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Abstract: The paper presents a novel three-dimensional quasi-continuous shape sensor based
on an FBG array inscribed by femtosecond laser pulses into a 7-core optical fiber with a
polyimide protective coating. The measured bending sensitivity of individual FBGs ranges
from 0.046 nm/m−1 to 0.049 nm/m−1. It is shown that the sensor allows for reconstructing 2-
and 3-dimensional shapes with high accuracy. Due to the high value of the core aperture and
individual calibration of each FBG we were able to measure the smallest reported bending radii
down to 2.6 mm with a record accuracy of ∼1%. Moreover, we investigate the magnitude of the
errors of curves reconstruction and errors associated with measurement of curvature radii in the
range from 2.6 to 500 mm. The main factors affecting the accuracy of measurements are also
discussed. The temperature resistance of both the inscribed FBG structures and of the protective
coating, along with the high mechanical strength of the polyimide, makes it possible to use the
sensor in harsh environments or in medical and composite material applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Currently, multi-core optical fibers (MCFs), with both straight and twisted cores, are being
actively studied for creating compact distributed bending sensors or shape sensors [1,2]. Such
sensors are used in micro-robotics, in particular in devices for minimally invasive surgery, as
well as in monitoring the structural state of objects subject to bending and torsion [3,4]. When
the cores do not have a cross talk, two different approaches to interrogating MCF-based sensors
are predominantly used. The first approach involves the method of high-resolution backscatter
reflectometry; the second is based on the analysis of the resonance spectra of 3-dimensional
arrays of fiber Bragg gratings (FBGs), inscribed in different cores along the MCF. The advantage
of the reflectometry method, which can provide up to ∼10 microns resolution when measuring
the longitudinal strain of the MCF [5], is the continuity of the measurement, as well as the
relatively longer length of the interrogated section of MCF. However, the high cost of this type of
device, and the low interrogation rate limit the use of the reflectometry method in some practical
applications. At the same time, sensors based on FBG arrays, which are interrogated by using a
spectral interrogator, allow for quasi-continuous shape reconstruction for lengths of 0.01–1 m.
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The advantages of this method include: the significantly lower cost of the interrogating device,
high interrogation rates (up to 10 kHz), and simplicity of the shape reconstruction algorithms,
which makes real-time reconstruction possible [6].

In a number of applications, an important factor in the operation of shape sensors based on
MCF is their mechanical and temperature “endurance”. This requirement applies both to the
protective coating material of the fiber, as well as to the modified part of the MCF, in which the
FBG array is inscribed. In particular, when the MCF is embedded in a composite material, a high
degree of adhesion of the protective coating with the glass cladding of the optical fiber and with
the external material is required [7,8]. During the curing of composite materials, such as carbon
fiber prepregs, the temperature can reach 180 °C for epoxy/carbon fiber composites [9], and 350
°C for polyimide/carbon fiber composites [10]. In addition, the temperature resistance of sensors
involving FBGs is an important factor in the sterilization of a medical device by heat treatment in
an autoclave. At these high temperatures, degradation and destruction of such protective coating
as acrylate take place [11]. At the same time, FBGs fabricated by UV radiation may experience a
temperature degradation of the reflection coefficient [12]. One of the most promising and durable
protective polymer coatings of optical fibers is polyimide, which can be exposed to a prolonged
high temperature impact up to 300 °C, and short-term up to 350–400 °C. The femtosecond
micromachining technology inside the volume of transparent dielectric materials [13] allows
for FBG inscription through a polyimide coating without its damage [14], which preserves the
mechanical properties of the fiber surface. Moreover, FBGs created by using the femtosecond
technology demonstrate a significant temperature and mechanical durability [15], which makes
this approach promising for creating durable shape sensors for various applications.
In this article, we report on the results of the fabrication and testing of 3-dimensional FBG

arrays in a 7-core custom-made optical fiber with a polyimide coating. By using the direct
femtosecond inscription method, an array was created with a total length of 72 mm, consisting of
24 FBGs inscribed in 6 cross-sections (nodes) of the MCF. For this array, 2- and 3-dimensional
shapes are reconstructed. The measurements were carried out in wide range of radius of curvature
from 2.6 mm to 500 mm. The factors limiting the curvature measurements range are presented.

2. 3D FBG array shape reconstruction

2.1. Curvature vector calculation

The problem of reconstructing the shape of an MCF involves calculating the curvatures and
curvature directions for each point along the fiber. By knowing these parameters, it is possible to
construct a spatial curve in a parametric form, for example, by using Frenet-Serret differential
equations [16]. When using arrays consisting of separate FBGs, the curvature vectors are only
determined at certain discrete points, and the spatial resolution of the sensor is given by the
inverse distance between neighboring gratings.
Consider a cross-section of an MCF with FBGs inscribed in the side cores (Fig. 1). For a

definite measurement of the curvature vector in an MCF, typically three cores are used, which are
located at the vertices of an equilateral triangle: such a configuration was chosen in this paper.
To calculate the curvature under bending deformation, we used the approach proposed in [16]. It
consists in considering the partial curvature vectors for each i-th side core:

κi = −
1
rc
(εi cosαinx + εi sinαiny), (1)

where rc is the distance between the centers of the fiber and core i, εi is the strain associated with
a length change, αi is the angle between the direction to the core and the local x axis, nx and ny
are unit vectors for the x and y axes, respectively. The κ i vector points in the direction of the i-th
core from the center of the MCF (or in the opposite direction, depending on the sign of εi). The
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relationship between the FBG deformation εi and a change in its resonant wavelength ∆λi can be
derived from the following differential equation [17]:

dλ
λ
= Cε +ΩdT , (2)

where λ is the wavelength, ε is the strain, C= (1 – p), where p is the strain-optic coefficient, Ω is
the temperature sensitivity, and T is the temperature. Here we take an approximate dependence
with the following replacements: dλ→ ∆λ, λ→ λB, and we exclude the temperature dependence,
which will be taken into account by using data from FBGs in the central core (this will be
explained in more detail in Section 4). Thus, for the i-th core, one obtains:

εi =
1
Ci

∆λi

λBi
, (3)

where Ci is the strain coefficient, which will be determined during the calibration process, and
λBi is the Bragg wavelength of the FBG in the straight unstressed state.

Fig. 1. Multi-core fiber cross-section sketch, and relevant parameters for curvature
calculation.

To find the total curvature vector in a given node with N cores, the averaged sum of the κ i
vectors is calculated:

κ = −
2
Nrc

(
N∑
i=1

εi cosαinx +

N∑
i=1

εi sinαiny

)
. (4)

Then the direction of curvature is θ = angle(κ). Calculating κ in each FBG node gives a discrete
set of vectors {κ j= 1. . . n}, where j is the number of the node, and n is the total number of nodes.
This set is interpolated by a cubic spline to obtain a vector function κ(s), where s is the length
along the fiber.

2.2. Frenet-Serret framework

A spatial curve can be defined by the Frenet-Serret equations [18]:

r′(s) = T(s)

T′(s) = κ(s)N(s)

N′(s) = τ(s)B(s) − κ(s)T(s)

B′(s) = −τ(s)N(s)

. (5)
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Here, s is a length parameter, r(s) is the position vector defining the parametric curve in space,
T(s) is the unit vector tangent to the curve at point s, N(s) is the normal unit vector directed
towards the center of curvature, B(s) is the binormal unit vector perpendicular to the vectors T(s)
and N(s): B(s) = T(s) ×N(s), where × denotes a vector product. The three vectors T(s), N(s) and
B(s) form an orthogonal basis in R3. The scalar functions κ(s) and τ(s) are called the curvature
and the torsion of a parametric curve, respectively. If these functions are known in explicit form,
then by solving the system of Eq. (5), one can construct a curve r(s) =

∫ L
0 T(s)ds+ r0, where L is

the length of the curve, and r0 is the initial position at s= 0.
In our case, the curvature and torsion are obtained from the interpolation vector function κ(s)

mentioned earlier: κ(s) = |κ(s)| and θ(s)= angle(κ(s)). When substituting this to Eq. (5), κ(s) is
assumed unchanged, and τ(s) = θ ′(s). To solve Eq. (5), it is also necessary to set the initial values
of all four vector functions r(s), T(s), N(s) and B(s) at s0 = 0. The starting point of the curve
r0 can be chosen arbitrarily, and let to coincide with the origin: r0 = (0, 0, 0). The tangential
vector T0 determines the direction of increasing the length of the curve at the starting point and
it can also be selected for reasons of convenience, so we direct it along one of the coordinate
axes: T0 = (1, 0, 0). The normal vector N0 should be perpendicular to T0, and is determined by
the direction to the center of curvature at point s0, i.e., by the value of the interpolated function
θ0 = θ(s0): N0 = (0, cos θ0, sin θ0). The initial binormal vector B0 is defined according to:
B0 = T0 × N0.
This method assumes that the angular orientation of the cores relative to the x, y coordinate

axes, which is defined at the beginning of the fiber section with inscribed FBG array, remains
constant along the entire fiber length. If this condition is violated, i.e., there is an external twist
of the fiber around its central axis, then errors in determining the direction of bending appear and,
subsequently, the total error in the fiber shape reconstruction increases. To compensate for this
drawback, the use of multi-core spun fibers seems to be a promising approach, where the natural
twist of the cores enables measuring the magnitude and direction of the external twist [19].

3. FBGs inscription in polyimide-coated MCF

Previously, a selective inscription of FBGs in MCFs was realized using the method utilizing UV
radiation with a phase mask [20] and point-by-point inscription by femtosecond laser pulses [21].
In this work, FBG inscription is carried out by using the modified plane-by-plane method [22]
with infrared femtosecond pulses produced by Light Conversion Pharos 6W laser (wavelength
λ= 1030 nm, pulse duration tp = 232 fs, repetition rate f = 1 kHz). We use a Mitutoyo 50X
Plan Apo NIR HR objective (NA= 0.65) and an additional cylindrical lens with a focal distance
f c = –1000 mm, mounted before the objective, in order to focus fs pulses into a given volume of
MCF. A special glass ferrule with polished side faces makes it possible to fix the position of
the MCF with respect to the focal point, as described in detail in our previous works [14,23].
The longitudinal periodic modulation of the refractive index is achieved by moving the fiber
with a predefined constant velocity vtr ≈ 1 mm/s (2nd order of Bragg resonance), by using an
Aerotech ABL1000 high-precision air-bearing linear stage. Thus, the FBG period is determined
by Λ= vtr/f, and the resonant wavelength by λB = 2neffvtr/(mf ), where m= 2 is the order in which
resonant reflection of the optical signal on the FBG structure is realized. When writing FBGs,
the tail of the MCF is fixed on the linear stage with the help of a clamp, with an angular degree
of freedom allowing to turn the fiber around its axis.
A sample of an FBG array was inscribed in a 7-core optical fiber manufactured at the Fiber

Optics Research Center of the Russian Academy of Sciences (FORC RAS, Moscow, Russia),
whose parameters are summarized in Table 1. The separation of optical signals from individual
MCF cores is carried out by using a specialized fan-out device, which provides a back reflection
coefficient of less than −40 dB at the junction with the MCF, and the level of insertion optical
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loss of less than 1 dB. The fan-out was manufactured and connected to the MCF in the same way
as described in [24].

Table 1. Parameters of the used polyimide-coated 7-core optical fiber

Parameter Value

Cores arrangement Hexagonal+ central core

Protective coating material Polyimide

Cladding diameter 125 µm

Coating diameter 154 µm

Cores separation distance 40.5 µm

Cut-off wavelength 1450–1490 nm

Attenuation 1 dB/km @ 1550 nm

Numerical aperture 0.21

Mode field diameter 5.7 µm@ 1550 nm

The fiber is coated with a ∼10 µm polyimide protective layer, thus giving the outer fiber
diameter of 154 microns. Polyimide coating makes it possible to use the fiber at high temperatures
(up to 300 °C), and with direct mechanical impacts, since it has a higher hardness as compared to
standard acrylate, as well as high adhesion to the glass surface of the fiber cladding. This advantage
allows using this fiber to create high-temperature optical sensors for structural monitoring in a
harsh environment, such as nuclear facilities, where the sensor might be a subject to prolonged
high-temperature exposure (up to 200–250 °C) [25]. In addition, the relatively small diameter of
the fiber facilitates the incorporation of the fiber-optic sensor into various designs, for example,
in the production of “smart” composite materials [9].

A sample of an FBG array consisting of 6 nodes along the fiber, with an interval between the
centers of the nodes ∆L= 14 mm, was inscribed in the above described fiber. In each node, FBG
inscription was carried out in the central core, and in three side cores located at the corners of an
equilateral triangle. Each of the FBGs in the array had a uniform refractive index profile and a
fixed length of LFBG= 2 mm; the total length of the FBG array was L= 72 mm. A schematic
representation of the created sample, as well as the FBG numbering in the array, is shown in
Fig. 2. Four FBGs in the same node have equal physical periods Λ; for the spectral separation
of FBG resonances along the same core in different nodes, the FBG physical periods varied
sequentially from Λ1= 1.0353 µm to Λ6= 1.0939 µm. The change in the period by ∆Λ ≈ 11.7

Fig. 2. Schematic representation of the FBG array inscribed in 7-core optical fiber through
polyimide protective coating: (a) 3D representation, and (b) transverse cross section of the
used MCF.
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nm between adjacent nodes allowed for the spectral separation of their resonances by ∆λ ≈
16.7 nm. The sequential change of cores during the writing process was carried out by the
transverse displacement of the MCF relative to the focus of writing objective. An example of the
reflection/transmission spectra measured for one of the cores of the array by using Yokogawa
AQ6370D optical spectrum analyzer is presented in Fig. 3. In our case, the relatively strong
resonances of the “ghost” modes [26], which are observed in transmission spectra close to λB on
the short wavelength side, can be attributed to the presence of a weak tilt of the grating planes, or
to the specifics of the inscription method resulting in the inscription of grating planes beyond the
core boundaries and, in this way, facilitating the propagation of ghost modes.

Fig. 3. Reflection/transmission spectra of the FBG array measured for one of the cores of
the 7-core optical fiber.

To interrogate the fabricated shape sensor, we used a HBM FS22-SI 8-channel interrogation
unit providing a single measurement of all cores per second (Fig. 4). The unit has wavelength
resolution/repeatability of <0.5 pm, wavelength stability/reproducibility of 1 pm, and dynamic
range of >50 dB. Processing of the measured spectra, detection and tracking of the FBG reflection
peaks, was maintained with the BraggMONITOR SI application.

Fig. 4. Interrogation scheme of shape sensor based on a FBG array in a 7-core optical fiber.

4. FBG array calibration

Errors in the arrangement of the cores and of the FBGs in the cross-section of the MCF, along
with the presence of fluctuations in the refractive index of the cores, introduce a variation in
the bending sensitivity coefficients of individual FBGs. In order to take into account the above
factors, and to achieve maximum accuracy when reconstructing the shape of the sensor, we took
a series of calibration measurements.
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For calibration, we used a set of arc grooves machined on an acrylic glass plate. The arcs
had different constant radii of curvature, ranging from 10 to 100 mm. Teflon tubes arranged
in the arcs limited the movement of the fiber. At the entrance of a groove, the MCF was fixed
with a graduated rotating clamp, so that the calibrated FBG node was located inside the groove,
while the end of the fiber remained free. After that, the fiber was rotated around its axis in 5
degrees increments. On each groove, a full turn of the MCF was performed, during which the
reflection spectra of the FBG array were measured. Maximum deformation of a separate FBG
in the side core (positive and negative) is achieved when an FBG is located in the plane of the
bend. Conversely, minimum deformation will occur when the FBG is placed on a neutral surface
passing through the central axis of the optical fiber, perpendicularly to the plane of the bend.

FBGs located in the central core practically do not experience the action of bending deforma-
tions, but are affected by stretching and temperature changes, which are common to all gratings
in a given node. Thus, FBGs in the central core can be used to take into account these effects on
remaining FBGs. To exclude the effects, in each measurement the wavelength detuning values of
the central core FBGs reflection peaks were subtracted from the side cores FBGs.
Since, even with a small step in the rotation angle, the position of the side core when the

maximum deformation occurs can be missed, for a more accurate estimate of the FBG peak
wavelength shift at a given curvature an approximation of the data was used. The distance from
the FBG to the neutral plane is proportional to the cosine of the angle between the bending
direction and the straight line passing through the FBG and the central axis of the fiber. Therefore,
an offset sinusoid is taken for approximation (Fig. 5(a)).

Fig. 5. (a) Dependence of the FBG wavelength on the angle of rotation of the MCF
measured for node 1 with a radius of curvature of 10 mm. (b) Maximum FBG wavelength
shift measured for the sinusoidal fit curve of the side core 1 in the node 1 versus curvature.

The obtained amplitude of a separate sinusoid will characterize the maximum wavelength
shift of the FBG reflection peak. By conducting experiments at different values of the radius of
curvature, it is possible to obtain the dependence of the change in the resonant wavelength ∆λmax
on curvature for each of the FBGs in the array. Next, these dependences were approximated by a
linear function with a slope k [nm/m−1]: ∆λmax = k/R, where R is the radius of curvature. Since
ε = rc/R in the position of maximum deformation of FBG, by solving this equation together with
Eq. (3), we obtain the expression for the FBG calibration coefficient in the i-th core in a given
node:

Ci =
ki

rcλBi
. (6)
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For example, results obtained for the FBGs in node 1 are shown in Fig. 5. In general, for all FBGs
in the array, the linear sensitivity coefficient k took values from 0.046 nm/m−1 to 0.049 nm/m−1.

5. Shape measurements and temperature testing

We carried out experiments on reconstructing the shape of an MCF in the case of bending in
a plane. First, the reflection spectra were measured for a straight non-stressed fiber, and the
corresponding positions of the FBG reflection peaks λBij (where i= 0, . . . , 3 is the core number,
j= 1, . . . , 6 is the node number) were determined by using the interrogation scheme described
earlier (Fig. 4). After that, in two experiments, a part of the fiber with inscribed FBGs was taped
to the table in a loop-like and s-shaped form, and the shifts of FBG resonance wavelengths ∆λij
were measured with subtracting the central core shifts from the side ones, in order to compensate
for temperature effects and longitudinal strain. From the values ∆λij, the deformations εij were
calculated from Eq. (3), using the coefficients Cij obtained from the calibration. The fiber shape
reconstruction was performed according to the method previously described in Section 2.
As mentioned earlier, our method does not take into account the presence of fiber twist.

Therefore, in order to reduce the error due to possible torsions, the ends of the sensor, while in
the straight form, were sealed with adhesive tape. In this way, when the fiber is bent, maintaining
the mutual orientation of the tape pieces made it possible to maintain the orientation of the cores
along the sensor, at least to some extent. The recovered curves superimposed on the respective
photographs of the two shapes are shown in Fig. 6.

Fig. 6. Photos of the MCF with an inscribed FBG array of length L= 72mm, and calculated
curves (red dashed line): (a) a loop-like curve, (b) an s-shaped curve. Blue crosses indicate
FBG nodes. In Fig. 6(a), the fiber crossing the loop was used to align the sensor with the
plane of the table.

Images reveal that the maximum estimated position error in the picture plane of the planar
shape reconstruction did not exceed 0.2 mm. To estimate the error in the transverse direction the
deviation of the curves from the picture plane was measured and amounted to ∼0.25 mm for a
loop-shaped curve, and ∼0.2 mm for an s-shaped curve.
Next, experiments on reconstructing the 3D shape of the MCF were carried out. The fiber

section with the inscribed FBG array was sequentially wound in the form of a spiral on three
cylindrical surfaces with diametersDspiral = 25, 29.5, 38.1 and 66 mm, and with a pitch hspiral = 21,
49, 10 and 49 mm, respectively, with 6 measurements for each curve. The method of fiber shape
reconstruction was similar to that used for planar curves. The obtained curves along with the
ground truth spirals are presented in Fig. 7. Figure 8 presents the averaged absolute error of
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the shape reconstruction δabs (Fig. 8(a)) and error per unit length δrel (relative error) (Fig. 8(b)),
calculated according to:

δabs(s) = | |rmeas(s) − rref(s)| | and δrel(s) = δabs(s)/s, (7)

where rmeas (s) is the measured position vector defining the parametric curve in space, rref (s) is
the position vector for the ground truth curve, s is the coordinate along the curve. In Table 2 we
provide the mean maximum values of the absolute and relative error for each spiral curve that
were obtained by averaging 6 measurements for each curve.

Fig. 7. Reconstructed 3D curves and ground truth curves: (a) projection onto xz plane,
(b) yz plane, (c) xy plane; (d) 3D view. S1: Dspiral = 25 mm, hspiral = 21 mm; S2:
Dspiral = 29.5 mm, hspiral = 49 mm;S3: Dspiral = 38.1 mm, hspiral = 10 mm;S4: Dspiral = 66
mm, hspiral = 49 mm.

Table 2. Geometric parameters of the spirals and errors of shape recovery

Configuration Dspiral, mm hspiral, mm Max. mean abs. error, mm Max. mean rel. error, %

C1 25 21 1.27± 0.89 2.04± 1.24

C2 29.5 49 1.57± 0.86 2.18± 1.45

C3 38.1 10 1.08± 0.5 1.96± 1.28

C4 66 49 0.85± 0.45 1.89± 0.86

We believe that the main sources of errors originate from the presence of an external twist of
the fiber sensor around its longitudinal axis as well as the inherent birefringence of FBGs. The
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Fig. 8. (a) absolute reconstruction error, (b) error per unit length versus arc length.

former leads to errors in the calculation of the bending direction and, consequently, a deviation
of the reconstructed curve from the reference one. The influence of the latter is discussed below.
Fiber breakage probability when bending with small radii of curvature can be increased due

to defects in the glass cladding of an MCF. In the case of non-UV-transparent coating, FBG
inscription using UV light requires recoating procedure, which may cause the appearing of
defects. Direct plane-by-plane femtosecond inscription through the protective coating does
not require coating removal erasing this disadvantage. Furthermore, the increased mechanical
strength of the polyimide, as compared to acrylic coating, makes a fiber more robust to external
impacts. Mentioned factors together with the high NA value of the used MCF suggest the use of
the proposed sensor in measurements of extremely small curvature radii. To test the accuracy of
the sensor configuration, a sample of an FBG array consisting of a single node with resonant FBG
wavelengths located near 1550 nm was fabricated and calibrated. We carried out measurements
of large curvatures, and calculated the bending radius dependence of the relative error. The
fiber was wound turn-by-turn on metal cylinders with radii of 3.5 mm, 2.5 mm and 1.5 mm,
respectively, in such a way that the section with inscribed FBGs was placed in the middle of the
winding. The values of the radii of curvature were calculated according to the method described
in Section 2, where the radius of curvature is R= 1/|κ |. The corresponding results are shown in
Table 3, where for the reference Rref values, the distance from the cylinder surface to the neutral
axis of the MCF is taken into account. The record small curvature radius of 2.58 mm is measured
with an error less than 1%. To the best of our knowledge, the smallest measured bending radius,
reported previously, was 14.3 mm with an error of 1.6% [16]. Also, we should mention that we
did not observe any spectra distortions when curvature radius is comparable with FBG length
(see Fig. 9).

Table 3. Results of small radii of curvature measurement

Rref , mm Rmeas, mm Rel. error, %

3.58 3.54 0.98

2.58 2.60 0.94

1.58 (fiber breakage) (fiber breakage)

The fiber broke in the area of the FBG array when winding it on a cylinder with a radius of
1.5 mm, which corresponds to a deformation of 2.5% in the inscription area, and of 4% on the
surface of the glass fiber cladding. It is important to note that the magnitude of the strain on the
cladding surface approximately corresponds to the maximum tensile strength of glass fibers [27].
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Fig. 9. FBG spectra at different radii of curvature for the central core (a) and for one of the
side cores (b) subjected to a maximum bending strain.

In a distributed shape sensor, the limit of the minimum measurable radii is defined by several
factors: 1) the spectral range of the interrogator and its wavelength resolution/repeatability
reproducibility, 2) the number of FBGs in one core, their spectral width and, accordingly, the
spectral interval between adjacent FBGs, 3) the length of the FBG and the distance between
adjacent nodes. In our case, in each of the cores, the resonance wavelengths of the FBGs with a
spectral width of 0.6–0.8 nm were distributed uniformly in the spectral range of the interrogator
(1500–1600 nm). This ensured freedom of movement of the resonance peaks in the spectral
region of about± 8 nm. Knowing the sensitivity of the FBGs to bending (∆λmax/(1/R) is from
0.046 to 0.049 nm/m−1), we can estimate the minimum radius Rmin ∼ 5.75–6.16 mm, when the
FBGs adjacent in the spectral range do not overlap with each other. This may be the case if the
curvature direction is changing by 180° from one node to another. With a constant number of
FBGs and fixed spectral range of the interrogator, Rmin can be reduced by a closer arrangement
of the cores, which however will lead to a decrease in the sensitivity of the FBG to bending.

To reveal the maximum measurable radii of the proposed sensor we carried out the experiment
on the curve reconstruction with radius of curvature in the range from 100 to 500 mm. The
results are presented in Table 4 and Fig. 10. The averaged relative error of radius measurement is
less than 8% up to R= 350 mm, while the absolute shape reconstruction error δabs did not exceed
1 mm. The relative error significantly increases at the curvature radius of 500 mm and exceeds
14% with a high value of standard deviation. To understand the reason, we analyzed the influence
of polarization effects on the error of curvature measurements. In case of large radii, the spectral
shift of FBG decreases in comparison with small radii of curvature and for this reason this shift
might be comparable with wavelength fluctuation ∆λp associated with intrinsic birefringence of
FBG. In our case the measured value ∆λp is ≈40 pm that is comparable to point-by-point writing
method [28]. Assuming this value, we can estimate the birefringence caused error of curvature
radius measurements. For the ideal case R= k/∆λ, and R’= k/(∆λ± λp/2) when the polarization
induced deviation is introduced. Thus, the relative error

δR
R
=
|R′ − R|

R
=

���� k
k ± R∆λp

/
2
− 1

���� . (8)

The relative error δR/R for ∆λp = 40 pm and k= 0.047 nm/m−1 as a function of curvature radius
is plotted in Fig. 10. Also for comparison the results of error estimation based on ∆λp = 20 pm
is presented. As one can see, the error of large curvature radii measurements obtained in the
experiment can be associated with errors caused by ∆λp= 20–40 pm. For this reason, to reduce
this error for large curvature radii the value of ∆λp should be minimized.
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Fig. 10. The relative measurement error vs radius of curvature (dots), the estimation of
influence of ∆λp on relative error according to Eq. (8) (filled area).

Table 4. Results of large radii of curvature measurement

Rref , mm 100 150 200 250 300 350 500

Rmeas, mm 97.9± 3.7 145.3± 6.2 198.7± 10.5 239± 16.3 289.1± 21 347.9± 30.6 551.9± 96

Rel. error, % 3.4± 2.5 4.2± 3.1 4.4± 2.9 7.1± 3.3 6.9± 3.7 7.6± 4.1 14.5± 14.2

The thermal stability of FBG structures inscribed in a 7-core fiber with a polyimide protective
coating was investigated for temperatures up to 330 °C. A sample of array consisting of 5 FBGs
with reflection coefficient in range of 60–80%, and resonance wavelengths around 1550 nm, was
inscribed in the central core of the MCF. The fabricated sample was annealed at 330 °C for 20
hours before the control experiment, in order to minimize the influence on the FBG reflection of
temperature-dependent refractive index changes of the glass. It is known that femtosecond-pulse
induced refractive index changes can be associated with the formation of different types of
defects, including nonbridging oxygen hole center, SiE’ centers, non-isotropic stress, and glass
components migration [29]. This annealing temperature was chosen because the relaxation of
color centers and internal stress occurs at around 300 °C and higher [30]. At the same time, the

Fig. 11. (a) FBG spectra before and after the annealing process at room temperature, (b)
resonant wavelength detuning depending on time at 330 °C.
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polyimide protective coating is not significantly damaged at this temperature, and the optical
fiber retains most of its mechanical strength [31]. In Fig. 11(a) the part of spectrum for one
of the FBGs measured before and after annealing is shown. After the annealing process the
resonance peak shifts to the short-wavelength region by 0.14 nm. This change is associated with
a decrease in the effective refractive index in the area of the FBG. After sample annealing, we
carried out a 5-hour control experiment at 330 °C in order to study the stability of the spectral
characteristics of the FBG array. During this experiment, spectra were collected at intervals of
4 seconds. The time dependences of the resonant wavelengths are presented in Fig. 11(b) and
revealed insignificant wavelength change less than 5 pm.

6. Conclusions

A temperature resistant fiber 3D shape sensor based on a polyimide coated custom-made 7-core
optical fiber was fabricated and tested. We wrote an FBG array consisting of 6 nodes, with
4 FBGs in each node, located in the central core and in three side cores, by using a modified
plane-by-plane femtosecond laser direct inscription method. The fabricated sensor was calibrated
at different bending curvatures, in order to obtain individual bending sensitivities for each FBG
in the array, which allowed for a precise shape sensing, with a positional error of less than 0.2
mm in the case of planar shapes. As a test of 3D shape configuration, spiral shapes were chosen:
in this case the mean maximum deviation was of about 1.57 mm, which is mainly due to the
uncompensated twist of the fiber and polarization sensitivity of FBG in the array. The possibility
of measuring extremely small radii of curvature was demonstrated with an additionally fabricated
single-node bending sensor, which showed the record ∼1% error when measuring the radius
of curvature of 2.6 mm. The measurements of lower radius of curvature is limited by fiber
mechanical strength. The experiments of curves reconstruction at large radius of curvature in
the range from 100 to 500 mm revealed the increase of reconstruction error due to the fact that
wavelength shift in the side cores is comparable with polarization detuning of FBG wavelength
that is a limiting factors in case of large radii of curvature. The thermal test of inscribed FBGs
showed that after annealing the wavelength shift is insignificant (less than 5 pm) over 5 hours.

Considering the high mechanical durability and the small thickness of the polyimide coating,
when compared with the commonly used acrylate polymer, in combination with the demonstrated
temperature stability, the presented fiber shape sensor may be an attractive tool for robotics,
structural monitoring in harsh environments, manufacturing of “smart” composites, as well as
for minimally invasive surgery and biomedical devices.
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