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Abstract

An empirical model for prediction of microalgal growth in outdoor photobioreactors

cultivation, using Principal Component Analysis (PCA) and Partial Least Squares (PLS)

regression method, is implemented. Experimental data of biomass production were

collected over 1 year of operation of a bubble column prototype, monitoring light and

temperature and changing cultivation’s conditions. PCA isolates 2 Principal Components

that explain 80% of the variance and are associated with Environmental Conditions and

Cultivation Conditions. Moreover, the PLS regression model showed positive results in

term of responses (R2=0.84) and residuals, following the experimental trends of outputs

as specific growth rate (μ(d−1)) and productivity calculated at Cmax (Pmax(gL
−1d−1)),

giving also good prediction results in its validation test. This method could be easily used

for other purpose, by changing the input values of the specific cultivation used (including

CO2 uptake or wastewater dilution ratio in the culture medium), obtaining as outputs

the desired variables (lipid production rate, etc.).
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1. Introduction

Recently, the global market is shifting the focus towards new green products, drawing

the attention to microalgae as a valid alternative source of high added value products

[1, 2] and renewable biofuels, for example: biodiesel, biohydrogen and biomethane [3]. A

large number of microalgal species can attain a lipid content between 20-50% DCW (Dry

Cell Weight) depending on the cultivation conditions [3–9]. With the aim of reducing

costs and environmental impact [10], several studies have focused on using microalgal

cultivations for CO2 capture from industrial processes [7, 11], and also on the addition

of wastewater to algal nutrient media, to reduce both the cost of biomass production

and wastewater treatment [12–15]. For photoautotrophic production, the most popular

cultivation systems are open ponds and closed photobioreactors. There are however a

large number of factors that could affect the growth of microalgae and these can be

divided in three categories [7]:

� Abiotic factors such as light, temperature, nutrients (CO2, N, P, K, etc.), O2, pH,

salinity and toxins.

� Biotic factors including bacteria, viruses, fungi, and other species in competition

with microalgae.

� Operational factors such as mixing and stirring conditions, dilution ratio, vessel

width and depth, and harvest frequency.

For photoautotrophic cultivations, light availability is the most important factor affecting

cell growth; its control is difficult in outdoor cultures, due to the variation of solar

radiation during day and season, and its non-homogeneous distribution inside the pho-

tobioreactors. This heterogeneous light distribution can cause photolimitation and/or

photoinhibition, depending on both light irradiance intensity and microalgal concentration,

thus significantly affecting photoproduction. Light distribution, temperature is also an

important limiting factor for growing algae in both indoor or outdoor systems. Many

microalgae can tolerate temperature increases or decreases, but diverging the optimum
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temperature by only 2 or 4 ◦C may lead to culture loss [16]. Moreover, overheating

problems may occur in outdoor systems, making it necessary to use cooling systems

to keep temperatures below 28-30◦C [17]. Given these considerations, in the last two

decades an increasing number of scientists have tried to predict microalgal growth and

metabolites production under transient conditions of light intensity and temperature

using empirical models [18, 19] or semi-empirical models [20, 21]. With respect to light

modeling and its connection to microalgal growth, there is a differentiation based on the

models’ ability to take into account light gradients [18, 22], light cycles [23, 24] and also

physical phenomena (as scattering) [22, 25] that occur in outdoor cultures. In the case

of temperature, the modeling approaches can be divided into coupled and uncoupled,

depending on whether the models take into account or not the potential interdependence

of light and temperature on growth [26]. Predictive power of such model is usually

achieved by a large number of adjustable parameters difficult to relate to physical and

chemical phenomena, and thus with scarce identifiability [27]. These problems inevitably

affect the model validation for an end user, making them useless for an accurate prediction

of microalgal growth in sligthly different outdoor conditions. For these reasons, there

is a need to develope models that an end user would be easily able to handle, without

losing accuracy [25]. In this work an empirical model to predict microalgae growth in

outdoor cultivation system, using multivariate statistics, is implemented to overcome the

problems of complex mathematical models. In particular, the multivariate statistical

projection methods PCA (Principal Component Analysis) and PLS (Partial Least Square)

are used for the purpose. PCA and PLS were initially used in process control for their

ability to compress multidimensional data and to extract the most useful informations, by

projecting these data into a low-dimensional space having as new reference system: the

principal components [28]. In particular, for algae production both techniques have been

used to analyze the water chemistry conditions in three wastewater stabilization ponds

with excessive algae growth and fluctuating pH, finding correlations between variables

(pH, temperature, light, dissolved oxygen, etc), and developing a multivariate regressions
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model for pH as a dependent variable [29]. Other similar applications were used to study

and identify correlations between different algal species present in Lake Wingra [30] and

also to illustrate the influence of environmental variables on phytoplankton composition

in the Vaal River [31]. Unlike previous works, in this paper an innovative use of PCA

and PLS methods is developed, not only to reduce data redundancy but also to predict

microalgal growth in a specific period of the year with defined weather and cultivation

conditions. 1 year experimental data from a pilot scale phototrophic plant were analyzed

with PCA and a PLS multivariate regression method, to obtain the specific growth rate

(μ(d−1)) and the productivity calculated at Cmax (Pmax(gL
−1d−1)).

2. Materials and Methods

2.1. Microalgal outdoor cultivation

In this work two different strains of algae named Tetradesmus obliquus and Graesiella

emersonii were selected and cultivated in an outdoor photobioreactors (PBRs) pilot plant

[17, 32]. Each inoculum was prepared using local tap water [33] in place of distilled water

[34, 35]. The pilot plant was installed in Rome (Italy) at the Bio-P s.r.l. site (N 41�55’ 5”

E 12�35’ 35”); it was fitted with 10 column photobioreactors with an operative volume

of 21 L each (internal diameter=14 cm, height=150 cm), anchored to a metal support

structure. Each reactor was connected to air (for mixing purposes) and to CO2 lines (for

pH control). The air flux was generated by a membrane compressor (AIRMAC 40W).

Mixing inside the reactors was achieved by using toroidal spargers, while CO2 was injected

as pure on demand from cylinders. When a certain concentration was reached (1-3 gL−1),

the microalgal suspension was collected and sent to a 95 Lh−1 bucket centrifuge (Raw

Power Centrifuge). An aliquot of the concentrated suspension was used for the subsequent

inoculum. The model is designed with the aim of predicting microalgae growth at specific

outdoor cultivation conditions. Inputs (variables for PCA and predictors for PLS) and

required outputs (responses for PLS) are summarized in Tab. 1. The experimental

data covered a 9 months period (March 2017-December 2017) and to each experiment
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Tab. 1: Input and Output Values of the model

Input Values Output Values

Daily Illumination Time (h)
Specific Growth Rate:Microalgal Inoculum Concentration: Cinit(gL

−1)
NaNO3 Initial Concentration: NaNO3init(gL

−1) μ(d−1)
Maximum Internal Temperature Averaged: Timax avg(�)
Maximum External Temperature Averaged: Temax avg(�)

Productivity calculated at Cmax:Minimum Internal Temperature Averaged: Timin avg(�)
Minimum External Temperature Averaged: Temin avg(�) Pmax(gL

−1d−1)
Photosynthetic Photon Flux Density: PPFD (μEm−2 s−1)

(totally 10) is assigned a label (A-L) for a better clarity. In Tab. 2 the experiments with

the corresponding label and the period in which were conducted are resumed. All the

cultivations periods were ended when the microalgae showed a decrease of their growth

rate due to nutrients depletion. Internal and External refer to the positions of the probes

relatively to the reactors; furthermore the “averaged” terms are referred to the variables’

collected data, averaged over all their values for each experiment.

2.2. Monitoring of microalgae growth

During each experiment, microalgae concentration was determined daily both by cell

count and dry weight for both species. For dry weight measures, each sample was firstly

washed with 1 mL of sodium acetate buffer solution (sodium acetate 0.5 M, pH=4.8) in

order to dissolve any salt that could have misrepresented the measure. After that, 10 mL

of each sample was filtrated using 0.70 μm microfiber filters (VWR). The filters were

then dried at 105 ◦C for half an hour and weighed. Cell counting was performed with an

optical microscope (Motic EF-N PLAN) in a 10−4 mL Thoma chamber. The values of

specific growth rates were obtained as:

μ =
1

x

dx

dt
(1)

Where x are the cell concentration values (106cell mL−1) during the exponential growth

phase. The productivity calculated at Cmax, was obtained as:

Pmax =
Cmax − Cinit

tmax − tinit
(2)
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Tab. 2: Experiments’ Periods during 2017

Experiment Period of 2017 Notation

A 02-March/14-March March I
B 21-March/31-March March II
C 4-April/14-April April
D 19-April/10-May April-May
E 15-May/22-May May
F 20-June/07-July June-July
G 10-July/27-July July
H 22-September/17-October Sep-Oct
I 27-October/22-November October-November
L 24-November/22-December Nov-Dec

Where Cmax and Cinit are the maximum observed biomass concentration (gL−1) reached

in each experiment and the biomass concentration (gL−1) at the beginning of each

experiment respectively; likewise tmax and tinit are the time at which the maximum

observed biomass concentration was reached and the experiment start time (time zero).

Consequently, Pmax is not referred to the final/total productivity that is actually related

to that is actually related to the batch duration.

2.3. Monitoring and control of variables

During the experiments pH and temperature were continuously monitored using probes

inside reactors, controlled by an active feedback control system. Both pH and temperature

data were continuously registered for analysis and displayed on a PC interface using

LABVIEW software. The pH was maintained at its set point (pH=8) with the use of

CO2, that was injected on demand directly inside the reactors. The temperature was

kept below the maximum temperature threshold setting (T=30 ◦C) by using a water

spray system, designed and built for the purpose. Two probes were placed inside and

outside the reactors, to measure internal and external temperature. The illuminance was

measured every day (at 10 am, at 2 pm and at 5.30 pm) by using a luxmeter (LM-8000,

LT-Lutron) and transformed to the corresponding value of Photosynthetic Photon Flux

Density (PPFD) (μEm−2 s−1) through multiplication with the conversion factor (0.0185)

for sunlight light source [36]. Every measure was taken at three points for each reactor,
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at different heights from the ground: at the bottom (20 cm), at a middle height (80 cm)

and at the top (140 cm). Light measurements at the bottom and middle were normalized

with respect to light on the top, being always lower than this value. As a reference of

light fluctuations, light was also measured at a fixed point not affected by any shadowing

(named as “unshaded reference point”).

2.4. Multivariate Statistical Analisys

In the present study two multivariate methods, PCA and PLS respectively, were used,

firstly to investigate the effects of variables on microalgal growth, and then to develop an

empirical model for growth estimation using MINITAB� and OriginPro (OriginLab

Corporation) software. For a short explanation of PCA and PLS methods see Appendix

A.1-A.2.

3. Results and Discussion

3.1. Input & Output Data

Before showing PCA and PLS results, the values of the two inputs and outputs, represent-

ing the most important outdoor variables (light and temperature) influencing the outdoor

cultivation in closed photobioreactors, are reported in this paragraph. Temperature is a

key outdoor factor regulating the metabolism of each microorganism, by affecting reaction

kinetic and biomolecules stability. Light is the energy source of microalgae, crucial for

the photosynthesis and the whole metabolism. Both these outdoor factors can change

several folds in photobioreactors in response to seasons, day/night cycle and weather, in

a range known (from laboratory experiments) to affect microalgae metabolism. Other

possible outdoor factors, such as rain and wind, were excluded because by working with

photobioreactors their influence could be assumed negligible. In the case of other reactors

configuration, as for example for open ponds, such other factors could be relevant because

they could produce phenomena as water evaporation (by wind) and rainwater addition

in the culture (by rain). Besides the environmental variables, in this study two factors
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(considered as key factors), connected to the cultivation conditions, are investigated and

tuned during the various experiments: the initial biomass concentration (Cinit) and the

initial NaNO3 concentration (NaNO3init) of each test. These two factors are essential to

understand the experiment’s duration and the biomass production. Other factors, such as

CO2 and pH, can also influence the microalgae growth, but in the pilot plant used in this

study, the pH was controlled by a control system which maintained it always constant

around 8 (which is also the optimal pH for such species). For such reason pH was assumed

to be not influent on our tests. Furthermore, CO2 was supplied on demand by the pH

control system and thus was assumed to be sufficient, and not a limiting nutrient, for

microalgae growth throughout the cultivation. In Fig. 1 maximum and minimum values

of Internal and External Temperature during the experiments are shown. It is evident

that the plots of Minimum Temperatures (Fig. 1.b and Fig. 1.d) have the same trend

and similar values, in contrast to the Maximum Temperatures (Fig. 1.a and Fig. 1.c).

This difference is due mainly to two reasons: firstly, the water contained in a closed vessel

directly irradiated by sun, without an active cooling system, heats up to a temperature

higher than that of the air (Timax > Temax) for physical reasons related to heat transfer

efficiency and the thermal capacity of water. Moreover, these effects are improved by the

trigger of the Non-Photochemical Quenching (NPQ) mechanism. This particular defence

mechanism protects microalgae from the negative effects of high solar light absorption,

dissipating the excess amount of light energy to heat and giving the appearance of an

exothermic reaction. The second reason is the presence of the temperature control system

with water spray cooling that maintains, when it is active in June-September period,

the Internal Temperature at its set point T= 30◦C. In all four subplots, anyway, the

seasons temperature trend is visible, and temperature reaches maximum value at about

Tmax=38◦C in July, and minimum value at about Tmin=4◦C in December.

In Fig. 2, the light trend both in term of Daily Illumination Time (dotted) and of

PPFD (yellow bars) is plotted; the Daily Illumination Time is averaged on the light

hours during each experiment. The irradiance measured values can be positioned between
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those of Amsterdam (N 52�22’ 13” E 4�53’ 43”) and Ankara (N 39�55’ 32” E 32�51’

59”)[37]. It can be seen, as expected, that the maximum value of PPFD (260 μEm−2s−1)

is reached during the summer period, as also for the Daily Illumination Time (15.6 h)

that begins to decrease with autumn. In Fig. 3 the output values during each esperiment

are plotted in terms of specific growth rate (μ(d−1)) and productivity calculated at Cmax

(Pmax(gL
−1d−1)), both averaged on the replicates. These values are referred to both

Tetradesmus and Graesiella, but for the empiric model’s development are considered

as belonging to a single microalgal strain. These assumptions are verified analyzing

the results obtained running PCA/PLS methods, with the experimental values of each

Fig. 1: Averaged maximum/minimum values of Internal (a/b) and External (c/d) Tem-
perature during the experiments. The yellow bar indicates the cooling system activation
during the summer periods. The bars represent the Standard Deviations of the replicates.
For all the 4 subplots (a-d) the replicates consist in the duration, in terms of days, of each
experiment (n=13 for A; n=11 for B; n=11 for C; n=23 for D; n=8 for E; n=3 for F; n=18
for G; n=26 for H; n=27 for I; n=29 for L).
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Fig. 2: Photosynthetic Photon Flux Density (PPFD) (μEm−2 s−1) and Daily Illumination
Time (h) averaged trends during each experiment. The higher values are obtained in
summer periods, having more daylight hours and a better solar irradiance. The bars
represent the Standard Deviations of the replicates. About PPFD the replicates’ number
(n) consist in the number of reactors used in each experiment (n=6 for A,B,C,D,E; n=3
for F; n=7 for G; n=4 for H; n=9 for I; n=8 for L). Concerning to Illumination Time the
replicates consist in the duration, in terms of days, of each experiment (n=13 for A; n=11
for B; n=11 for C; n=23 for D; n=8 for E; n=3 for F; n=18 for G; n=26 for H; n=27 for
I; n=29 for L).

microalga considered singularly (See Appendix A.3 for furhter informations). The results

obtained are very similar, highlighting thus that these slight differences, in terms of the

experimental values of μ and Pmax between Tetradesmus and Graesiella, are too small to

be detectable from these multivariate statistics methods. Fig. 3 shows a positive trend of

Pmax moving towards the summer period (from experiment A to G), with the highest

value (0.17 gL−1d−1) obtained in the experiment G, and a negative trend moving towards

the winter months (from experiment H to L). These Pmax values are fully in line with the

outdoor variables plotted in Fig. 1 and Fig. 2 showing better results with the increasing of

temperature and light availability. The only exception of Pmax increasing trend towards

summer period, is shown in the experiments D and E and is due to the different NaNO3

concentration used. Indeed, in D a doubled concentration of NaNO3 respect to others
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experiments was used, leading to an increase of biomass and therefore of productivity; on

the other hand in E experiment using an half of normal NaNO3 concentration lead to a

low productivity. These results highlight the relevance of Cinit and NaNO3init factors, in

order to understand the experiments duration and the biomass production; indeed, the D

and E experiment showed different values of Pmax (therefore intrinsically also of duration),

even if were conducted at similar environmental conditions. As regards the specific growt

rate μ, in Fig. 3 there isn’t a clear trend because of high standard deviations between the

replicates, especially in the experiments C and E. These variability of μ data are caused

by the several factors influencing the outdoor microalgal growth and for this reason PCA

and PLS methods were chosen to isolate the different factors affecting the growth.

Fig. 3: Output Values Profiles during the experiments(March 2017-December 2017)
in terms of Specific growth rate (μ(d−1)) and Productivity calculated at Cmax

(Pmax(gL−1d−1)). A positive trend of Pmax towards summer months (with the excep-
tion of E conducted at an half of normal NaNO3 concentration) is shown. μ doesn’t show
a clear trend because of high standard deviations between the replicates (especially for C
and E) due to the several factors influencing the outdoor microalgal growth. The bars rep-
resent the Standard Deviations of the replicates for both microalgae, in each experiment,
considered separately. For both outputs the replicates’ number (n) consist in the number
of reactors used in each experiment (n=6 for A,B,C,D,E; n=3 for F; n=7 for G; n=4 for
H; n=9 for I; n=8 for L).

The Pmax and μ values in Fig. 3 are comparable with those reported in Tab. 3, obtained

in similar environmental conditions in outdoor cultivations, both in Italy and in other
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locations of the world. In particular during the cultivation period of work described by

Camacho-Rodŕıguez et al. [38] we obtained Pmax=0.025−0.25 and μ=0.12−1.1, during the

cultivation period of work described by Bosma et al. [39] we obtained Pmax=0.04−0.135

and μ=0.15−0.31 and lastly during cultivation period of of work described by Cheng-Wu

et al.[40] we obtained Pmax=0.025−0.18 and μ=0.14−0.3. Only Italy values of Chini

Zittelli et al.[41] are slightly different than our (Pmax=0.07−0.18 and μ=0.12−0.3, espe-

cially for Pmax), due to their optimized pilot plant positioning that have increased the

photosynthetic productivity.

Tab. 3: μ and Pmax comparison with other similar environmental conditions in outdoor
microalgal cultivations

Photobioreactor type Strain Location Cultivation period Pmax(gL
−1d−1) μ(d−1) Author

Bubble Column Tetraselmis suecica Italy August-September 0.4-0.65 0.32-0.65 [41]
Closed Bags Nannochloropsis gaditana Spain January-December 0.02-0.13 0.1-0.5 [38]

Bubble Column Monodus subterraneus Netherlands July-October 0.05-0.2 0.6-0.4 [39]
Flat Panel Nannochloropsis sp. Israel Winter-Summer 0.14-0.25 0.15-0.17 [40]

Bubble Column Tetradesmus obliquus and Graesiella emersonii Italy March-December 0.025-0.25 0.12-1.1 This work

3.2. PCA Results

PCA analysis is implemented and the redundant variables are eliminated; for example

variables related to light measures along reactor axis (top, medium, bottom) are deleted,

leaving as light representig data, the measure taken on the “unshaded reference point”.

PCA showed that only 2 Principal Components (PC) are needed to explain most of

the data variance (88%). This result is carried out by using a Cross Validation (CV)

method and the calculation of the Predicted Residual Error Sum of Squares (PRESS)

[42]. The results obtained with PCA implementation, giving a PC=2, granted an easy

interpretation of the variables’ effects on PCs in a bidimensional plot.

In Fig. 4 the Loading Plot (Fig. 4.a) and the Score Plot (Fig. 4.b) are reported. The

Loading Plot is an illustration of how much each variable contributes to build (or ‘load’)

each PC, showing how much each variable influence the PCs. In particular, Fig. 4.a

evidences that the variables with a horizontal orientation (Timax avg, Temax avg, Timin avg,

Temin avg, Light time, PPFD) and similar lenght (which means similar influence on a

PC) have a low effect on PC2 but a high effect on PC1. These variables also have good
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(a) (b)

Fig. 4: Loading Plot (a) and Score Plot (b) relatively to the first two Principal Components
(PC1 and PC2). In the Loading Plot the vectors with a horizontal orientation influence
more PC1 (“Environmental Conditions”) and for the same reason the vectors with a
vertical orientation influence more PC2 (“Cultivation Conditions”). The Score plot shows
the individual observations, collected during the experiments, clustered in groups having
as common features to belong to the same experiment(A-L) and moved near or far from
the axis depending on the influence of PC1 or PC2.

correlation each other (verified also physically), due to the small angles between the

vectors. Fig. 4.a also shows the variables approaching a vertical orientation (NaNO3,Cinit)

that are irrilevant to PC1, but significantly influence PC2. In particular, the NaNO3

vector is longer than Cinit one, being the most influent in PC2 load. Furthermore these

two variables do not correlate with each other; they physically represent two different

conditions. Since the vectors that influence PC1 more are composed of environmental

variables, the PC1 can be named: “Environmental Conditions”and for the same reason

the PC2 is called “Cultivation Conditions”. In Fig. 4.b the Score Plot is represented,

showing that the observations are clustered in groups having common features, that

means belonging to the same experiment(A-L). Moreover, the experiments A-B-C-D are

also clustered near the vertical axis and shifted from the origin, highlighting that the

obeservations are more influenced by the variables with a vertical orientation (NaNO3

and Cinit) that define the PC2. This result is due to the changes, in terms of initial

biomass concentration (Cinit) and the initial NaNO3 concentration (NaNO3init), carried

out during those experiments. Besides that, the experiments F-G-I-L are affected by both
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Enviromental conditions and Cultivation conditions, without either of this two Pricipal

Components prevail over the other . Lastly for the experiments H and E there is almost

no contribution of both variables groups, indicating that the variables have values near

their average level, having the observation matrix been centered and scaled. In Fig. 4.b a

dashed circle is reported, representing the Mahalanobis distance, denoting no outlier [28].

Like many other multivariate statistic methods, the results obtained (in terms of plots,

tables and numbers) have to be interpreted and sometimes are not univocal. Indeed, even

if the first principal component (PC1) is the most important one because explains the

maximum percentage of variability present in the data that can be represented in only

one dimension, iit is possible that the second one (PC2) is influenced by more important

variables (maybe economically). In our case PC2, influenced by the Cultivation Condition

variables, is less important for the explanation of data variance but is more important

for the economical point of view. Indeed, the amount of nutrients (NaNO3 in our study)

can affect, besides the growth rate and productivity, also the Operative Expenditures

(OPEX) of the process. For this reason, a correct and deeper interpretation of PCA

results, without stopping to a shallow analysis, is essential.

3.3. PLS Results

3.3.1. Model Selection and Predictors Evaluation

PCA results showed the connections between variables and their effects on PCs, grouping

both observations and variables. An empiric model to represent the effect of variables on

biomass growth is developed by PLS.

As a first step, in Fig. 5.a the PRESS (Predicted Residual Error Sum of Squares) values

of each predictor (the same meaning of component for PCA) are plotted. It is shown

that the minimum value of PRESS is obtained at the 6th predictor and consequently

the PLS model will need six predictors to describe most of the variance (84%). This

is shown in Fig. 5.b, where the R-Squared (R2) value for each predictor is plotted for

μ response (the same trend is observed also for Pmax). The R-Sq value provides the
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(a) (b)

Fig. 5: PRESS (Predicted Residual Error Sum of Squares) Plot for each predictor (a);
Model Selection Plot (b) representing the R-Squared trend for each predictor both with
and without the Cross Validation (CV) method in absolute and cumulative values. The
shows that the PLS model will need six predictors to describe most of the variance (84%)
with Cross Validation method, as can be seen also in the Model Selection Plot.

proportion of variation in each response that is explained by the predictors, indicating

how well each model fits data (the higher value obtained, the better the model fits the

data). In particular in Fig. 5.b both absolute R-Sq (bars) and cumulative R-Sq (dots)

are plotted, denoting the same result: i.e. maximum value of R-Sq of the 6th predictor

(84%). As shown in Fig. 5.b using Cross Validation (CV), an improvement in variability

representation can be achieved.The cross-validation technique (the leave-one-out case has

been used in this study) works by omitting each observation one at a time, rebuilding

the predictive model using the remaining data and then using this model to predict the

omitted data, estimating at the end with PRESS the predicted residual error.

3.3.2. Response Analysis

In Fig. 6 predicted responses versus experimental data are reported for both outputs

for direct fitting and CV procedure. Both plots in Fig. 6 show very little difference

between the fitted and cross-validated fitted responses. Furthermore the points on both

plots lie around the correlation line in a similar linear pattern, indicating that the model

fits the data with a good level of accuracy. The analysis of residuals between fitted
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(a) (b)

Fig. 6: Response Plot (plot of the fitted and cross-validated fitted responses versus the
experimental values) for μ(d−1) (a) and Pmax(gL−1d−1) (b). Both plots show very little
difference between the fitted and cross-validated fitted responses with the points lying
around the correlation line in a similar linear pattern, indicating the good level of accuracy
of the model data fitting. In both plots the data are referred to the individual observations
collected during the experiments.

and experimental data can give further insight into the model goodness. In Fig. 7, the

Residual Normal Probability Plot for both outputs μ(d−1) (a) and Pmax(gL
−1d−1) (b)

are reported. These graphs show the standardized residuals versus their expected values

when the distribution is normal. The residuals appear to follow a straight line for μ values,

while some distorsion can be noticed for Pmax but always within the range of confidence

intervals at 95%. In Fig. 8 the predicted and experimental results are compared for both

μ and Pmax outputs, confirming the quality of the PLS regression model for different

sets of experiments. In both plots the model is able to follow the experimental trends,

overcoming the variability specific of the environmental conditions and resembling the

effect of changed cultivation condition. Indeed, in both plots are present some possible

outliers for μ(d−1) in April and May and for Pmax(gL
−1d−1) during March. As regards

μ, the outliers could be caused by outdoor variability as described in Paragraph 3.1.

On the other hand, for Pmax the presence of possible outliers can be explained by the

different initial cultivation conditions, in terms of Cin and NaNO3init carried out in the

first experiments, as described in Paragraph 3.2.
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(a) (b)

Fig. 7: Residual Normal Probability Plot (standardized residuals results versus thier ex-
pected values when the distribution is normal) for μ(d−1) (a) and Pmax(gL−1d−1) (b).The
residuals appear to follow a straight line for μ values, while some distorsion can be noticed
for Pmax but always within the range of 95% confidence intervals. In both plots the data
are referred to the individual observations collected during the experiments.

(a) (b)

Fig. 8: Comparison between PLS predicted results and experimental ones for both outputs:
(a) μ(d−1) and (b) Pmax(gL−1d−1). In both plots the model is able to follow the exper-
imental trends even with the presence of some possible outliers for μ(d−1) in April and
May (due to the outdoor variability as described in Paragraph 3.1) and for Pmax(gL−1d−1)
during March (due to the different initial cultivation condition carried out). In both plots
the data are referred to the individual observations collected during the experiments.

3.3.3. Empiric Model Prediction Results

In this subsection the prediction results using PLS model are shown. In particular, in Tab.

4 the experimental values obtained during period M (19-01-2018/22-02-2018) are listed;

these values are used only for testing and validating PLS regression model’s prediction
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abilities and not for its developing. In Tab. 5 the Predicted Responses both for μ and

Tab. 4: Experimental values obtained during M period (19-01-2018/22-02-2018) used for
testing and validating model prediction abilities. Responses: specific growth rate (μ(d−1))
and productivity calculated at Cmax (Pmax(gL−1d−1)). Predictors: maximum and min-
imum internal and external temperatures averaged during each experiment Timax avg,
Timin avg, Temax avg, Temin avg (◦C); initial inoculum concentration Cinit (gL−1) and initial
nitrate concentration NaNO3 init (gL

−1); photosynthetic photon flux density PPFD(μEm−2

s−1); Daily Illumination Time (h).

RESPONSE PREDICTOR

EXPERIMENT μ Pmax Cinit NaNO3init Timax avg Timin avg Temax avg Temin avg PPFD Daily Illumination Time

M 0.20 0.031 0.30 0.35 19.56 5.43 18.9 4.74 4090 10.25

Pmax, with their correspondig Standard Error (SE) of Fit and 95% Confidence Interval

(CI), are listed and compared with the experimental ones. It can be seen that for both

output variables, the regression values are similar but not identical to the experimental

ones. This difference is mainly due to the absence of the experimental data collected

during M period for PLS model developing, lowering its prediction ability. The values

obtained in Tab. 5 are still an acceptable estimation, considering the high variability

influencing the outdoor microalgal growth and underline the effective goodness of the

PLS regression model. As a final step, in Tab. 6 the standardized regression coefficients,

used with the predictors to calculate the fitted value of both response variables, are listed.

Tab. 5: μ(d−1) and Pmax(gL−1d−1) PLS Regressed Values with relative Standard of Error
(SE) and 95% Confidence Interval (CI) compared with the Experimental Values

OUTPUT VARIABLE EXPERIMENTAL VALUE REGRESSED VALUE SE of FIT 95% CI

μ 0.20 0.28 0.037 (0.206; 0.357)
Pmax 0.031 0.024 0.006 (0.012; 0.035)
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Tab. 6: Regression standardized coefficients for both outputs: specific growth rate (μ(d−1))
and productivity calculated at Cmax (Pmax(gL−1d−1))

PREDICTOR μSTDCOEFF PmaxSTDCOEFF

Cinit -0.050482 0.154351
NaNO3init -0.628423 0.402856
Timax avg 0.664885 -0.366197
Timin avg -0.058646 0.281886
Temax avg -0.876960 0.271945
Temin avg 0.009383 0.277537
PPFD 0.336034 0.295258

Daily Illumination Time 0.421541 0.124203

3.4. Conclusions

The innovative use of PCA and PLS for modeling and predicting microalgae growth in a

phototrophic outdoor pilot plant, has shown many positive features including the ability

to analyse numerous datasets, subject to high variability, without losing its predictive

abilities. Model predictions results showed acceptable values for both responses μ and

Pmax, enabling the end user to establish how much biomass will be obtained in certain

outdoor cultivation condition, with a good level of accuracy. This model could be easily

adapted for prediction of other outputs (e.g. lipids accumulation for biodiesel production),

by simply changing the input values. Indeed this model could be also applied for prediction

of lipids accumulation for biodiesel production in outdoor cultivation in other geographical

regions with different weathers conditions, only by changing the input values. All of this

has to be done always limiting the sources of data alteration to a level that PCA and PLS

could manage. For model improvement, the M period results could be used for model

building (and not for its validation), covering then the entire experimental year (from

march 2017 to february 2018). New sets of experiments could be carried out to increase

the model’s predictive strenght.
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