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Abstract—The control of an epidemic disease consists in
introducing the strategies able to reduce the number of infected
subjects by means of medication/quarantine actions, and the
number of the subjects that could catch the disease through an
informative campaign and, when available, a vaccination strategy.
Some diseases, like the influenza, do not guarantee immunity;
therefore, the subjects could get ill again by different strain
of the same viral subtype. The epidemic model adopted in this
paper introduces the cross-immune individuals; it is known in
literature as SIRC model, since the classes of susceptible (S),
infected (I), removed (R) and cross-immune (C) subjects are
considered. Its control is herein determined in the framework
of the linear quadratic regulator, by applying to the original
nonlinear model the optimal control found on the linearized
system. The results appear satisfactory, and the drawback of
using a control law based on the linear approximation of the
system is compensated by the advantages arising from such
a solution: no costate equations to be solved and a solution
depending on the current state evolution which allows a feedback
implementation.
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model; optimal control; linear quadratic control

I. INTRODUCTION

Epidemic modelling has increased its importance in the
last decades showing its power when facing with severe
and dangerous diseases, [1], [2], [3], [4], [5], [6]. In the
mathematical models, the population is generally divided into
classes or compartments; the basic model is the SIR one,
where S represents the susceptible subjects, i.e. the ones that
could get the disease, I stands for the infected individuals and
R denotes the recovered subjects, i.e. the ones that, after having
got the infection, are again healthy. The SIRC model, firstly
introduced in [7], includes the cross-immune subjects C, the
ones that after a disease do not have the total immunization
for a different strain of the same viral subtype, [3], [8]. In
influenza-like epidemic diseases, subjects acquire a temporary
immunity and then, with a given probability, could catch the
disease again, [9], [10].

Controlling an epidemic disease means to apply actions
aiming at reducing the effects of the infection and the spread
of the virus; this suggests the introduction of prophylaxis
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and treatments, like vaccination and/or information campaign,
medication and quarantine, taking into account the resources
limitations. The useful framework in which epidemic mod-
elling and control are suitably studied is the optimal control.
In [1] it is applied to different deterministic models with the
goal of minimizing the number of infected subjects with as
less resources as possible, by using the Pontryagin minimum
principle. The literature on the optimal control of specific
epidemic disease is vast, introducing actions specific for the
considered disease, like in [11], [12], [13] and in [2], for the
SIR epidemic model, or [14], [15] and [16] for the measles,
or [17], [18],[19],[20], [21] for the HIV/AIDS, just to mention
the most recent papers on diffused diseases. In [3], the SIRC
model is considered and an optimal control strategy aiming
at the reduction of susceptible and infected individuals is
proposed, introducing two controls, both on susceptible (i.e.
the vaccination and/or the informative campaign) and on the
infected (i.e. the treatment), taking into account the limitations
of the resources. Despite the solution provides acceptable
results, showing a significant reduction of the number of
the infected patients, it is not available in the form of a
feedback law. In this paper a quadratic cost index with the
same goal herein discussed is proposed; the adopted SIRC
model is nonlinear for the presence of the interaction terms.
The case of nonlinear dynamical system with a quadratic
cost index is rather common and inspired different solutions,
depending on the specific model and on the nonlinearity,
[22], [23], [24]. In [24] this problem is faced referring to a
musculo-skeletal arm discrete model; the authors developed
an iterative linear quadratic regulator algorithm based on
an iterative linearization of the nonlinear model. Nonlinear
epidemic models describing attacks on computer networks are
studied in [25], [26]; in particular, in [26] a linear feedback
controller is designed making use of a linear approximation
obtained disregarding the nonlinear terms. In this paper the
nonlinear terms are not disregarded, but a linearization of the
original SIRC model in a neighborhood of an equilibrium
point is considered. The minimization of the quadratic cost
index yields an optimal feedback law for the linearized system
and the same law is applied to the original nonlinear model.
The feedback control law allows to avoid the calculation



of the solution of the costate equations and the consequent
only numerical evaluation of the solution of the optimal
control problem. The numerical results appear satisfactory,
with comparable behaviours of the dynamics with respect to
analogous optimization procedures. The paper is organized
as follows; in Section II the SIRC model is briefly recalled
and the proposed control strategy is outlined; in Section III
some simulations are proposed to show the effectiveness of the
approach, while some conclusions and future work indications
are in Section IV.

II. THE SIRC MODEL AND THE PROPOSED
CONTROL ACTIONS

The SIRC model considered includes four categories of
subjects; along with the susceptible individuals S, the infected
and infectious patients I and the recovered people R, the
cross-immune subjects C are introduced. After a period, the
recovered individuals move to the class C: they have only
partial immunity to a new dominant strain of the same virus
subtype already faced. A fraction of the exposed cross immune
individuals is recruited into the R compartment, having a
positive immune response, whereas the others could get the
disease again, and therefore move to the susceptible class, or
directly become infected, Fig.1. In absence of cross immunity,
the classes of susceptible and cross-immune subjects are
immunologically indistinguishable, as shown in [7]. The model
adopted is characterized by one control action on the suscepti-
ble subjects as information campaigns and/or by vaccinations,
and by a second one on the infected patients, corresponding
to medications and/or quarantine; it is nonlinear, due to the
interactions between individuals of different compartments and
it is described by the equations

Ṡ(t) = µ(1− S(t))− βS(t)I(t) + γC(t)− ρ1S(t)u1(t) (1)

İ(t) = βS(t)I(t) + σβC(t)I(t)− (µ+ α)I(t)

−ρ2I(t)u2(t) (2)

Ṙ(t) = (1− σ)βC(t)I(t) + αI(t)− (µ+ δ)R(t)

+ρ1S(t)u1(t) + ρ2I(t)u2(t) (3)

Ċ(t) = δR(t)− βC(t)I(t)− (µ+ γ)C(t) (4)

with initial conditions:

S(0) = S0, I(0) = I0, R(0) = R0, C(0) = C0 (5)

As usually, the quantities S, I , R, C are normalized and
may be interpreted as percentage of population.The parameters
α, β, δ, γ, µ, σ are all real and positive with the following
meaning, [7]: α, δ and γ the inverses of the average time spent
by the subjects in the compartments I , R and C respectively;
β is the contact rate; µ represents the mortality rate in each
compartment and it is assumed equal to the rate of the newborn
population; the average reinfection probability of a cross-
immune subject is given by σ. The control parameters ρ1

Fig. 1. Block diagram of the SIRC epidemic model without control action

and ρ2 represent the efficiency of the control action on the
evolution of susceptible and infected subjects.

The above system (1)–(4) may be rewritten in the compact
form

Ẋ = F (X,U) = f(X) + g1(X)u1 + g2(X)u2

where

X(t) = (S(t) I(t) R(t) C(t))T

U(t) = (u1(t) u2(t))T

and

f(X) =


µ(1− S(t))− βS(t)I(t) + γC(t)

βS(t)I(t) + σβC(t)I(t)− (µ+ α)I(t)
(1− σ)βC(t)I(t) + αI(t)− (µ+ δ)R(t)

δR(t)− βC(t)I(t)− (µ+ γ)C(t)

 (6)

g1(X) =


−ρ1S(t)

0
ρ1S(t)

0

 (7)

g2(X) =


0

−ρ2I(t)
ρ2I(t)

0

 (8)

The aim of this work is to determine the optimal control
U(t) that minimizes the susceptible and the infected individ-
uals, as well as the control action, according to the quadratic
cost function:

J =
1

2

∫ ∞
t0

(
xTQx+ UTRU

)
dt

=
1

2

∫ ∞
t0

(
q1X

2
1 (t) + q2X

2
2 (t) + r1u

2
1(t) + r2u

2
2(t)

)
dt

(9)

The system (1)–(4) is linearized in the neighborhood of one
of the equilibrium points Xe

i , i = 1, 2, ..., n obtained as the
solutions of the equation F (Xe

i , 0) = 0, i = 1, 2, ..., n.
For the linearized dynamics, the following matrices must be

computed:

Ai = ∂F
∂X

∣∣
X=Xe

i

U=0

=

(−µ−βI βS 0 γ
βI βS+σβC−(µ+α) 0 σβI
0 (−σ)βC+α −(µ+δ) (1−σ)βI
0 −βC δ βI−(µ+γ)C

)
X=Xe

i

U=0

(10)



Bi =
∂F

∂(u1, u2)

∣∣∣∣X=Xe
i

U=0

=


−ρ1S 0

0 −ρ2I
ρ1S ρ2I

0 0


X=Xe

i

U=0

(11)

for i = 1, 2, ..., n.
The choice of the equilibrium point depends on its value and

on the controllability characteristics of the linearized system.
A synthesizable control may be determined by using the linear
quadratic regulator theory, which yields a state dependent
(feedback) control law to be applied to the original nonlinear
system. In order to minimize the number of susceptible and
infected subjects, using as less resources as possible, the
optimization problem can be formulated as follows: given the
locally linearized system

˙̃X(t) = AiX̃(t) +BiU(t)

X̃(0) = 0 (12)

where X̃(t) = X(t)−Xe
i , find the optimal control Uo(t) that

minimizes the quadratic cost index:

J =
1

2

∫ ∞
t0

(
(X̃(T ) +Xe

i )TQ(X̃(t) +Xe
i )

+UT (t)RU(t)
)
dt (13)

Note that in this formulation no control constraint is present,
thus leaving to the quadratic term UTRU the reasonable
limitations in resources allocation. Expression (13) arises from
(9) once the state variables transformation X(t) = X̃(t)+Xe

i

is performed; with this structure, the problem assumes the
form of a LQ tracking one. It is defined on the infinite interval
[0,∞) and the matrices Ai, Bi, Q, R are constant; therefore,
to solve the problem, the solution of the Riccati algebraic
equation:

0 = PBIR
−1BTi P − PAi −ATi P −Q (14)

must be found. The optimal control for the problem (12)-
(13) is obtained in closed form:

Uo(t) = R−1BTi [gr − P ˜X(t)] (15)

where

gr = −[PBR−1BT −AT ]−1QXe
i (16)

with the optimal evolution Xo(t) solution of the equation:

˙̃Xo(t) = AiX̃
o(t) +BiU

o(t)

= (Ai −BiR−1BTi P )X̃o(t) +−BiR−1BTi gr
= ĀiX̃

o(t) +BiR
−1BTi gr (17)

with initial condition

X̃(t0) = 0, i = 1, 2, ..., n (18)

Note that, obviously, also the solution of the Riccati equation
(14) and the correction term (16) depend on the considered
equilibrium point Xo

i . The consequent control law for the
original nonlinear system

U(t) = R−1BTi [gr − P (X(t)− X̃e
i )] (19)

is obtained from (15) substituting X̃(T ) = X(t) − Xe
i . The

characteristics in terms of stability and convergence as well as
the effects of the obtained optimal control on the linearized
system are well known in literature; the interesting aspect to
be investigated is the behaviour of the control (19) on the
original nonlinear system (1)-(4), for which it constitutes a
locally approximated solution. In Fig. 2 it is shown the block
diagram of the proposed control scheme. In the next Section,
this analysis is presented, showing the effectiveness of the
proposed control through the results of numerical simulations.

Fig. 2. Block diagram of the proposed control scheme

III. NUMERICAL RESULTS

The following values for the parameters are used:

µ =
1

75
(year)−1, γ =

1

2
(year)−1, α =

365

5
(year)−1,

δ = 1(year)−1, σ = 0.078, β = 146(year)−1; (20)

they have been identified by using clinical observations and
genetic studies. The other two parameters ρ1 and ρ2 are fixed
equal to ρ1 = 2 and ρ2 = 2, see [3] for some considerations
about this choice. The initial conditions chosen are:

S(0) = 0.88, I(0) = 0.02, R(0) = 0.05, C(0) = 0.05

The equilibrium points for the given values of parameters are:

X1
e = (1 0 0 0)T (21)

Xe
2 = (0.48 0.0021 0.24 0.28)T (22)

The first one is characterized by no infected subjects and
therefore no influenza exists; computing the matrices (10) and
(11) for the equilibrium point Xe

1 , local instability and non
controllability with respect to the control u2 can be proved. In
the equilibrium point Xe

2 the percentage of infected subjects
is less than 1

100 of the susceptible one; the expressions (10)
and (11) become:



A2 =


−0.32 −69.77 0 0.5
0.31 0 0 0.02

0 111.35 −1.01 0.29
0 −41.49 1 −0.46

 (23)

B2 =


−0.95 0

0 −0.0043
0.95 0.0043

0 0

 (24)

with the eigenvalues of A2 equal to:

0.18, −1.77, −0.10 + 4.34j, −0.10− 4.34j,

which implies the local instability. The controllability property
for (A2 B2) is satisfied, making possible the application of the
LQ regulator theory. Thus the procedure is performed referring
to Xe

2 . The weights of the matrices Q and R account for
different strategies; as a first choice:

q1 = q2 = 0.1 r1 = r2 = 10−3 (25)

are assumed. This implies that in the cost index the susceptible
subjects are weighted less than the infected ones; it means that
the main goal is the minimization of the infected patients. The
same control effort is allowed both in the preventions and in
the medication. In (27) the relative weight between the state
and the control penalties is assumed significantly different,
both to stress the main goal of minimizing the patients, and
to take into account that the state variables are normalized,
whereas no constraints are introduced on the control ones.
The algebraic Riccati solution P of (14) and the value gr in
(16) are:

P =


0.04 −0.05 0.03 0.04
−0.05 2.55 −0.06 −0.07
0.03 −0.06 0.04 0.04
0.04 −0.07 0.04 0.05

 (26)

gr =


−0.01
0.14
−0.01
−0.01

 (27)

The optimal feedback law (15) is:

Uo(t) =

(
6.47 8.66 −3.60 −3.70
−0.36 11.18 −0.42 −0.47

)
X̃o(t)+

(
0.11
−0.64

)
(28)

Note that the eigenvalues of the dynamical matrix of the linear
controlled system are:

−5.61; −0.18; −2.78; −2.89 (29)

thus yielding the stabilizing effect on the linearized system.
The state feedback (28), modified as in (19), is applied to the
nonlinear original system (1)–(4), obtaining a control action
not depending on the solution of the costate equations, [5].
The behaviours of the state functions and of the control
actions are shown for a period of 12 months in Figures
3 and 4, respectively. The peak of the influence occurs at

about 5 days from the beginning of the analysis and involves
less than 16% of the population. Figure 5 shows a stronger
control effort on the infected patients (control u2) than for
the susceptible ones. In order to study the effect of the local
approximation procedure, the evolutions S(t) and I(t) under
control (19) are compared considering both nonlinear and
linearized dynamics. Figures 5 and 6 show the results for
a period or 36 months. From these figures it is evident that
the transient for the first year are quite different; however, in
this case the nonlinearities contribute to make the controlled
system converge more rapidly to the reference value.

To study the effects of the weight parameters in (13), some
quantities are evaluated:
• the peak of the influence: it is evaluated as the maximum

percentage of subjects that have caught the disease;
• the time of occurrence of the maximum peak: it is

evaluated as the number of days from the beginning of the
influenza to the day of the maximum peak of the number
of infected patients I(t); it is useful for the estimation of
the rate of propagation of the influenza;

• the effort E1 and E2 of the control u1 and u2 respectively,
evaluated as the integral of the squared control in the
entire simulation period.

They are computed for different values of qi, as in Table
I, assumed fixed the values of ri i = 1, 2 as in (25), and for
different values of ri i = 1, 2, as in Table II, assuming fixed
qi, again as in 25. The decimal term in the evaluations of the
day of the peak are reported for completeness.

In case of free evolution, reported only in Table I, the
maximum percentage of infected patients is almost the 18%
of the population and the peak of influenza occurs about one
week after its beginning.

The most significant decrease of the peak of influence, about
13% of the total population, is obtained with a very low weight
of the control u2, at the expense of a corresponding high
energy consumption E2 and almost negligible E1 (Table II). A
good result, not as expensive as the previous one, is obtained
increasing the weight q2 = 10 (Table II), or when weighting
very little the control parameter r1 = 10−4, (Table II). The
reference situation of Figures 3 and 4 is shown in Table II,
first row; the strategy obtained costs more from the medication
point of view with respect to the prevention.

If one tries to minimize essentially the infected subjects
and almost disregards the minimization of the susceptible ones
(Table I, first row) the result is not so satisfactory, since the
peak of the influence is almost 17%; this confirms the reason
of the choice of the cost index (9).

The results of the proposed approach appear rather sat-
isfactory since the closed form solution shows a significant
reduction of the influenza disease.

In this paper the information about the number of suscep-
tible and infected subjects has been considered as known; an
analogous problem could be faced assuming this knowledge
not available, being known only the number of recovered
subjects R; in this realistic case an observer is required, once
it is verified the observability of the couple (A2C). For the



proposed choice of parameters, it could be easily verified the
non singularity of the controllability matrix:

O =


C
CA2

CA2
2

CA3
2

 =


0 0 1 0
0 111.35 −1 2.9

34.5 −124.4 1.31 1.8
−49.6 −2337.1 0.48 14.32

 (30)

Therefore the control law should be applied with the es-
timated state, thus requiring the separated determination of
the gain of the observer, and of the linear quadratic tracking
controller, (28).

To complete the study, a comparison between the approach
and the results obtained in this paper and the optimal control
proposed in [3] is now discussed, being the latter the most
similar, in terms of the modelling and of the optimal control
approach. Nevertheless, differences are present; in that paper
the cost index was quadratic only in the control, aiming at
minimizing the number of susceptible and of the infected
subjects and constraints on the control actions were assumed.

The direct application of the Pontryagin minimum principle
allowed to obtain, only numerically, the optimal control.

Various models describing influenza disease can be found
in literature, presenting slight variations according to the pe-
culiar aspects to be analysed; classical optimal control design
techniques are adopted as in [9], where again the solution must
be computed numerically.

Fig. 3. State evolution with the proposed control actions

TABLE I
COMPARISON

(q1; q2) Peak of the influence Day E1 E2

(0.0055; 1) 0.167 6.12 0.84 2.19
(0.01; 1) 0.166 6.12 1.34 3.24
(0.1; 10) 0.143 3.60 437.44 75.22
Free evolution 0.179 6.90

Fig. 4. Control actions both on susceptible and infected subjects

Fig. 5. Comparison of the behaviour of the percentage of susceptible subjects
of the controlled non-linear model with the linearized one: 1) Nonlinear
dynamics; 2) Linear dynamics; 3) equilibrium value Xe

2 (1)

TABLE II
COMPARISON

(r1; r2) Peak of the influence Day E1 E2

(10−3; 10−3) 0.158 5.25 5.95 24.89
(10−4; 10−3) 0.144 3.55 423.81 5.76
(10−3; 10−4) 0.136 3.82 0.002 1366.56

IV. CONCLUSIONS

In this paper, the SIRC influenza epidemic model with the
four compartments of susceptible, infected, removed and cross
immune subjects is considered. It well describes the possibility
of a partial immunization in an epidemic disease; therefore,
a removed subject, after a period, could get ill by different
strain of the same viral subtype.

The problem of controlling such an epidemic disease has



Fig. 6. Comparison of the behaviour of the percentage of infected subjects
of the controlled non-linear model with the linearized one: 1) Nonlinear
dynamics; 2) Linear dynamics; 3) equilibrium value Xe

2 (2)

been tackle in the framework of linear quadratic regulator after
a linearization of the original nonlinear model; this control
action has been applied on the original nonlinear system with
the advantages of having a control depending on the current
state.

The numerical results show the effectiveness of the ap-
proach, especially with respect to the severity of the illness
measured in terms of lower peak of the influenza and a
faster decrease of the total number of infected subjects, when
compared with the absence of control actions. With respect to
analogous optimization procedures, the main advantage relies
in the feedback control structure, with at least comparable
numerical results; this control structure also allows the use
of a state estimator when all the information is not available.

In further developments, effort will be devoted to determine
a suitable tuning of the weighting matrices and to consider real
data of influenza-like disease.
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