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Abstract

In this note, we prove C1,γ regularity for solutions of some fully nonlinear
degenerate elliptic equations with ”superlinear” and ”subquadratic ” Hamilto-
nian terms. As an application, we complete the results of [6] concerning the
associated ergodic problem, proving, among other facts, the uniqueness, up to
constants, of the ergodic function.

1 Introduction

The goal of the present paper is to establish C1,γ regularity results and to obtain a
priori estimates for viscosity solutions of a class of fully nonlinear elliptic equations
which may be singular or degenerate at the points where the gradient of the solution
vanishes.

Regularity properties of viscosity solutions of fully nonlinear elliptic equations
have been studied since a long time, starting with the seminal paper of Caffarelli [8]
in 1989, which contains in particular C1,γ estimates for F (x,D2u) = f when f ∈ Lp,
p > n. His results were extended to Lp viscosity solutions of operators F (x,D2u,Du)
at most linear in the gradient by Swiech in [16]. Later, Winter [17] proved C1,γ(Ω)
estimates in the presence of a regular boundary datum.

In the recent preprint [15], Saller Nornberg proves C1,γ and W 2,p results for Lp

viscosity solutions, when F (x,D2u,Du) is fully nonlinear, uniformly elliptic and at
most quadratic in the gradient.
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In [1], the first two authors of the present paper consider singular or degenerate
equations of the form

|∇u|αF (D2u) = f(x,∇u) ,

where F is fully nonlinear uniformly elliptic, α > −1, and f has growth at most of
order 1 + α in the gradient. Lipschitz regularity results are proved in [1], and C1,γ

regularity up to the boundary in the case α ≤ 0 in [2], for the Dirichlet problem with
homogeneous boundary conditions. Later, C1,γ interior regularity was obtained in
the case α > 0 by Imbert and Silvestre [11], when f does not depend on ∇u. These
results have been extended to the case where f depends on the gradient with growth
at most α + 1, and to boundary C1,γ results in the presence of sufficiently regular
boundary datum, in [3], [4], [5].

In this note we prove C1,γ interior and boundary regularity results when the
equation possesses some Hamiltonian ”superlinear” but at most ”quadratic” in the
gradient. More precisely, we consider equations of the form

− |∇u|αF (D2u) + b(x)|∇u|β = f(x) , (1.1)

where the coefficient functions b and f are continuous, and the exponents α and β
always satisfy α > −1 and α + 1 < β ≤ α + 2. On the second order operator F ,
we assume it is a continuous function F : SN → R defined on the set SN of N × N

symmetric matrices, positively homogeneous of the degree one, and satisfying further
the uniform ellipticity condition

a tr(N) ≤ F (M +N)− F (M) ≤ A tr(N) , (1.2)

for any M,N ∈ SN , with N ≥ 0, for given positive constants A ≥ a > 0.
The considered equations include, as a very special case, the semilinear equation

−∆u+ b(x)|Du|β = f(x)

with 1 < β ≤ 2, and it is for this reason that the growth of the first order terms of
equations (1.1) is referred to as ”superlinear” and ”subquadratic”.
The definition of viscosity solution we adopt is the one firstly introduced in [1], which
is equivalent to the usual one in the case α ≥ 0, and, in any cases, allows not to test
points where the gradient of the test function is zero, except in the locally constant
case.

In the paper [7], we proved local and global Lipschitz regularity results for vis-
cosity solutions of (1.1). In particular, we showed that if u satisfies in the vis-
cosity sense equation (1.1) in a domain Ω ⊆ R

N , then, for any pair of bounded
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subdomains ω ⊂⊂ ω′ ⊂⊂ Ω, there exists a positive constant M depending on
a,A,N, α, β, ‖u‖L∞(ω′), ‖f‖L∞(ω′), ‖b‖W 1,∞ (ω′) and on ω, ω′ such that

|∇u(x)| ≤M a.e. in ω .

Our main result in the present paper reads as follows.

Theorem 1.1. Suppose that Ω is an open subset in R
N , that f ∈ C(Ω), and b ∈

W
1,∞
loc (Ω). Let u ∈ C(Ω) be a viscosity solution of (1.1) in Ω ⊆ R

N . Then, there

exists 0 < γ ≤ 1
1+α+ depending on the data, such that u belongs to C

1,γ
loc (Ω) and,

moreover, for any pair of subsets ω ⊂⊂ ω′ ⊂⊂ Ω one has

|∇u|C0,γ(ω) ≤ C1

(

|u|L∞(ω′), |b|W 1,∞(ω′), |f |L∞(ω′)

)

. (1.3)

Note that some more explicit bound is the following, depending on the Lipschitz
norm of u:

|∇u|C0,γ (ω) ≤ C

(

|u|W 1,∞(ω′) + |b|
1

1+α
∞ |u|

β
1+α

W 1,∞(ω′)
+ |f |

1
1+α

L∞(ω′)

)

.

Theorem 1.1 covers the case β ≤ α + 1, treated in [3]. We remark that the
arguments used in [3] are different and fail in the case β > α+ 1.

Furthermore, Theorem 1.1 include the results of [15] for α = 0. We observe that
in [15] the author uses essentially the ABP estimate of [12] for fully nonlinear elliptic
equations with quadratic growth in the gradient, and Caffarelli’s iterative method.
This method cannot be employed when α 6= 0. The main ingredients in the proof
of Theorem 1.1 are the Lipschitz continuity of solutions, a fixed point argument,
the existence and uniqueness result for Dirichlet problem proved in [7], and the C1,γ

estimates [8] for α = 0, of [11] and [4] for α > 0, and the one proved in Proposition
2.1 when α < 0 .

As an application of the C1,γ
loc regularity of viscosity solutions of equation (1.1), we

prove the uniqueness of the ergodic function associated with the considered operators.
Let us recall that, as recently proved in [6], if Ω ⊂ R

N is an open, bounded, C2

domain, if d(x) denotes the distance function from ∂Ω and if the operator F satisfies
the extra regularity assumption

F (∇d(x)⊗∇d(x)) is C2 in a neighborhood of ∂Ω , (1.4)

then, given a locally Lipschitz continuous datum f , there exists a unique constant
cΩ, called the ergodic constant or additive eigenvalue of F , such that the infinite
boundary condition problem

{

−|∇u|αF (D2u) + |∇u|β = f + cΩ in Ω
u = +∞ on ∂Ω

(1.5)
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has a solution u ∈ C(Ω), called ergodic function.
In Section 3 we will prove the following result.

Theorem 1.2. Let Ω ⊂ R
N be a bounded domain of class C2 and let F satisfy (1.2)

and (1.4). Assume further that α > −1, α + 1 < β < α + 2 and that f ∈ C(Ω) is
bounded and locally Lipschitz continuous. Then, problem (1.5) has a unique (up to
additive constants) solution, provided that, when α 6= 0, supΩ f < −cΩ and ∂Ω is
connected.

2 Proof of Theorem 1.1.

In all this section we set |v|W 1,∞ := |v|∞ + |∇v|∞.
We begin by proving some C1,γ interior estimate for the case β = 0, which com-

pletes the result in [2]. The proof is very similar to the one employed in [2], but
we reproduce it here for the sake of completeness. We denote by Clip some constant
such that, by [1], for any u ∈ W 1,∞(B(0, 1)) and for any g continuous and bounded
in B(0, 1), any solution w of

{

−|∇w|αF (D2w) = g in B(0, 1)
w = u on ∂B(0, 1)

(2.1)

satisfies

|w|W 1,∞(B(0,1)) ≤ Clip(|u|W 1,∞(B(0,1)) + |g|
1

1+α

L∞(B(0,1))). (2.2)

We then have the following

Proposition 2.1. Under the above assumptions, any solution w of (2.1) satisfies :
for any r < 1, there exists Cr such that

|w|C1,γ (B(0,r)) ≤ Cr(|u|W 1,∞(B(0,1)) + |g|
1

1+α

L∞(B(0,1))) (2.3)

Proof. This result is well known in the case α = 0, [8], while the case α > 0 is proved
in [11]. It remains to consider the case α < 0.

Take ǫ = 1
4Clip

and δ ≤ 1. Let

KR = {v ∈ C1(B(0, 1)) ∩W 1,∞(B(0, 1)), |v|W 1,∞ ≤ R}

where R is chosen large enough, fixed such that R ≥ |w|W 1,∞ and

R ≥ 2Clip(|f |∞(1 +R−α) +
R1+α

2Clip
) + |u|W 1,∞)
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which is possible since both −α and 1 + α are lesser than 1.
We define the map T : v 7→ wδ where wδ satisfies

{

−F (D2wδ) = (f − ǫ|v|αv + ǫ|w|αw)(δ2 + |∇v|2)
−α
2 in B(0, 1)

wδ = u on ∂B(0, 1).

The map T is well defined since the right hand side is continuous and bounded.
Furthemore, by (2.2) in the case α = 0, one has

|wδ|W 1,∞ ≤ Clip

(∣

∣

∣
(f − ǫ|v|αv + ǫ|w|αw)(δ2 + |∇v|2)

−α
2

∣

∣

∣

∞
+ |u|W 1,∞

)

≤ Clip

(

(|f |∞ + 2
R1+α

4Clip
)(δ−α +R−α) + |u|W 1,∞

)

≤ Clip

(

|f |∞(1 +R−α) +
R

2Clip
+
R1+α

2Clip
+ |u|W 1,∞

)

≤ R

by the choice of R. hence, KR is a closed convex set invariant for T . Moreover, T
is a compact operator ( see [1]) so that, by Schauder’s theorem, T possesses a fixed
point denoted by wδ. Note that wδ has a Lipschitz norm independent of δ : indeed,
using the convexity inequalities

ǫδ−α|wδ|
1+α
∞ ≤ (1 + α)ǫ|wδ |∞ + (−α)(δǫ)−α

and
|f + ǫ|w|αw|∞|wδ|

−α ≤ (−α)ǫ|wδ |∞ + ǫ
α

1+α (|f |∞ǫ|w|
1+α
∞ )

1
1+α ,

one gets that

|wδ|W 1,∞ ≤ 2Clip

(

ǫ
α

1+α (|f |∞ǫ|w|
1+α
∞ )

1
1+α + (−α)(δǫ)−α + |u|W 1,∞

)

.

Furthermore by (2.3) in the case α = 0, wδ satisfies

|wδ|C1,γ(B(0,r) ≤ Cr

(

(|f |∞ +
|w|W 1,∞

4Clip
+

|wδ|W 1,∞

4Clip
)(1 + |wδ |

−α
W 1,∞) + |u|W 1,∞

)

(2.4)

Note that wδ satisfies

{

−(δ2 + |∇wδ|
2)

α
2 F (D2wδ) + ǫ|wδ|

αwδ = f + ǫ|w|αw in B(0, 1)
wδ = u on ∂B(0, 1)
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Using the estimate (2.4) which is independant on δ, up to subsequence, wδ con-
verges locally uniformly when δ goes to zero, towards a solution w of

{

−|∇w|αF (D2w) + ǫ|w|αw = f + ǫ|w|αw in B(0, 1)
w = u on ∂B(0, 1)

By uniqueness of solutions of such equation ( see [1]), one gets that w = w and
then by (2.4), w is C1,γ in B(0, r). To get the precise estimate (2.3) let us observe
that since w is C1, then it is a solution of

{

−F (D2ϕ) = |∇w|−αf in B(0, 1)
ϕ = u on ∂B(0, 1)

In particular one has by ( 2.3) in the case α = 0:

|w|C1,γ (B(0,r)) ≤ Cr(|∇w|
−α
∞ |f |∞ + |u|W 1,∞)

≤ Cr(|f |
1

1+α
∞ + |w|W 1,∞ + |u|W 1,∞)

≤ Cr(1 + Clip)(|f |
1

1+α
∞ + |u|W 1,∞)

So we get (2.3) with Cr replaced by Cr(1 +Clip). In the following we will denote for
simplicity Cr this constant.

We now recall the Lipschitz estimate proved in [7].

Theorem 2.2. Suppose that F is uniformly elliptic, f is continuous in B(0, 1), b is
locally Lipschitz continuous in B(0, 1), α > −1 and β ∈ (0, α + 2]. Let u be a locally
bounded viscosity solution of

−|∇u|αF (D2u) + b(x)|∇u|β = f(x) in B(0, 1)

Then u is locally Lipschitz continuous in B(0, 1), that is, for any r < r′ < 1, there
exists some constant c depending on the ellipticity constants of F , on r, r′ and on
universal constants, such that

|u|W 1,∞(B(0,r)) ≤ c(|u|L∞(B(0,r′)), |f |L∞(B(0,r′)), |b|W 1,∞(B(0,r′)))

Furthermore, if u and f are bounded and b is bounded and Lipschitz continuous in
B(0, 1), then u is Lipschitz continuous in B(0, 1) and there exists c such that

|u|W 1,∞(B(0,1)) ≤ c(|u|L∞(B(0,1)), |f |L∞(B(0,1)), |b|W 1,∞(B(0,1)))
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Remark 2.3. The assumption that b is Lipschitz continuous is needed only in the
case β = α+ 2. For the case β < α+ 2, b bounded is sufficient.

Since we want to prove local estimates inside B(0, r), we can suppose that u is
Lipschitz continuous on the whole of B(0, 1) and we will set M = |u|W 1,∞(B(0,1).

Proof of Theorem 1.1. We will use both a truncation method, and a fixed point
argument. The previous estimate (2.3) will then enable us to say that a solution of
(1.1) is locally C1,γ .

In the following, TM will denote the truncation operator at the level M , more
precisely TM (s) = inf{|s|,M} s

|s| .

Let ǫα = 2
−1−

(−α)+

1+α

Clip
. Let us observe that using (2.2), when g is continuous and

bounded, the unique solution w, ( see [1]) of

{

−|∇w|αF (D2w) + ǫ1+α
α |w|αw = g in B(0, 1)

w = u on ∂B(0, 1)

satisfies

|w|W 1,∞(B(0,1) ≤ 21+(−α)+

1+α Clip(|g|
1

1+α
∞ + |u|W 1,∞)

Indeed, by (2.2)

|w|W 1,∞(B(0,1) ≤ Clip(|g − ǫ1+α
α |w|αw|

1
1+α
∞ + |u|W 1,∞))

≤ 2
(−α)+

1+α Clip(|g|
1

1+α
∞ + ǫα|w| + |u|W 1,∞))

≤
|w|W 1,∞(B(0,1)

2
+ 2

(−α)+

1+α Clip(|g|
1

1+α
∞ + |u|W 1,∞).

Let

R = 21+
(−α)+

1+α Clip

(

∣

∣|f |∞ + ǫ1+α
α |u|1+α

∞

∣

∣

1
1+α + (|b|∞M

β)
1

1+α + |u|W 1,∞(B(0,1)

)

,

define
KR = {v ∈ C1 ∩W 1,∞(B(0, 1)), |v|∞ + |∇v|∞ ≤ R},

and note that KR is a closed convex set in C1 ∩W 1,∞(B(0, 1)). We also define the
map T : v → w where w is the unique solution, ( see [1]) of

{

−|∇w|αF (D2w) + ǫ1+α
α |w|αw =

(

f + ǫ1+α
α |u|αu− b(x)TM (|∇v|)β

)

in B(0, 1)
w = u on ∂B(0, 1)
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w is well defined since the right hand is continuous and bounded. By ( 2.2 ) w satisfies

|w|W 1,∞(B(0,1) ≤ Clip

(

(|f |∞ + ǫ1+α
α |u|1+α

∞ + |b|∞M
β)

1
1+α + |u|W 1,∞(B(0,1)

)

≤ 2
(−α)+

1+α Clip

(

(|f |∞ + ǫ1+α
α |u|1+α

∞ )
1

1+α + (|b|∞M
β)

1
1+α + |u|W 1,∞

)

≤ R

by the choice of R, hence T sends KR into itself. Furthermore by classical uniform es-
timates,(see [1]), T is a compact operator. Then, by Schauder’s fixed point Theorem,
it possesses a fixed point w which then satisfies
{

−|∇w|αF (D2w) + b(x)|TM (∇w)|β + ǫ1+α
α |w|αw = f + ǫ1+α

α |u|αu in B(0, 1)
w = u on ∂B(0, 1)

(2.5)
Recall that |∇u| ≤ M , then u satisfies the same equation. By a mere adaptation of
the comparison principle in [1], there is uniqueness of the solution to ( 2.5) , hence
u = w̄ and by (2.3) one gets that u is C1,γ for the γ allowed by (2.3).

�

Remark 2.4. Let us observe that, in the case α ≤ 0, and if the operator F is convex
or concave in the Hessian argument, then we can repeat the above proof with the
C

1,γ
loc estimates replaced by the W 2,p

loc estimates, for any 1 < p < ∞, see [8, 9]. This
yields the local a priori estimate, for any ω ⊂⊂ ω′ ⊂⊂ Ω

‖u‖W 2,p(ω) ≤ Cp

(

‖u‖L∞(ω′), ‖f‖L∞(ω′), |b|W 1,∞(ω′)

)

for any viscosity solution u of equation (1.1).
Furthermore, suppose that Ω ⊂ R

N is a smooth bounded domain, that f ∈ C(Ω),
b ∈W 1,∞(Ω), that u is a viscosity solution of (1.1) in Ω, which satisfies the boundary
condition u = ψ on ∂Ω, with ψ ∈ C1,γ0(∂Ω), by using the up to the boundary
estimates of [17], [3], we obtain the global regularity bound

‖u‖C1,γ (Ω) ≤ C
(

‖ψ‖C1,γ (∂Ω), ‖f‖L∞(Ω), |b|W 1,∞(Ω)

)

for some exponent γ ≤ inf(γ0,
1

1+α+ ).

Remark 2.5. As in [15], we can extend our results (only for α ≤ 0) to the case
where F (M) is replaced by F (p,M), satisfying the following structural assumptions:
there exist positive constants µ, b such that for any (p, q) ∈ (RN )2, (X,Y ) ∈ (SN )2

one has

−b|p− q| − µ(|p|+ |q|)(|p − q|) + M−(X − Y )

≤ F (p,X)− F (q, Y )

≤ M+(X − Y ) + b|p − q|+ µ(|p|+ |q|)(|p − q|)

8



where M+ and M− denote the Pucci extremal operators. The fixed point argument
and the truncation method can be easily adapted to this case.

3 Gradient estimates and proof of Theorem 1.2.

As an application of the regularity results proved in the previous section, we now
focus on the ergodic pairs associated to the class of operators we are considering.

Precisely, given a function f ∈ C(Ω), let cΩ ∈ R be a constant for which there
exist solutions u ∈ C(Ω) of the infinite boundary value problem (1.5).
In [6] we gave sufficient conditions for the existence of ergodic pairs (cΩ, u) which solve
(1.5), and we proved the uniqueness of cΩ in some cases. Here, we are concerned in
particular with the uniqueness of u.

As proved in [6] and recalled in the introduction, the rate of boundary explosion
of any ergodic function can be made precise assuming that the operator F satisfies
the ”boundary” regularity condition

F (∇d(x)⊗∇d(x)) is a C2 function in a neighborhood of ∂Ω . (3.1)

Here, d(x) denotes the distance function from ∂Ω, and it is of class C2 in a neighbor-
hood of ∂Ω by the regularity assumption on the domain. Condition (3.1) is certainly
satisfied if the domain Ω is of class C3 and the operator F is C2, but there can be
also cases with non smooth F satisfying (3.1) in C2 domains. For instance, when
F (M) depends only on the eigenvalues of M , as in the case of Pucci’s operators,
F (∇d(x)⊗∇d(x)) is a constant function as long as |∇d(x)| = 1.

Under assumptions (1.2) and (3.1) on F , and if f ∈ C(Ω) is locally Lipschitz
continuous, bounded from below and satisfying

lim
d(x)→0

f(x)d(x)
β

β−α−1 = 0 ,

then ergodic pairs (cΩ, u) exist, and any ergodic function u satisfies

lim
d(x)→0

u(x) d(x)χ

C(x)
= 1 if χ > 0, (3.2)

and

lim
d(x)→0

u(x)

| log d(x)|C(x)
= 1 if χ = 0 , (3.3)

where

χ =
2 + α− β

β − 1− α
,

9



and, for x in a neighborhood of ∂Ω,

C(x) = ((χ+ 1)F (∇d(x) ⊗∇d(x)))
1

β−α−1 χ−1 if χ > 0,

C(x) = F (∇d(x) ⊗∇d(x)) if χ = 0.
(3.4)

Let us now observe that any ergodic function verifies the assumptions of Theorem
1.1, so that it is a C1,γ

loc (Ω) function and satisfies the local a priori bound (1.3). This
regularity property, jointly with the asymptotic estimates (3.2), allows us to precise,
at least in the case χ > 0, the boundary asymptotic behaviour of its gradient. We
obtain the analogous of the result proved in [14] for Laplace operator and in [13] for
p-Laplace operator.

Theorem 3.1. Assume that F satisfies (1.2) and (3.1), let f ∈ C(Ω) be bounded and
suppose that χ > 0 (i.e. β < α+ 2). Then, for any ergodic function u, one has

lim
d(x)→0

d(x)χ+1∇u(x) · ∇d(x)

C(x)
= −χ . (3.5)

Proof. Let us consider, for x0 ∈ ∂Ω fixed and δ > 0, the function

uδ(ζ) = δχu(x0 + δ ζ) ,

defined for ζ ∈ 1
δ (Ω− x0).

By (3.2), one has

lim
δ→0

uδ(ζ) =
C(x0)

(∇d(x0) · ζ)
χ

locally uniformly with respect to ζ in the halfspace H = {ζ ∈ R
N : ζ · ∇d(x0) > 0},

and uniformly with respect to x0 ∈ ∂Ω. In particular, uδ is locally uniformly bounded
in H.

Moreover, by direct computation, uδ satisfies the equation

−|∇uδ|
αF (D2uδ) + |∇uδ|

β = δ
β

β−α−1 [f(x0 + δ ζ) + c] in
1

δ
(Ω− x0) .

Thus, as a consequence of Theorem 1.1, uδ belongs to C1,γ
loc (H) and verifies estimate

(1.3). This implies that uδ is converging in C1
loc(H), and, therefore,

lim
δ→0

∇uδ(ζ) = −χ
C(x0)∇d(x0)

(∇d(x0) · ζ)
χ+1

locally uniformly with respect to ζ ∈ H and, again, uniformly with respect to x0 ∈
∂Ω.
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Hence, we deduce that

lim
δ→0

d(x0 + δ ζ)χ+1∇u(x0 + δ ζ) = −χC(x0)∇d(x0)

locally uniformly with respect to ζ ∈ H and uniformly with respect to x0 ∈ ∂Ω. This
immediately yields (3.5).

Remark 3.2. In the case χ = 0, one can try to use an analogous argument as above,
and to consider the function

uδ(ζ) = u(x0 + δζ) + C(x0) log(δ) .

By Theorem 4.2 and Theorem 6.3 of [6], it follows that uδ is uniformly bounded.
Moreover, arguing as in the above proof, we obtain that uδ actually converges in
C1
loc(H) to a solution of

{

−|∇v|αF (D2v) + |∇v|2+α = 0 in H

v = +∞ on ∂H

Using the same argument as in Section 4 of [11], one gets that v satisfies

{

−F (D2v) + |∇v|2 = 0 in H
v = +∞ on ∂H

Now, consider first the case when F is a linear operator, that is F (M) = a tr(M).
Then, defining ϕ = e−v/a , one sees that ϕ is positive and harmonic in H, and it
satisfies zero boundary conditions. Hence, ϕ(ζ) = c∇d(x0) · ζ for some constant
c > 0. Coming back to v, one gets that v(ζ) = −a log∇d(x0) · ζ − a log c, and, by
the local C1 convergence of uδ to v, we conclude that

lim
δ→0

δ∇u(x0 + δ ζ) = −
a∇d(x0)

∇d(x0) · ζ
.

Observing that in this case a = C(x0), we deduce for linear operators the asymptotic
gradient behaviour

lim
d(x)→0

d(x)∇u(x) · ∇d(x)

C(x)
= −1 ,

which is the analogous of (3.5) for χ = 0.
For general F , an analogous result could be obtained as a consequence of the

following Liouville type result: if u is a solution in the half space H = {xN > 0} of

{

−F (D2u) + |∇u|2 = 0 in {xN > 0}
u(x′, 0) = +∞,
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then there exists some constant c such that

u(x) = F (eN ⊗ eN )| log xN |+ c .

By the time being, this is an open question.

We are finally in the position to prove the uniqueness, up to additive constants,
of the ergodic function.

Proof of Theorem 1.2. By Theorem 3.1, any ergodic function u satisfies the asymp-
totic gradient boundary behaviour (3.5). Hence, there exists a positive constant C
such that |∇u| ≥ Cd−χ−1 for d < δ . We can suppose that δ is so small that
(β − 1− α)Cd−(χ+1)β > 2|f |∞(1 + α).

Suppose now that u and v are two ergodic functions related to the same ergodic
constant cΩ. Recall that Ωδ = {x ∈ Ω, d(x) < δ} and consider uǫ = (1− ǫ)u. Let for
further computations cα and cβ some positive constants so that for ǫ < 1

2 ,

|(1− ǫ)1+α − 1 + (1 + α)ǫ| ≤ cαǫ
2

|(1− ǫ)β − 1 + βǫ| ≤ cβǫ
2

and take ǫ < β−α−1
4 infΩδ

|∇u|β

(cα+cβ)(|∇u|β+|f+c|∞)
. Then, uǫ is a strict sub-solution in

Ωδ. Indeed

−|∇uǫ|
αF (D2uǫ) + |∇uǫ|

β − (f + cΩ)

= (1− ǫ)1+α
(

−|∇u|αF (D2u) + |∇u|β − (f + cΩ)
)

+ ((1− ǫ)β − (1− ǫ)1+α)|∇u|β + (f + cΩ)((1 − ǫ)1+α − 1)

≤ −ǫ(β − 1− α)Cd−(χ+1)β + |f + cΩ|∞ǫ(1 + α)

+ ǫ2(cα + cβ)
(

|∇u|β + |f + c|∞

)

< 0

By the asymptotic behavior both of u and v, let Vǫ a neighborhood of the boundary on
which uǫ < v. Applying the comparison principle in Ωδ \Vǫ (see [1]), when one of the
sub- (super-) solution is strict, one gets that uǫ ≤ v+supd=δ(uǫ− v) in Ωδ \Vǫ, hence
finally in the whole of Ωδ, Passing to the limit one gets that u ≤ v + supd=δ(u − v)
in Ωδ. On the other hand, using the comparison principle without zero order terms
when sup(f + cΩ) < 0, proved in [6], one gets that u ≤ v + sup∂Ωδ

(u− v) in Ω \ Ωδ.
We need to prove that u indeed coincides with v+supd=δ(u− v) := v+m. The step
before says that the supremum of (u− v) in Ω is achieved on d = δ, hence inside Ω.
When α = 0, the strong maximum principle implies that u = v +m.
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When α 6= 0, suppose that ∂Ω has only one connected component, then Ωδ is
connected. We want to prove that in the whole of Ωδ, u = v +m. Indeed note that
Ωδ has been chosen so that |∇u| ≥ Cd−χ−1 inside it, hence in particular ∇u 6= 0 in
Ωδ. Then there is an x̄ ∈ Ω, such that u(x̄) = v(x̄) +m, u ≤ v +m, and ∇u(x̄) =
∇v(x̄) 6= 0. Using the strong comparison principle in [4] one gets that there exists a
neighborhood Vx̄ of x̄ where u ≡ v +m. Denote Oδ = {x ∈ Ωδ, u(x) = v(x) +m}.
By the previous argument there is one ball B(x̄, r) so that B(x̄, r) ∩ Ωδ ⊂ Oδ. In
particular Oδ is non empty, and the same argument proves that Oδ is open. By
definition it is closed, so Oδ = Ωδ. Then applying the comparison Theorem without
zero order terms in Ω \ Ωδ, since we have on its boundary u = v +m one gets both
that u ≤ v +m and u ≥ v +m. Finally u = v +m.

�
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