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Abstract The analysis of hydrological hazards usually relies on asymptotic results of extreme value
theory, which commonly deals with block maxima or peaks over threshold (POT) data series. However,
data quality and quantity of block maxima and POT hydrological records do not usually fulfill the
basic requirements of extreme value theory, thus making its application questionable and results prone
to high uncertainty and low reliability. An alternative approach to better exploit the available
information of continuous time series and nonextreme records is to build the exact distribution of
maxima (i.e., nonasymptotic extreme value distributions) from a sequence of low‐threshold POT.
Practical closed‐form results for this approach do exist only for independent high‐threshold POT series
with Poisson occurrences. This study introduces new closed‐form equations of the exact distribution of
maxima taken from low‐threshold POT with magnitudes characterized by an arbitrary marginal
distribution and first‐order Markovian dependence, and negative binomial occurrences. The proposed
model encompasses and generalizes the independent‐Poisson model and allows for analyses relying on
significantly larger samples of low‐threshold POT values exhibiting dependence, temporal clustering,
and overdispersion. To check the analytical results, we also introduce a new generator (called Gen2Mp)
of proper first‐order Markov chains with arbitrary marginal distributions. An illustrative application
to long‐term rainfall and streamflow data series shows that our model for the distribution of extreme
maxima under dependence takes a step forward in developing more reliable data‐rich‐based analyses of
extreme values.

1. Introduction

The study of hydrological extremes is one of long history in research applied to design and management of
water supply (e.g., Hazen, 1914) and flood protection works (e.g., Fuller, 1914). Almost half a century after
the first pioneering empirical studies, Gumbel (1958) provided a general framework linking the theoretical
properties of probabilities of extreme values (e.g., Fisher & Tippett, 1928) to the empirical basis of hydrolo-
gical frequency curves. Since then, extreme value theory (EVT) applied to hydrological analyses has been a
matter of primary concern in the literature (see, e.g., Papalexiou & Koutsoyiannis, 2013; Serinaldi & Kilsby,
2014 for detailed overview). EVT aims at modeling the extremal behavior of observed phenomena by asymp-
totic probability distributions, and observations to which such distributions are allegedly related should
meet the following important conditions:

1. They should resemble the samples of independent and identically distributed (i.i.d.) random variables.
Then, extreme events arise from a stationary distribution and are independent of one another.

2. Their number should be large. Defining how large their size should be depends on the characteristics of
the parent distribution fromwhich the extreme values are taken (e.g., the tail behavior) and the degree of
precision we seek.

Most of these assumptions, commonly made in classical statistical analyses, are hardly ever realized in
hydrological applications, especially when studying extremes. Specifically, the traditional analysis of hydro-
logical extremes is based on statistical samples that are formed by selecting from the entire data series (e.g.,
at the daily scale) those values that can reasonably be considered as realizations of independent extremes, for
example, annual maxima or peaks over a certain high threshold. Thus, many observations are discarded and
the reduction of the already small size of common hydrological records significantly affects the reliability of
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the estimates (Koutsoyiannis, 2004a, 2004b; Volpi et al., 2019). In addition, Koutsoyiannis (2004a) showed
that the convergence to the asymptotic distributions can be extremely slow and may require a huge number
of events. Thus, a typical number of extreme hydrological events does not guarantee convergence in
applications.

Furthermore, the long‐term behavior of the hydrological cycle and its driving forces provide the context to
understand that correlations between hydrological samples not only occur, but they also can persist for a
long time (see O'Connell et al., 2016, for a recent review). While Leadbetter (1974, 1983) demonstrated that
distributions based on dependent events (with limited long‐term persistence at extreme levels) share the
same asymptotic properties of distributions based on independent trials, there is evidence that correlation
has strong influence on the exact statistical properties of extreme values and it slows down the already slow
rate of convergence (e.g., Bogachev & Bunde, 2012; Eichner et al., 2011; Serinaldi & Kilsby, 2016; Volpi et al.,
2015). In essence, correlation inflates the variability of the expected values and the width of confidence inter-
vals due to information redundancy, and a typical effect is reflected in the tendency of hydrological extremes
to cluster in space and time (e.g., Serinaldi & Kilsby, 2018, and references therein). Moreover, focusing on
extreme data values, such as annual maxima, hinders reliable retrieval of the dependence structure charac-
terizing the underlying process because of sampling effects of data selection (Iliopoulou & Koutsoyiannis,
2019; Serinaldi et al., 2018). Then, correlation structures and variability of hydrological processes might
easily be underestimated, further compromising the attempt to draw conclusions about trends spanning
the period of records (see Serinaldi et al., 2018, for detailed discussion). In other words, the lately growing
body of publications examining “nonstationarity” in hydrological extremes (see Salas et al., 2018, and refer-
ences therein) may likely reflect time dependence of such extremes within a stationary setting, as observed
patterns are usually compatible with stationary correlated random processes (Koutsoyiannis & Montanari,
2015; Luke et al., 2017; Serinaldi & Kilsby, 2018).

In classical statistical analyses of hydrological extremes, to form data samples, we commonly use two alter-
native strategies referred to as “blockmaxima” (BM) and “peaks over threshold” (POT) methods. The former
is to choose the highest of all recorded values at each year (for a given time scale, e.g., daily rainfall) and form
a sample with size equal to the number of years of the record. The POT method is to form a sample with all
recorded values exceeding a certain threshold irrespective of the year they occurred, allowing to increase the
available information by using more than one extreme value per year (Claps & Laio, 2003; Coles, 2001).

The fact that observed hydrological extremes tend to cluster in time increases the arguments toward the use
of the POT sampling method, instead of block maxima approaches that tend to hide dependence (Iliopoulou
& Koutsoyiannis, 2019). Such clustering reflects dependence (at least) in the neighboring excesses of a
threshold, invalidating the basic assumption of independence made in classical POT analyses. Therefore,
the standard approach in case studies is to fix a (somewhat subjective) high threshold and then filter the clus-
ters of exceedances so as to obtain a set of observations that can be considered mutually independent. Such a
declustering procedure involves using empirical rules to define clusters (e.g., setting a run length that repre-
sents a minimum timespan between consecutive clusters, meaning that a cluster ends when the separation
between two consecutive threshold exceedances is greater than the fixed run length) and then selecting only
the maximum excess within each cluster (Bernardara et al., 2014; Bommier, 2014; Coles, 2001; Ferro &
Segers, 2003). Declustering results in significant loss of data that can potentially provide additional informa-
tion about extreme values.

In this paper, we aim to overcome these problems by investigating the exact distribution of correlated
extremes. Hence, we can set considerably lower thresholds with respect to the standard POT analyses and
avoid declustering procedures whose effectiveness is called into question if we do not account for the process
characteristics. The proposed approach provides new insight into probabilistic methods devised for extreme
value analysis taking into account the clustering dynamics of extremes, and it is consistent with the general
principle of allowing maximal use of information (Volpi et al., 2019).

In summary, hydrological applications have made wide recourse to asymptotes or limiting extreme value
distributions, while exact distributions for real‐world finite‐size samples are barely used in stochastic
hydrology because their evaluation requires the parent distribution to be known. However, the small size
of common hydrological records (e.g., a few tens of years) and the impact of correlations on the informa-
tion content of observed extremes cannot provide sufficient empirical evidence to estimate limiting
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extreme value distributions with precision. Therefore, we believe that nonasymptotic analytical models
for extremes arising from correlated processes should receive renewed research interest (Iliopoulou &
Koutsoyiannis, 2019).

This paper is concerned with a theoretical approach to the exact distribution of high extremes based on the
pioneering work by Todorovic and Zelenhasic (1970), who proposed a general stationary stochastic
model to describe and predict behavior of the maximum term among a random number of random vari-
ables in an interval of time [0,t] assuming independence. As verified in several studies mentioned above,
to make a realistic stochastic model of hydrological processes, we are forced to confront the fact that
dependence should necessarily be taken into consideration. The dilemma is that dependence structures
make for realistic models and also reduce the possibility for explicit probability calculations (i.e., analy-
tical derivations of joint probability distributions are more complicated than under independence). The
challenge of this paper is to propose a stochastic model of extremes with dependencies allowing for
acceptable realism and also permitting sufficient mathematical tractability. In this context, short‐range
dependence structures, such as Pólya's and Markov's schemes, nicely make a trade‐off between these
two demands, when hydrological maxima satisfy Leadbetter's condition of the absence of long‐range
dependence (Koutsoyiannis, 2004a).

In the remainder of this paper, we first introduce a novel theoretical framework to model the exact distribu-
tion of correlated extremes in section 2. In section 3, we present a new generator, called Gen2Mp, of corre-
lated processes with arbitrary marginal distributions and Markovian dependence and use it to validate the
theoretical reasoning described in section 2. Then, section 4 deals with case studies in order to test the cap-
ability of our model to reproduce the statistical behavior of extremes of long‐term rainfall and streamflow
time series from the real world. Concluding remarks are reported in section 5.

2. Theoretical Framework

We use herein the POT approach to analyze the extreme maxima and assume the number of peaks (e.g.,
flood peak discharges or maximum rainfall depths) exceeding a certain threshold ξ and their magnitudes
to be random variables. The threshold simplifies the study and helps focus the attention on the distribution
tails, as they are important to know in engineering design (Papalexiou et al., 2013). In the following, we use
upper case letters for random variables or distribution functions and lower case letters for values, para-
meters, or constants.

If we consider only those peaks Yi in [0, t] exceeding ξ, then we can define the strictly positive random
variable

Zi ¼ Yi−ξ>0 (1)

for all i = 1, 2,…, n, where n is the number of exceedances in [0, t]. Clearly, n is a nonincreasing function of ξ
for a given t, but we assume herein that ξ is a fixed constant.

It is recalled from probability theory that given a fixed number n of i.i.d. random variables {Zi}, the largest
order statistic X = max{Z1,Z2,…,Zn} has a probability distribution Hn(x) fully dependent on the joint distri-
bution function of {Zi} that is

Hn xð Þ ¼ Pr Z1≤x;Z2≤x;…;Zn≤xf g ¼ F xð Þð Þn (2)

In hydrological applications, it may be assumed that the number n of values of {Zi} in [0,t] (e.g., the number
of storms or floods per year), whose maximum is the variable of interest X (e.g., the maximum rainfall depth
or flood discharge), is not constant but it is a realization of a random variableN (= 0,1,2,…). Therefore, we are
interested in the maximum term X among a random number N of a sequence of random variables {Zi} in an
interval of time [0, t].

In the following, we attempt to determine the one‐dimensional distribution function of X that is defined asH
(x) = Pr{X ≤ x}. Since the magnitude of exceedances Zi and their number N are supposed to be random vari-
ables, Todorovic (1970) derived the distribution of the extreme maximum of such a particular class of sto-
chastic processes as
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H xð Þ ¼ Pr N ¼ 0f g þ ∑
∞

k¼1
Pr ⋂

k

i¼1
Zi≤xf g∩ N ¼ kf g

� �
(3)

which represents the probability that all exceedances Zi> 0 in [0, t] are less than or equal to x. If x= 0, thenH
(0) = Pr{N = 0} is the probability that there are no exceedances in [0, t].

Todorovic and Zelenhasic (1970) proposed the simplest form of the general model in equation (3) for use in
hydrological statistics, which is now the benchmark against which we measure frequency analysis of
extreme events (e.g., Koutsoyiannis & Papalexiou, 2017). Its basic assumptions are that {Zi} is a sequence
of N independent random variables with common parent distribution F(x) = Pr{Zi ≤ x} and N is a
Poisson‐distributed random variable independent of {Zi} with mean λ, that is, Pr{N = k} = (λk/k!)exp(−λ).

Then, recalling that ∑
∞

k¼0
yk=k! ¼ exp yð Þ, equation (3) becomes

H xð Þ ¼ ∑
∞

k¼0
F xð Þð Þk λ

k

k!
exp −λð Þ ¼ exp −λ 1−F xð Þð Þð Þ (4)

It can be shown that H(x) ≈ Hn(x) with satisfactory approximation (Koutsoyiannis, 2004a).

As stated above, the derivation of equation (4) includes strong assumptions, such as independence, and the
purpose of this paper is to modify and test this equation under suitable dependence conditions.

First, we suppose that {Zi} is a sequence of N random variables with common parent distribution F(x) = Pr
{Zi ≤ x} and a particular Markovian dependence that give rise to the two‐state Markov‐dependent process
(2Mp, see next section for further details). Specifically, we let the occurrences of the event {Zi ≤ x} evolve
according to a Markov chain with two states, whose probabilities are

p0 ¼ Pr Zi≤xf g
p1 ¼ Pr Zi>xf g ¼ 1−p0

�
(5)

and the transition probabilities (see also Lombardo et al., 2017, appendix C) are

π00 ¼ Pr Zi≤xjZi−1≤xf g ¼ p0 þ ρ1 1−p0ð Þ
π01 ¼ Pr Zi≤xjZi−1>xf g ¼ p0 1−ρ1ð Þ
π10 ¼ Pr Zi>xjZi−1≤xf g ¼ 1−π00

π11 ¼ Pr Zi>xjZi−1>xf g ¼ 1−π01

8>>>><
>>>>:

(6)

where ρ1 is the lag‐one autocorrelation coefficient of the Markov chain.

It follows that for the process {Zi}, the probability of the state {Zn ≤ x} at a given time n depends solely on the
state {Zn − 1 ≤ x} at the previous time step n − 1. Then, for a fixed number of exceedances N = n, the Markov
property yields

Pr Zn≤xjZn−1≤x;…;Z1≤xf g ¼ Pr Zn≤xjZn−1≤xf g (7)

Applying the chain rule of probability theory to the distribution function of the maximum term X,Hn(x) = Pr
{Z1 ≤ x,Z2 ≤ x,…,Zn ≤ x}, we obtain

Hn xð Þ ¼ Pr Zn≤xjZn−1≤xf g⋯Pr Z2≤xjZ1≤xf gPr Z1≤xf g (8)

From the above it follows that Hn(x) can be determined in terms of the conditional probabilities Pr{Zi ≤ x|
Zi − 1 ≤ x} and the parent univariate distribution function F(x) = Pr{Zi ≤ x}. As the random variables {Zi} are
identically distributed, they correspond to a stationary stochastic process, and then the function Pr{Zi ≤ x|
Zi − 1 ≤ x} is invariant to a shift of the origin. In this case, Hn(x) is determined in terms of the second‐order
(bivariate) distributionH2(x) = Pr{Z1≤ x,Z2≤ x} = Pr{Z2 ≤ x|Z1≤ x}F(x) and the first‐order (univariate) par-
ent distribution F(x). Indeed, from equation (8) we obtain
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Hn xð Þ ¼ F xð Þ H2 xð Þ
F xð Þ

� �n−1

¼ F xð Þð Þ2
H2 xð Þ

H2 xð Þ
F xð Þ

� �n

(9)

It can be easily shown that equation (9) reduces to equation (2) in case of independence, that is, H2(x) = (F
(x))2.

Second, we assume that exceedances {Zi} have positively correlated occurrences causing a larger var-
iance than if they were independent, that is, the occurrences are overdispersed with respect to a
Poisson distribution, for which the mean is equal to the variance. Therefore, we assume that the ran-
dom number of occurrences N in a specific interval of time [0, t] follows the negative binomial distribu-
tion (e.g., Calenda et al., 1977; Eastoe & Tawn, 2010), which allows adjusting the variance
independently of the mean. The negative binomial distribution (known as the limiting form of the
Pólya distribution, cf. Feller, 1968, p. 143) is a compound probability distribution that results from
assuming that the random variable N is distributed according to a Poisson distribution whose mean
λj varies randomly following a gamma distribution with shape parameter r > 0 and scale parameter
α > 0, so that its density is

g λj
� � ¼ λr−1j

Γ rð Þαr exp −
λj
α

� �
(10)

Then, the probability distribution function of N conditional on Λ = λj is

Pr N ¼ kjΛ ¼ λj
� 	 ¼ λkj

k!
exp −λj
� �

(11)

We can derive the unconditional distribution ofN bymarginalizing over the distribution ofΛ, that is, by inte-
grating out the unknown parameter λj as

Pr N ¼ kf g ¼ ∫
∞
0 Pr N ¼ kjΛ ¼ λj

� 	
g λj
� �

dλj (12)

Substituting equations (10) and (11) into equation (12), we have

Pr N ¼ kf g ¼ 1
k!Γ rð Þαr ∫

∞
0 λrþk−1

j exp −λj
αþ 1
α

� �� �
dλj (13)

Recalling that the gamma function is defined as Γ zð Þ ¼ ∫
∞
0 xz−1exp −xð Þdx , then multiplying and dividing

equation (13) by (α/(α+1))r+k and integrating by substitution, we obtain after algebraic manipulations

Pr N ¼ kf g ¼ α
αþ 1

� �k Γ r þ kð Þ
k!Γ rð Þ

1
αþ 1

� �r

(14)

To summarize, we specialize the general model in equation (3) for the following conditions:

1. {Zi} is a sequence of N correlated random variables with 2Mp dependence and common parent distribu-
tion F(x) = Pr{Zi ≤ x}.

2. N is a negative binomial random variable independent of {Zi} with mean μ = rα and variance
σ2 = rα(α+1).

Under the above assumptions, from equation (3) we can derive the conditional distribution function of the
maximum X as

H xjλj
� � ¼ Pr N ¼ 0jΛ ¼ λj

� 	þ ∑
∞

k¼1
Pr ⋂

k

i¼1
Zi≤xf g

� �
Pr N ¼ kjΛ ¼ λj
� 	

(15)

where for {Zi} of 2Mp
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Pr ⋂
k

i¼1
Zi≤xf g

� �
¼ F xð Þð Þ2

H2 xð Þ
H2 xð Þ
F xð Þ

� �k

(16)

Substituting equations (11) and (16) in equation (15), we obtain

H xjλj
� � ¼ exp −λj

� �þ F xð Þð Þ2
H2 xð Þ ∑

∞

k¼1

H2 xð Þ
F xð Þ

� �k λkj
k!

exp −λj
� �

(17)

Then, adding and subtracting the term ((F(x))2/H2(x))exp(−λj) yields

H xjλj
� � ¼ exp −λj

� �
−

F xð Þð Þ2
H2 xð Þ exp −λj

� �þ F xð Þð Þ2
H2 xð Þ ∑

∞

k¼0

H2 xð Þ
F xð Þ

� �k λkj
k!

exp −λj
� �

(18)

and thus

H xjλj
� � ¼ exp −λj

� �
−

F xð Þð Þ2
H2 xð Þ exp −λj

� �þ F xð Þð Þ2
H2 xð Þ exp −λj 1−

H2 xð Þ
F xð Þ

� �� �
(19)

which is the conditional distribution function of the maximum term X among a Poisson‐distributed random
number N with gamma‐distributed mean Λ = λj of 2Mp random variables {Zi} in an interval of time [0, t]. It
can be shown that equation (4) is easily recovered assuming independence, that is, H2(x) = Pr{Z1 ≤ x,
Z2 ≤ x} = (F(x))2 and Λ = λ is a fixed constant.

The unconditional distribution of X is derived by substituting equations (14) and (16) into equation (3)
as follows

H xð Þ ¼ 1
αþ 1

� �r

þ F xð Þð Þ2
H2 xð Þ

1
αþ 1

� �r

∑
∞

k¼1

H2 xð Þ
F xð Þ

� �k α
αþ 1

� �k Γ r þ kð Þ
k!Γ rð Þ (20)

Then, adding and subtracting the term ((F(x))2/H2(x))/(α+1)
r and denoting by (r)k = Γ(r+k)/Γ(r) the

Pochhammer's symbol (Abramowitz & Stegun, 1972, p. 256) yields

H xð Þ ¼ 1
αþ 1

� �r

1−
F xð Þð Þ2
H2 xð Þ þ F xð Þð Þ2

H2 xð Þ ∑
∞

k¼0

rð Þk
k!

αH2 xð Þ
αþ 1ð ÞF xð Þ

� �k
 !

(21)

Since αH2(x)/((α+1)F(x)) ∈ [0,1) and r > 0 is a real number, then this series is known as a binomial series

(Graham et al., 1994, p. 162), and setting y= αH2(x)/((α+1)F(x)), it converges to 1−yð Þ−r ¼ ∑
∞

k¼0

rð Þk
k!

yð Þk; thus,

H xð Þ ¼ αþ 1ð Þ−r 1−
F xð Þð Þ2
H2 xð Þ þ F xð Þð Þ2

H2 xð Þ 1−
αH2 xð Þ

αþ 1ð ÞF xð Þ
� �−r

 !
(22)

which is the unconditional distribution of the extreme maximum X. The parameters of the model in equa-
tion (22) are α and r along with those of the models chosen for both the parent distribution, F(x), and the
bivariate distribution, H2(x) (see section 4 for further details).

In the case of independence, where H2(x) = (F(x))2, equation (22) reduces to

H xð Þ ¼ 1þ α 1−F xð Þð Þð Þ−r (23)

As shown in later examples and case studies, equation (22) yields probabilities of nonexceedance that are
systematically larger than those under independence, that is, Hdep(x) > Hindep(x).
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3. Gen2Mp: An Algorithm to Simulate the Two‐State Markov‐Dependent
Process (2Mp) with Arbitrary Marginal Distribution

To check the performance of our stochastic model for correlated extremes, we need to simulate a random
process {Zi} with any marginal distribution andMarkovian dependence. Nevertheless, we must better clarify
what the “Markovian dependence” refers to here. As stated in the previous section, we assume that aMarkov
chain with two states (which may represent, for example, flood or no flood and dry or wet year) governs the
excursions above/below any level (threshold) x of the process {Zi} (see, e.g., Fernández & Salas, 1999). We
refer to this process as 2Mp (Volpi et al., 2015). For such a process, the Markov property is valid because
the probability of the state {Zn ≤ x} at a given time n depends solely on the state {Zn − 1 ≤ x} at the previous
time step n − 1, that is, Pr{Zn ≤ x|Zn − 1 ≤ x,…, Z1 ≤ x} = Pr{Zn ≤ x|Zn − 1 ≤ x}.

One can be tempted to use the classical AR(1) (first‐order autoregressive) model to simulate the 2Mp.
However, this is not appropriate in general, as we show in the following by a numerical experiment that pro-
vides insights into an effective simulation strategy. Let us define the random variable Sj in such a way that for
j = 1, 2,…, it is

Pr Sj ¼ j
� 	 ¼ Pr Zj≤x;Zj−1≤x;…;Z1≤x

� 	
(24)

Then, by definition of conditional probability, we may write, for example, for j = 3

Pr Z3≤xjZ2≤x;Z1≤xf g ¼ Pr Z3≤x;Z2≤x;Z1≤xf g
Pr Z2≤x;Z1≤xf g ¼ Pr S3 ¼ 3f g

Pr S2 ¼ 2f g (25)

In our case the Markov property yields

Pr Z3≤xjZ2≤x;Z1≤xf g ¼ Pr Z3≤xjZ2≤xf g ¼ Pr S2 ¼ 2f g
Pr S1 ¼ 1f g (26)

where Pr{S2 = 2} = Pr{Z2 ≤ x,Z1 ≤ x} = Pr{Z3 ≤ x,Z2 ≤ x} because {Zi} is stationary. From equations (25) and
(26), it is easily understood that we seek a modelling framework for which the ratio rtj(x) = Pr{Sj+1 = j+1}/Pr
{Sj = j} should be constant for every j, depending solely on the value of the threshold x. In order to show that
this is generally not valid for AR(1) processes, we compute such a ratio from a sequence of 100,000 random
numbers generated by a standard Gaussian AR(1) model with lag‐one correlation equal to 0.85. In particular,
we calculate four ratios (j = 1,…, 4) for various threshold values xk (k = 1,…, 100) selected randomly over the
entire range of the standard Gaussian distribution. Then, as the ratio values depend on the threshold, for
each xkwe “standardize” the results by taking the absolute difference between each ratio rtj(xk) and its mean
μrt(xk) computed over j = 1,…, 4, that is, μrt xkð Þ ¼ 1=4ð Þ∑

4

j¼1
rtj xkð Þ, then dividing all by μrt(xk); hence, we

obtain the relative difference ej(xk) = |(rtj(xk) − μrt(xk))/μrt(xk)|.

We seek a model with a particular Markovian dependence so that ej(x) = 0 for all j and x. In Figure 1, we
show the boxplots depicting the variability of (percent) ej(xk) over all threshold values xk with j = 1,…, 4.
In the left panel, we display the results for the AR(1) model described above. In contrast it can be noted that
ej(xk) values are not only significantly different from zero (especially if compared with results shown in the
right panel of Figure 1, based on simulation algorithm described below), but their variability also changes
strongly with the index j. Then, we conclude that AR(1) models are not appropriate for our purposes. As
shown later, despite sharing similar dependence structures (see Figure 2), Gen2Mp outperforms AR(1) in
terms of ej(x) = 0.

3.1. Description of the Gen2Mp Simulation Algorithm

We introduce herein a new generator, which enables the Monte Carlo materialization of a 2Mp with any
arbitrary marginal distribution. It is worth stressing that the theoretical considerations discussed above
result in a conceptually simple simulation algorithm, whose scheme consists of an iteration procedure with
the following steps:

1. We start by generating two sequences aif gni¼1 and bif gni¼1 of n independent random numbers with the
same arbitrary distribution but conditional on being higher ( aif gni¼1) or lower ( bif gni¼1) than the median.
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2. Then, we generate the series cif gni¼1 sampled from i.i.d. Bernoulli random variables taking values 1 and 0
with probability p and (1 − p), respectively.

3. The events {ci = 1} in the Bernoulli series determine the alternation between the two states of our target
process, that is, higher (state 1) and lower (state 2) than the median. In other words, the series cif gni¼1

determines the “holding times” before our process switches (jumps) from a state to the other one, because
we assume that the state remains the same up to the “time”when there comes a state change {ci = 1}. We
can now simulate the state‐of‐generation sequence dif gni¼1 taking values 1 when the state of our process is
higher than the median (i.e., aif gni¼1) and 2 if otherwise (i.e., bif gni¼1).

4. Consequently, the sequence dif gni¼1 is a sample of a Markov chain {Di} with state space {1, 2}. Since the
holding times of each state are completely random, the state probabilities are Pr{Di = 1} = Pr
{Di = 2} = 0.5. On the other hand, as the jumps arrive randomly according to the Bernoulli process,
the transition probabilities are Pr{Di = 1|Di − 1 = 2} = Pr{Di = 2|Di − 1 = 1} = p and Pr{Di = 1|
Di − 1 = 1} = Pr{Di = 2|Di − 1 = 2} = 1 − p. Therefore, the dependence structure of dif gni¼1 is completely
specified in terms of the lag‐one autocorrelation coefficient ρ1 = 1 − 2p (see, e.g., Lombardo et al., 2017).

5. We can now obtain the target correlated sequence zif gni¼1 as follows:

Figure 1. Box plots of four (j = 1,…, 4) relative differences ej(xk) = |(rtj(xk) − μrt(xk))/μrt(xk)| for various threshold values
xk (k = 1,…, 100) selected at random from the parent (standard Gaussian) distribution, where rtj(x) = Pr{Sj+1 = j+1}/Pr
{Sj = j} and μrt xkð Þ ¼ 1=4ð Þ∑

4

j¼1
rtj xkð Þ. The red line inside each box is the median, and the box edges are the 25th and

75th percentiles of the samples. The left panel depicts results for AR(1) model, while right panel shows boxplots of syn-
thetic data from Gen2Mp algorithm.

Figure 2. Comparison of the empirical autocorrelation functions (EACFs) resulting from time series generated by
Gen2Mp zif gni¼1 and the Markov chain dif gni¼1 with parameter p = 0.06, and by AR(1) model with lag‐one correlation
equal to 0.85.
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zi ¼
ai if di ¼ 1

bi otherwise

�
(27)

6. As the resulting sequence zif gni¼1 generally does not satisfy the properties of the process we are inter-
ested in, we must subdivide each of the cases “> median” and “< median” into two subcases.

Specifically, we generate the i.i.d. sequences a′i
� 	n

i¼1 , b′i
� 	n

i¼1 and a′′i
� 	n

i¼1 , b′′i
� 	n

i¼1 conditional on

being, respectively, “> 75th percentile”, “(median, 75th percentile)”, "(25th percentile, median)"

and “< 25th percentile”. Then we generate other two Bernoulli series c′i
� 	n

i¼1 and c′′i
� 	n

i¼1 with same

parameter as above and consequently derive the corresponding state‐of‐generation sequences d′i
� 	n

i¼1

(taking values 1 when the state of our process is higher than the 75th percentile and 2 if it belongs

to the interval (median, 75th percentile)) and d′′i
� 	n

i¼1 (taking values 1 when the state belongs to the

interval (25th percentile, median) and 2 if it is lower than the 25th percentile). We can now obtain
the target correlated sequence zif gni¼1 as follows:

zi ¼

a′i if di ¼ 1 and d′i ¼ 1

b′i if di ¼ 1 and d′i ¼ 2

a′′i if di ¼ 2 and d′′i ¼ 1

b′′i if di ¼ 2 and d′′i ¼ 2

8>>>><
>>>>:

(27a)

7. We continue to subdivide until the relative difference ej(xk) converges to zero for any j. In any subdivision
step, we follow the same procedure as that described above with a fixed parameter p, until a convergence
threshold is achieved (here a mean absolute error equal to 0.002 for ej(xk) is used in the numerical exam-
ples below, which is obtained after 9 subdivision steps for p = 0.06).

3.2. Numerical Simulations

We show some Monte Carlo experiments assuming the standard Gaussian probability model as parent dis-
tribution, but it can be changed to any distribution function. We generate a correlated series of 100,000 stan-
dard Gaussian random numbers using Gen2Mp with parameter p = 0.06. Such a parameter completely
determines the dependence structure of the 2Mp process. For 0 < p < 0.5 the process is positively correlated,
while it reduces to white noise for p = 0.5. For 0.5 < p < 1 we get an anticorrelated series. The particular
value of p = 0.06 is chosen in order to have the dependence structure of the generated series similar to that
of the AR(1) model with lag‐one correlation equal to 0.85 (see Figure 2). Such a value of p has been deter-
mined numerically exploiting the fact that the dependence structure of the generated series is closely related
(showing slight downward bias) to that of the Markov chain {Di} defined above, whose lag‐one autocorrela-
tion is ρ1 = 1 − 2p (see Figure 2). Then, to a first approximation, we start assuming ρ1 = 0.85, and progres-
sively increase it until the dependence structures of the 2Mp and AR(1) match.

Then, even though Gen2Mp and the classical AR(1) algorithms generate time series exhibiting analogous
dependence structures, the former significantly outperforms the latter in terms of ej(x) = 0, as shown in
Figure 1 (right panel). Furthermore, we generate an independent series of 100,000 standard Gaussian ran-
dom numbers as a benchmark using classical generators (e.g., Press et al., 2007). As it can be noticed from
the probability‐probability (PP) and quantile‐quantile (QQ) plots in Figure 3, the marginal distribution of
the final dependent series (corresponding to a 2Mp) is the same as that of the benchmark series. In summary,
the important achievement is that Gen2Mp does not alter the parent distribution, but it only induces time
dependence in a Markov chain sense.

Focusing on the frequency analysis of maxima, we investigate the distribution of the maximum term X
among a random number N of a sequence of standard Gaussian random variables {Zi}. Specifically, we
assume that N follows a negative binomial distribution in equation (14), while the variables {Zi} form a
2Mp stochastic process. Based on such hypotheses, in the previous section we derived the corresponding the-
oretical probability distribution functionH(x) = Pr{X ≤ x} given by equation (22). To check this numerically,
we generate the random numbers nkf gmk¼1 (where m = 450) from the negative binomial distribution with

parameters r = 4 and α = 25, then we form the target sample xkf gmk¼1 by taking the maximum of m
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nonoverlapping sequences of nk consecutive random numbers zif gnki¼1. We allow two different dependence

structures for zif gnki¼1 . In the first case we assume that zif gnki¼1 are sampled from i.i.d. random variables;

while in the second case zif gnki¼1 are sampled from a 2Mp stochastic process with parameter p = 0.06,
which is simulated by Gen2Mp.

Results in the form of PP plots are depicted in Figure 4. In the left panel, we show the independent case, and
it can be noticed how the empirical distribution of xkf gmk¼1 is closely matched by equation (23), that is, the PP
plot (blue line) follows a straight line configuration oriented from (0,0) to (1,1). In other words, when {Zi} are
i.i.d,. equation (23) proves to be a good model for the theoretical distribution of X.

In the right panel of Figure 4, we show the dependent case where the joint probability H2(x) = Pr{Zn ≤ x,
Zn − 1 ≤ x} in equation (22) is determined numerically. Clearly, if we apply equation (23) to the correlated
sample xkf gmk¼1, then the corresponding plot (blue line) shows a marked departure from the 45° line (i.e.,
the line of equality). By contrast, the theoretical distribution that we propose in equation (22) reasonably
models the empirical distribution of correlated maxima xkf gmk¼1 in all respects (see black line). Therefore,

Figure 3. Probability‐probability plot (left) and quantile‐quantile plot (right) comparing the marginal distribution of a
benchmark series (i.i.d. standard Gaussian random numbers) to that of the correlated series generated using Gen2Mp.

Figure 4. Probability‐probability plots of the maximum term X among a (negative binomial) random number N of a
sequence of i.i.d. (left panel) and 2Mp (right panel) standard Gaussian random variables {Zi}.
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when the {Zi} belong to 2Mp, equation (22) (black line) largely outperforms equation (23) (blue line) in mod-
elling the extreme maxima.

4. Applications to Rainfall and Streamflow Data

In order to provide some insights into the capability of the proposed methodology to reproduce the statistical
pattern of observed hydrological extremes, the data sets used in the applications comprise long‐term daily
rainfall and streamflow time series with no missing values or as few as possible, to fulfil the requirements
of POT analyses. In more detail, we use three daily precipitation time series recorded by rain gages located
at Groningen (northeastern Netherlands), Middelburg (southwestern Netherlands), and Bologna (northern
Italy) respectively ranging from 1847 to 2017 (171 years, no missing values), from 1855 to 2017 (163 years, no
missing values), and from 1813 to 2018 (206 years, only three missing values). Raw data, retrieved through
the Royal Netherlands Meteorological Institute Climate Explorer web site, are available at https://climexp.
knmi.nl/data/bpeca147.dat (accessed on 24 November 2019) for Groningen station, at https://climexp.knmi.
nl/data/bpeca2474.dat (accessed on 24 November 2019) for Middelburg station, and at https://climexp.
knmi.nl/data/pgdcnITE00100550.dat (accessed on 24 November 2019) for Bologna station in the period
1813–2007 (see Klein Tank et al., 2002; Menne et al., 2012). For the most recent period, 2008–2018, daily data
for Bologna station are provided by the Dext3r public repository (http://www.smr.arpa.emr.it/dext3r/)
(accessed 24 November 2019) of the Regional Agency for Environmental Protection and Energy (Arpae)
of Emilia Romagna, Italy (retrieved and processed by Koutsoyiannis for the book: Stochastics of
Hydroclimatic Extremes, in preparation for 2020).

Furthermore, we analyze one daily streamflow time series of the Po River recorded at Pontelagoscuro, north-
ern Italy (see Montanari, 2012, for further details). The data series, spanning from 1920 to 2017 (98 years, no
missing values), is made publicly available by Professor Alberto Montanari at https://distart119.ing.unibo.it/
albertonew/sites/default/files/uploadedfiles/po‐pontelagoscuro.txt (accessed on 24 November 2019) for the
period 1920–2009, while the remainder (2010–2017) has been retrieved through the Dext3r repository.

Since it has been shown that seasonality affects the distribution of hydrological extremes (Allamano et al.,
2011), our analyses are performed on a seasonal basis; we distinguish four seasons, each consisting of three
months such that the autumn comprises September, October, and November. Winter, spring, and summer
are defined similarly. We prefer not to use deseasonalization procedures to avoid possible artifacts that may
affect the results. Furthermore, as daily rainfall and streamflow processes exhibit very different marginal dis-
tributional properties, all recorded values exceeding a certain threshold are transformed to normality by nor-
mal quantile transformation for the sake of comparison (Krzysztofowicz, 1997). In practice, observed
exceedances zif gni¼1 are transformed to ψi = Φ−1(Fn(zi)), where Φ

−1 is the quantile function of the standard
Gaussian distribution and Fn is the Weibull plotting position of the ordered sample. In addition, all data sets
used in this study have been preprocessed by removing leap days, because the 29 February was already
removed from all leap years of the 1920–2009 Po river discharge data set.

We now investigate the frequency analysis of observed hydrological maxima. For each season of any data set,
we use for example the value of the threshold corresponding to the 5th percentile (excluding zeros for rain-
fall data sets for simplicity, but we checked that results do not vary considerably if we include zeros), whose
exceedances {zi} are normalized to {ψi} for each sample. As stated in section 1, we are interested in the statis-
tical behavior of the maximum term X among a random number of equally distributed random variables
(i.e., belonging to a certain season) in an interval of time (we assume 1 year). Then, first, we form the
POT samples for each year of the record, consisting of m (i.e., number of years) sequences of threshold
excesses ψif gnki¼1 each of size nk (for k = 1,…, m); second, we form the sample of annual extremes xkf gmk¼1

by taking the maximum of each POT series. In other words, xkf gmk¼1 is a sample of annual maxima of sizem
(i.e., the number of years of the given data set) taken from annual POT series of size nk (i.e., the number of
exceedances in the kth year for the considered season). It follows that the sample size used in classical BM
analysis is m, while that used in our approach is ∑m

k=1nk. As detailed below, all parameter values (see,
e.g., Tables 1 and 2) are estimated from the POT series by maximum likelihood method.

We compare the empirical distribution of X to the theoretical probability distribution function H(x) = Pr
{X ≤ x} given by equation (4) (i.e., the classical method) assuming Poisson occurrences of independent
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exceedances and by equation (22) (i.e., the proposed method) assuming
negative binomial occurrences of 2Mp exceedances. Parameters of
Poisson and negative binomial distributions are derived through a process
of maximum likelihood estimation from the annual counts nkf gmk¼1 for
each season of each data set. To a first approximation, we assume statisti-
cal independence of nkf gmk¼1 by checking that, for each data set, the
empirical autocorrelations between the numbers of exceedances of subse-
quent years are negligible (not shown). Furthermore, we assume that the
joint probability of exceedancesH2(x) = Pr{Z1 ≤ x,Z2 ≤ x} in equation (22)
can be written in terms of the univariate marginal distribution F(x) (which
is the standard normal in case of normal quantile transformation) and a
bivariate copula that describes the dependence structure between the vari-
ables (Salvadori et al., 2007). Several bivariate families of copulas have
been presented in the literature, allowing the selection of different depen-
dence frameworks (Favre et al., 2004). For the sake of simplicity, we
choose the following three types of copulas that have been in common
use:

1. The Gaussian copula (Salvadori et al., 2007, pp. 254-256), which
implies the elliptical shape of isolines of the pairwise joint distribution
H2(x) that in our case is given by a bivariate normal distribution N2

(0,Σ) with zero mean and covariance matrix ∑¼ 1 ρ

ρ 1

� �
, where

the parameter ρ is the average (over m years) lag‐one autocorrelation
coefficient of the annual POT series {ψi}.

2. The Clayton copula (Salvadori et al., 2007, pp. 237-240), which exhibits
upper tail independence and lower tail dependence (Salvadori et al.,
2007, pp. 170-175), and in our case yields

H2x ¼ max2Fx−β−1
−1

β0 (28)

where the parameter β can be written in terms of the Kendall's tau correlation coefficient as β = 2τ/(1 − τ),
which is the average (over m years) of lag‐one Kendall's tau autocorrelation coefficient of the annual POT
series {ψi}.

3. The Gumbel‐Hougaard copula (Salvadori et al., 2007, pp. 236–237), which exhibits upper tail dependence
and lower tail independence, and in our case yields

H2 xð Þ ¼ exp − 2 −ln F xð Þð Þð Þβ

 �1

β

� �
(29)

where the parameter β is again written in terms of the Kendall's tau corre-
lation coefficient as β=1/(1‐τ).

All parameter values for all seasons and data sets are reported in Table 1.

In Figures 5–7 we may observe that for all daily rainfall data sets the mag-
nitudes of extreme events taken from excesses of a low threshold (the 5th
percentile of the nonzero sample) can be considered independent and
identically distributed, and this is consistent with the results shown in
the literature using different approaches (see, e.g., Marani & Ignaccolo,
2015; Zorzetto et al., 2016; De Michele & Avanzi, 2018). In addition, we
may notice that the classical model of POT analyses assuming Poisson
occurrences (see equation (4)) seems to be appropriate to study rainfall
extremes. Analogous considerations obviously apply to higher thresholds
(not shown). Our model of correlated extremes in equation (22) is capable
of capturing such a behavior with precision.

Table 2
Parameters Values for All Models Used in the QQ Plots of Figure 10

Model
Parameter/
threshold Q5 Q25 Q50 Q75

Generalized
Pareto

γ −0.10 −0.03 −0.05 −0.03
σ 1220.16 1044.03 1065.80 998.06
ξ 653.00 998.00 1410.00 2133.00

Poisson λ 87.40 68.97 45.89 22.99
Negative Binomial r 136.59 5.89 1.74 0.71

α 0.64 11.71 26.45 32.22
Clayton and
Gumbel copulas

τ 0.82 0.76 0.63 0.48

Gaussian copula ρ 0.91 0.86 0.75 0.61
GEV χ −0.11 −0.11 −0.08 −0.07

θ 1463.94 1463.94 1399.01 1273.31
μ 3309.91 3309.91 3369.76 3739.46

Table 1
Parameters Values for All Normalized Case Studies Detailed in the Text

Station
Parameter/
season Winter Spring Summer Autumn

Groningen λ 50.04 41.56 45.04 50.05
r 76.24 73.15 150.54 164.94
α 0.66 0.57 0.30 0.30
τ 0.08 0.04 0.02 0.10
ρ 0.10 0.05 0.04 0.13

Middelburg λ 48.41 40.00 38.42 47.16
r 35.71 40.22 35.47 61.68
α 1.36 0.99 1.08 0.76
τ 0.09 0.04 0.02 0.09
ρ 0.12 0.06 0.02 0.14

Bologna daily λ 20.92 25.39 16.59 24.67
r 7.20 22.57 20.98 21.14
α 2.91 1.13 0.79 1.17
τ 0.03 0.02 -0.05 -0.01
ρ 0.05 0.02 −0.06 0.01

Bologna hourly λ 127.59 128.87 54.09 129.74
r 5.27 14.14 4.55 12.32
α 24.22 9.12 11.90 10.53
τ 0.43 0.30 0.17 0.33
ρ 0.54 0.38 0.20 0.41

Pontelagoscuro λ 85.48 87.40 87.39 86.41
r 67.02 136.59 81.95 245.15
α 1.28 0.64 1.07 0.35
τ 0.82 0.81 0.84 0.84
ρ 0.92 0.92 0.94 0.93

Note. λ for Poisson (P) occurrences (equation (4)); r and α for negative
binomial occurrences (equation (22)); τ for Clayton (C) and Gumbel (G)
copulas (equation (28) and (29)); ρ for Gaussian copula.
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After showing the results with daily rainfall, we also analyze rainfall records at finer time resolution (hourly
scale) whose correlation can be stronger than that pertaining to daily data. To this end, we use hourly rainfall
data of "Bologna idrografico" station for the period 1990–2013 provided by the Dext3r repository (23 years
full coverage, while the entire 2008 is missing). We checked that such hourly rainfall data agrregated at
the daily scale are consistent with the daily data recorded in the same period by Bologna station above
(not shown).

Figure 5. Probability‐probability plots of Groningen data set of daily rainfall. The empirical distributions of maximum terms xkf gmk¼1 among annual exceedances of
the 5th percentile threshold for winter (top left), spring (top right), summer (bottom left), and autumn (bottom right) seasons are compared to the
corresponding theoretical distributions assuming both Poisson (P) occurrences (with parameter λ) of independent exceedances (equation (4)), and negative bino-
mial occurrences (with parameters r and α) of correlated exceedances (equation (22)) with pairwise joint distribution described by the Gaussian (N), Clayton
(C, equation (28)), and Gumbel (G, equation (29)) copulas, with parameters ρ and τ as detailed in the text. All parameter values are reported in Table 1.

Figure 6. Same as Figure 5 for Middelburg data set of daily rainfall.
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Comparing Figures 7 and 8, it is noted that extremes of hourly rainfall data are more affected by correlation
than daily data (see, e.g., winter and autumn seasons, respectively top left and bottom right panels). This is
also the case if we consider the same period of record (1990–2013) for both data sets (not shown). Then, we
may conclude that low thresholds can be used for classical POT analyses (assuming independence) of rain-
fall time series at the daily scale (or above), while further investigations of different data sets are required to
describe the impact of dependence on the extremal behavior of the rainfall process at finer time scales.
Besides, other interesting future analyses could investigate the extremes of areal rainfall, as for example
weather radar data will become more reliable and will accumulate in time providing samples with lenghts
adequate enough to enable reliable investigation of the probability distribution of areal rainfall
(Lombardo, Napolitano & Russo 2006; Lombardo, Napolitano, Russo, et al., 2006; Lombardo et al., 2009).

Figure 7. Same as Figure 5 for Bologna data set of daily rainfall.

Figure 8. Same as Figure 5 for Bologna data set of hourly rainfall.
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By contrast, results change significantly when analyzing extremes of streamflow time series. In fact, we pre-
sent a case study that shows how models assuming independence among magnitudes of extreme events
prove to be inadequate to study the probability distribution of discharge maxima.

In Figure 9, we show the PP plots of the distribution of extreme maxima taken from annual excee-
dances of the 5th percentile thresholds for the four seasons of the Po River discharge data set, recorded
at Pontelagoscuro station. Contrary to the rainfall case studies, the classical model assuming indepen-
dent magnitudes with Poisson (P) occurrences shows marked departures from the 45° line. The theore-
tical distribution is usually much lower than its empirical counterpart, meaning that, under the popular
assumption of independent extremes, the theoretical probability of an extreme event of given magnitude
being exceeded is significantly higher than the corresponding observed frequency of exceedance.
Figure 9 shows that our 2Mp model of correlated extremes outperforms the widely used independent
model. In particular, the distribution of maxima that has a Gumbel copula seems to be more consistent
with observed extreme values, denoting dependence in the upper tail of the bivariate distribution H2

(x) = Pr{Z1 ≤ x,Z2 ≤ x} (Schmidt, 2005). In summary, daily streamflow extremes may exhibit note-
worthy departures from independence that are consistent with a stochastic process characterized by a
2Mp behavior and upper tail depedence.

The above results are also evident if we compare theoretical and empirical distributions of streamflow
maxima by plotting their quantiles against each other. We use real values for this example (i.e., we
do not apply the normal quantile transformation to the data series); therefore, empirical quantiles equal
the observed annual maxima. Theoretical quantiles referring to equations (4) and (22) (the latter specia-
lizes for Gaussian, Clayton, and Gumbel copulas) are computed by numerically solving for the root of
the equation H(x) − p = 0 for a given probability value, p (i.e., the Weibull plotting position of observed
annual maxima), assuming the classical generalized Pareto (GPD) with zero lower bound as parent dis-
tribution of threshold excesses:

F xð Þ ¼ 1− 1þ γ
x
σ


 �−1
γ for γ≠0

1−exp −
x
σ


 �
otherwise

8>>><
>>>:

(30)

where γ is the shape parameter and σ is the scale parameter, which we estimate through the maximum like-
lihood method applied to the entire POT series of each season.

Figure 9. Same as Figure 5 for the Po River data set of daily discharge.
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In Figure 10, QQ plots of Po river discharge for the spring season are shown when varying the threshold ξ
(from the 5th, Q5, to the 75th, Q75, percentiles) to form POT series. It can be noticed that for low thresholds
there is a shift in variance between theoretical (i.e., derived from equation (22) with Gumbel copula) and
empirical quantiles, namely, the variance of theoretical annual maxima underestimates its empirical coun-
terpart. This can be due to the fitting performance of the marginal GPD, which does not reproduce well the
tail behavior of observed data (not shown). Figure 10 shows that increasing the threshold value helps focus
the attention on the distribution tail to better capture the behavior of maxima. This is also the case if we com-
pare streamflow quantiles resulting from our model with those estimated through “classical” generalized
extreme value (GEV) distribution fitted to the observed annual maxima. All parameter values are reported in
Table 2. We note that three GEV parameters are estimated onm = 98 data points, while the 5 parameters of
our model in equation 22 (α, r, τ or ρ, and the two parameters of the GPD with zero lower bound) are esti-
mated on ∑m

k=1nk data, which are 8565, 6759, 4497, and 2253 for Q5, Q25, Q50, Q75, respectively.

As threshold increases evidence of persistence is progressively reduced as expected, but we also note in
Figure 10 that the theoretical quantiles derived from the classical independent Poisson method always show
a shift in mean with respect to observed maxima (i.e., under independence, theoretical streamflow quantiles
systematically and significantly overestimate observed streamflow maxima).

To summarize, our model provides a closed‐form expression of the exact distribution for dependent hydro-
logical maxima, which is capable of capturing the behavior of observed extremes of long‐term hydrological
records. In particular, while rainfall extremes do not seem to be significantly affected by correlation at the
daily scale so that the classical Poisson model can be appropriate for use in POT analyses of daily rainfall
time series, the influence of correlation is prominent in the streamflow process at the daily scale and it is
important to preserve in simulation and analysis of extremes.

5. Conclusions

The study of hydrological extremes faces the chronic lack of sufficient data to perform reliable analyses. This
is partly related to the inherent nature of extreme values, which are rare by definition, and partly related to
the relative shortness of systematic records from hydrometeorological gauge networks. The limited

Figure 10. Quantile‐quantile plots of Po river discharge (m3/s) for spring season. The observed maximum terms among
annual peaks over the 5th percentile (top left), 25th percentile (top right), 50th percentile (bottom left), and 75th per-
centile (bottom right) thresholds are compared to the corresponding theoretical quantiles. In all cases, we assume the GPD
as parent distribution of daily streamflow (with shape γ ∈ R, scale σ > 0 and threshold ξ > 0 parameters) and compute
quantiles specializing equation (22) for Poisson (P) occurrences (with parameter λ, equation (4)) of independent excee-
dances, and for negative binomial occurrences (with parameters r and α) of correlated exceedances with pairwise joint
distribution described by the Gaussian (N), Clayton (C), and Gumbel (G) copulas, with parameters ρ and τ as detailed in
the text. We also plot theoretical quantiles from GEV distribution (with shape χ ∈ R, scale θ > 0 and location μ > 0
parameters) fitted to the observed annual maxima. All parameter values are reported in Table 2.
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availability of data poses serious problems for an effective and reliable use of asymptotic results provided
by EVT.

Alternative methods focusing on the exact distribution of extreme maxima extracted from POT sequences of
random size over fixed time windows have been proposed in the past. However, closed‐form analytical
results were developed only for independent data with Poisson occurrences. Even though these assumptions
may be sufficiently reliable for high‐threshold POT values, this type of data still generates relatively small
sample size. In order to better exploit the available information, it can be convenient to consider lower
thresholds. However, the effect of lower thresholds is twofold: on the one side the sample size increases,
but on the other side the hypotheses of independent magnitudes and Poisson occurrences of POT values
are no longer reliable.

In this study, we have introduced closed‐form analytical formulae for the exact distribution of maxima from
POT sequences that generalize the classical independent model, overcoming its limits and enabling the
study of maxima taken from dependent low‐threshold POT values with arbitrary marginal distribution,
first‐order Markov dependence structure, and negative binomial occurrences, and tested real data against
this hypothesis. Even though the framework can be further generalized by introducing arbitrary dependence
structures and models for POT occurrences, first‐order Markov chains and negative binomial distributions
provide a good compromise between flexibility and the possibility to obtain simple ready‐to‐use formulae.
In this respect, it should be noted that our model of correlated extremes can cover a sufficient range of cases.
We have shown that the modulation of the lag‐one autocorrelation coefficient of the annual sequences of
POT values (i.e., the Markov chain parameter) gives a set of extremal distributions that include the empirical
distribution of maxima for rainfall data series, and for highly correlated low‐threshold discharge POT series.
On the other hand, the negative binomial model is a widely used and theoretically well‐establishedmodel for
occurrences exhibiting clustering and overdispersion, which are common characteristics of POT events
resulting from persistent processes, such as river discharge.

The relationship between our model and its classical independent version (i.e., equations (22) and (4)) along
with results of the case studies show that distribution of extreme maxima under dependence yields probabil-
ities of exceedance that are systematically lower than those under independence and are also consistent with
traditional approaches (GEV), based on extreme value theory, applied to long annual maxima series.

Finally, we stress that our model of the exact distribution of correlated extremes requires knowledge or fit-
ting of a bivariate distribution (and therefore its univariate marginal distribution). In particular, while the
extremal behavior of the rainfall process does not seem to be significantly affected by dependence at the daily
scale so that the classical Poisson model can be appropriate for use in POT analyses of daily rainfall time ser-
ies, the influence of correlation is prominent in the streamflow process at the daily scale and it appears also
in the rainfall process at the hourly scale. Then, it is important to account for such dependence in the
extreme value analyses, which are crucial to hydrological design and risk management because critical
values can be less extreme and more frequent than expected under the classical independent models.
Comparing the Gaussian, Clayton, and Gumbel bivariate copulas, describing different dependence struc-
tures, and the standard Gaussian and Generalized Pareto marginal distributions, we found that the distribu-
tion of maxima that has a Gumbel copula seems to be more consistent with streamflow extreme values,
denoting dependence in the upper tail of the bivariate distribution. However, these aspects require further
investigation from both theoretical and empirical standpoints, and will be the subject of future research.
In the spirit of the recent literature on the topic, we believe that the present study will contribute to develop
more reliable data‐rich‐based analyses of extreme values.

References
Abramowitz, M., & Stegun, I. A. (1972).Handbook of mathematical functions with formulas, Graphs, and Mathematical Tables, 9th printing.

New York: Dover.
Allamano, P., Laio, F., & Claps, P. (2011). Effects of disregarding seasonality on the distribution of hydrological extremes. Hydrology and

Earth System Sciences, 15(10), 3207–3215. https://doi.org/10.5194/hess‐15‐3207‐2011
Bernardara, P., Mazas, F., Kergadallan, X., & Hamm, L. (2014). A two‐step framework for over‐threshold modelling of environmental

extremes. Natural Hazards and Earth System Sciences, 14(3), 635–647. https://doi.org/10.5194/nhess‐14‐635‐2014
Bogachev, M. I., & Bunde, A. (2012). Universality in the precipitation and river runoff. EPL (Europhysics Letters), 97(4), 48011. https://doi.

org/10.1209/0295‐5075/97/48011

10.1029/2019WR025547Water Resources Research

LOMBARDO ET AL. 17

Acknowledgments
All data used in this study are freely
available online, as described in section
above. The Associate Editor, an
eponymous reviewer, Geoff Pegram,
and two anonymous reviewers are
gratefully acknowledged for their
constructive comments that helped to
substantially improve the paper. We
also thank Alessio Domeneghetti for
providing the first author with detailed
information on the Dext3r public
repository.

https://doi.org/10.5194/hess-15-3207-2011
https://doi.org/10.5194/nhess-14-635-2014
https://doi.org/10.1209/0295-5075/97/48011
https://doi.org/10.1209/0295-5075/97/48011


Bommier, E. (2014). Peaks‐over‐threshold modelling of environmental data. U.U.D.M. Project Report 2014:33, Department of
Mathematics, Uppsala University.

Calenda, G., Petaccia, A., & Togna, A. (1977). Theoretical probability distribution of critical hydrologic events by the partial‐duration series
method. Journal of Hydrology, 33(3‐4), 233–245. https://doi.org/10.1016/0022‐1694(77)90037‐3

Claps, P., & Laio, F. (2003). Can continuous streamflow data support flood frequency analysis? An alternative to the partial duration series
approach. Water Resources Research, 39(8), 1216. https://doi.org/10.1029/2002WR001868

Coles, S. (2001). An introduction to statistical modeling of extreme values. Springer, London: Springer Series in Statistics.
DeMichele, C., & Avanzi, F. (2018). Superstatistical distribution of daily precipitation extremes: Aworldwide assessment. Scientific Reports,

8(1), 14,204. https://doi.org/10.1038/s41598‐018‐31838‐z
Eastoe, E. F., & Tawn, J. A. (2010). Statistical models for overdispersion in the frequency of peaks over threshold data for a flow series.

Water Resources Research, 46, W02510. https://doi.org/10.1029/2009WR007757
Eichner, J. F., Kantelhardt, J. W., Bunde, A., & Havlin, S. (2011). The statistics of return intervals, maxima, and centennial events

under the influence of long‐term correlations. In J. Kropp, & H.‐J. Schellnhuber (Eds.), Extremis, (pp. 2–43). Berlin, Heidelberg:
Springer.

Favre, A. C., El Adlouni, S., Perreault, L., Thiémonge, N., & Bobée, B. (2004). Multivariate hydrological frequency analysis using copulas.
Water Resources Research, 40, W01101. https://doi.org/10.1029/2003WR002456

Feller, W. (1968). An introduction to probability theory and its applications, vol. I, (3rd ed.). London‐New York‐Sydney‐Toronto: John Wiley
& Sons.

Fernández, B., & Salas, J. D. (1999). Return period and risk of hydrologic events. I: mathematical formulation. Journal of Hydrologic
Engineering, 4(4), 297–307. https://doi.org/10.1061/(ASCE)1084‐0699(1999)4:4(297)

Ferro, C. A., & Segers, J. (2003). Inference for clusters of extreme values. Journal of the Royal Statistical Society, Series B: Statistical
Methodology, 65(2), 545–556. https://doi.org/10.1111/1467‐9868.00401

Fisher, R., & Tippett, L. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Mathematical
Proceedings of the Cambridge Philosophical Society, 24(2), 180–190.

Fuller, W. E. (1914). Flood flows. Transactions of the American Society of Civil Engineers, 77, 564–617.
Graham, R. L., Knuth, D. E., & Patashnik, O. (1994). Concrete mathematics: A foundation for computer science, (2nd ed.). Reading, MA:

Addison‐Wesley.
Gumbel, E. J. (1958). Statistics of Extremes. Columbia University Press, New York.
Hazen, A. (1914). The storage to be provided in impounding reservoirs for municipal water supply. Transactions of the American Society of

Civil Engineers, 77, 1539–1669.
Iliopoulou, T., & Koutsoyiannis, D. (2019). Revealing hidden persistence in maximum rainfall records. Hydrological Sciences Journal,

64(14), 1673–1689. https://doi.org/10.1080/02626667.2019.1657578
Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., Böhm, R., Demarée, G., Gocheva, A., et al. (2002). Daily dataset of 20th‐century

surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology, 22(12),
1441–1453. https://doi.org/10.1002/joc.773

Koutsoyiannis, D. (2004a). Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation. Hydrological Sciences
Journal, 49(4), 575–590.

Koutsoyiannis, D. (2004b). Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records.
Hydrological Sciences Journal, 49(4), 591–610.

Koutsoyiannis, D., & Montanari, A. (2015). Negligent killing of scientific concepts: the stationarity case. Hydrological Sciences Journal,
60(7‐8), 1174–1183.

Koutsoyiannis, D., & Papalexiou, S. M. (2017). Extreme rainfall: Global perspective. In Handbook of Applied Hydrology, Second Edition,
edited by V.P. Singh, (pp. 74.1–74.16). New York: McGraw‐Hill.

Krzysztofowicz, R. (1997). Transformation and normalization of variates with specified distributions. Journal of Hydrology, 197(1‐4),
286–292.

Leadbetter, M. R. (1974). On extreme values in stationary sequences. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 28,
289–303.

Leadbetter, M. R. (1983). Extremes and local dependence in stationary sequences. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte
Gebiete, 65, 291–306.

Lombardo, F., Montesarchio, V., Napolitano, F., Russo, F., &Volpi, E. (2009). Operational applications of radar rainfall data in urban
hydrology. IAHS-AISH Publication, 327, 258–266.

Lombardo, F., Napolitano, F., & Russo, F. (2006). On the use of radar reflectivity for estimation of the a real reduction factor. Natural
Hazards and Earth System Science, 6(3), 377–386. https://doi.org/10.5194/nhess-6-377-2006

Lombardo, F.,Napolitano, F.,Russo, F.,Scialanga, G., Baldini, L., & Gorgucci, E. (2006). Rainfall estimation and ground clutter rejection
with dual polarization weather radar. Advances in Geosciences, 7, 127–130. https://doi.org/10.5194/adgeo-7-127-2006

Lombardo, F., Volpi, E., Koutsoyiannis, D., & Serinaldi, F. (2017). A theoretically consistent stochastic cascade for temporal disaggregation
of intermittent rainfall. Water Resources Research, 53, 4586–4605. https://doi.org/10.1002/2017WR020529

Luke, A., Vrugt, J. A., AghaKouchak, A., Matthew, R., & Sanders, B. F. (2017). Predicting nonstationary flood frequencies: Evidence
supports an updated stationarity thesis in the United States. Water Resources Research, 53, 5469–5494. https://doi.org/10.1002/
2016WR019676

Marani, M., & Ignaccolo, M. (2015). A metastatistical approach to rainfall extremes. Advances in Water Resources, 79, 121–126. https://doi.
org/10.1016/j.advwatres.2015.03.001

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., & Houston, T. G. (2012). An overview of the global historical climatology network‐daily
database. Journal of Atmospheric and Oceanic Technology, 29(7), 897–910. https://doi.org/10.1175/JTECH‐D‐11‐00103.1

Montanari, A. (2012). Hydrology of the Po River: looking for changing patterns in river discharge. Hydrology and Earth System Sciences,
16(10), 3739–3747. https://doi.org/10.5194/hess‐16‐3739‐2012

O'Connell, P. E., Koutsoyiannis, D., Lins, H. F., Markonis, Y., Montanari, A., & Cohn, T. (2016). The scientific legacy of Harold Edwin
Hurst (1880–1978). Hydrological Sciences Journal, 61(9), 1571–1590.

Papalexiou, S. M., & Koutsoyiannis, D. (2013). Battle of extreme value distributions: A global survey on extreme daily rainfall. Water
Resources Research, 49, 187–201. https://doi.org/10.1029/2012WR012557

Papalexiou, S. M., Koutsoyiannis, D., &Makropoulos, C. (2013). How extreme is extreme? An assessment of daily rainfall distribution tails.
Hydrology and Earth System Sciences, 17(2), 851–862. https://doi.org/10.5194/hess‐17‐851‐2013

10.1029/2019WR025547Water Resources Research

LOMBARDO ET AL. 18

https://doi.org/10.1016/0022-1694(77)90037-3
https://doi.org/10.1029/2002WR001868
https://doi.org/10.1038/s41598-018-31838-z
https://doi.org/10.1029/2009WR007757
https://doi.org/10.1029/2003WR002456
https://doi.org/10.1061/(ASCE)1084-0699(1999)4:4(297)
https://doi.org/10.1111/1467-9868.00401
https://doi.org/10.1080/02626667.2019.1657578
https://doi.org/10.1002/joc.773
https://doi.org/10.5194/nhess-6-377-2006
https://doi.org/10.5194/adgeo-7-127-2006
https://doi.org/10.1002/2017WR020529
https://doi.org/10.1002/2016WR019676
https://doi.org/10.1002/2016WR019676
https://doi.org/10.1016/j.advwatres.2015.03.001
https://doi.org/10.1016/j.advwatres.2015.03.001
https://doi.org/10.1175/JTECH-D-11-00103.1
https://doi.org/10.5194/hess-16-3739-2012
https://doi.org/10.1029/2012WR012557
https://doi.org/10.5194/hess-17-851-2013


Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes 3rd edition: The art of scientific computing.
Cambridge: Cambridge University Press.

Salas, J. D., Obeysekera, J., & Vogel, R. M. (2018). Techniques for assessing water infrastructure for nonstationary extreme events: A review.
Hydrological Sciences Journal, 63(3), 325–352.

Salvadori, G., De Michele, C., Kottegoda, N. T., & Rosso, R. (2007). Extremes in nature: an approach using copulas, (Vol. 56). Dordrecht:
Springer.

Schmidt, R. (2005). Tail dependence. In Statistical Tools for Finance and Insurance, (pp. 65–91). Berlin, Heidelberg: Springer.
Serinaldi, F., & Kilsby, C. G. (2014). Rainfall extremes: Toward reconciliation after the battle of distributions.Water Resources Research, 50,

336–352. https://doi.org/10.1002/2013WR014211
Serinaldi, F., & Kilsby, C. G. (2016). Understanding persistence to avoid underestimation of collective flood risk. Watermark, 8(4), 152.
Serinaldi, F., & Kilsby, C. G. (2018). Unsurprising surprises: The frequency of record‐breaking and overthreshold hydrological extremes

under spatial and temporal dependence. Water Resources Research, 54, 6460–6487. https://doi.org/10.1029/2018WR023055
Serinaldi, F., Kilsby, C. G., & Lombardo, F. (2018). Untenable nonstationarity: An assessment of the fitness for purpose of trend tests in

hydrology. Advances in Water Resources, 111, 132–155.
Todorovic, P. (1970). On some problems involving random number of random variables. The Annals of Mathematical Statistics, 41(3),

1059–1063.
Todorovic, P., & Zelenhasic, E. (1970). A stochastic model for flood analysis. Water Resources Research, 6(6), 1641–1648.
Volpi, E., Fiori, A., Grimaldi, S., Lombardo, F., & Koutsoyiannis, D. (2015). One hundred years of return period: Strengths and limitations.

Water Resources Research, 51, 8570–8585. https://doi.org/10.1002/2015WR017820
Volpi, E., Fiori, A., Grimaldi, S., Lombardo, F., & Koutsoyiannis, D. (2019). Save hydrological observations! Return period estimation

without data decimation. Journal of Hydrology, 571, 782–792.
Zorzetto, E., Botter, G., & Marani, M. (2016). On the emergence of rainfall extremes from ordinary events. Geophysical Research Letters, 43,

8076–8082. https://doi.org/10.1002/2016GL069445

10.1029/2019WR025547Water Resources Research

LOMBARDO ET AL. 19

https://doi.org/10.1002/2013WR014211
https://doi.org/10.1029/2018WR023055
https://doi.org/10.1002/2015WR017820
https://doi.org/10.1002/2016GL069445


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


