whose sides are parallel to the d coordinate
axes and containing all the observations, and hence the piecewise constant distribution
simply coincides with a uniform density.

Algorithm 4.1. Initialization procedure.

(1) Set S=1,92={Q1},p=(1),PWC(p, Q) = Ug,. Where

Q1 = [81,b1] X [82,D2] X ... X [&g,Dby],
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and a;, Bj, for j =1,...,d are given by

a; = M _ X(l) X(n) B X(l)
n—1 n—1 (28)
L nXm) = X Xm) = X
e )l O R g
J n—1 (n) n—1

X(1) and X, are, respectively, the first and last order statistics of the sample
jth marginal.

Formula represents the minimum-variance unbiased estimators for the two
parameters a; and b; of a uniform on [a;,b;] [32].

Thereafter, during algorithm iterations, the partition (and the PWC distribu-
tion consequently) is grown by splitting each partition member into two sub-
hyperrectangles, until the stopping condition is met and PWC(p, Q) is an admissi-
ble approximation of F. The choice of using hyperrectangular shaped buckets is also
driven by the data compression intent of the algorithm: this type of shape can be
represented concisely, allowing a large number of buckets to be stored efficiently.

4.2. Bisection technique

The aim of the bisection technique is to build and shape the PWC distribution. The
bisection scheme selects in each hyperrectangle @), where either H{ null hypothesis or

at least one of ]HIS ®7 null hypotheses is rejected, the dimension to split and the relative
split point. More specifically, it operates as follows.

Algorithm 4.2. Bisection technique.

(1) Dimension selection. In a given hyperrectangle Qs to bisect, split the di-
mension in which the Wasserstein distance between F sj and Up, , i.e. the jth
marginal distribution of the sample in s and the uniform density on jth di-
mension range respectively, is associated to the smallest p-value. Namely:

W(F,.:, U
j* = argmax /ns Wil Ur,) Is”). (29)
je{1,2,...,d} (bs,j — as.j)
(2) Split point selection and bisection. For the selected dimension j*, let the
index k denote:

k= argmax W], (30)
i€{1,2,...n+1}

where W is defined in Formula (25)). Bisect at (X(x) + X(x_1))/2, where X is
the marginal k th-order statistic of the sample. By implication, the initial hyper-
rectangle @), is split in two non-overlapping hyperrectangles and .S is augmented
by one.

Both steps of the bisection technique relies on Formula . In particular, the
split point selection phase uses the fact that above-mentioned formula is composed
by n + 1 areas, each of which measures the vertical difference, occurring between two
consecutive data points.
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Example 4.3. Figure [6] exemplifies how the bisection procedure works. Each group
of three plots depicts X ~ F and Y ~ PWC(p, Q) random variables in a given Qs
(lower-left graph), and their marginal cumulative distribution functions (upper and
lower-right graphs). In the right group, W}’ and the selected split are highlighted.

j=1 j=1

¢ Y  -—- X;ECDF Y; CDF Wy e Selected split

Figure 6. Illustration of the way in which bisection technique operates in R2. The algorithm is able to detect
the dimension that is the most in need of partitioning (5 = 1) and bisect the area where the largest vertical
discrepancy from uniformity occurs.

4.3. Full Algorithm

In this section, after having presented the details of all scheme components, we resume
the full algorithm.

Algorithm 4.4. Complete Algorithm.
Require: a € [0, 1], £,-norm.
Input: an observed sample (x1,Xg,...,Xy) of a d-dimensional random vector.
Output: an admissible PWC distribution.

(1) Reference critical value: Determine the test statistic a-level critical value
using Algorithm [3.10]

(2) Initialize: Start the PWC distribution as stated by Algorithm

(3) First step: Test the marginal admissible condition using Algorithm [3.9, Bi-
sect Q elements that require it, according to Algorithm [£.2] until a marginally
admissible PWC(p, Q) is found.

(4) Second step: Test the admissible condition using Algorithm Further bi-
sect @ elements that require it, according to Algorithm until an admissible
PWC(p, Q) is found.

Definition 4.5. An admissible PWC distribution resulting from Algorithm is
said to be a PWC estimator of the unknown probability distribution of the observed
sample.

Lemma 4.6. Given an empirical distribution F of a sample of size n, for a PWC
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estimator G, it holds that:

lim G(t) = F(t). (31)

a—1
Proof. As o — 1, by the definition of significance level, the probability of rejecting
the null hypothesis approaches one. Therefore, from the algorithm construction, the
partition grows until only a single point x; is left in each hyperrectangle @Q;, for i =
1,...,n. At this stage, in any @;, the null hypothesis is still rejected and the bisection
technique continues to shrink all intervals I; ;, j = 1,...,d, by alternately splitting at
either (a;; + x;)/2 or (x; + b; ;)/2. As a result, the non-empty hyperrectangles are
reduced to the observations. O

5. Implementation and illustrations

The performance of our methodology has been investigated on datasets in two-, three-
and nine-dimensional spaces. All experiments and analyses were run on a computer
with an Intel® Core™ i7-6700HQ processor with 16GB RAM, running at 809.549
MHz, on Ubuntu Linux distribution version 18.04.2. An implementation of our algo-
rithm in Python is available under the permissive free software MIT license. It can be
obtained through the authors.

5.1. Two-dimensional space

In the first instance, we evaluate our methodology against a non-trivial two-
dimensional distribution. In the literature, the same bivariate distribution has been
originally adopted by [33] for the testing of their work. The reader should refer to the
original paper for a more detailed explanation.

The distribution is defined as a random sample from any of 350 Gaussian distribu-
tions. The first 349 normal distributions are sampled with equal probability of 1/698
and have all variances of 0.3 and no covariance. The last distribution is also a normal
distribution, but it is sampled with probability 349/698 and its dispersion matrix is
defined by the covariance matrix of the means of the above-mentioned 349 distribu-
tions. The first 349 normal distributions are located in a manner that reproduces the
(rotated) logo of the original paper lead author’s home institution. The last component
is centred on the origin, with a width and height that traverse the other component
distributions and with principal axes parallel to the x-y axes. This produces a mix-
ture distribution with a long-wave feature combined with a sophisticated structure of
comparatively shortwave elements aligned with different axes.

Figure[7] outlines the application of our algorithm to approximate a sample of size 1
million drawn from the two-dimensional mixture model. Plot a) depicts the probability
density function of the mixture distribution, plot b) illustrates the underlying sample
and plot ¢) shows the resulting probability density function of the PWC estimator.
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a) mixture distribution b) underlying sample c) PWC estimator

301 . 30 P 30

| \ \
/.-/-‘—;"\\\vg ’ ‘}“/::&‘\\\;% ' ,,-yf_:‘ ’ \“ o

04 ‘ V 0 > ‘ N‘
\ Q . -
~101 ‘ ‘ Vg -10 ‘g ‘

< ; A
Y R i

30+

Figure 7. Illustration of the PWC estimator of a non-trivial mixture of Gaussian distributions in R2.

Figure [§] sets out in more detail part of the sample realizations (blue dots) and the
partitioning of the domain forming the PWC estimator.
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Figure 8. Detail of the PWC estimator partitioning rectangles dividing the domain and encapsulating the
sample observations.

Table [I] summarizes some features regarding the PWC estimator such as the number
of rectangles S partitioning the domain, the value of the parameter o and the selected
¢p-norm as ground distance.

Table 1. PWC estimator characteristics.

PWC estimator

Number of rectangles 6880
Number of split along j =1 3594
Number of split along j = 2 3509
Ground metric £1-norm
a 0.05
Execution time (in sec.) 196.31
Sample size 1000000

A total of 7103 bisections have been performed by the algorithm on the starting
trivial partition to obtain a PWC estimator that is equipped with 6880 hyperrectan-
gles, containing on average approximately 145 data points (ranging from a minimum
of a single data point to a maximum of 675 observations). This aspect exhibits one of
the PWC estimator attributes: it is efficient in terms of information needed for storing
purposes.
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Table 2. Comparison of PWC estimator and sample statistics.

Mean Variance Covariance Skewness

Sample (1.481, 0.403)  (238.119, 244.734) 44.856 (0.009, -0.102)
PWC estimator  (1.481, 0.402)  (237.487, 244.303) 45.404 (0.010, -0.102)

Table [2] matches PWC estimator moments against their empirical ones. It can be
noted that the shape of the sample distribution is preserved and the PWC estimator,
despite losing part of the information contained in the data, had characteristics very
similar to the sample ones.

The impact on the PWC estimator of different values of o has been assessed on
the same sample. When this parameter value increases, as stated by Lemma the
partition naturally becomes finer, and the final PWC estimator grows nearer to each
single observation. Figure [9 shows how the PWC estimator changes by varying the
significance level, in terms of execution time, number of rectangles, average number of
points per rectangle, and total number of splits executed. With an increasing «, the
total number of splits and the execution time escalate, the number of rectangles rises
and tends to the number of observations, the average number of points decreases to
the value 1.
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Figure 9. Algorithm sensitivity analysis of the variation of the significance level a. The left plot reports the
execution time (in seconds) and the number of rectangles (in thousands) of the resulting PWC estimator. The
right plot indicates the average numbers of data points per rectangle and the total number of splits executed
(in thousands).

5.2. Three-dimensional spaces

Moreover, we considered a group of simulated datasets with known density to evaluate
the ability of the PWC estimator to recover the underlying distributions in three
dimensions. Similarly to [34], the following four samples, each of size 600 000, have
been examined.

e Dataset 1 resembles a wall-like and a filament-like structure. The first and the
second dimensions of the wall-like structure are both uniform on [0,100], the
third dimension is drawn from a Gaussian distribution with mean 50 and variance
5. The filament-like structure, conversely, is created with a bivariate Gaussian
distribution, with location (50, 50), variances 5 and 0 covariance, in the first and
second coordinates, and a uniform distribution on [0, 100] in the third dimension.
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e Dataset 2 mirrors three wall-like structures. Each wall consists of uniform distri-
butions on [0,100]? and a Gaussian distribution. In one wall-like structure the
Gaussian has mean 10 and variance 5, in the others it has mean 50 and variance
5.

e Dataset 3 is generated from a three-dimensional distribution with independent
and identically distributed lognormal components, whose mean and variance are
equal to 3 and 4, respectively.

e Dataset 4 contains points drawn from two trivariate Gaussian distributions. Each
has independent and identically distributed marginals, one with locations 25 and
variances 5, the other with location 65 and variance 20. To these is added a
uniform noise on [0, 100]3.

The three-dimensional scatter plots of the above-mentioned samples and the relative
PWC estimators are displayed in Figure

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Figure 10. Scatter graphs of the simulated datasets 1-4 from left to right (top) and their corresponding PWC
estimators (bottom).

Table [3] reports the characteristics of the PWC estimators for the four datasets. It
can be noted that, as expected, in datasets 1 and 2 the dimensions with uniform
components are affected by a lower number of bisections. In datasets 3 and 4 the
number of splits are similar across the dimensions.

Table 3. PWC estimators characteristics for datasets 1-4.

Dataset 1  Dataset 2  Dataset 3  Dataset 4

Number of rectangles 1793 1062 3968 2944
Number of split along j =1 631 57 1373 984
Number of split along j = 2 583 653 1456 1040
Number of split along j =3 683 379 1404 988
Ground metric f1-norm {1-norm f1-norm {1-norm
a 0.05 0.05 0.05 0.05
Execution time (in sec.) 783.41 341.36 283.14 1658.95
Sample size 600000 600000 600000 600000
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5.3. Nine-dimensional spaces

Finally, our algorithm has been run on an observed galaxy sample drawn from the
Sloan Digital Sky Survey (SDSS). The analysed SDSS dataset contains 108 070 ob-
servations from SDSS Skyserver DR12 database and consists of the following nine
variables:

ra: standard astronomical right ascension.

dec: declination.

u, g, 1, 4, z: camera filters from 1 to 5.

camcol: the output of one camera column as part of the length of a strip observed
in a single contiguous observing pass scan.

e redshift: the redshift phenomenon value.

The original data, together with a more detailed explanation of its features, is available
at [35]. Table [4f summarizes some aspects of the resulting PWC estimator, and Table
highlights the number of splits occurred in each dimension. The dimension in which
more splits have been executed by the algorithm is camcol, which is the only feature
of the data with atoms.

Table 5. Number of

splits per dimension.
Table 4. PWC estimator characteri-

stics. Dimension  splits
PWC estimator ra 2104

dec 2104

Number of rectangles 15295 U 4045
Ground metric {1-norm g 5703
@ 0.05 r 6447
Execution time (in sec.)  3751.76 i 6396
Sample size 108070 z 5273
camcol 12869

redshift 3209

As shown in Table[6] which compares PWC estimator moments with their empirical
counterparts, the PWC estimator is able to capture the information contained in the
data also in the nine-dimensional case considered.

Table 6. Comparison of PWC estimator and sample statistics.

ra dec U g T 7 z camcol  redshift
Mean

Sample 228.175 55.589  21.727  20.137 19.148 18.528 18.333 3.561 0.505

PWC estimator  228.923 55.746 21.718 20.134  19.147 18.550 18.330 3.550 0.506
Variance

Sample 514.537 22978  5.618 4.199 3.421 931.673 3.091 2.632 0.501

PWC estimator  523.600 23.317  5.907 4.303 3.516 545.172 3.208 2.349 0.508
Skewness

Sample 1.897 2.265 0.009 -0.410 -0.444  -327.105 -0.144  -0.034 2.745

PWC estimator 1.782 2.139 0.050 -0.401  -0.438  -342.802 -0.131 -0.022 2.766

Figure[l1] at last, illustrates the dependence structure of the PWC estimator dimen-
sions, as expressed by the pairwise correlations, and confronts it with the corresponding
ones observed in the sample. Evident is that the PWC estimator, besides approximat-
ing the sample marginal behaviour, is also capable of recognizing the relationships
intervening between the dimensions of the dataset.
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a) PWC estimator correlation matrix b) sample correlation matrix
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Figure 11. Comparison of the dependence structure: plot a) reports the entries of the PWC estimator cor-
relation matrix, whereas plot b) indicates the same quantities calculated on the original data.

6. Conclusion

6.1. Discussion

As opposed to other piecewise constant density estimators with a tree structure ([24,
B]), our methodology centres on the idea of assessing uniformity within each partition
element using a hypothesis test based on the Wasserstein distance. As a result, the
learning of the tree is implicitly defined by the hypothesis test, and its significance
level establishes the stopping rule controlling the partition growth process. On top
of that, our algorithm is not prone to overfit the data, because, as the cardinality of
the partition grows, the power of the hypothesis test in each new partition element,
resulting from the bisection, decreases with lower sample size. Hence, in the calibration
phase, there is no arbitrary threshold to select or error function to minimize, and it is
not necessary to consider any techniques to penalize complexity and lessen the chance
of overfitting, such as regularization, cross-validation, early stopping and pruning.

In addition, our Wasserstein distance based hypothesis test for assessing uniformity
provides also a comprehensive method, in sense that it works for any dimension and for
any type of distribution. Other candidates that would fit in a scheme similar to ours are
the Kolmogorov-Smirnov (K-S) and Pearson’s chi-squared (x?) goodness-of-fit tests.
The former, however, poses non-trivial obstacles in more than one dimension, and there
is currently no single approach which is universally applicable (see e.g. [36]). The x?
test, although it may theoretically be applied for testing any multivariate distribution,
is sensitive to the set of non-overlapping bins chosen to reduce the observations to a
set of counts. The greater the number of bins, the more accurately the local data
behaviour will be quantified. Nevertheless, the test may give invalid results if not all
expected frequencies are sufficiently large (greater than 5 is the usual rule of thumb)
and, as a result, the test cannot be trusted in high dimensions [37]. On the other hand,
when using a small number of bins, the test loses power. This, in our algorithm, would
increase the chance of having hyperrectangles where data are not adequately uniform.
The authors have compared the empirical rejection rates of the Wasserstein distance
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based hypothesis test with K-S and x? goodness-of-fit tests. Results are displayed in
Appendix [A] and show the value of our approach.

Finally, referring to the comparison of density estimation methodologies carried
out in [2] when introducing Density Estimation Trees (DET), we summarize some
properties of our approach in Table

Table 7. Qualitative characteristics of the PWC estimator.

Methodology Accuracy Interpretability Adaptability Speed
COD VI Rules ABD AWD Calibration Query
PWC estimator ~ medium v v v v v slow O(n?log(n)) fast O(D)

Despite the cost of having relatively less accuracy in prediction, our PWC estimator
enjoys adaptability, interpretability and the efficient querying like other DET-based
approaches [38]. Flexibility applies in terms of adaptability between dimensions (ABD)
and within dimension (AWD). The former means that dimensions are treated differ-
ently according to their impact on the density; the latter implies that the estimator,
in a given dimension, adjusts to the local behaviour of the observations. The estimator
we present also benefits from interpretability since:

e It is able to detect clusters and outliers (COD).

e It provides variable importance (VI), i.e. identify dimensions that significantly
affect the density.

e It produces rules for specifying subsets of the data which might represent a
cluster or outliers.

Although the calibration phase is more onerous than other methodologies, this cost
is compensated by the efficient queries. The computational cost for fitting the PWC
estimator is dependent on the complexity of the algorithm adopted for computing
the Wasserstein distance in the admissibility condition verification phase; in our case
O(n%log(n)). The query time for the PWC estimator is O(D), the same of DET, where
D is the depth of the diagram tree representation.

6.2. Summary

This paper introduces an algorithm that computes a piecewise constant estimator to
approximate the underlying probability density of a multivariate sample, with possibly
hundred of thousands or millions data points.

The PWC estimator is determined using a recursive procedure that generates a
partition of the sample domain constituted by hyperrectangular regions where the
sample is sufficiently uniformly distributed. Uniformity is assessed using a Wasserstein
distance based hypothesis testing.

The algorithm is efficient since the resulting distribution can be concisely repre-
sented and requires significantly less memory than the original sample. Instead of
storing all data, one can only know the estimate for each nonempty hyperrectangles,
which are typically fewer in number than the sample size [39]. Moreover, because of the
hierarchical and recursive bisection scheme, the PWC estimator can be conveniently
represented through a tree diagram, in which the root is the starting bounding box,
each node represents a bisection of the domain, and the leaves are the final partition
elements associated to the resulting admissible PWC distribution.

Lastly, as highlighted in [12], using PWC distributions constitutes a favourable ap-
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proach when information on empirical distributions should be preserved or transferred
between systems, because of its memory and bandwidth efficiency, and because it does
not distort shape or statistics of the sample. Therefore, our algorithm can be advanta-
geous in applied environments where empirical distributions are repeatedly used and
transferred among different users.
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Appendix A.

The performance of the Wasserstein distance based test, herein referred to as Wasser-
stein test, has been analysed through a simulation study, whose design is similar to
those in [40/41]. We quantified the empirical type I error rate and the power of our test
statistic, and compared with other procedures used to test the uniformity of random
samples.

We evaluated rejection percentages along 5000 independent runs based on samples
drawn both from the null and from the alternative hypothesis; this provides us with the
empirical type I error rate (false positive) and the power (true positive) of the tests.
The analysis considers increasing sample sizes of 25, 50, 100 and 500, and nominal
significance levels of 0.01, 0.05 and 0.10. Simulation outputs are displayed in Tables
AT} (X2 and 3

All the models have support on the hypercube [0, 1]d, where d = 1,2,3. The null
hypotheses refer to samples drawn from the corresponding uniform measure. The alter-
native hypothesis models are devised for taking into account complementary aspects
of non-uniformity: the one-dimensional case especially evaluates the ability to ascer-
tain marginal deviations from uniformity; the multidimensional setting is useful to
assess the capacity of detecting departures from independence, keeping the uniformity
of marginals.

With regard to the one-dimensional setting, the Wasserstein test (WASS) has been
compared with the K-S and the x? goodness-of-fit tests, and the following alternative
hypothesis models have been considered.

e The (univariate) uniform contamination models (UC): the observed sample is
drawn from a mixture of type (1 —v) Ujg 1] + v Uj1/2,1/9)- The parameter v has
been set equal to 0.1 and 0.2 respectively.

e The arcsine distribution (AS).

e The beta models (B) with parameters (1.3, 1.3), (5, 2) and (0.8, 0.8) respectively.

e The truncated Standard Normal distribution (7'7).

In the multidimensional context, three statistics have been considered: the Wasser-
stein distances with ¢;-norm and fs-norm cost functions, and the y? statistics. As for
alternative distributions, we have checked the following distribution families:

e The (multivariate) uniform contamination models (UC): The observed sample
is drawn from a mixture of type (1 —v) Ujg ¢ +v Up,, where Dy denotes a cube
with the same centre as [0, 1]% and measure 1/2. The parameter v has been set
equal to 0.1 and 0.2 respectively.

e Meta-type uniform distributions: These are the distributions obtained from
transformed R%-supported elliptically distributed random variables. The trans-
formation applied is the relevant probability integral transform, to guarantee
that marginals are uniformly distributed. MUT is derived from a multivariate
Student’s random variable with 5 degrees of freedom, MUC' is obtained from a
Cauchy variable and finally MUN results from a multivariate Gaussian centred
at the origin N(0,X), where ¥ = (0y;), 055 = 1, 05 ; = 0.5 for i # j.

e The beta independent models (B): All the marginals are independent, identically
distributed according to a beta models with parameters (1.3, 1.3) and (0.8, 0.8).

The uniform contamination and the beta models, with parameters (1.3, 1.3) and
(0.8, 0.8), are considered in both experiments as they should represent circumstances
of non-uniformity hard to detect. The former specifically represents a deviation from
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the theoretical model associated with the presence of ”inliers” [41]. Either one of them
has independent marginals, as in the case of the null distribution.
The results of rejection rates simulation indicate that:

e The empirical type I errors of the Wasserstein test have converged to the signif-
icance levels.

e In both the one-dimensional and multidimensional setting, the Wasserstein test
hardly detects the uniform contamination models.

e In the one-dimensional setting, the K-S test shows overall a better performance
than the other two tests. Nevertheless, the Wasserstein test is the most power-
ful for the arcsine and the truncated normal distributions. In the multivariate
case the Wasserstein test exhibited, in general, the highest power figures. The
Wasserstein statistics with #1-norm and ¢o-norm cost functions exhibit a similar
behaviour.

e In the multivariate setting the Wasserstein test is able to classify samples
from multivariate distributions with uniform marginals. This, along with the
favourable power revealed by Wasserstein test when d = 1, suggests that the
process of testing marginal admissibility condition at first, and subsequently
the joint admissibility condition, should succeed in picking out non-uniformly
distributed sample.
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Table Al.

One-dimensional setting rejection rates; sample size n = 25, 50, 100, 500.

Test « U Uc(0.1) UC(0.2) AS B(1.3,1.3) B(5,2) B(0.8,0.8) TZ
n =25
WASS 0.01 0.0082 0.0066 0.0046 0.0600 0.0062 0.9928 0.0146 0.0244
WASS 0.05 0.0508 0.0428 0.0348 0.2356 0.0400 1.0000 0.0748 0.0950
WASS 0.10 0.0992 0.0872 0.0872 0.4024 0.0982 1.0000 0.1400 0.1610
K-S 0.01 0.0078 1.0000 1.0000 0.0694 1.0000 1.0000 1.0000 0.0168
K-S 0.05 0.0424 1.0000 1.0000 0.2044 1.0000 1.0000 1.0000 0.0722
K-S 0.10 0.0848 1.0000 1.0000 0.3360 1.0000 1.0000 1.0000 0.1324
x? 0.01 0.0078 0.0108 0.0154 0.2244 0.0182 0.9062 0.0164 0.0128
X2 0.05 0.0452 0.0554 0.0824 0.3688 0.0762 0.9910 0.0702 0.0640
x? 0.10 0.0930 0.1068 0.1434 0.4978 0.1402 0.9986 0.1274 0.1216
n = 50
WASS 0.01 0.0100 0.0070 0.0048 0.1426 0.0064 1.0000 0.0176 0.0442
WASS 0.05 0.0558 0.0466 0.0466 0.4748 0.0538 1.0000 0.0814 0.1632
WASS 0.10 0.1042 0.0922 0.1144 0.6754 0.1148 1.0000 0.1552 0.2508
K-S 0.01 0.0080 1.0000 1.0000 0.1476 1.0000 1.0000 1.0000 0.0362
K-S 0.05 0.0462 1.0000 1.0000 0.3952 1.0000 1.0000 1.0000 0.1270
K-S 0.10 0.0914 1.0000 1.0000 0.5574 1.0000 1.0000 1.0000 0.2088
X2 0.01 0.0118 0.0140 0.0256 0.5056 0.0242 0.9998 0.0262 0.0222
x? 0.05 0.0468 0.0620 0.0996 0.6572 0.0940 1.0000 0.0952 0.0856
X2 0.10 0.0998 0.1168 0.1888 0.7394 0.1810 1.0000 0.1758 0.1528
n = 100
WASS 0.01 0.0108 0.0070 0.0100 0.4904 0.0088 1.0000 0.0180 0.1118
WASS 0.05 0.0512 0.0472 0.0730 0.8618 0.0698 1.0000 0.1036 0.2802
WASS 0.10 0.0984 0.1054 0.1772 0.9484 0.1676 1.0000 0.1986 0.3914
K-S 0.01 0.0082 1.0000 1.0000 0.4014 1.0000 1.0000 1.0000 0.0852
K-S 0.05 0.0412 1.0000 1.0000 0.7522 1.0000 1.0000 1.0000 0.2300
K-S 0.10 0.0896 1.0000 1.0000 0.8872 1.0000 1.0000 1.0000 0.3404
X2 0.01 0.0094 0.0196 0.0526 0.8276 0.0406 1.0000 0.0468 0.0248
x? 0.05 0.0504 0.0738 0.1586 0.9192 0.1410 1.0000 0.1374 0.0918
X2 0.10 0.0982 0.1312 0.2506 0.9514 0.2284 1.0000 0.2278 0.1588
n = 500
WASS 0.01 0.0092 0.0118 0.1672 1.0000 0.1622 1.0000 0.1220 0.7192
WASS 0.05 0.0470 0.0930 0.6096 1.0000 0.6148 1.0000 0.4666 0.8838
WASS 0.10 0.0976 0.2172 0.8112 1.0000 0.8144 1.0000 0.6810 0.9334
K-S 0.01 0.0080 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6220
K-S 0.05 0.0452 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8324
K-S 0.10 0.0970 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9012
x? 0.01 0.0100 0.0260 0.1806 1.000 0.1470 1.0000 0.2088 0.0536
X2 0.05 0.0502 0.0962 0.3878 1.000 0.3432 1.0000 0.4106 0.1720
x? 0.10 0.0932 0.1758 0.5206 1.000 0.4864 1.0000 0.5418 0.2824
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Table A2. Two-dimensional setting rejection rates; sample size n = 25, 50, 100, 500.

Test o U Uc(o.1) Uc(0.2) MUT MUC MUN B(1.3,1.3) B(0.8,0.8)
n =25
WASS ¢, 0.01 0.0110 0.0084 0.0086 0.0400 0.0450 0.0418 0.0062 0.0244
WASS ¢4 0.05 0.0488 0.0402 0.0384 0.1738 0.2212 0.1790 0.0420 0.0986
WASS ¢, 0.10 0.0960 0.0838 0.0904 0.3132 0.3888 0.3224 0.0876 0.1674
WASS ¢, 0.01 0.0112 0.0090 0.0076 0.0674 0.0916 0.0666 0.0054 0.0252
WASS (5 0.05 0.0446 0.0430 0.0354 0.2346 0.2758 0.2316 0.0364 0.0944
WASS /5 0.10 0.0956 0.0920 0.0840 0.3684 0.4334 0.3744 0.0768 0.1644
x? 0.01 0.0084 0.0076 0.0080 0.0920 0.0798 0.0848 0.0088 0.0090
x? 0.05 0.0398 0.0386 0.0386 0.2262 0.2136 0.2288 0.0416 0.0432
x? 0.10 0.0864 0.0851 0.0846 0.3604 0.3406 0.3562 0.0934 0.0918
n = 50
WASS ¢4 0.01 0.0098 0.0068 0.0072 0.1396 0.2292 0.1452 0.0058 0.0272
WASS ¢ 0.05 0.0514 0.0412 0.0432 0.4765 0.6029 0.4658 0.0522 0.1112
WASS ¢, 0.10 0.1012 0.0916 0.0943 0.6632 0.7692 0.6502 0.1178 0.1981
WASS 45 0.01 0.0118 0.0066 0.0054 0.2402 0.3254 0.2384 0.0056 0.0262
WASS £, 0.05 0.0504 0.0402 0.0402 0.5466 0.6386 0.5408 0.0456 0.1036
WASS /5 0.10 0.1036 0.0902 0.0936 0.7094 0.7864 0.7064 0.1004 0.1936
x? 0.01 0.0114 0.0126 0.0134 0.1212 0.3762 0.0908 0.0202 0.0244
x? 0.05 0.0464 0.0485 0.0568 0.2612 0.5796 0.2218 0.0762 0.0716
x? 0.10 0.1162 0.1234 0.1346 0.4078 0.7273 0.3658 0.1664 0.1556
n = 100
WASS ¢, 0.01 0.0125 0.0114 0.0114 0.6475 0.8178 0.6384 0.0188 0.0436
WASS ¢, 0.05 0.0534 0.0482 0.0636 0.9163 0.9716 0.9120 0.1026 0.1581
WASS ¢4 0.10 0.1062 0.099 0.1256 0.9661 0.9913 0.9684 0.1978 0.2732
WASS /5 0.01 0.0122 0.0082 0.0104 0.7592 0.8572 0.7578 0.0158 0.0392
WASS ¢, 0.05 0.0576 0.0458 0.0542 0.9346 0.9744 0.9340 0.0862 0.1438
WASS ¢4 0.10 0.1106 0.096 0.1118 0.9713 0.9912 0.9766 0.1736 0.2576
X 0.01 0.0182 0.0194 0.0310 0.2140 0.6534 0.1450 0.0381 0.0376
X2 0.05 0.0484 0.0492 0.0776 0.3410 0.7782 0.2608 0.0846 0.0898
x> 0.10 0.1256 0.1242 0.1722 0.4998 0.8748 0.4170 0.1774 0.1880
n = 500
WASS ¢, 0.01 0.0094 0.0118 0.0671 1.0000 1.0000 1.0000 0.4866 0.3618
WASS ¢, 0.05 0.0424 0.0656 0.2566 1.0000 1.0000 1.0000 0.8224 0.6874
WASS ¢, 0.10 0.0844 0.1302 0.4182 1.0000 1.0000 1.0000 0.9162 0.8268
WASS /5 0.01 0.0114 0.0138 0.0548 1.0000 1.0000 1.0000 0.4124 0.3151
WASS ¢, 0.05 0.0470 0.0648 0.2412 1.0000 1.0000 1.0000 0.7932 0.6684
WASS 0, 0.10 0.0992 0.1386 0.4104 1.0000 1.0000 1.0000 0.9163 0.8226
X 0.01 0.0176 0.0226 0.0280 0.3128 0.9218 0.1564 0.0344 0.0362
x> 0.05 0.0486 0.0554 0.0724 0.4736 0.9648 0.2928 0.0921 0.0982
x> 0.10 0.0798 0.0860 0.1084 0.5532 0.9774 0.3754 0.1286 0.1452

30



Table A3. Three-dimensional setting rejection rates; sample size n = 25, 50, 100, 500.

Test @ U Uc(0.1) UcC(0.2) MUT MUC MUN B(1.3,1.3) B(0.8,0.8)
n =25
WASS ¢, 0.01 0.0108 0.0078 0.0065 0.2062 0.2916 0.2093 0.0034 0.0342
WASS ¢, 0.05 0.0488 0.0412 0.0372 0.4584 0.5732 0.4551 0.0243 0.1314
WASS ¢, 0.10 0.0948 0.0848 0.0766 0.6028 0.7158 0.5998 0.0584 0.2202
WASS ¢, 0.01 0.0108 0.0078 0.0066 0.2655 0.3522 0.2512 0.0028 0.0334
WASS £, 0.05 0.0492 0.0368 0.0322 0.5074 0.6128 0.5011 0.0214 0.1308
WASS /5 0.10 0.0986 0.0858 0.0722 0.6456 0.7414 0.6374 0.0492 0.2204
x? 0.01 0.0096 0.0092 0.0081 0.2748 0.2776 0.2728 0.0086 0.0068
x? 0.05 0.0410 0.0431 0.0458 0.4862 0.4902 0.4818 0.0486 0.0452
x? 0.10 0.0856 0.0871 0.0882 0.5942 0.5968 0.5828 0.0932 0.0872
n = 50
WASS ¢, 0.01 0.0098 0.0066 0.0054 0.6778 0.8174 0.6534 0.0058 0.0402
WASS ¢, 0.05 0.0472 0.0426 0.0346 0.8824 0.9572 0.8798 0.0355 0.1610
WASS ¢, 0.10 0.1008 0.0872 0.0761 0.9432 0.9812 0.9374 0.0782 0.2688
WASS ¢, 0.01 0.0102 0.0066 0.0078 0.7308 0.8358 0.7172 0.0036 0.0390
WASS /5 0.05 0.0496 0.0421 0.0346 0.9032 0.9614 0.9022 0.0288 0.1536
WASS ¢, 0.10 0.1016 0.0883 0.0771 0.9524 0.9814 0.9494 0.0648 0.2568
X2 0.01 0.0116 0.0112 0.0106 0.6532 0.7966 0.6252 0.0236 0.0202
x? 0.05 0.0480 0.0523 0.0506 0.8098 0.9074 0.7938 0.0826 0.0705
x? 0.10 0.0992 0.0962 0.0891 0.8766 0.9456 0.8666 0.1438 0.1222
n = 100
WASS ¢, 0.01 0.008 0.0094 0.0072 0.9908 0.9992 0.9894 0.0114 0.0624
WASS ¢4 0.05 0.0484 0.0444 0.0497 0.9992 1.0000 0.999 0.0776 0.2244
WASS ¢, 0.10 0.0934 0.0902 0.0864 1.0000 1.0000 1.0000 0.1606 0.3626
WASS 4, 0.01 0.0088 0.0062 0.0084 0.9932 0.9992 0.9938 0.0086 0.0584
WASS 4, 0.05 0.0498 0.0434 0.0394 0.9992 1.0000 0.9996 0.0578 0.2146
WASS 05 0.10 0.0954 0.086 0.0864 1.0000 1.0000 1.0000 0.1264 0.3454
x? 0.01 0.0124 0.0112 0.0116 0.9414 0.9975 0.9282 0.0432 0.0266
X2 0.05 0.0465 0.0524 0.0598 0.9842 0.9994 0.9796 0.1362 0.1046
X2 0.10 0.0976 0.1122 0.1192 0.9934 1.0000 0.9898 0.2242 0.1858
n = 500
WASS ¢, 0.01 0.0082 0.0108 0.0214 1.0000 1.0000 1.0000 0.5408 0.5759
WASS ¢, 0.05 0.0424 0.0538 0.1074 1.0000 1.0000 1.0000 0.8338 0.8436
WASS ¢, 0.10 0.0839 0.1028 0.1932 1.0000 1.0000 1.0000 0.9218 0.9274
WASS ¢, 0.01 0.0114 0.01205 0.0192 1.0000 1.0000 1.0000 0.4564 0.5343
WASS 0, 0.05 0.0474 0.0574 0.0944 1.0000 1.0000 1.0000 0.8019 0.8322
WASS ¢, 0.10 0.0954 0.1124 0.1794 1.0000 1.0000 1.0000 0.9106 0.9184
x? 0.01 0.0136 0.0172 0.0330 1.000 1.000 1.000 0.1266 0.0876
x? 0.05 0.0571 0.0636 0.1122 1.000 1.000 1.000 0.2972 0.2378
x? 0.10 0.1006 0.1144 0.1818 1.000 1.000 1.000 0.4122 0.3483
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