
Efficient Long-term Mapping in Dynamic Environments

Marı́a T. Lázaro, Roberto Capobianco and Giorgio Grisetti

Abstract— As autonomous robots are increasingly being in-
troduced in real-world environments operating for long periods
of time, the difficulties of long-term mapping are attracting
the attention of the robotics research community. This paper
proposes a full SLAM system capable of handling the dynamics
of the environment across a single or multiple mapping sessions.

Using the pose graph SLAM paradigm, the system works on
local maps in the form of 2D point cloud data which are updated
over time to store the most up-to-date state of the environment.
The core of our system is an efficient ICP-based alignment
and merging procedure working on the clouds that copes with
non-static entities of the environment. Furthermore, the system
retains the graph complexity by removing out-dated nodes
upon robust inter- and intra-session loop closure detections
while graph coherency is preserved by using condensed mea-
surements. Experiments conducted with real data from long-
term SLAM datasets demonstrate the efficiency, accuracy and
effectiveness of our system in the management of the mapping
problem during long-term robot operation.

I. INTRODUCTION

In the last years, robots have been progressively intro-
duced in public environments where space is shared with
humans, such as shopping centers [1], airports [2], elder
care homes [3], hospitals or museums. In order to navigate
autonomously these environments, robots require a map
of the building in which they have to operate. This map
is usually obtained before the deployment of the robots
by using Simultaneous Localization and Mapping (SLAM)
techniques, for which reliable implementations are publicly
available [4], [5], [6].

Typically, mapping public environments presents several
challenges. First, despite the risk of introducing artifacts in
the final map, data acquisition can rarely be executed in
the absence of people. This constitutes a highly dynamic
situation that makes the environment non-stationary, and
must be handled by the SLAM system within the active
mapping session. Second, even when a proper data ac-
quisition is realized (e.g., with the building closed to the
public), the obtained map might not be usable after few days,
due to substantial changes in the environment (e.g., moved
stands, new decorations for special events, etc). Nevertheless,
after a reconfiguration, the map might be still valid for
some time. Hence, we refer to this sort of environments –
affected by low dynamics – as semi-static. The changes in
semi-static environments might affect the topology of the
environment and substantially influence its local appearance,

Marı́a T. Lázaro, Roberto Capobianco and Giorgio Grisetti are with
Dipartimento di Ingegneria Informatica Automatica e Gestionale ”An-
tonio Ruberti”, Sapienza University of Rome, Italy. {mtlazaro,
capobianco, grisetti}@diag.uniroma1.it

thus invalidating portions of the previously acquired map that
have to be estimated from scratch.

Although dealing with dynamic and semi-static environ-
ments in a life-long mapping process is one of the goals of
mobile robotics, typical solutions are impractical since they
require to acquire a completely new map of the whole envi-
ronment whenever a semi-static change occurs. Conversely,
it would be sufficient to update only the portion of the map
that changed.

Most of the latest successful solutions to the SLAM
problem are based on a pose graph representation whose
nodes store discretized positions along the robot trajectory
and edges encode relations between nodes. Using this repre-
sentation, the SLAM problem simplifies to the resolution of
an optimization problem whose complexity depends directly
on the number of nodes present in the graph.

When considering this problem from a life-long perspec-
tive, a robot navigating continuously the environment will
produce a limitless addition of nodes, making the optimiza-
tion problem intractable. Directly related with the number
of nodes is also the problem of loop closure detection. The
unbounded addition of nodes will increase the dimension of
the search for possible candidates and, with it, the possible
inclusion of false positives. Furthermore, inconsistencies
between the current state of the environment and what is
present in the map due to the changing environment can
lead to mislocalization or navigation errors.

Therefore, there are two main aspects to be considered in
order to ensure the correct operation of a SLAM system in a
long-term horizon: the maintenance of a constrained dimen-
sion of its inherent optimization problem and an efficient
management of the changes that happen over time.

This paper presents a full SLAM system focused on the
management of long-term situations capable of handling both
highly dynamic situations within a mapping session and map
updates within multiple sessions to cope with low dynamics.
Our system estimates a map as a pose graph whose nodes
contain local maps which allows to maintain a sparser graph
representation. Local maps store the appearance information
in the form of 2D point clouds while spatial relations
between adjacent local maps are encoded as a graph edges.
The use of point clouds offers higher definition and are less
memory demanding than other data structures such as grids
which can only represent the environment up to a certain
resolution to maintain performance constraints. The core
of our system is the use of an effective ICP-based point
cloud alignment and merging procedure that allows to update
the content of the local maps to preserve the most up-to-
date information about the environment. Graph complexity



is retained bounded by removing nodes containing out-dated
information, while the graph coherency is preserved by
compressing prior knowledge through condensed measure-
ments [7]. Map information obtained over different sessions
is managed by the same graph structure obtaining a balance
between simplicity and effectiveness in determining both
intra- and inter-session loop closures.

We release our system as open source1 which provides
ROS compatibility and visualization tools.

II. RELATED WORK

The problem of the dimensionality in SLAM is well
known and a variety of techniques have been proposed over
the years to overcome such issue. Solutions range from those
studying the structure of the optimization problem [8], [9]
to those based on graph reduction methods [10], [11].

In [12], a framework for multi-session map optimiza-
tion is proposed, where several independently optimized
pose-graphs acquired at different sessions are combined by
using anchor nodes. While graph reduction methods are
normally batch algorithms executed off-line (i.e., using as
input an already constructed graph), their on-line application
is not straightforward. The SLAM system proposed in [13]
achieves long-term operation by using a reduced graph which
retains bounded complexity over time proportional to the ex-
plored environment and not the total distance traveled. New
nodes are added only if there are not previous nodes nearby,
while new information from loop closures is incorporated
as new edges between existing poses. However, the system
does not update the sensor data contained in the nodes to
consider the dynamic changes of the environment.

Regarding the works considering the non-static nature
of the environment, the tendency is to maintain parallel
maps, one for short-term periods characterized by high
dynamics and another one for long-term periods capturing
more stationary structures. Early works [14], [15] used a
grid-based map representation to that end while Biber and
Duckett [16] extended this perspective by maintaining not
just two short- and long-term maps but by tracking and
updating the state of the environment at multiple timescales.
Also based on grid-based mapping [4], is the recent work by
Krajnik et al. [17]. Their system builds a new map for each
run, while consistency between sessions is achieved by using
localization with respect the previous model as odometry
measurements for the current session. Maps are integrated
into a spatio-temporal model capturing the persistency and
periodicity of the environment that allows to predict the
future state of the environment with proven usefulness for
navigation and path planning purposes.

In a more recent graph-based approach [18], Labbé and
Michaud organize graph nodes in Short-term, Long-term and
Working memories. Nodes are moved from one type of mem-
ory to another as they are required as in a cache mechanism.
Also based on graph-based representation, Walcott-Bryant et
al. [19] proposed a ”Dynamic Pose Graph (DPG)” focused

1https://gitlab.com/srrg-software/srrg mapper2d

2D Cloud 

Merging

Vertex 

Merging

Long-term Map Maintenance

Odometry

Local Map

Maintenance
ICP

Normals

extraction

Local Mapper

Laser scans
(2D point cloud)

Robust 

Loop Closure

Front-end

Graph SLAM

g2o

Back-end

Fig. 1: System overview

on managing low dynamics. Their work focuses on modeling
the sensor data, where laser points are labeled as static, added
or removed which allows to keep an active (current state) and
dynamic maps, containing added or removed points. Changes
are detected by projecting current and previous scans into
grid maps and comparing their coverage. They also detect
inactive nodes that are removed from the DPG to maintain
a bounded graph complexity.

III. SYSTEM OVERVIEW

In this section, we describe our SLAM system together
with the specific methods proposed to handle with long-term
mapping in dynamic environments.

Figure 1 illustrates our system architecture. In essence, our
system relies on the pose graph paradigm, but we enhance
the front-end aspect of a standard graph SLAM system by
allowing previous nodes to be modified and by dynamically
re-estimating the graph topology to include the most up-to-
date information while preventing the problem size to grow
without limit. Nodes in the graph contain local maps in
the form of 2D point clouds extended with structure and
robot trajectory information, while edges in the graph encode
spatial relations between the local maps.

The system is organized in three components as depicted
in Fig. 1. The first component is a pose tracker and a
local mapper that reconstructs the local area of the robot
by registering and combining the acquired laser scans, seen
as 2D point clouds. The registration process relies on a fast
and accurate cloud alignment algorithm based on NICP [20]
that exploits the structure of the environment by introducing
surface normals in the minimization problem. Once two
clouds are aligned, we perform a cloud merging procedure
manage highly dynamic entities of the environment, such as
traces left by people moving in the surroundings. This results
in cleaner local maps with reduced spurious information.

The second component contains the main pipeline of
our SLAM system, which addresses the graph construction
(front-end) and on-line graph optimization (back-end) as-
pects of a standard graph SLAM system.

The third component executes the different mechanisms
proposed for long-term map maintenance and update with the



most current information about the environment considering,
therefore, dynamics between multiple mapping sessions.

A. Local Mapper

In this work, we use a variant of the NICP algorithm
introduced by Serafin et al. [20] to perform 2D point cloud
registration. To this end, we define a 2D point cloud P =
{p̄1:N} as a set of extended points p̄ composed of a point
p = (px py)T and its normal n = (nx ny)T . In computing
such normal, we consider the neighborhood Di of each
point pi and compute the covariance matrix of the Gaussian
distributionN (µi,Σi) of the points lying in Di, and set ni to
be the eigenvector corresponding to the smallest eigenvalue
of the covariance matrix Σi.

Given an extended point p̄ we can apply the composition
operator ⊕ to transform the extended point by using a
transformation matrix T composed of a rotation R and a
translation vector t as

p̄ = (p,n)T T⊕ p̄ = (Rp + t,Rn) (1)

Furthermore, we define a projection function s = π(p)
that maps a Cartesian point p to range and bearing space
s = (r, α), i.e., the laser measurement space. Accordingly,
we can define a back-projection function p = π−1(s) that
enables us to retrieve the two-dimensional Cartesian point p
from s. By using this function, we can represent a laser scan
as a cloud of extended points obtained by back-projecting
the set of measurements {s1:N} to a set of points {p1:N}
in the Cartesian space and by computing, for each pi, the
corresponding point normal ni.

1) Cloud registration: Given two extended point clouds
Pr = {p̄r

1:Nr
} and Pc = {p̄c

1:Nc
}, we use a set C =

{(i, j)1:M} of correspondences between extended points p̄r
i

and p̄c
j , to compute the transformation matrix T∗ that mini-

mizes the distance between corresponding points, expressed
as the following least squares objective function:

T∗ = argmin
T

∑
C

(T⊕ p̄c
i − p̄r

j)
T Ω̄i,j(T⊕ p̄c

i − p̄r
j). (2)

where, Ω̄i,j = diag(Ωp
i,j ,Ω

n
i,j) is an information matrix that

takes into account the noise properties of the sensor and
summarizes the contributions of the information Ωp

i,j and
Ωn

i,j , respectively coming from the point and normal cor-
respondences. Finally, in order to obtain the transformation
T∗, we solve Eq. 2 iteratively by using a damped version
of the Gauss-Newton algorithm. During optimization we use
the robot odometry To both as initial guess and as prior. In
this way we restrict the solution returned by the solver to lie
in the confidence ellipsoid of the odometry estimate.

To find the set of correspondences C, the relative transform
T is used to observe Pc from the origin of the reference
cloud Pr. This step enables the use of the projection function
on the two clouds to obtain measurements in laser space from
the same point of view (Fig. 2. By discretizing the angular
values of these measurements in K bins, the extended points
p̄r
k and p̄c

k – whose components pr
k and pc

k are back-
projected from the kth bin – are considered as candidate

Fig. 2: Projection of cloud points into range and bearing measure-
ments. By transforming the cloud points using T we can generate
virtual laser measurements seen from that position. In the figure,
cloud points with normals are depicted in red, blue lines represent
the discretized bearing bins and green dots the selected points in
the projection.

correspondences (i, j)k. Such candidates are discarded if the
Euclidean distance between the 2D points is greater than a
threshold εd or if the angle between the normals is greater
than a threshold εn, as shown in Eq. 3.

T⊕ pc
k − pr

k > εd (T⊕ nc
k) · nr

k < εn. (3)

The search for correspondences is repeated on each iteration
of the optimization process using the current solution for T.

2) Local Map Maintenance: The application of the des-
cribed alignment procedure to subsequent sensor measure-
ments allows to create locally consistent maps by accumu-
lating the aligned data. However, its execution time grows
with the number of points and, therefore, we need to limit
the number of points as new scans are added to the cloud to
preserve real time performance. At the same time, we want
to reject out-dated information that would clutter the local
map (e.g., moving people). In order to handle these issues
we introduce a cloud merging process that limits the number
of points in a cloud while denoising them and that handles
dynamics by exploiting free space information.

During this phase, similarly to the correspondence finding
process, we use the relative transform T between Pr and
Pc to align the point of view of the two clouds and apply
the projection function π. All the obtained measurements
are then discretized and indexed according to their angular
values, and for each equally indexed pair of measurements
sri = π(pr

i ) and sci = π(pc
i ) the following operations –

illustrated on Fig. 3 – are performed:
• if rci >> rri , the new beam crosses an existing element

of the reference cloud, which is hence replaced with the
corresponding transformed point in the current cloud;

• if rri >> rci , the new beam stops much ahead of the
point in the reference cloud and it is added to the
reference model, as it might be due to a new object
entering in the scene;

• otherwise, p̄c
i and p̄r

i are merged into a new point p̄ as
follows:

p̄ =
p̄c
iσ

c
i + p̄r

iσ
r
i

σc
i + σr

i

, σc
i =

1

rci
, σr

i =
1

rri
(4)

The goal of this module is to produce local maps that
will be used by graph SLAM as nodes. The origin within a



Fig. 3: Cloud points merging. Distances between points from the
current cloud (green) and the reference cloud (red) that have been
projected into the same angular bin are analyzed. On the left beam,
a new point falls in front the old one (rri >> rci ) and it is added
into the cloud. On the right beam, a new point goes through the
old one (rci >> rri ), thus the new point replaces the old one. On
the middle, points are close each other, then they are merged into
one new point using Eq. 4.

Fig. 4: 2D cloud with trajectory. Current node xk and its associated
cloud are depicted in red while purple squares are the waypoints
representing the portion of the trajectory between nodes xk and
xk−1. Relative transformations xk

i,k are stored in the cloud.

local map is selected to be the current pose of the robot in the
trajectory. Using local maps instead of raw scans to construct
the graph results in much smaller graphs, at the cost of losing
valuable information that is retained in the trajectory. This
might ultimately lead to the inability to modify or ”deform”
a local map. As a trade-off we still preserve the information
about the robot trajectory within the local maps. To this end,
we store in the local maps a discretized set of trajectory’s
waypoints expressed with respect to the origin of the local
map. These waypoints represent vantage points from where
we can render scans to produce other data like, for example,
occupancy grid maps. More in detail, we store the relative
transformation xk

i,k with respect to the current node position
xk for each waypoint xi,k, i = {1, ...,m} belonging to the
discretized portion of the trajectory between nodes xk and
xk−1. This is illustrated on Fig. 4.

B. Graph SLAM

Our system uses as a basis a pose-graph for map repre-
sentation. This graph is composed of nodes containing robot
positions and edges encoding spatial relations between the
nodes. More formally, let us denote as x = (x1, ...,xn)T the
set of nodes representing the robot trajectory and zij as the
measurement encoded in an edge connecting two nodes xi

and xj , affected by Gaussian noise with information matrix

Ωij . Let also be h(xi,xj) the function that computes the
relative relation between the nodes xi and xj given their
current state. The estimation error eij given the measurement
zij can be calculated as:

eij = zij − h(xi,xj) (5)

The solution of a graph-based SLAM approach minimizes
the overall error to obtain a configuration of the nodes x∗

that better explain the set of measurements:

x∗ = argmin
x

∑
i,j

eT
ijΩijeij (6)

The above Eq. 6 represents the SLAM problem as a Least-
Squares optimization problem that can be solved using iter-
ative methods like Gauss-Newton or Levenberg-Marquardt.
Our system uses the effective implementation of Levenberg-
Marquardt algorithm offered by the g2o [8] framework for
graph optimization. Further insights on the resolution of the
graph SLAM problem can be found on [21].

Each iteration of the above-mentioned methods implies
solving a linear system whose complexity directly depends
on the number of nodes in the graph. Our 2D cloud data
structure allows us to efficiently address this issue by intro-
ducing new nodes into the graph only when a new local map
is provided by the local mapper. This allows to sparsify the
graph in the number of nodes and, therefore, reducing the
dimension of the problem.

Our graph-SLAM pipeline continues as follows: each time
a new node together with a 2D cloud is introduced into the
graph we select a set of vertices lying within the Mahalanobis
distance threshold of the current node. Then, we cluster these
selected nodes into sets of connected nodes and choose the
closest node of each set as a potential candidate in the search
for loop closures. The same ICP-based algorithm explained
in Section III-A is used to determine the alignment among
the current cloud and those from the candidate nodes using
the relative transformation between both nodes as initial
guess. Each successful alignment can be translated into an
edge which is introduced into a pool of candidate loop
closure edges. Once a set of closure candidates have been
obtained we use the voting scheme for robust map alignment
presented in [22] to obtain the largest subset of inlier edges
that minimizes the error introduced by the selected closures,
which are finally added into the graph.

C. Long-Term Graph Maintenance

As introduced previously, the amount of data and the map
structure to be stored and maintained in long-term mapping
increases at each session. This makes necessary to implement
maintenance procedures to retain the efficiency of the system
and its consistency with the most up-to-date state of the
environment.

In essence, our approach for graph maintenance consists
in the fusion of local maps which have been determined
to belong to the same area of the environment. Once the
fusion has taken place, old nodes containing the out-dated
local maps are removed. This causes a change on the graph



Fig. 5: Cloud merging. Left: Two clouds with trajectory information
belonging to different sessions are being merged (red: oldest ses-
sion, green: current session). Right: resulting cloud after merging.
Red boxes on the bottom part have been removed since new
observations confirm to ”go through” them while new objects on
the top are placed in front of old data. Trajectory information is
also merged during this process.

topology that must be handled to preserve the distribution
over the poses before the node suppression.

Intuitively, we could state that two local maps share a
portion of the environment if they form a loop closure. There-
fore, our system attempts to merge local maps whenever a
loop closure occurs. The goal is to obtain an updated and
refined version of the part of the environment involved in the
closure. Notice that loop closures relate nodes spatially close
but distant in time, without distinguishing between different
mapping sessions. Using reliable loop closures to trigger a
local map merging procedure ensures the correct alignment
of the resulting topology.

In summary, we must handle two issues: first, the 2D
clouds must be merged and then, we must preserve a
distribution over the poses at the optimum non-overconfident
compared to the distribution over the poses before node sup-
pression. At the same time, this distribution should include
most of the information that is lost during the suppression
process. We call this property coherence of the graph.

For the former, we use an extension of the cloud merging
algorithm explained in Sec. III-A.2. The oldest and the
newest clouds are identified given their timestamps. Then,
using the oldest cloud as a reference, and taking into account
the good initial alignment given by the closure, we perform
a sequential refinement of the newest cloud onto the oldest.
To this end, the waypoints of the newest cloud are used
to generate virtual scans from such positions which are
registered with respect to the oldest cloud to correct possible
misalignments and finally merged to obtain a further refine-
ment. The result of this procedure is illustrated in Fig. 5.

Once two local maps have been merged, the graph struc-
ture must also be updated to preserve its coherency. The exact
procedure to apply when eliminating a node from a graph
is to perform a full marginalization which creates a clique
with all the neighbors of the suppressed node. Over time this
would lessen the sparsity of the graph and negatively impact
the performances of graph optimization, and therefore, it is
not convenient for long-term mapping.

Instead, we use a robust approximation to marginalization
based on condensed measurements [7] to maintain the graph
coherency. The process is exemplified in Fig. 6. The oldest
node belonging to the loop closure is removed from the graph

Fig. 6: Merging nodes in the graph. Left, the nodes involved in a
closure are being merged, where the gray node is the oldest and
the red one the newest. Right: when eliminating the oldest node,
we create condensed measurements relating the merged node (used
as a gauge) with the neighbors of the old one (in red) and the rest
of nodes that were already connected (in green).

while the remaining node is connected to the neighboring
nodes by using a star-like topology. The remaining node is
chosen as central node (referred as the gauge in [7]) which
is connected to the neighbors by edges labeled with the
condensed measurements which allow to retain the infor-
mation that the gauge node has about the other nodes in the
graph. We refer to [7] for details in the computation of these
measurements.

IV. EXPERIMENTS

In this section we present a quantitative and qualitative
performance evaluation of our SLAM system. To this end, we
use well-known multi-session and long-term SLAM datasets:
the MIT Stata Center dataset2 [23], which also includes
ground-truth position estimates for accuracy analysis, and
the Long-term indoor dataset3 part of the LCAS-STRANDS
long-term dataset collection [17].

A. High dynamics on long-term scenario

The first experiment is performed using the LCAS-
STRANDS long-term dataset in which a robot was deployed
in a care home for more than 100 days. This is a highly
dynamic scenario for which we want to show the capability
of our system to remove non-static obstacles during the local
maps creation. Concretely, we use the data collected on Nov
21th, 2016, where the robot moved along 2km for 10 hours.
We pre-processed the 10 hours-duration logs to skip laser
scans when the robot was not moving in the environment.
Our system takes around 4 minutes on a Intel(R) Core(TM)
i7-6700 CPU@3.40GHz to process the resulting log. Fig-
ure 7 shows the map created for the care home facility. In this
figure, the graph containing the local maps created using our
local map maintenance mechanism for managing dynamic
entities is confronted with respect to a version on which we
project the original laser scan for each waypoint contained
in the cloud. We can visually demonstrate the improvement
in the map definition and removal of non-static obstacles.

B. Multi-session mapping with MIT Stata Center dataset

The second set of experiments are conducted over 5
different mapping sessions on the 2nd floor at MIT Stata
Center, for which ground-truth about the robot trajectory is

2http://projects.csail.mit.edu/stata/index.php
3https://lcas.lincoln.ac.uk/owncloud/shared/datasets/index.html



(a) (b)

(c) (d)

Fig. 7: Pruning highly dynamic obstacles with local map maintenance. a) Created graph and local maps in which removal of dynamic
entities is considered. b) Original laser scans projected on the computed graph poses. c) and d) Zoom on areas with high transit of people.

TABLE I: MIT Stata Center dataset summary

Session # Bagfile Distance (m) Time (min)
s1 2012-01-18-09-09-07 683 36
s2 2012-01-25-12-14-25 348 20
s3 2012-01-25-12-33-29 239 14
s4 2012-01-28-11-12-01 635 36
s5 2012-02-02-10-44-08 1003 52

provided. The concrete bagfiles – ROS-based logging file
format – used in these experiments are summarized in Tab. I.

Over the different sessions, we measure the complexity
of the generated graphs (i.e., number of nodes and edges),
efficiency of our system in terms of graph optimization time
and map accuracy based on the ground-truth. For accuracy
evaluation we use the approach described in [24]: given the
ground-truth poses associated to each laser scan we create a
set of ground-truth edges relating nearby poses. The χ2 error
of these virtual edges can be computed when evaluated on
the estimated poses. As a measure of accuracy we use the
mean χ2 error per edge.

Regarding the map construction, the same set of param-
eters are used along all the experiments reported in this
section. The use of local maps allows to sparsify the nodes
in the graph. Concretely, we add new nodes every 2.5m
translation or 1rad rotation of the robot for these experiments.

Table II reports complexity and accuracy for the single-
session runs of the reported datasets. During the execution,
local map maintenance reported in Sec. III-A was applied to
remove highly dynamic obstacles while the merging proce-
dure reported in Sec. III-C for long-term graph maintenance
was not enabled. This provides already a high quality result,
as can be seen on Fig. 9 and on the numbers reported on
the Table. We consider these results as a baseline for the
ongoing comparison.

TABLE II: Single session performance of our SLAM system

Session # Nodes Edges Accuracy
s1 340 627 0.10634
s2 189 335 0.26230
s3 128 213 0.20490
s4 328 600 0.08326
s5 496 929 0.83637

The second stage of this multi-session experiment consists
of progressively accumulating data over sessions, i.e., for
each mapping session we use as input the graph obtained in
the preceding session. Initial localization of the robot with
respect to the previous map is considered to be given by the
user or assumed that the robot always starts a new mapping
session from the same location (e.g., a docking station).
Global localization of the robot is a well-studied problem by
the SLAM community and it is not the focus of this paper.

We enable now the long-term map maintenance procedure
that combines clouds and nodes in the graph when a loop
closure takes place. Results obtained over the different ses-
sions are reported on Tab. III and Fig. 10. We report accuracy
of each mapping session (i.e., measuring error of the newly
added nodes) given that we are using map information from
previous sessions. Notice that with the graph maintenance
procedure we already achieve a node reduction of the ∼ 50%
on session s1 while preserving accuracy (it actually improves
slightly). Interestingly, the accuracy of the last session s5 –
which was the last accurate on Tab. II – is greatly improved
when using the previous map information. In general, we
could confirm from these results that map accuracy is not
traded-off with our long-term map management mechanisms.

Finally, we report on Fig. 8 the evolution of the graph
optimization timings as new nodes are added in the graph.
We observe that, even after accumulating different sessions,



TABLE III: Multiple session performance of our SLAM system

Session Nodes Edges Accuracy
s1-m 164 319 0.09598
s1 + s2 216 462 0.33420
s1 + s2 + s3 258 556 0.19914
s1 + s2 + s3 + s4 295 753 0.08489
s1 + s2 + s3 + s4 + s5 430 1116 0.42881

0 100 200 300 400 500
0

5

10

15

20

25
s1
s2
s3
s4
s5
s1-m
s1+s2
s1+s2+s3
s1+s2+s3+s4
s1+s2+s3+s4+s5

Fig. 8: Graph optimization times (ms) for each session execution.
Times for the multi-session cases do not begin on zero since the
mapping session starts from a previously created graph.

optimization times do not exceed those from single mapping
sessions.

V. CONCLUSIONS

In this work we have presented our SLAM system whose
design has been oriented towards the management of non-
static entities of the environment and long-term mapping
periods. Along the experiments we have shown the perfor-
mance of our system which retains efficiency, accuracy and
coherency between data structures over multiple mapping
sessions.

Although long-term autonomy requires periodic mapping
sessions to update robot knowledge about the environment,
we think performing continuously SLAM on a fixed setting
would be unnecessary. Future works will be oriented to the
development of strategies based on active robot awareness
of environmental changes that will allow to seamlessly
switch from mapping to localization-only modalities if its
current map suffices to obtain a good localization despite
the dynamics.

ACKNOWLEDGMENTS

The authors would like to thank Tom Krajnik and Jaime
Pulido Fentanes for their help during the pre-processing of
the STRANDS dataset used in this paper. We also thank the
contributors of the MIT Stata Center dataset for their efforts
on generating the referred multi-session SLAM dataset.

REFERENCES

[1] L. Iocchi, M. Lázaro, L. Jeanpierre, A.-I. Mouaddib, E. Erdem, and
H. Sahli, “COACHES: Cooperative autonomous robots in complex and
human populated environments,” in Congress of the Italian Association
for Artificial Intelligence, 2015, pp. 465–477.

[2] R. Triebel, K. Arras, R. Alami, L. Beyer, S. Breuers, R. Chatila,
M. Chetouani, D. Cremers, V. Evers, M. Fiore et al., “SPENCER:
A socially aware service robot for passenger guidance and help in
busy airports,” in Field and Service Robotics, 2016, pp. 607–622.

[3] M. Hanheide, D. Hebesberger, and T. Krajnik, “The When, Where, and
How: An Adaptive Robotic Info-Terminal for Care Home Residents
– A long-term Study,” in ACM/IEEE Int. Conf. on Human-Robot
Interaction (HRI), Vienna, 2017.

[4] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE Transac-
tions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[5] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible
and scalable SLAM system with full 3d motion estimation,” in
Proc. IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR), Nov. 2011.

[6] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar SLAM,” in IEEE Int. Conf. on Robotics and Automation,
2016, pp. 1271–1278.

[7] G. Grisetti, R. Kmmerle, and K. Ni, “Robust optimization of factor
graphs by using condensed measurements,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Oct 2012, pp. 581–588.

[8] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in IEEE Int. Conf.
on Robotics and Automation, Shangai, China, May 2011, pp. 3607–
3613.

[9] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Transactions on Robotics, vol. 24,
no. 6, pp. 1365–1378, Dec. 2008.

[10] Y. Latif and J. Neira, “Go straight, turn right: Pose graph reduction
through trajectory segmentation using line segments,” in European
Conference on Mobile Robots, Barcelona, Spain, Sept. 2013.

[11] J. Vallvé, J. Sol, and J. Andrade-Cetto, “Graph SLAM sparsification
with populated topologies using factor descent optimization,” IEEE
Robotics and Automation Letters, vol. 3, no. 2, pp. 1322–1329, 2018.

[12] J. McDonald, M. Kaess, C. D. C. Lerma, J. L. Neira, and J. J. Leonard,
“6-dof multi-session visual slam using anchor nodes,” in ECMR, 2011.

[13] H. Johannsson, M. Kaess, M. Fallon, and J. J. Leonard, “Temporally
scalable visual slam using a reduced pose graph,” in IEEE Int. Conf.
on Robotics and Automation, 2013, pp. 54–61.

[14] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun, “Towards object
mapping in non-stationary environments with mobile robots,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2002.

[15] D. Wolf and G. S. Sukhatme, “Online simultaneous localization and
mapping in dynamic environments,” in IEEE Int. Conf. on Robotics
and Automation, vol. 2, 2004, pp. 1301–1307.

[16] P. Biber and T. Duckett, “Experimental analysis of sample-based maps
for long-term slam,” The Int. Journal of Robotics Research, vol. 28,
no. 1, pp. 20–33, 2009.

[17] T. Krajnı́k, J. P. Fentanes, M. Hanheide, and T. Duckett, “Persistent
localization and life-long mapping in changing environments using the
frequency map enhancement,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2016.

[18] M. Labbé and F. Michaud, “Online global loop closure detection for
large-scale multi-session graph-based slam,” in IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, Sep 2014, pp. 2661–2666.

[19] A. Walcott-Bryant, M. Kaess, H. Johannsson, and J. J. Leonard,
“Dynamic pose graph slam: Long-term mapping in low dynamic
environments,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, Oct 2012, pp. 1871–1878.

[20] J. Serafin and G. Grisetti, “Using extended measurements and scene
merging for efficient and robust point cloud registration,” Robotics and
Autonomous Systems, vol. 92, pp. 91 – 106, 2017.

[21] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, 2010.

[22] M. Lázaro, L. Paz, P. Piniés, J. Castellanos, and G. Grisetti, “Multi-
robot SLAM using condensed measurements,” in IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, Tokyo Big Sight, Japan, Nov. 2013.

[23] M. Fallon, H. Johannsson, M. Kaess, and J. J. Leonard, “The mit stata
center dataset,” The Int. Journal of Robotics Research, vol. 32, no. 14,
pp. 1695–1699, Dec. 2013.

[24] W. Burgard, C. Stachniss, G. Grisetti, B. Steder, R. Kmmerle, C. Dorn-
hege, M. Ruhnke, A. Kleiner, and J. D. Tards, “A comparison of slam
algorithms based on a graph of relations,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Oct 2009, pp. 2089–2095.



(a) Session 1

(b) Session 2

(c) Session 3

(d) Session 4

(e) Session 5

Fig. 9: Single session maps. Individual maps created by our system
where high dynamics have been removed using the approach
described in this paper (better seen on color).

(a) Session 1 with merging

(b) Session 1 + session 2

(c) Session 1 + session 2 + session 3

(d) Session 1 + session 2 + session 3 + session 4

(e) All sessions

Fig. 10: Multiple session maps. Maps created after performing
cumulative number of mapping sessions in which long-term graph
maintenance has been applied (better seen on color).


