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ERGODIC PAIRS FOR SINGULAR OR DEGENERATE FULLY
NONLINEAR OPERATORS

[SABEAU BIRINDELLI', FRANGOISE DEMENGEL? AND FABIANA LEONI!*

Abstract. We study the ergodic problem for fully nonlinear operators which may be singular or
degenerate when the gradient of solutions vanishes. We prove the convergence of both explosive solutions
and solutions of Dirichlet problems for approximating equations. We further characterize the ergodic
constant as the infimum of constants for which there exist bounded sub-solutions. As intermediate
results of independent interest, we prove a priori Lipschitz estimates depending only on the norm of
the zeroth order term, and a comparison principle for equations having no zero order terms.
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1. INTRODUCTION

In 1989, in a fundamental paper [21], Lasry and Lions study solutions of
—Au+|Vul?+ I = f(z) in Q (1.1)

that blow up on the boundary of 2. Here, ¢ > 1 and €2 is a C? bounded domain in R". Among other things,
they prove that in the subquadratic case ¢ < 2 there exists a unique constant cq, called ergodic constant, and
there exists a unique, up to a constant, solution of

—Ap+ |Vo|? —cq = f(x) in Q, ¢ = 400 on IN.

The couple (p, cq) is referred to as an ergodic pair. It is well known that for ¢ = 2, —cq is just the principal
eigenvalue of (—A + f)(+). The paper [21] generated a huge and interesting literature, also in connection with the
stochastic interpretation of the problem. In particular, Porretta in [24] observed a direct connection between
the ergodic pairs and the behavior as A — 0 of solutions of equation (1.1) satisfying homogeneous Dirichlet
boundary conditions. Moreover, a representation formula for the ergodic constant resembling the one known for
the principal eigenvalue is proved in [24] even for ¢ < 2.

Interestingly, while the concept of principal eigenvalue has been extended to fully nonlinear operators of
different types (see e.g. [7, 12]), the notion of ergodic constant has not been much investigated in fully nonlinear
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2 I. BIRINDELLI ET AL.

settings. The scope of this paper is to give a thoroughly picture of the ergodic pairs and the related blowing up
solutions and solutions with Dirichlet boundary condition for approximating equations.

We now detail the main theorems. In the whole paper € denotes a C2 bounded domain of RY; S denotes the
space of symmetric matrices in RY. We consider a uniformly elliptic homogenous operator F, i.e. a continuous
function F' : § — R satisfying:

there exist 0 < a < A such that for all M, N € S, with N > 0, and for all ¢ > 0,

(1.2)
atr(N) < F(M+ N)—-F(M) < Atr(N), F({tM)=tF(M).
We will always consider the differential operator

G(Vu, D*u) = —|Vu|*F(D?u) 4 |Vu|?

with « > —1 and o+ 1 < 8 < a + 2. This reduces to the Lasry Lions case for « =0 and a = A = 1.

Theorem 1.1. Suppose that f is bounded and locally Lipschitz continuous in ), and that F satisfies (1.2).
Consider the Dirichlet problems

—|Vul|*F(D?*u) + |Vul? = f in Q (13)
u=20 on 09, '
and, for A >0,
—|Vul*F(D?*u) + |[Vul? + Mu[*u=f in Q (1.4)
u=0 on Of. ’

The following alternative holds.

1. Suppose that there exists a bounded sub-solution of (1.3). Then the solution uy of (1.4) satisfies: (uy) is
bounded and uniformly converging up to a sequence A, — 0 to a solution of (1.3).
2. Suppose that there is no solution for the Dirichlet problem (1.3). Then, (uy) satisfies, up to a sequence
An = 0 and locally uniformly in €,
(a) uy — —o0;
(b) there exists a constant cq > 0 such that Nuy|*uy — —cgq;
(¢) cq is an ergodic constant and vy = uy + |ux|eo converges to a solution of the ergodic problem

—|Vu|*F(D?*v) + Vo] = f+cq  inQ
v = 400 on 0N

whose minimum is zero.

The standard notion of viscosity solution fails when the operator is singular, i.e., in this paper, when a < 0,
hence we will consider viscosity solutions as defined in [7].

When o = 0 and F is the Laplacian, Theorem 1.1 has been proved by Porretta in [24]. The case of p-Laplacian
operators is considered by Leonori and Porretta in [22].

We observe that Theorem 1.1 yields the existence of an ergodic constant, and a sign property, in the case
when the Dirichlet problem (1.3) does not have any solution. In order to show the existence of ergodic pairs
when problem (1.3) does admit (sub)solutions, it is enough to prove the existence, for A > 0, of solutions blowing
up on the boundary. This is achieved in Theorem 4.1, where we basically reproduce the construction given in
[21] of explosive sub- and super-solutions.
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However, in order to establish further properties of the ergodic constant (in particular, its uniqueness), we
need to prove new and refined boundary estimates for explosive solutions. These will be obtained under the
additional regularity condition

F(Vd(x) ® Vd(x)) is C? in a neighborhood of 99, (1.6)

where d(z) denotes the distance function from 9. We observe that (1.6) is certainly satisfied if the domain
Q) is of class C® and the operator F is C?, but there can also be cases with nonsmooth F satisfying (1.6).
For instance, for all operators F'(M) which depend only on the eigenvalues of M, such as Pucci’s operators,
F(Vd(z) ® Vd(z)) is a constant function as long as |Vd(z)| = 1.

Under condition (1.6), we will show that the ergodic constant cq is unique and that it shares some properties
with the principal eigenvalue. Let us recall that if v solves (1.5) with F = A and S =« + 2, then w=¢"" is a
positive solution of

{ —|Vw|*Aw + flw|*w = —cq|w|*w  in O,

w=0 ondQ,

that is —cq is the principal eigenvalue of the operator —|Vu|*Au + f|u|*u. This shows a deep relationship
between ergodic constants and principal eigenvalues, also confirmed by a Faber—Krahn inequality for the ergodic
constant of the Laplacian proved by Ferone et al. [19].

Even for 8 # a + 2 and F fully nonlinear, the ergodic constant can be characterized by an inf-formula
analogous to the one which defines the principal eigenvalues for fully nonlinear operators.

Following [6, 24], we define

pr=inf{p : Ip € C(Q), —|Ve|*F(D*p) + |Ve|® < f+ pu} .

Note that p* depends on f and €2, but if there is no ambiguity we will not precise this dependence.
Next, we state the second main result of the paper, which extends to the fully nonlinear case the analogous
results proved by Porretta [24] for Laplace operator.

Theorem 1.2. Suppose that f is bounded and locally Lipschitz continuous in 2, and that F satisfies (1.2) and
(1.6). Let cq be an ergodic constant for problem (1.5); then:

1. cq is unique;

2. cq=p";

3. the map Q — cq is nondecreasing with respect to the domain, and continuous;

4. if either « =0 or a # 0 and supq f + cq < 0, then p* is not achieved. Moreover, if ' CC Q, then
cqy < CQ.

In order to prove these results many questions need to be addressed. Clearly the first one is the existence
of solutions for (1.4) when A > 0, but even though it is fundamental, this is extraneous to the spirit of this
note and it can be found in [10]. The interested reader will see that it is done through a Perron’s procedure
i.e. constructing sub- and super-solutions of (1.4) together with a comparison principle and some Lipschitz
estimates depending on the L°° norm of the solution.

Theorems 1.1 and 1.2 are obtained by means of several intermediate results, most of which are of independent
interest. A first fundamental tool is an interior Lipschitz estimate for solutions of equation (1.4) that does not
depend directly on the L> norm of the solution but only on the norm of the zero order term. In the linear case,
these kind of estimates were obtained by Capuzzo et al. [13], and the proof we use is inspired by theirs. In order
to extend the result to the present fully nonlinear singular case, we have to address several nontrivial technical
difficulties, see Section 2. After that, we give the proof of Theorem 1.1 in Section 3.
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In Section 4, we focus on existence and estimates for explosive solutions of the approximating A-equation,
i.e. solutions u of

—|Vul|*F(D?*u) + |[Vu|? + Mu|[*u = f in Q
{ u = +00 on 0f.
Here, the function f is assumed to be continuous in 2, but it is allowed to be unbounded on the boundary, as
long as its growth is controlled. This is an important feature that will be needed in the proof of Theorem 1.2.
Construction of explosive solutions in the fully nonlinear setting includes the works by Alarcén and Quaas [1],
by Esteban et al. [18] and by Demengel and Goubet [17], where only suitable zero order terms are considered.
Capuzzo Dolcetta et al. [14, 15] construct radial explosive solutions in some degenerate cases. The construction
we do in order to give existence and estimates of blowing up solutions differs from the standard proof for linear
operators (see Rem. 4.3), and we obtain solutions satisfying nonconstant boundary asymptotics. Moreover, our
proof can be carried on for other classes of operators, as e.g. the p-Laplacian or some generalizations such as
F(p, M) = |p|*(q1trM + q2M|§|2p),

with ¢; > 0 and ¢; + g2 > 0. Note that the above operator reduces to the p-Laplacian for « = g2 = p — 2 and
q1 = 1. When p > 2, using the variational form of the p-Laplacian, and its linearity with respect to the Hessian,
Leonori and Porretta proved in [22] such estimates and existence results. So, our result for av < 0 covers the
case 1 < p < 2 that was not considered there.

In Section 5, we give a comparison theorem for sub- and super-solutions of equation (1.3), in which zero order
terms are lacking. The change of equation that allows to prove the comparison principle of Theorem 5.1 is sort
of standard, but the computation which follows is original and ad hoc for our setting. The work of Leonori et al.
[23] has been a source of inspiration.

Finally, in Section 6, after proving the existence of ergodic constants and estimating the ergodic functions
near the boundary, we give the proof of Theorem 1.2.

Let us finally remark that we left open the question of uniqueness (up to constants) of the ergodic functions.
This is a delicate issue, strongly related with the simplicity of the principal eigenvalue for degenerate/singular
operators, which is in general an open problem, see [2, 8]. We recall that the usual proof for linear operators,
see [21, 24], relies on the strong maximum principle, which does not hold for degenerate operators. On the
other hand, for p-Laplacian operators the uniqueness of the ergodic function is obtained in [22] for p > 2 under
the condition supg, f + ¢ < 0. We believe that the proof given in [22] can be extended to the fully nonlinear
singular/degenerate setting, provided that one can prove the C17 regularity of the ergodic functions. We defer
this study to a future work [11].

Notations

— We use d(z) to denote a C? positive function in © which coincides with the distance function from the
boundary in a neighborhood of 92,

— For 6 >0, we set Qs ={z € Q : d(z) > d},

— We denote by M™, M~ the Pucci’s operators with ellipticity constants a, A, namely, for all M € S,

MFE(M) = Atr(M*) —atr(M™)
M= (M) =atr(M*) — Atr(M™)

and we often use that, as a consequence of (1.2), for all M, N € S one has

M™(N) < F(M + N) - F(M) < MT(N).
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2. A PRIORI LIPSCHITZ-TYPE ESTIMATES
In the note [10], we prove the following result
Theorem 2.1. Assume that f is bounded and continuous in 2. Then, for any A > 0, there exists a unique
solution uy € C(Q) of (1.4), which is Lipschitz continuous up to the boundary, and satisfies
[uxlwieo (@) < C(lurloos [f = Mua|"usloo, a; A, @, B).
This is obtained, through Perron’s method, by constructing sub- and super-solutions and using the following
general comparison principle.

Theorem 2.2. Suppose that b is Lipschitz continuous in 2, ( : R — R is a nondecreasing function and f and
g are continuous in ). Let u be a bounded by above viscosity sub-solution of

~|Vul*F(D?u) + b(2)|Vul” +((u) < g
and let v be a bounded by below viscosity super solution of

—|Vo|*F(D?*v) 4 b(z)|Vo|? + C(v) > f.

If either g < f and C is increasing or g < f then, u < v on 02 implies that u < v in ).

For the proofs of the above results we refer to [10].
The rest of this section is devoted to prove a prior: Lipschitz estimates for solutions of the equation

— |Vu|*F(D?u) + |Vaul® + AMu|®u = £, (2.1)

that depend on A|u|% !, but not on |u|s. Our estimates will be a consequence of the following result, in which
we denote by B the unit ball centered at the origin in RV,

Proposition 2.3. Let F satisfy (1.2) and, for A > 0,a > —1 and 8 > a+1, let u and v be respectively a bounded
sub-solution and a bounded from below super solution of equation (2.1) in B, with f Lipschitz continuous in B.
Then, for any positive p > %, there exists a positive constant M, depending only on p,a, B,a, A, N, || f —

Mu|%u||oo and on the Lipschitz constant of f, such that, for all x,y € B one has

u(z) —v(y) < s%p(u —v)t + M(1_|xy|_)?t‘fl {1 + <(m_y|)>p} .

Proof. We argue as in the proof of Theorem 3.1 in [13].
Let us define a “distance” function d which equals 1 — |x| near the boundary and it is extended in B as a C?
function satisfying, for some constant ¢; > 0,

d(z) =1— || if |z > 1
1_2‘””‘ <d(z) <1-—|z| for all z € B
|Dd(z)| <1, —c1Iy < D%*d(x) <0 for all z € B.

For ¢ = 279 e consider the function

oz, y) = (’“)Tu | (L + &) + sup(u — v)*
B

d(y
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Qta—p)* _ _ Bta”

where p > 0 is a fixed exponent satisfying p > “5—=——, 7 = =7

constants to be chosen later.
The statement is proved if we show that for all (x,y) € B2 one has

and L, k are suitably large positive

u(z) —v(y) < o(x,y).
By contradiction, let us assume that u(z) — v(y) — ¢(z,y) > 0 somewhere. Then, necessarily the supremum

is achieved on a pair (x,y) with  # y and d(x),d(y) > 0. Using Ishii’s lemma of [20], one gets that on such a
point (z,y), for all € > 0, there exist symmetric matrices X, and Y. such that

(Ve0, Xe) € T2 Tu(z), (—Vyo,—-Ye) € J> v(y)

(2.2)
- (1 + |D2¢|> Iy < ( )ée )(2 ) < D?¢ + e(D?*¢)%.

We proceed in the proof by considering separately the cases a > 0 and a < 0.

The case a > 0. Since u is a sub-solution and v a super-solution, by the positive 1-homogeneity of F' we
have in this case

{ —F (|V40|*Xe) + [Vao|® + Aul*u(z) < f(z)
—F (—|Vy0|2Y.) + [Vyo|? + Av[*v(y) > f(y)

Subtracting the above inequalities and using also that u(z) — v(y) > ¢(z,y) > 0, for any ¢ > 0 we can write

tF([Vag|*Xe) = [F (14 1) V20" Xe) = F (=|Vy0|*Yo)]
< Vol = Vaol? + f(2) = f(y),

and therefore

t|Veo® < F((14+1)|Vap|®Xe) — F (=|V,0|°Ye)
+Vyol? = [Vao|? +t (f = Mu*uw) " + f(z) - f(y).

By the uniform ellipticity of F, it then follows that

t|Vod|? < MY (14 6)|Ved|* X + |V 8| *Ye)
HVy 87 — |VaoP +t (f — AMul*w)" + f(z) — f(y).

By multiplying the right inequality of (2.2) on the left and on the right by

VI+HV,.0[ 2 In 0
0o V0|2 Iy

and testing the resulting inequality on vectors of the form (v,v) with v € R, we further obtain

(L+8)[Vad|* Xe + [Vyo|"Ye < Zop + O(e)
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with

o (03 « t (0%
Zay = (1+ DIV,01 D26 + VT VL0129, 6|/2 [D2,6 + (D2,0)'] + IV, 01° D2,6

Hence, after letting e — 0, we get
t1V2dl® < MY (Zay) +|Vyol” = [Vadl” +t (f = Aul*w) " + f(z) = f(y).

We now proceed by evaluating the right hand side terms of (2.4).

=Y. one has

An explicit computation shows that, setting n = |§(y§‘ and ¢ = =4

V.d(z,y) = d(’;) (L + (1+p)EP)C — peP'Vd(a)]

as well as

V(. y) = d(]?j) L+ (1+p)E)C + 0 (L +€°) Vd(y)] .

(2.3)

(2.4)

From now on we denote with ¢ possibly different positive constants which depend only on p, N, a, A, o and (.

As discussed in [13], for L > 1 fixed suitably large depending only on p, one has

1+ SPJrl

Vzo| > ck
Vool Ny

and

1+ §P+1

|vm¢| y |Vy¢| < CkW .

Moreover, we notice that one has also

k
V0] 2 o [+ (L) = mn(L+ @)V = chgite if 7o < 5
On the other hand, the second order derivatives of ¢ may be written as follows
k [IL+(1+p)¥E] &t 3
D2,¢ = B+ p(1 T—p(l+p)— (C+C"
e = G0 { F— T +p) G T =+ p) g0y (C+C)
1
+p(1 + p) §p+ Vd(z) @ Vd(z) — ng“D?d(x)}
(z)
ko [IL+ 1+ p)Er] & ¢
D2 ¢=— B+p(l+p)>—~T—p(l+p)——C"
w d(y)f{ |z —yl s +p)d(m) P +p)d(x)
LD, T8 g o )
) dy) OV

(2.5)

(2.7)
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E - [[L+(1+p)EP] =t T [L+ (1 +p)EP] ¢
{ ooy BT g ()

Djygb = d(y)

LT+ lg(zgﬂ ) Ga(y) @ Vd(y) - (L + 5P>D2d<y>}

with B=Iy—(®(, T=¢(®(, C=(®Vd(z) and E=(® Vd(y).
Therefore, the matrix Z, ; defined in (2.3) is given by

o { (Vi - @) (B by ) S ]

_ a/ a/2 a/ T(L—f—(l—i—p)fp) t
V12 (VIFETagl? — [V,0]*/) T2 B (B4 )

+p(1 +1)|V.0|* {qu) ® Vd(z) — §p+1D2d(x)}

VIT VL0V, ¢|“/2”’f( — Vd(z) © Vdly) + Vd(y) & Vi)

Za,t =

sVl | S 0 va) - e + %) |

and, recalling that £ = |z — y|/d(x) and that d < 1 in B, this yields the estimate

2 1+€P
/ a2 /2
P
+F TV, W 012 - 19007

+|vy¢>|“/2]¢1+ \vmz V12|

a a/QL « é‘p
10V () T S IV (y)}.

By observing that

VIF V.17 = 19,0702 < (VEFT = 1)|Va0l*/? + ||V,0/°/2 — [7,0/°/?|

and by applying the trivial inequalities v1 +t—1 <t, 1+t (\/t +1- 1) <t, Vv1+t<1+t, after rearranging
terms we then deduce

k 14¢p
M (Zoy) < — {t2 Ve d|®
( ,t) d(y)T | ¢| | y|

W&+ +5 /21y plal? <1+5P+5P+1 ¢ )}
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2 1+€P
|z — yl

+ (V2012 = [V, 91°?)

a/2 a/2 a/2§7p a/21+€p)
+ [19201o02 = 19,00 (1920102 5 4 19,0172 1S
(1+&P)n

€p+1 EPH
d(y)

d(x)

+|Vap|*>— + | Vyo|* + |vz¢|“/2vy¢|“/2}.

d(y)

We now recall that, as proved in [13], for all ¢,y > 0 one has

e o 1+ €q+'y
d()r = dy)

(2.9)

Moreover, if @ > 2, the mean value theorem, the bounds (2.6), (2.9) and the explicit expression of V¢ + V¢

imply that

[IV20|/2 = |Vy¢|*/?] < ¢ max {|V,0|*/271, |V, 9|4/} Voo + Vol

(1 + £P+1)o¢/271 gp 1+ gp
a/2(r+1)—1 + ‘»T - y\

d(y)e/2(r+1) d(z) = d(y)

< Cka/Q

|z —yl.

Analogously, if a < 2 but 7 < 1/2, from (2.5), (2.7) and again (2.9) we deduce

py]/2—1 1 p+1
e e I e

and therefore, since & < 2—11 for n < QL, we obtain in this case
T— T

a/2
‘va¢|a/2 - |vu¢|a/2’ <ec |:k‘(1 + §P+1):|

W lz =yl
Finally, if & < 2 and 771 > 1/2, that is |z — y| > d(y)/27, we have
17201/ = [V, 017
a/2
o/2 k(1+ &) —y|
< <
— |VI¢ + vyd)‘ — c |: d(y)7-+1
p+1y7 /2 1—a/2 p+1y 7 /2

<o [MLTET) o ooy = RGNy

d(y)™+! d(y) d(y)T 2/

Thus, in all cases we obtain

1+ V|2

a/2
a/2 a/2
‘\Vz¢| 2 —|Vye|* ‘ <c |:kd(y)-r+max{1,2/a}:| lz —y| < CWM —yl.

(2.10)
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By using inequalities (2.6), (2.5), (2.9) and (2.10), from estimate (2.8) it then follows

1+§P+2}

+ >
M (Z()l,t) < d(y)a—i-Z

(2.11)

ck| Vi)™ [ 51 4+&P 1+ gpt2
t _
)" { gl lagerm TIETY

2+“:’f and T > 2(;—722—1)’ by using again (2.5), we further deduce

Moreover, since p >

1 p B-a —yl(1 p+2
M+(Za,t)§0klva:¢a{t2d R S AL S et (el )}

()7 |z =yl ke d(y)Trot2

Using the above inequality jointly with (2.4) yields

_ 1+¢&P (Va|?~ |z —y|(14£PF2)
tIVLb|P~ < ck{t? t
Vool < e { ey T ke d(y)Tra+?

+1Vao| 7 (IVy0l® = [Vadl?) +1[Vad| ™ (f — Aul*uw)™
Ve~ (f(2) — f(y)

and therefore, being 8 > « + 1, for k sufficiently large one has
s ch(L+€) _ cklz —y(1+ 82
dly)Tlz—yl = dy)Trer?
+ V2| (f = Alul*u) " + [Vag| " (f(2) = £(¥)) -

IVaglPe +1V2dl ™ (IVyl? ~ 17261%)

We now choose ¢ > 0 in order to maximize the left hand side, namely

o [Vadl () |z —y
4ck(1 + &P) )
We then obtain

E2(1 4 €21
d(y)27+a+2

(14€7) (IVy0l® — [V.0]”)

|z — yld(y)™

(1+&7) (f(=z) - f(y))}
|z — yld(y)" '

V92~ < C{ + k[Vao| ™

Ve 72 (f = Alul®u) " + K[V~

Moreover, arguing as for (2.10) in the case a > 2, we also have

(1 +€p+1)6

B _ B Bly J_

so that

E2(1 4 ¢(pt1))2 VL EPH1(1 4 gpt1)ftt
d(y)QT“‘a“‘Q z d(y)r(ﬁ+1)+5
k(1+¢P) }
diy)” J°

Va2 < c{
V202 4 [V~

for some constant C' > 0 depending now also on ||(f — A|u|*u)"||c and on the Lipschitz constant of f.



ERGODIC PAIRS FOR SINGULAR OR DEGENERATE FULLY NONLINEAR OPERATORS 11

By inequality (2.5) it then follows

- N A _ -
2(B—a) <« | B—2a -«
‘vz¢| <C { d(y)a+2 d(y)ﬁ + |Vx¢| + |vx¢‘
Vo2t v, pfet1+E
= c { ‘ ](jl-m + | ¢|kﬂ + |vx¢|B72a :

Recalling that « >0, 8 > a+1and 7 = FaTs We see that 2(B—a) =0 —a+1+ g > 2+ O‘T‘” Hence, from
the last inequality and from Young’s inequality, we obtain that

Ve < C

which gives a contradiction to (2.5) for k large enough.

The case a < 0. As proved in [9], if @ < 0 a sub-solution u and super-solution v of equation (2.1) satisfy
respectively in the viscosity sense

—F(D*u) + |VulP~ 4+ \|Vu|™u| < |Vu|~*f
—F(D%*0) + |Vo|? = + A\ V| =] > [V f.
From (2.2) in this case it then follows that
—F(Xo) + Va0~ + AV |~ |ul u(x) < [Vad| ™ f(2)
—F(=Y) + |[Vy 87~ + AIVyo| " [u|*v(y) > [Vy¢|*f(y)
and, arguing as in the previous case, we now obtain for any ¢ > 0

t[Va|?™ < MT (Zog) + [V~ = [Vad| "~ + V2™ (f = Alu|*u)
— (f = Aul®) (|Vyo|™* = [Vao| ™) + [Vyo| = (f(2) = f(v)),

where Zj , is defined by (2.3) (with a = 0).
By applying inequalities (2.11) (with a = 0), (2.5), (2.6), (2.10), in the present case, taking into account that
B—a>1and 0 < —a < 1, we deduce that

_ Vo> |[Veplfot!
AR a>gc{| +
IVedl aw? T dge

+ Ivmcblﬁm} :

for some constant C' > 0 depending on p, a, 8,a, A, N, || f — Au|*u||sc and on the Lipschitz constant of f. Since

now 7 = ﬂé —2+, we reach a contradiction for & sufficiently large as before. O

As in [13], the above proposition and a scaling argument for solutions of equation (2.1) give the following
result.

Theorem 2.4. Let F satisfy (1.2) and, for X\ > 0, > —1 and B > a+ 1, let u be a continuous solution of
equation (2.1) in Q C RN, with f Lipschitz continuous in Q. Then, u is locally Lipschitz continuous in Q and
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there exists a positive constant M, depending only on «, B,a, A, N, || f — Mu|*u||oc and on the Lipschitz constant
of f, such that at any differentiability point x € 2 one has

M
|VU($)| <—F7
distoq(z) a1
3. PROOF OF THEOREM 1.1

By using the Lipschitz estimates obtained in the previous section, we can now prove Theorem 1.1.

Proof of Theorem 1.1. Let uy be a solution of (1.4). We begin by giving a bound that will be useful in the
whole proof. Observe that u;\r is a sub-solution of

—[Vul[*F(D*uf) < |f]oo;

from known estimates, see [7], this implies that

_1
fuf oo < er FIET (3.1)

Let us consider first the case when there exists a sub-solution ¢ of (1.3). Then, ¢ — || is a sub-solution of
equation (1.4), and by the comparison principle we deduce uy > ¢ — |¢|so. Thus, in this case (uy) is uniformly
bounded in 2. The Lipschitz estimates in Theorem 2.1 then yield that uy is uniformly converging up to a
sequence to a Lipschitz solution of problem (1.3).

We now treat the second case, i.e. we suppose that (1.3) has no solutions. In particular |uy |« diverges, since
otherwise we could extract from (u)) a subsequence converging to a solution of (1.3).

On the other hand, since — (lf /‘\‘x’)m is a sub-solution of (1.4), by the comparison principle we obtain

o
uy, < (%) " which, jointly with (3.1), yields AMuy|iF® < e1|fleo- Hence, there exists (zy) C €2 such that

ux (7)) = —|ux]oo — —00 and there exists a constant cq > 0 such that, up to a subsequence, Auy|F® — cq.
We will show, as in [21] (see also [22] and [24]), that vy = ux + |ur]eo = ux — ux(zx) converges up to a
subsequence to a function v such that the pair (cq,v) solves (1.5).
Clearly, v satisfies in

—|Vur|*F(D%vy) + |Vm|ﬁ + Ao =+ )\(vf\”'l — ux|%uy) > f.
Next, we set

_2+a-0
T B-1-a’

and for s,y > 0 to be chosen sufficiently small, let us consider the function

)= @y v Gorsp 770 (32)

¢(z) = —o log(d(z) + s) + o log(dp +s) ify=0,
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where o = (('y + 1)%) Fre T y=lif v > 0, 0 = § if v = 0. A direct computation shows that, for d(x) < o with
0o small enough, in the case v > 0 one has

a+1 a+1 2 a+1
_ a N = (2 8 4o o~ a(oy)** A(o7) |Dd|os Ao
VOITMT(DZ9) + VOl + 267 < =50 =35G8 T (43 )07 D@D T (a5 5) D’

and, in the case v =0,

ot2 ATt D3|
_ «@ — D2 B 1+« < _ a [e’e} a+1 )
IVo|* M~ (D7) + |Vo|” + A =T d+ s)or? (d + s)@+D)

+ A (—olog(d + s))

In both cases, by the ellipticity of F' and for §; and s sufficiently small, we obtain
—|VO|*F(D?*¢) + [Vo|? + 20" < —|floo < f(x)  in Q\ Dy, .

Moreover, one has ¢ =0 < vy on 0Qs, and ¢ < |ux|eo = vy on O for A sufficiently small in dependence of s.
The comparison principle then yields

vy >¢>0 inQ\Qs,. (3.3)

Since vy (zy) = 0, from (3.3) we deduce that (x)) C Qs,. The interior Lipschitz estimate of Theorem 2.4 then
yields that vy = uy — ux(zy) is locally uniformly bounded and locally uniformly Lipschitz continuous. This
proves both statement 2a of the theorem and that (vy) is locally uniformly converging up to a subsequence to
a Lipschitz continuous function v, > 0 in Q. Moreover, since also (x)) converges up to a subsequence to some
point x, € Qs,, we obtain v,(x,) = 0. We observe further that, locally uniformly in €2, one has

J— o J—
1- )\ @ —_ 1 )\ a+1 |’U)\ |’u’>\‘00| (U)\ |u>\|00) — _ .
)\liﬁ] ‘U)\| UN AIL% |u>\|oo |UA|go+1 CcQ

This yields statement 2b and, letting A — 0 in the equation satisfied by vy, also that v, is a viscosity solution
of

_|VUO|QF(D27}0) + |Vvo|ﬂ =f+ecq.

Finally, letting A — 0 in inequality (3.3), we obtain v, > ¢ in Q\ Qs,, which in turn implies, by letting s — 0
and z — 0Q, that v,(z) = 400 as d(x) — 0. This completely proves statement 2c and concludes the proof of
the theorem.

O

4. EXPLOSIVE SOLUTIONS

In this section, we prove the existence of solutions of equation (2.1) blowing up at the boundary, which will
be used in the proof of existence of ergodic pairs. In what follows we drop the assumption on the boundedness
of the right hand side f, and we consider continuous functions in €2, possibly unbounded as d(z) — 0.

Let us introduce the nonnegative exponent

_2+a-4
Cpf-1-a’

which plays a crucial role in the next results.
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Let us start with a first existence result which follows by the same arguments used in [21] for the linear case,
but requires some additional technical care in the construction of explosive sub- and super-solutions, due to the
possible singularity of the involved operator.

Theorem 4.1. Let f € (a +1,a+ 2], A > 0 and let F satisfy (1.2). Let further f € C(2) be bounded from
below and such that

B

li d(z)F—1== =0. 4.2
Jim f@)d(a) (42)
Then, the infinite boundary value problem
—|Vu|*F(D%u) + |Vulf + Au|*u = f in Q, (4.3)
u = +00 on 08, ’

admits solutions, and any solution u satisfies, for all x € Q,

Co D, Co D, )
—— = <ylr) < ifv>0
d(z)y a1 (@) = d(z)” * \afT fr>0,
(4.4)
D, D, .
collogd(@)] — 2L < u(z) < Collogd(a) + 21 ify=0.

Ao+1 A o+1

for positive constants co, Co and Dy depending only on o, 3,a, A, |d|c2(q) and on f.
Proof. We give the proof in the case v > 0, the reader can easily see the changes to be made when ~ = 0.
We will get the conclusion by showing that equation (2.1) has a super-solution w and a sub-solution w?, for

any s > 0 sufficiently small, satisfying, for D = Dl/)\wLﬂ7
w(z) < Cod(x) ™"+ D,

w®(x) > co(d(x) +s)™7" =D,

for all x € Q, with equalities holding in a neighborhood of 0f2.
Assume for a while that this is proved. Then, for any R > 0, we can consider the solution ug of

—|VUR|QF(D21LR)+|VUR|B+>\|UR|QUR:fR in Q
ugr =R on 0f),

with fr = min{f, R}. By Theorem 2.2, ur is monotone increasing with respect to R and satisfies w® < ur < w,
provided that R > maxgq w®(z). Moreover, ug is uniformly locally Lipschitz continuous by Theorem 2.1. Thus,
up is locally uniformly convergent as R — 400 to a solution u of (4.3) such that w® < u < w. By definition, u
is the so-called minimal explosive solution. The maximal explosive solution % is then obtained as the limit for
0 — 0 of the minimal explosive solutions in 5. Thus, it follows that for any solution u of problem (4.3) one has

cod(z) " —D<u<u<u<Culz) "+ D.
Let us now proceed to the construction of w and w?.
Let § > 0 be so small that in the set Q\ Q25 = {d(x) < 20} the function d satisfies |Vd| = 1. For x € Q\ Qas,

let us consider the function

p(x) = Cod(z)™7,
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with Cp =y~ (2A(y + 1))ﬁ. By a standard computation and assumption (4.6) on f, it is easy to see that
~[Vel* M (D) + [Vol|” > f
for ¢ small enough. Hence, for D > 0 and ¢1(z) = ¢(z) + D we obtain
—|V1|*F(D*¢1) + Vo1 [P + Apf ™ > f in Q\ Qs
Next, for € {6 < d(z) < 20}, we consider the function
p2(x) = %eer% +D,
which satisfies

IVipo| | F(D?p2)| + [Vo|? < K1 in Q5 \ Qas,

for a positive constant K; depending only on N,a,A,a and B. Thus, if D is chosen satisfying D >

[flLoe (05 +K1
A

)m, we obtain
— V| F(D?p2) + V2 |® + A3 ™ > f(z)  in Qs \ Qas .

We then conclude that the function

Cod(x)™"++D ford <6
W(x) =4 6 7C,eT™ 55 + D ford<d<?26
D for d > 26

is the required super solution in €. Indeed, in the set s, w is of class C? and it is a super solution by the
properties of ¢ and by the fact that locally constant functions satisfy |Vu|*F(D?u) = 0. On the other hand,
w is a super solution in Q \ Qys5 by the properties of 1 and ¢o and the fact that ¢o(z) < p1(x) for d(x) > 4.

1
As far as the sub-solution is concerned, for s > 0, cg = v~} (@) T and z € Q \ Qas, let us consider

the function

Symmetric computations as above give that
—|V* |*F(D*¢") + |[V@* " + Ng®|*9® < —|V@*|* M~ (D*¢%) + |[Ve* |7 + N¢®*|¢° < f(x),

for § and s sufficiently small, since f is bounded from below.

1
Moreover, for D > cod~7 + (%) **"the constant function ¢o(d + s)~7 — D is also a sub-solution in €.

Therefore, the function

w

s()_{gas(a:)—D in Q\ Qs
- co(0+8)"7Y =D in Qs
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is the wanted sub-solution.
O

In order to obtain refined boundary estimates for the explosive solutions, and to show uniqueness of solution
in some cases, we need to assume the extra regularity condition (1.6) involving both the operator F' and the
domain 2.

Under assumption (1.6), we denote by C(x) a nonnegative function of class C? in Q satisfying in a
neighborhood of 02

C(z) = ((y+ 1)F(Vd(z) ® Vd(z))) 7T 4~1 if >0,
C(z) = F(Vd(z) ® Vd(z)) iy =0,

(4.5)

where v > 0 is defined in (4.1).

Theorem 4.2. Let f € (a+1,a+ 2], A > 0 and let F satisfy (1.2) and (1.6). Let further f € C(Q) be bounded
from below and such that

f(x)d(z) === =0, (4.6)

lim
d(z)—0

for some v9 > 0. Then, any solution u of (4.3) satisfies: for any v > 0 and for any 0 < v < 9, with 1 < 1,
and v1 < v when v > 0, there exists D = with Dy > 0 depending on v,v1,a, B, a, A, |d|c2(q), |Clez(q)
and on f, such that, for all x € Q,

Dy
A1/ (a+1) 2

C(x) v C(x) v .
day ~ a@pn DSOS oy Y a2 >0 47)
llog ()| (C(x) — wd(x)™) — D < u(x) < |logd(x)] (C(x) + vd(x)™) + D ify =0.

Furthermore, the solution u is unique

— for a >0 and any 5,
2
— for a <0 and any B > 1‘{’_‘“ , provided that [ satisfies (4.6) with y9 > —a .

o

Proof. As in the previous proof, we detail only the case v > 0.

1. Refined boundary estimates.

By arguing as in the proof of Theorem 4.1, we get the conclusion by showing that, for every v > 0 and for
any 0 < < 9, with v3 < min{1,~}, there exist D = % > 0, a super-solution w and a sub-solution w?®,
for s > 0 sufficiently small, satisfying

w* (@) = C(a)(d+ )™ —v(d+s) 7" — D,
w C(z)d ™" +vd "™ + D,

for any x € ), with equalities holding in a neighborhood of 2.
Let § > 0 be so small that in the set Q\ Q95 = {d(x) < 26} the function d satisfies |Vd| = 1 and C satisfies
(4.5). For x € Q\ Qg5, let us consider the function

() = Cz)d(z)™" + vd(x)" ™7
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One has

Vo(z) = —y C(z)d™ 1 (1 + 1/(:;/0(’71)) d“) Vd+d Ve

and

2 _ 2 (=) (y=m1+1) g3
Dp(z) =~ (y+1)C(x)d <1+VWdV>Vd®Vd

O (z)d ! (1 + u%d”) D%d

—yd= "1 (Vd® VC + VC @ Vd) + d~-"D2C .

By ellipticity of F and by definition of C(z) it then follows

F(D?p)

IN

C(x
V(W;wlﬁz( ) (1 er(vvzf'lyl(z)cv(i)rl)d%) (Vd @ Vd) + dwl

z))P—e
GO (14 L) 4

17

for a constant K; > 0 depending on v,«, 3,71, a, A,|D?d|~ and |Clc2(q)- In what follows we denote by K.

1 =1,2..., different constants depending on these quantities.
Hence, we obtain

—|Vp|*F(D?p) 4 |V|?

2B
> Vol [~

L v R ) — i + Vel

C(x))P—« 1 1 ) )
> [Vl [~ RN (14 pOznlloan )
Reeia) (1 paz) dwyﬂ Kz}
d(‘H’U(B o) ’YC ;E FICEDICE R
« C(z))P~« 1
> [Vl |- e (1+v%2;>+z>&;t ) - S

(VC Y=1) v K>
d(w+1)(ﬂ ) 1404 5 (1 d") — e | -

oz+2 B
—a—1?

Recalling that v = we finally deduce

—|Vp|*F(D?p) + |V|?

o — C(z))P—>1
> |Vl Gl "(/}yl(};rm) (@] ngr)2)ﬂl _ dﬁl]

_ [0 C@)trv(y=—m1)d")Vd—d VC|* {1/ ('y—'n)(1+vl)(7 C(J;))ﬁ—a—l — Kadlm

dF—a—T 71 (+1)

Since 1 < 7, by assumption (4.6) on f the last inequality implies that, for ¢ sufficiently small,

—|Vo|"F(D%¢) + |Vl > f(z) in Q\ s,
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and therefore also that
~|Vp*F(D*p) + |Vl + Xp™*! > f(z)  in O\ Q5.
Clearly, the same inequality also holds for ¢1(x) = ¢(x) + D, for any D > 0. The function ¢; can then be
extended to the whole of ) as in the proof of Theorem 4.1, and this construction yields the super-solution .
As far as the sub-solution is concerned, for s > 0, v > 0 and € Q \ Q95, let us consider the function
* () = C(z)(d(x) +5)77 = v(d(z) + )77
Analogous computations as above give that

—| Vs |*F(D%*p%) 4 |[V* [P 4 Ao |*p*

sla Cl(zx B—a—1 _ 5 a+1
N B LC U CEE S S [N W )

for § and s sufficiently small, since f is bounded from below.
The function ¢*(z) — D, for suitable large D > 0, can then be constantly extended in €2 in order to give the
wanted sub-solution w?.

2. Uniqueness.

We prove that u = w.

Remark that, by estimates (4.7), for any 6 < 1 and for any ¢ € R, there exists § such that u(x) — ¢ < u(x)
for d(z) < 4.

The case a > 0. Observe that, for all £ € R and ¢ > 0, one has
[t —c|*(t —c) — |t|*t < —27 T,
From this, we deduce that
—|V (0T — ¢)|*F (D*(0u — c)) + [V(0T — ¢)|” + 0T — c|*(07 — ¢) < 07T f(x) — A2~ %,

and the choice

1

e} _ pa+l — aF1
c—ce—<2 a 9/\ )\f °°>

then yields
—|V(0T — ¢)|*F (D?(0u — ¢)) + |[V(0u — ¢)|? + A|6u — c|*(0u — c)
<Ot f(x) = (1 =0 f oo < (o).

By applying Theorem 2.2, it then follows that 6u — ¢y < u in €, and letting § — 1 we obtain the uniqueness of
the explosive solution in the case a > 0.

The case a < 0. In this case we use the inequality
[t —c|*(t—c) — [t|t < —2%(a+ 1)K,

which holds true for all 0 < ¢ < K and t € R such that |t| < K.
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Let Cy = supg [a(z)|d(x)?, which is finite by (4.7). Then, for any § > 0, one has |u| < % in Q5. Therefore,

forany0<9<1and0<c<%,andformeﬂg,wehave

—|V(6u — ¢)|*F (D?*(0u — ¢)) + |V (67 — ¢)|? + A|6u — c|*(0u — c)
<0°THf(x) — A2C)%(a+ 1)dc.
We choose, as before,

c=c _ |f7|oo(179a+1)
00 XN(2C) (e + 1)5—o7

which is admissible for § sufficiently small, since « > —1. This yields
—| V(0T — c,5)|*F (D?*(0 — co.5)) + |V (0T — co,5)|” + N0T — co,5|*(0T — co5) < f in Qs.
On the other hand, by estimates (4.7) with v = 1, we have
0u—cops <u on s

provided that

With this choice of §, we then deduce from Theorem 2.2 that 6w — ¢y, < u in {5,. Finally, we let § — 1. We
observe that, by the restrictions assumed on § and f in the case a < 0, we can choose y; satisfying v1 > —ay.

Therefore, cp 5, — 0 as § — 1, and we conclude that 7 < u in €.
O

Remark 4.3. Let us put in evidence that estimates (4.7) imply that any solution u of (4.3) satisfies

u(z) d(z)” ue) e
| |

a0 C(z) 0 a()>0 | log ()| C(x)

Moreover, if f satisfies (4.6) with o = 0, then necessarily v; = 0 and (4.7) reduce to

(C(z) —v)d(x)™ = D <wu(z) < (C(x) +v)d(x) Y+ Dif vy >0,
(C(&) - v) [log d(x)| - D < u(z) < (C(z) +v) | logd(z) + D ity =0,

for any v > 0, with D > 0 depending in particular on » and A. The above estimates are the classical ones for
explosive solutions firstly obtained in the semilinear case in [21], where C(z) is a constant function. Also the
case 79 = 1 has been considered in [21], and in this case more refined estimates have been obtained. In the
nonlinear case, analogous estimates for vy > 1 would require further regularity assumptions on the nonconstant
function C'(z). Estimates (4.7) are interesting in the intermediate cases 0 < yg < 1, in which they are also new
for linear operators and yield a uniqueness result in the nonlinear singular case o < 0.
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5. A COMPARISON PRINCIPLE FOR NONLINEAR DEGENERATE/SINGULAR
EQUATIONS WITHOUT ZERO ORDER TERMS

This section is devoted to some comparison principle for fully nonlinear equations without zero order terms.
For analogous results concerning nonsingular operators, see [3, 4].

Theorem 5.1. Let b be a continuous and bounded function in Q and let f be a bounded continuous function
satisfying , when « # 0, infq |f| > 0. Let u and v be respectively sub- and super-solution of

— |Vu|*F(D?u) + b(x)|Vul® = f in Q. (5.1)

If uw and v are bounded and at least one of the two is Lipschitz continuous then the comparison principle holds
1.€.

u<v on 0D=u<v in .

Proof. Without loss of generality, we will suppose that w is Lipschitz continuous. Moreover, by replacing u and
v with —u and —wv if necessary, we assume that f < —m < 0 in Q.

The case a = 0 is quite standard, it is enough to construct strict sub-solutions that converge uniformly to
u. We choose € > 0 such that ¢ > 2BB(|Vu|s + 1)°~!, where B = [b|oo. Let ue = u + ce” ¢ —¢, with e.g.
Q C {x1 > 0}. Then, u, is a strict sub-solution of (5.1), being

F(D?u.) > F(D%*u)+ %=

r1

b(z)|Vuc|® — f + b(x) (|Vu|5 — |Vu€|6) + %e™ 7

Y]

1

b(z)|Vue|® — f + ie‘w?.

\Y)

Furthermore u. < v < v on 092. By Theorem 2.2, we obtain that u. < v in €. To conclude, let ¢ — 0. This
computation has been done for a classical solution u, but, with obvious changes, it can be made rigorous for
viscosity solutions.

For the case o # 0 and f < 0, we use the change of function u = ¢(z), v = p(w) with
o(s) = —y(a+1)log (6 +e ).

This function is used in [3-5, 22, 23].

We choose ¢ small enough in order that the range of ¢ covers the ranges of u and v. The constant v will be
chosen small enough depending only on a, «, §, infq(—f) and |b|; in this proof, any constant of this type will
be called universal. Observe that ¢’ > 0 while ¢ < 0.

In the viscosity sense, z and w are respectively sub- and super-solution of

¢"(2)
¢'(2)

Vz® Vz) +b(x)e' (2)P 7271 Ve|? + e 0. (5.2)

o Pk 22
V| F(D% + T

We define

T8 _ 70’50”(8) 24 )0 (s B—a—1| 8 7f("17)
H(z,.p) = =D pl + ba)ed (07—l + L0
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The point is to prove that at Z, a maximum point of z — w, W > 0 for all p. This will be sufficient to get
a contradiction. A simple computation gives
’ 767% " _7567%+1
Y= o = = 5
§+eart’ (a+1)(§ + e aF1)2

Hence

—90// / B 5 eiﬁﬂ i —SON / o <P" .
¢ (a1 (f4e a2 ¢’  (a+1)y ’

Differentiating H with respect to s gives:

O H = alp|** (a+ 1)y

Since —¢’ is positive, we need to prove that

_alp|*t? a+1
Ki=—+ (_f)W

_ B8 N NB—a—
(a+1)y bl |p]” (B — o = 1)(¢) 2>0.

We start by treating the case 5 < o + 2.
Observe first that the boundedness of u and v implies that there exists universal positive constants ¢, and
c1 such that

cov < @' <er.
Hence, it is easy to see that there exist three positive universal constants C;, i = 1,2, 3 such that

LG lp|*t?  Cy Cs|p|”

K vy ,Y(x+2 - ,Ya+2—ﬁ'
We choose 7 = min {1, (%)B’ (g—i’)wﬁ—ﬁ } With this choice of ~, for |p| <1,
Cilp|**?  Cp  Cslpl”  Ca Gy > 0:
5 ,yoz+2 7@—&-2—[3 — ,yoe+2 7@—&-2—,6 ’
while for [p| > 1,
Cilp|**® | Ca  Gslpl® _ (Cy)lp**?  Cslp)?
otz at2p = ~ a5 >0
Y v Y Y v

If B = a+ 2, just take v < m.
This gives that for v small enough depending only on min(—f), «, |b|e and 5 one has, for some universal
constant C,

0sH(z,s,p) > C > 0. (5.3)
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We now conclude the proof of the comparison principle.
We will distinguish the case v > 0 and o < 0. In the first case we introduce ¥, (x,y) = z(z) —w(y) — %|x —yl?
while in the second case we use ¢;(z,y) = z(x) — w(y) — %|x — y|? where ¢ > 3—1% We detail the case a > 0.
Suppose by contradiction that v > v somewhere in {2, then z > w somewhere, since ¢ is increasing, while on
the boundary z < w. Then the supremum of z — w is positive and it is achieved inside Q. Hence, 1); reaches a
positive maximum in (x;,y;) €  x Q.

By Ishii’s lemma [20], there exists (X;,Y}) € S x S such that

—=2,+ —2,— . .
(pj, X;) € J 7 z(z;), (pj,—Y;) € J7 wly;), withp; =j(z; —y;)

X; 0 (T -1
(v )=i(4 )

On (z;,y;), by a continuity argument, for j large enough one has

and

sup(z — w)

z(x;) > w(y;) + 5

Note for later purposes that since z or w are Lipschitz, p; = j(z; —y;) is bounded. Observe that, the monotonicity

of %/,/ implies that

¢ (2(z;)) _ so”(w(yj))> <o.

N =p; ®@p; (@’(Z(xj)) @' (w(yy))

Using the fact that z and w are respectively sub- and super-solutions of the equation (5.2), the estimate (5.3)
and that H is decreasing in the second variable, one obtains:

0> s = P+ S ©,) + bl (o))
flzg) e ¢" (w(y)))
EIEEIEen I T Rl
alp. 2o (P1w;) " (=(z5)) Bl (o (2. ))F—o—1
T L+ 0a) = bl (2 (o)

+H (x5, 2(z;5),p5) — H(xj, w(y;), ps)

o(1
> C(z(z;) —w(y;)) + ,wa)l'

Here, we have used the continuity of f and b, the boundedness of p; and that

Y(wj,y;) > sup((zj, 25), v (y;,Y;5))-

Passing to the limit one gets a contradiction, since (z;,y;) converges to (Z,Z) such that z(Z) > w(Z). This ends
the case o > 0.
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In the case ao < 0, the proof is similar but we need to make sure that one can choose x; # y;. This can be
done proceeding as in [10]. O

6. ERGODIC PAIRS

In this section we consider, for ¢ € R, the equation
— |Vu|*F(D*u) + |Vul® = f 4 ¢ in Q. (6.1)

Definition 6.1. Suppose that ¢ is some constant (depending on f, €, 5, o and F') such that there exists
» € C(Q), solution of (6.1), such that ¢ — +oo at 9. We will say that ¢ is an ergodic constant, ¢ is an ergodic
function and (¢, ¢) is an ergodic pair.

We suppose, as usual, that o > —1, 8 € (o + 1, a + 2] and recall that v = th:[; and C(x) satisfies (4.5). In

the following subsections, we prove the existence and show several properties of ergodic pairs.

6.1. Existence of ergodic constants and boundary behavior of ergodic functions

Theorem 1.1 provides the existence of a nonnegative ergodic constant under the assumption that problem (1.3)
does not have a solution. In the next result, we obtain the existence of ergodic constants using approximating
explosive solutions.

Theorem 6.2. Let F and f be as in Theorem 4.1, and assume further that f is locally Lipschitz continuous in
Q. Then, there exists an ergodic constant ¢ € R.

Proof. By Theorem 4.1, for A > 0 there exists a solution Uy of problem (4.3), which satisfies estimates (4.4). It
then follows that A|Uy|*Uy is locally bounded in €2, uniformly with respect to 0 < A < 1. Let us fix an arbitrary
point zg € €. Then, there exists ¢ € R such that, up to a sequence \,, — 0,

MU (20)|*Ux(x0) = —c.

On the other hand, Theorem 2.4 yields that U, is locally uniformly Lipschitz continuous. Therefore, for x in a
compact subset of (2, one has

MIUA(@)|*Un (@) = [Ux(20)|*Ux(20)| < A|Ux(z) = Ux(z0)|*™ =0 ifa <0,

as well as, using again estimates (4.4),

K

MIUA()|“Ux(z) — |Ux(20)|*Ux(z0)| < )\/\a+1

|Ur(z) — Ux(z0)] = 0 ifa>0.

It then follows that ¢ does not depend on the choice of xg and, up to a sequence and locally uniformly in €2,
one has

)\|UA|QU>\ — —C.

Moreover, the function Vy(x) = Ux(xz) — Ux(xo) is locally uniformly bounded, locally uniformly Lipschitz
continuous and satisfies

—|VWA[*F(D?*Vy) + |VVA|? = f — A|[UA|*Ux in Q.
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If V' denotes the local uniform limit of V) for a sequence A,, — 0, then one has
~|VVI*F(D*V) +|VV|’ = f+¢ in Q.

Finally, arguing as in the proof of Theorem 1.1 and using Theorem 2.2, we have that, for some §y > 0 sufficiently
small,

Via>¢+ min Vi inQ\Qs,,

with ¢ defined in (3.2) for arbitrary s > 0. Letting A, s — 0 we deduce that V(x) — 400 as d(z) — 0. This
shows that (¢, V') is an ergodic pair and concludes the proof.
O

We now prove that, under assumption (1.6), ergodic functions satisfy on the boundary the same asymptotic
identities as the explosive solutions of (4.3).

Theorem 6.3. Let F' and f be as in Theorem 4.2. Then, any ergodic function u satisfies

u(z)d(z)”

. ‘ u(x) )
1 =1 lim ———— = 1ify=0. 2
s e if v >0, | ify=0 (6.2)

a() 50 [log d(z)| C(z)

Proof. As usual, we consider only the case v > 0.

The computations made in the proof of Theorem 4.2 (for 41 = 0) show that, for all ¥ > 0 and for §p > 0

sufficiently small, the function w, s(z) := % satisfies for 0 < d(x) < dg

—|\V@, 5|“F(D*®, 5) + |V@, 5% > c; v(d(x) — §) " F=a=T

where ¢; > 0 is a constant depending on «a, 8, a, A, |D?*d|s and |Clez(q).
By assumption (4.6) on f, this implies that

— VW, 5|*F(D*W, 5) + |V, 5° > f(x) +c=—|Vu|*F(D*u) + |Vul|® in Qs \ Qs,

for 69 = do(v) small enough. Hence, we are in the hypothesis of Theorem 2.2 and we deduce that
u< M, +wW,5 in Qs \ Qs
with M, = sup ()=, u(z). Letting § — 0 we obtain that
u< M, + (C(x)+v)d(z) " in 2\ Qs,.

This in turn implies that

li a+1d 57[;—1 7 —
Jlim ,u@) ™ d()

for all 7y such that
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Since o + 2 > 1, we obtain in particular that the function |u|*u satisfies condition (4.6) with vy = 1. Note also
that |u|*u is bounded from below in £ since it is continuous and blows up on the boundary. Finally, we observe
that u satisfies

—|Vu|*F(D*u) + |Vul® + [u|®u = f + ¢+ |u|®u,

where the right hand side f + ¢ + |u|%u satisfies condition (4.6) with an exponent vo = min{vy(f), 1}, v0(f)
being the exponent appearing in the condition (4.6) satisfied by f. Hence, by applying Theorem 4.2, we obtain
that u satisfies the boundary estimates (4.7) with A = 1 and the constant D also depending on u itself. Estimates
(4.7) in turn imply relations (6.2). O

6.2. Uniqueness and further properties of the ergodic constant: proof of Theorem 1.2.
Throughout this section we assume that f is bounded and locally Lipschitz continuous.
In the introduction we have defined p* € RU {—oc0} as
p'=inf{p : 3 € C(Q), ~|Ve|"F(D*¢) + |Vl < [+ p}.
It is easy to see that u* < —info f. A better upper bound on p* depending on the domain € is given by the
following result.

Proposition 6.4. If Q) C [0, R] x RN~1, then

for a positive constant K1 = Kq(a,a, f3).

a+2 B=a—1 _ 8
Proof. The function ¢(z) = Cx{™" with C' = [ﬁ} e (%) R~ @FD(=a=1 satisfies, for some constant
K = Kl(a7 avﬂ):

21+
Vel F(D%) + [Vl < — 4ot 2)

a B B
1+« (a+2) B, a+1 _4_2_1
Tarpra O gl SRR

+1)
Hence, by its definition, y* < —infq f — K3 R™F=a=T. O
We are now ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. Here we set cq = c. Note that the existence of ¢ is given by Theorem 6.2.

Proof of 1. Suppose that ¢ and ¢ are two ergodic constants, and let ¢ and ¢’ be respectively corresponding
ergodic functions. By Theorem 6.3 the ratio of ¢ and ¢’ goes to 1 as d(x) — 0; hence, for any 0 < 1, the
supremum of p — ¢’ is achieved in the interior of € since p — ¢’ blows down to —oco as d(z) — 0.

We observe that

=|V(09)|*F(D*(0p)) + |0V]” < 0"+ (f +c)
—|Ve'[*F(D?') + V| = f +c.
From standard comparison arguments in viscosity solutions theory, see [16], it follows that at a maximum point

7 of Op — ¢’ one has f(Z) + ¢’ < 02 (f(Z) + ¢). Letting 0 — 1, we get ¢ < c. Exchanging the roles of ¢ and ¢’
we conclude that ¢ = ¢.
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Proof of 2. Let u < c and suppose by contradiction that there exists ¢ € C(Q) satisfying
~|V|*F(D*) + Vol < f +p.

Let u be an ergodic function corresponding to ¢. Clearly, supg(¢ — u) is attained in Q. Again by standard
viscosity arguments, we obtain that at a maximum point Z of ¢ — u one has

f@) +p=f(Z)+c,
which is a contradiction. Hence, we deduce
{1 : 30 €C®), ~|[Vp|*F(D?*¢) + |Vol” < f + u} C [e,+00),

which implies that p* is finite and p* > c.
On the other hand, by definition of u*, for any u < p* the problem

—|Vu|*F(D*u) + |Vul? = f+pu  in Q
u=0 on 02

does not have solution. Theorem 1.1 then implies that there exists an ergodic constant cyy, > 0 for the right
hand side f + p. On the other hand, by the uniqueness proved in 1 above, one has ¢ = 4 c4,,. Hence, ¢ > u
and, therefore, ¢ > p*.

Proof of 3. The nondecreasing monotonicity of ¢ with respect to the domain € is an immediate consequence
of point 2 above and the definition of u*.

Let us now prove the “continuity” of {2 — cq, in the following weak sense. For § > 0 small, let ¢5 denote the
ergodic constant in €25. Then, ¢s is nondecreasing as J decreases to zero, and c¢5 < ¢ = cq.

Let us be an ergodic function in Qs, zg € Q be a fixed point and let us set vs = us — us(zo).

By Theorem 2.4, vs is locally uniformly bounded and locally uniformly Lipschitz continuous in 5. Thus, up
to a sequence d,, — 0, vs converges locally uniformly in ) to a solution v of the equation with right hand side
f +lims_q cs. Moreover, arguing as in the proof of Theorem 6.2, we have that vs(x) > Co (d(x) — )" if v > 0,
and vs(x) > —Cplog (d(z) — ¢) if v = 0, for some constant Cy > 0 and for § < d(z) < dy. Letting § — 0, we get
that v(z) — 400 as d(z) — 0. Hence, v is an ergodic function in £ and, by point 1, lims_,qcs is the ergodic
constant c.

Proof of 4. We prove that the constant p* is not achieved. Suppose by contradiction that there exists
p € C(Q) such that

—|VQ|*F(D%*p) + V|’ < f+p* = f+ec.

On the other hand, let u be an ergodic function in 2.

We observe that for all constants M, ¢ + M is still a bounded sub-solution, whereas u is a solution satisfying
u = 400 on Jf2. Theorem 5.1 applied in a smaller domain 25 then yields u > ¢ + M for arbitrarily large M,
which clearly is a contradiction.

A similar argument proves the strict increasing behavior of the ergodic constant. Let Q' CC Q and suppose
by contradiction that cog: = cq. Let uq/ and ug be ergodic functions respectively in ' and . For every constant
M, both ug + M and ug satisfy (6.1) in ', with ug + M bounded and ug = +00 on 9. Hence, Theorem
5.1 yields the contradiction ug > ug + M for every M. O
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Remark 6.5. We remark that, thanks to Proposition 6.4, the condition supg f + ¢ < 0 appearing in
Theorem 1.2—4 is satisfied in one of the following cases:

— f is constant in §;

— the oscillation supg, f — infq f of f is suitably small, in dependence of the length of the projections of €2
on the coordinated axes;

— in at least one direction €2 is suitably narrow, in dependence of the oscillation of f in 2.

As a direct consequence of Theorems 1.1 and 1.2, we can finally establish a connection between the existence
of solutions of the Dirichlet problem (1.3) and the sign of the ergodic constant ¢ = cq, ;.

Corollary 6.6. Let F, f be as in Theorem 1.2 and let ¢ denote the ergodic constant in Q for f. Then:

(i) if ¢ <0, then problem (1.3) does admit solutions;
(i) if ¢ > 0, then problem (1.3) does not admit any solution.

Proof. From Theorem 1.1 and from the uniqueness of the ergodic constant ¢ proved in Theorem 1.2-1, we
deduce that if there is no solution of problem (1.3) then ¢ > 0, that is statement (7). B

On the other hand, if ¢ > 0, then, by Theorem 1.2-2 it follows that there does not exist any function ¢ € C(2)
satisfying

—|Vpl*F(D*0) + Vel < f  inQ.

In particular, there cannot exist any solution of problem (1.3), that is statement (i3).
O

Remark 6.7. If supg f + ¢ < 0, by using Theorem 1.2-4 and arguing as above, we deduce that there exist
solutions of (1.3) if and only if ¢ < 0.
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