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Abstract: Underwater acoustic digital communications suffer from inter-symbol interference deriving
from signal distortions caused by the channel propagation. Facing such kind of impairment
becomes particularly challenging when dealing with shallow water scenarios characterized by short
channel coherence time and large delay spread caused by time-varying multipath effects. Channel
equalization operated on the received signal represents a crucial issue in order to mitigate the effect of
inter-symbol interference and improve the link reliability. In this direction, this contribution presents
a preliminary performance analysis of acoustic digital links adopting pulse position modulation in
severe multipath scenarios. First, we show how the spectral redundancy offered by pulse position
modulated signals can be fruitfully exploited when using fractional sampling at the receiver side,
which is an interesting approach rarely addressed by the current literature. In this context, a novel
blind equalization scheme is devised. Specifically, the equalizer is blindly designed according to
a suitably modified Bussgang scheme in which the zero-memory nonlinearity is replaced by a
M-memory nonlinearity, M being the pulse position modulation order. Numerical results not only
confirm the feasibility of the technique described here, but also assess the quality of its performance.
An extension to a very interesting complex case is also provided.

Keywords: fractional sampling; channel equalization; Bussgang; PPM

1. Introduction

Intersymbol interference (ISI) represents the main impairment in wireless data links over
multipath channels. In the specific context of underwater acoustic communications (UWAC),
attenuation, noise and multipath affecting the sound propagation cause a large delay spread, severely
degrading the quality of the received signal [1]. Therefore, ISI mitigation is crucial in order to provide
good communication performance. In this direction, digital filtering at the receiver side aims at
achieving the so-called channel equalization condition, so that the received signal is reshaped as
close as possible to the transmitted one. Due to the distortion disturbing the received signal, channel
equalization becomes necessary in underwater acoustic communications. This is true especially when
dealing with shallow water scenarios where the multipath trajectories exhibit short path lengths before
reflections, thus making ISI cancellation very challenging.

Regarding such points, the literature presents several solutions, many of which are based on
the implementation of decision feedback equalizers (DFEs). This kind of filtering, belonging to the
category of nonlinear equalizers [2], is used when the signal distortion caused by the channel can not
be reliably mitigated by linear equalizers. The DFE structure is based on a feed-forward filter (FFF)
cascaded with a feedback filter (FBF), and allows not only the cancellation of ISI on the current received
symbol, but also the estimation of ISI caused by the current symbol on the future ones, so that ISI can
be subtracted out before the next symbol detection. The fast convergence provided by DFEs is paid in
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terms of computational complexity since the coefficients updating concerns two filters instead of a
single one, as in the case of linear equalization. Moreover, complexity depends also on the adaptation
rule used for filter updating. Consider in fact that the least mean square (LMS) algorithm, the simplest
to realize, requests a computational cost proportional to 2N, while the recursive least squares (RLS)
algorithm, is faster than LMS, and the computational complexity is proportional to 20N, N being
the total number of equalizer coefficients. An example of DFE applied to single-carrier UWAC is
reported in [3], where an iterative frequency domain equalization combined with low density parity
check (LDPC) decoding is presented. Numerical results show that the use of coding speeds up the
equalizer convergence, while also providing 6 dB final gain. Moreover, the combined equalization and
decoding processing allows the achievement of better performance than the detection scheme where
equalization and decoding are performed sequentially.

In general, the stronger the ISI, the higher the equalizer requested performance and, therefore,
the higher the receiver complexity. This is an important aspect to take care of since the cost of hardware
makes devices employed in underwater applications quite expensive, so the pursuit of a good trade-off
between performance and complexity is fundamental.

A possible way to reduce the processing effort at the receiver side is to choose a suitable
transmission scheme that considers the introduction of a guard interval between consecutive symbols.
By doing so, the delay spread on the current symbol has enough time to expire, possibly limiting the
superimposition with the next transmitted symbol, and thus reducing the ISI. On the other hand, as the
presence of large recovery times puts the transmission in stand-by for most of the time, the data-rate is
unavoidably reduced. Furthermore, although this solution may be reasonable in RF-based technology,
it becomes instead harmful when dealing with UWAC, in this case being the date-rate already penalized
by the speed of sound five orders of magnitude lower than the speed of light. While in single-carrier
based communications the use of guard intervals can be conveniently replaced by adopting other
techniques like channel coding [4], it is essential in multi-carrier based ones. However, this fact is very
often underestimated, leading to erroneously recognize orthogonal frequency division multiplexing
(OFDM) as definitively outperforming single-carrier schemes without any proper contextualization.
In fact, the effectiveness of any transmission technique should be evaluated by properly taking into
account the application scenario. We therefore deem it necessary to highlight some aspects of OFDM
and single-carrier based communications.

1.1. Potential Limits of OFDM

OFDM is recognized as one of the most effective transmission schemes to achieve high data rates
in UWAC [5–7]. However, as the characteristics of the underwater acoustic channel differ from scenario
to scenario (in fact, there is no univocal and stable model for channel characterization [1,8]), OFDM
is not expected to always achieve a satisfactory performance. In detail, in order to counterbalance
the effect of ISI, OFDM symbol transmission is preceded by a cyclic prefix (CP), the length of which
approximates the channel delay spread. Typically, the CP takes about 1/3 of the overall symbol
length. But when referring to shallow water scenarios, it may happen that the channel delay spread
is even larger than hundred of milliseconds, making the CP length occupying the largest part of the
entire OFDM symbol time, and therefore reducing the transmission rate. Moreover, if the OFDM
symbol length is larger than the channel coherence time, OFDM symbol synchronization may be lost
and/or channel estimation may be not sufficiently accurate. Consequently, OFDM is combined with
additional techniques in order to improve the communication reliability, achieved at the expense of a
receiver complexity increase. An example is discussed in [9], where the considered iterative signal
detection and decoding is performed by means of Doppler compensation, soft minimum mean square
error (MMSE) equalization and LDPC channel decoding. The work in [10] addresses instead, another
challenging issue for OFDM, that is phase synchronization combined with channel estimation. For the
reasons highlighted above, OFDM based communications seem not to provide a convenient trade-off
between rate, reliability, and complexity when dealing with strong, time-variable multipath channels.
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1.2. Merits of Single-Carrier Schemes

The implementation of any single-carrier based transmission requires lower complexity than
OFDM based schemes. In particular, pulse position modulation (PPM) is known to be particularly
robust to ISI thanks to its time-frequency properties, allowing the achievement of good performance
in terms of channel equalization without the necessity of using CP and/or guard intervals between
symbols. In this direction, DFE in PPM based communications, even though not specifically related to
the underwater scenario, is introduced in [11], where a chip-oriented MPPM transmission is considered,
M being the number of chips per symbol. Since MPPM signals can be described as realization of
cyclostationary random processes, in [11] the implementation of a bank of M DFEs is also suggested,
each one working on a single chip of the MPPM symbol and characterized by a different set of
coefficients. However, despite the fact that each DFE works only once every M chips, the receiver
architecture remains quite complex. It is worth noting that most of works reported in the literature
deal with filtering operated at symbol time—chip time in the case of the PPM scheme. This choice
leads to a not-negligible and problematic time sensitivity that affects the overall system performance.

A possible way to overcome this problem is sampling the received signal at rates greater than the
nominal one before filtering. This technique is known as fractionally spaced channel equalization [12],
and the resulting filter is the so-called fractionally spaced equalizer (FSE) [13]. A direct application of
this concept in underwater contexts is found in [14], where it is described as an improved version of the
RLS constant modulus algorithm (CMA) ruling an FSE. In particular, a modified cost function of the
CMA is introduced, which results in both faster convergence and computational complexity reduction
with respect to the standard RLS-CMA. In addition to ISI cancellation, fractionally spaced equalization
allows a more efficient symbol timing recovery, see [15,16] for more details. The work in [15] presented
a method for symbol timing recovery by tracking the shift of the equalizer taps. With the scheme
described in [16], synchronization is restored by estimating the time derivative of the equalizer output
modulus and then adjusting the timing offset in feedback mode through interpolation. However,
equalization performance strictly depends on the initial phase the received fractionally sampled signal
is locked to; to this regard, a blind sampling phase estimation technique has been presented in [17].

Stemming from the above reported remarks, this contribution addresses the problem of ISI
cancellation in shallow water acoustic communications. To this aim, we present a preliminary
feasibility study about PPM transmission combined with a novel FSE scheme that provides good
performance in severe multipath channel scenarios where the use of OFDM appears nonviable. Firstly,
we analyze the structure of MPPM signals and their peculiar spectral redundancy further exploited
in a probabilistic fashion. Specifically, stemming from the “memory” possessed by PPM signals, we
devise a novel blind adaptive, modified Bussgang, FSE scheme, i.e., not data aided, whose feasibility
and accuracy is assessed by numerical simulations. In detail, the modified Bussgang approach
considers the introduction of an M-memory nonlinearity, never addressed before, in place of the
classical zero-memory nonlinearity. Moreover, since another relevant issue in fractional sampling is
the choice of the sampling phase, we resort to the mechanism described in [17] as part of the equalizer
architecture. We remark that all the here presented matter are neither investigated nor mentioned
in [17], which describes a sampling phase estimation technique here merely recalled, but not discussed
or deepened at all. It is worth remarking that the use of PPM signals allows the described FSE scheme
to be implemented in a blind fashion, while in OFDM based schemes certain known (pilot) symbols are
exclusively used for channel estimation. Finally, we discuss the performance of different blind adaptive
equalization schemes in terms of the speed of convergence and/or misconvergence percentage.

The paper is organized as follows: In Section 2 the structure of MPPM signals and their spectral
characteristics are analyzed; in Section 3 the receiver operating at fractional sampling is presented, and
in Section 4 the blind equalization scheme is described. Numerical results are presented in Section 5 and
conclusions are drawn in Section 6. Finally, some analytical details are given in Appendices A and B.
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2. MPPM Waveform

Loosely speaking, the peculiarity of MPPM signals is that each symbol is formed by M empty
consecutive chips and one that is filled with a pulse. The position of such a filled chip encodes the
transmitted information symbol.

In order to gain a more deep insight about the spectral structure of PPM signals induced by
this peculiarity, we will show how MPPM signals can be expressed as particular pulse amplitude
modulated (PAM) signals modulating a sequence of suitably correlated binary samples.

To this purpose, let us consider the n-th string sn =(b0,n, b1,n, . . . , bν−1,n) collecting the ν= log2 M
bits to be transmitted after a suitable mapping to the corresponding MPPM symbol. This mapping
is operated as follows: i) Denoting by jn the decimal value of the binary number sn, the jn-th row of
the identity M-matrix IM furnishes a M-tuple of binary valued chips (cn[0], cn[1], . . . , cn[M−1]); ii) the
n-th MPPM discrete symbol is formed as follows:

cMPPM[n]=
M−1

∑
m=0

cn[m] δ[n−m], n = 0, 1, . . . , M−1. (1)

The MPPM discrete symbol expression (1) properly takes into account the fully-correlation
existing between the M chip samples (cn[0], cn[1], . . . , cn[M−1]), M−1 of which are 0 and the remaining
equals 1.

Using (1), we can form a binary stochastic sequence that accounts for all the discrete symbols of a
MPPM signal:

bMPPM[n] =
+∞

∑
k=−∞

cMPPM[n− kM] (2)

For equiprobable bits, the direct component (DC) and the power of the sequence bMPPM[n]
respectively take the following values:

(DC) MMPPM=
1
M

; (Power) PMPPM=
1
M

.

The analog MPPM signal is then formed by interpolating the binary sequence bMPPM[n] with a
shaping pulse gT(t) whose duration equals the chip-time Tc:

sMPPM(t) =
+∞

∑
n=−∞

bMPPM[n] gT (t− nTc) . (3)

Since each MPPM symbol is formed every M consecutive chips, the symbol transmission rate is
Fs =1/MTc. More in detail, the form (3) states that analog MPPM signals can be expressed in terms of
very particular binary PAM signals, which have the following, well known, power spectral density
(PSD) [18,19]:

PsMPPM(jΩ) =
1
Tc
|GT(jΩTc)|2 PbMPPM(e

jΩTc). (4)

In (4), Ω=2π f is the radian frequency, GT(jΩ) is the Fourier transform of gT(t), and PbMPPM(e
jΩTc)

is the PSD of the discrete binary random sequence of the MPPM symbols bMPPM[n]. To evaluate
PbMPPM(e

jΩTc), one can resort to the guidelines indicated in [18], or the more simple analytical technique
developed in [19]:

PbMPPM(e
jΩTc) =

1
M

[
1−

∣∣∣∣ sin(ΩTc M/2)
M sin(ΩTc/2)

∣∣∣∣2
]
+

2π

Tc M2

+∞

∑
k=−∞

δ(Ω− 2πk/Tc). (5)

Figure 1 shows the rich spectral redundancy possessed by the PSD (4) of MPPM signals.
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Figure 1. Power spectral density of MPPM signals. M position modulation (PPM) transmission, where
M is the number of chips per symbol.

Generally speaking, due to the large bandwidth of the pulse gT(t), the MPPM signal presents a
sort of redundancy that consists in a special kind of spectral repetition coding. To highlight the MPPM
signal redundancy, in Figure 1, we have also indicated the bandwidth occupied by a typical square
root raised cosine (RRC) pulse employed in amplitude shift keying (ASK) or quadrature amplitude
modulation (QAM) techniques. Interestingly enough, we observe that the spectral repetition coding
realized by ASK-QAM only appears in the very small frequency band determined by the roll-off factor
α of the RRC pulse—precisely of width α/Tc (Hz) around half the symbol rate 1/2Tc. Moreover, since
bMPPM[n] is a binary sequence, the MPPM signal form (3) suggests that equalization schemes developed
for ASK-QAM based transmission can be fruitfully employed when considering MPPM as well.

3. MPPM Receiver

As illustrated in Figure 2, after matched filtering at the receiver side we observe the signal:

r(t) =
+∞

∑
n=−∞

bMPPM[n] g (t− nTc) + v(t). (6)

In (6), g(t)=(gT ∗ h ∗ gR)(t) denotes the overall impulse response that comprises also the matched filter
gR(t)= gT(−t) as well as the channel h(t), whereas v(t)=(w ∗ gR)(t) denotes independent additive
noise w(t) observed after the matched filter, with ∗ denoting the convolution operator.

Å ( )r t( )Rg t( )Tg t
[ ]PPMMb n

( )w t

( )h t

cT

Figure 2. Chip based PPM transmission scheme.

The large bandwidth occupied by the MPPM signal (Figure 1) can be usefully exploited through
fractional sampling of r(t) operating at rate P/Tc, where the fractional sampling integer factor P
can assume values significantly greater than 1; for instance, the numerical results later presented in
Section 5 have been obtained using P=9.

As illustrated in Figure 3 an FSE is a digital filter that operates on samples of r(t) taken at rate
P/Tc, while yielding outputs at rate 1/Tc; indicating with f [k] the impulse response of a finite impulse
response (FIR) FSE of order L, the equalized sequence is:

ĉ[n] =
L

∑
k=0

f [k] r[nP− (k + k0)]. (7)
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Figure 3. Chip based fractionally spaced equalization.

In (7), r[n] = r(t)|t=nTc/P denotes the samples obtained by fractional sampling the received

signal r(t), and k0 ∈ N(P) def
= {0, 1, . . . , P−1} indicates the fractional sampling phase, the blind

estimation of which is discussed in [17]. It is worth noting that the equalized sequence ĉ[n] estimates
the samples of the transmitted MPPM chips bMPPM[n] only if the symbol timing has been already
acquired, otherwise it simply furnishes an estimate of unsynchronized chips. Loosely speaking, the

collection ĉ[n] def
= [ĉ[n], . . . , ĉ[n−M+1]]T has one and only one non-zero sample if and only if symbol

synchronization has been acquired; on the other hand, in the unsynchronized case it can also appear in
collections ĉ[n] that present two non-zero samples.

4. Trained and Blind Fractionally Spaced Equalization

Since (3) express the MPPM signal as a binary PAM signal, the determination of the FSE
coefficients f [k] can be conducted in a blind fashion by a suitable modification of classical equalization
techniques employed in ASK-QAM digital links. Nonetheless, significant performance improvement
is expected when the peculiar spectral redundancy of MPPM signals is properly taken into account in
the equalizer design. One of the aims of this contribution is to show how the minimum mean square
error (MMSE) form of the so-called Bussgang blind equalization technique, firstly presented in [20]
and then extended in [21–25], can be also applied to the MPPM signal representations (1), (2), and (3).
Specifically, in the sequel the following three major items will be addressed:

1. The development of the MMSE nonlinearity that fully exploits the probabilistic description of the
MPPM symbol formed as in (1);

2. The proof of how the probabilistic description of the MPPM symbol (1) can be employed to
recover the symbol timing;

3. The introduction of a blind channel phase recovery technique that exploits the redundancy
present in band-pass MPPM signals; it is worth highlighting that such a phase recovery stage is
mandatory for band-pass transmission and coherent detection, and it is a critical step even in
data aided (trained) equalization.

4.1. LMS Trained FSE

The trained LMS implementation of a Bussgang type blind fractionally spaced equalization
procedure, operated with the learning factor µ, is summarized in Figure 4.
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Figure 4. Least mean square (LMS) trained fractionally spaced equalizer (FSE) procedure. Direct
component (DC).

4.2. LMS Blind Bussgang FSE

The LMS implementation of a Bussgang type blind fractionally spaced equalization procedure is
summarized in Figure 5. In general, convergence of Bussgang equalizers is reached when ĉ[n] becomes
a Bussgang process satisfying the cross-correlation invariance E {ĉ[n]r[n−m]}∝E {c̃[n]r[n−m]} [20];
generalizations of Bussgang invariance and its application to image deblurring are found in [24–27].
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Figure 5. LMS blind Bussgang FSE procedure.

On the Nonlinear Error Estimation: the M memory nonlinear MMNL transformation η(·) that
obtains the error in (B4) is determined according to the MMSE criterion, the exploitation of which is
well known to yield the MMSE estimator as the conditional a posteriori mean:

η
MMSE
(c[n])=E{c[n]|r[Pn−k0], r[P(n−1)−k0], . . . } . (8)

It is worth noting that, since the chips c[n] are block correlated, the MMSE estimation (8) not only
depends on the present received sample r[Pn−k0], but it also depends on all the past samples, namely
{r[P(n−1)−k0], r[P(n−2)−k0], . . . }.
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Hence, as indicated in [23], to simplify the evaluation of (8) the following two assumptions are
here retained:

A1. The expectation in (8) is conditionally taken with respect to the last M equalizer outputs:

ĉ[n] def
= [ĉ[n], . . . , ĉ[n−M+1]]T

A2. The output of the FSE is assumed to satisfy the following additive white gaussian noise (AWGN)
signal model:

ĉ[n] ' c[n] + w[n] (9)

being w[n] a realization of stationary white Gaussian random series of power Pw and statistically
independent of bMPPM[n].

It is worth noting that assumption A1 extends to the MPPM case already developed in [23] for
correlated QAM binary symbols used in Global Systems for Mobile Communications digital links, and
it is here applied to PPM for the first time .

The form assumed by the conditional a posteriori mean (8) when assumptions A1 and A2 are
retained strictly depends on the set Sb of all the possible transmitted binary M-tuples, indicated

in the following by c[n] def
= [c[n], . . . , c[n−M+1]]T; this set can assume the following two different

configurations, depending on whether symbol synchronization has been acquired or not:

1. Sync: Sc =S (S)c collects all the binary M-tuples that have M−1 zero valued elements, i.e., the M
rows of the identity M-matrix IM, so that its cardinality is M;

2. Unsync: Sc = S (U)
c joins S (S)c with the binary M-tuple that has all zeros as well as with all the

binary M-tuples that have M−2 zeros; since these latter occurs in number of M(M−1)/2, it
results:

card(S (U)
c )=1+M+

M(M−1)
2

=1 +
M(M+1)

2
.

With P{c} the probability of observing c, the signal model (9) leads to the following conditional a
posteriori mean:

E{c[n]|ĉ[n]}=
∑

c∈Sc

P{c} c exp

(
‖ĉ[n]−c‖2

2
2Pw

)

∑
c∈Sc

P{c} exp

(
‖ĉ[n]−c‖2

2
2Pw

)
.

(10)

The evaluation of the probabilities P{c} is reported in Appendix A. In more detail, in Appendix A
we have analytically examined the two different cases of: (i) a single chip equal to 1 located at a generic
position, and (ii) two chips equal to 1 distant D positions, respectively obtaining the expressions (A1)
and (A2). Then, the numerical probability values for the most interesting cases of 2PPM, 4PPM and
8PPM are reported in Tables 1–3.

Table 1. Probabilites of M=2 asynchronous chips.

p D M = 2 Chips ProbabilityCombinations

- - 00 1/8
0 - 10 3/8
1 - 01 3/8
0 1 11 1/8
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Table 2. Probabilites of M=4 asynchronous chips.

p D M = 4 Chips ProbabilityCombinations

- - 0000 10/64
0 - 1000 10/64
1 - 0100 12/64
2 - 0010 12/64
3 - 0001 10/64

0
1 1100 1/64
2 1010 2/64
3 1001 3/64

1 1 0110 1/64
2 0101 2/64

2 1 0011 1/64

Table 3. Probabilites of M=8 asynchronous chips.

p D M = 8 Chips ProbabilityCombinations

- - 00000000 84/512
0 - 10000000 36/512
1 - 01000000 42/512
2 - 00100000 46/512
3 - 00010000 48/512
4 - 00001000 48/512
5 - 00000100 46/512
6 - 00000010 42/512
7 - 00000001 36/512

0

1 11000000 1/512
2 10100000 2/512
3 10010000 3/512
4 10001000 4/512
5 10000100 5/512
6 10000010 6/512
7 10000001 7/512

1

1 01100000 1/512
2 01010000 2/512
3 01001000 3/512
4 01000100 4/512
5 01000010 5/512
6 01000001 6/512

2

1 00110000 1/512
2 00101000 2/512
3 00100100 3/512
4 00100010 4/512
5 00100001 5/512

3

1 00011000 1/512
2 00010100 2/512
3 00010010 3/512
4 00010001 4/512

4
1 00001100 1/512
2 00001010 2/512
3 00001001 3/512

5 1 00000110 1/512
2 00000101 2/512

6 1 00000011 1/512
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Finally, the MMNL η(ĉ[n]) in step 2 of Figure 5 selects the estimated chip corresponding to the
first entry of the estimated vector c̃[n]=E{c[n]|ĉ[n]} given in (10).

Once again, we outline that the MMNL estimator (10) exploits the block correlation nature of
MPPM symbols and it is here presented for the first time.

When (10) acts on a single chip, i.e., c[n]= ĉ[n] is formed using only the last equalized chip, the
classical zero memory nonlinear (ZMNL) Bussgang procedure, as described in [21–23], is obtained.

5. Numerical Results

5.1. Severe Three-Paths Channel

Figures 6 and 7 show numerical results referring to M=2 and the following three-paths channel:

h3(t) = δ(t)− δ(t− Tc) + δ(t− 2Tc).

Despite channel h3(t) having been discussed in [11] as a severely degrading one from the
equalization point of view, we have considered the following, more challenging, scenario:

h(t) = (h3 ∗ wH,Tc)(t) (11)

with wH,Tc(t) being the Hamming window of duration Tc.
As in [11], we have considered a base-band transmission and, as far as the transmitting pulse is

concerned, we have chosen a bell shaped one:

gT(t) = A exp(−t2/2α2
c ). (12)

With the choice α = Tc/4 the pulse duration is well approximated by Tc. Note that the scenario
described in [11] is a pure discrete-time one, so the value of Tc can be arbitrarily assumed since it only
determines the frequency band in which the channel is used; when the real pulse (12) is employed, the
channel bandwidth is approximately 1/Tc. Moreover, the amplitude A has been chosen to be equal
and determined so to have unit energy. Lastly, the fractional sampling factor has been chosen as P=9,
i.e., the minimum one that still allows to full exploitation of the spectral redundancy offered by the
MPPM signal.

In more detail, we have numerically evaluated the mean square error (MSE) measured at the
equalizer output defined as follows:

MSE = ISI + ONP

where ISI and the overall noise power (ONP) contributions are defined as follows:

ISI = Eos − 1 (13)

ONP = NSR× Eow . (14)

In (13), Eos denotes the energy of the overall channel/equalizer impulse response seen by the
useful signal:

os[n] = (g ∗ f )[(n− k0)P]. (15)

In (14), NSR denotes the noise-to-signal ratio and Eow the energy of the overall channel/equalizer
impulse response seen by the noise:

ow[n] = (gR ∗ f )[(n− k0)P]. (16)

In Figure 6 results pertaining to the following equalizers are reported:
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• Fully Trained: the ideal data-aided fractionally spaced equalizer that knows all the transmitted
symbols;

• FS-MMNL: the blind fractionally spaced Bussgang equalizer that uses the novel M-memory
nonlinearity (B4) here presented;

• FS-ZMNL: the blind fractionally spaced Bussgang equalizer that uses the zero-memory
nonlinearity described in [23];

• FS-CMA: the blind fractionally spaced CMA equalizer [28];
• CS-MMNL: the blind chip spaced Bussgang equalizer that uses the novel M-memory nonlinearity

(B4);
• CS-ZMNL: the blind chip spaced Bussgang equalizer that uses the zero-memory nonlinearity

described in [23];
• CS-CMA: the blind chip spaced CMA equalizer [28].

It is worth noting that chip-spaced equalization is obtained by setting P=1 in any fractionally
spaced equalization scheme.
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Figure 6. Mean square error (MSE) vs. transmitted chips: channel (11), NSR=20 dB.

The values reported in Figure 6 have been obtained by averaging over 100 independent Monte
Carlo runs and plotted as equalized chips go by; it is evident that FSE achieves a significant performance
improvement with respect to chip spaced equalization. Moreover, it is also appreciated how both
MMNL and ZMNL blind equalization schemes approach the performance achieved by the “fully
trained” equalizer, i.e., the ideal data aided adaptive equalizer that knows all the transmitted chips.
For comparison purposes, we have also reported the accuracy achieved by the blind constant modulus
algorithm (CMA) [28].

In order to give an idea about the achievable symbol error rate, Figure 7 reports the symbol error
probability (SEP) calculated considering the MSE values of Figure 6 as they were the power of additive
white Gaussian noise:

SEP =
1
2

erfc
(

1
2
√

2MSE

)
. (17)
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Figure 7. Symbol error probability (SEP) vs. transmitted chips: channel (11), NSR=20 dB.
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5.2. Multipath Channel

The numerical results reported below still refer to the M = 2 case, but the channel is a typical
underwater multipath one [3]:

hZ(t) =
7

∑
k=0

Ak δ(t− τk). (18)

The parameters of the multipath channel (18) are found in Table 4.

Table 4. Multipath channel parameters.

ray number k 0 1 2 3 4 5 6 7
ray amplitude Ak 0.808 1.0 0.796 0.461 0.522 0.831 0.421 0.725
ray delay τk (ms) 0 18.6 30.0 59.3 61.0 62.9 91.3 107.9

As already done in [3], to have the channel (18) used in the bandwidth of 8 kHz centered around
f0=4 kHz, the simulation has been operated with the following, envelope bell shaped, transmitting
pulse:

gT(t) = Ac exp(−t2/2α2
c ) cos(2π f0t)− As exp(−t2/2α2

s ) sin(2π f0t). (19)

Details on complex low-pass representation and filtering of band-pass MPPM signals are given in
Appendix B.

With the choice of αc = αs =Tc/4, the pulse duration is well approximated by Tc and the pulse
bandwidth is B' 8/Tc, so that Tc = 1ms yields just B' 8 kHz; moreover, the amplitudes Ac and As

have been chosen equal and determined so as to have unit energy, and the fractional sampling factor
has been chosen P=9.

Figure 8 shows numerical results referring to the following, more challenging from the
equalization point of view, channel:

h(t) = (hZ ∗ wH,D1)(t) (20)

where wH,D1(t) is the Hamming window of duration D1=4.3 ms.
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Figure 8. MSE vs. transmitted chips: channel (20), NSR=20 dB.

The values reported in Figure 8 have been obtained by averaging over 100 independent Monte
Carlo runs and it is clear that there is significant performance improvement achieved by the novel
MMNL based blind equalization scheme with respect to both the CMA and ZMNL based ones.
Moreover, we can also appreciated how the MMNL equalizer performance is very close to the ideal
“fully trained” equalizer performance.

As above, to give an idea about the achievable error rate, Figure 9 reports the symbol error
probability (SEP) calculated using (17).
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Figure 9. SEP vs. transmitted chips: channel (20), NSR=20 dB.

Sampling Phase Sensitivity: The results shown in Figures 8 and 9 have been obtained by averaging
on three different sampling phase values, namely k0=0, 1, 6 as these latter result from the fourth order
statistic based sampling phase estimation technique presented in [17]. While the MMNL based blind
equalization scheme has reached convergence in all the Monte Carlo runs, in the CMA based blind
equalization scheme, a significant convergence failure percentage has been observed, on average equal
to about 7.5%. Hence, and quite interestingly, the novel MMNL based blind equalization scheme
guarantees superior performance also in terms of sampling phase sensitivity.

5.3. Severe Multipath Channel

Figures 10 and 11 show numerical results referring to the M=4 case and to the following severe
multipath channel:

h(t) = (hZ ∗ wH,D2)(t) (21)

where wH,D2(t) is the Hamming window of duration D2=8.3 ms.
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Figure 10. MSE vs. transmitted chips: channel (21), NSR=20 dB.

In this case, the ZMNL based blind equalization scheme has never reached convergence, therefore
no numerical results have been obtained; on the other hand, the MMNL based blind equalization
scheme confirms its superior performance with respect to the CMA based one.

� �� �� �� �� �� �� 	�



�
�

���

���

���

���

�������������

���

����� 

��!"

Figure 11. SEP vs. transmitted chips: channel (21), NSR=20 dB.
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Sampling Phase Sensitivity: Figures 10 and 11 show the FSE performance reporting the results
obtained by averaging on three sampling phases, namely k0=0, 7, 8, selected according to the fourth
order statistic based sampling phase estimation technique already employed when considering the
scenario introduced in the previous Subsection B. The trend of the plotted curves show how the
MMNL based blind equalization scheme outperforms the CMA based blind equalization scheme
in terms of both SEP and convergence speed. Furthermore, while the MMNL scheme has reached
convergence in all the Monte Carlo runs, a significant misconvergence percentage has been observed,
on the average equal to about 10%, for the CMA scheme. Therefore, even dealing with this more severe
scenario, the novel MMNL based blind equalization scheme offers lower sampling phase sensitivity,
making its performance the best one.

6. Conclusions

Using a chip based representation, we have been able to exploit the memory of PPM signals
through fractional sampling operated at the receiver side, cascaded with digital filtering aimed at
restoring the channel equalization condition. The success of this approach is mainly due to the spectral
redundancy offered by MPPM signals. The design of the fractionally spaced equalizer has been
conducted in a blind, not data aided, fashion and the resulting novel technique has been analyzed and
its performance assessed by numerical simulation. Numerical results have confirmed that the here
presented novel blind equalization technique offers better performance with respect to the classical
CMA blind equalization algorithms, both in terms of accuracy as well as sampling phase sensitivity.

These results show the feasibility of the PPM single carrier approach in severe multipath channel
scenarios where, in principle, OFDM based transmission may be failing. Since the here presented PPM
FSE is blind, performance comparison with data-aided OFDM is unfair. In this regard, further studies
will be devoted to devise a trained PPM FSE, the performance of which can be fairly discussed and
compared to those of OFDM based schemes operating in more specifically defined severe multipath
channel scenarios.
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Appendix A. Binary M-Tuple Probabilities Evaluation

Appendix A.1. Case 1: Single Chip 1 at Position p

For each delay d, we have M−d chips belonging to the first MPPM symbol and d chips belonging
to the second MPPM symbol, which is statistically independent of the first one. The number of possible
cases are M, see Tables 1–3, but the following two different situations can occur, see Figures A1 and A2
with 0≤ p≤M−1:

d<M−p : in this case, see Figure A1, the single chip having value equal to 1 at position p
belongs to the first MPPM symbol; hence, the first M−d chips occur with probability 1/M, while the
second d chips are all 0 and occur with probability (M−d)/M.

d

p M p-

MPPM First Symbol MPPM Second Symbol

1 0 0 0 00 0 0 1 0 00 0000

M d- d

Figure A1. Single chip 1 at position p.

d≥M−p : in this case, see Figure A2, the single chip having value equal to 1 at position p
belongs to the second MPPM symbol; hence, the second d chips occur with probability 1/M, while the
first M−d chips are all 0 and occur with probability d/M.

d

M p-p

MPPM First Symbol MPPM Second Symbol

0 0 0 0 01 0 0 0 0 00 0010

M d- d

Figure A2. Single chip 1 at position p.

The total probability is obtained through averaging over all the equiprobable delays d =

0, 1, . . . M−1:

P{single 1 at p}= 1
M

[
M−1−p

∑
d=0

1
M

M−d
M

+
M−1

∑
d=M−p

1
M

d
M

]

=
1

M3

[
M(M−p)− (M−p)(M−1−p)

2
+

M(M−1)
2

− (M−p)(M−1−p)
2

]

=
1

M3

[
M2

2
+

M
2

+ pM−p−p2
]
=

1
M3

[
M(M + 1)

2
+ p(M−1−p)

]
(A1)

As expected P{single 1 at p}=P{single 1 at M−1−p}.

Appendix A.2. Case 2: Two Chips 1 Distant D Positions

In this situation, see Figure A3 with 0≤ p≤M−1 and 1≤D≤M−1, one chip 1 belongs to the
first MPPM symbol while the other chip 1 belongs to the second MPPM symbol, which is statistically
independent of the first one. The number of possible cases is M(M−1)/2, see Tables 1–3, and the first
M−d chips always occur with probability 1/M but also the second d chips always occur with the same
probability 1/M.
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d

p D

MPPM First Symbol MPPM Second Symbol

1 10 0 0 0 0 0 0 0 00 0000

M d- d

Figure A3. Two chips 1 distant D positions.

It is worth noting that both those probabilities does not depend on the delay d, but only D delays
are compatible with the distance D; in fact, said p the position of the first chip 1, from Figure A3
we see that the first chip 1 belongs to the first MPPM symbol iff d+p ≤ M−1, while the second
chip1 belongs to the second MPPM symbol iff d+D+p≥M−1, so that the compatible delays are
d=M−p−D, . . . , M−p−1, and their number is D.

The total probability is obtained through averaging over all the D compatible delays:

P{1 at p∧ 1 at p+D}= 1
M

M−p−1

∑
d=M−p−D

1
M2 =

D
M3 (A2)

Appendix B. Complex Low-Pass Representation of Band-Pass MPPM Signals

The complex low-pass representation of band-pass signals stems from the following signal form:

g(t) = gc(t) cos(2π f0t)− gs(t) sin(2π f0t)

= <
{
(gc(t) + jgs(t)) ej2π f0t

} (A3)

The representation (A3) is unique when the complex low-pass signal g(t) = gc(t) + jgs(t) is
bandlimited with bandwidth B< 2 f0. The extraction of the low-pass components gc(t) and gs(t) is
achieved by classical phase-quadrature demodulation, graphically indicated as in Figure A5.

Without loss of generality, let us now consider the case f0= k/Tc with k∈N+, in which the spectra
of Figure 1 show up as in Figure A4.

| ( ) |2TG jW

2

2

M

p
=area

1

M

( )
PPM

c

M

j T
bP e W

2p02- p4- p6- p8- p 4p 6p 8p

ASK-QAM

bandwidth 2pa

PPM bandwidth
( )02 cf TW- p

Figure A4. Spectral representation of band-pass PPM signals.

Bearing in mind (6), it is simple matter to verify the equivalence shown in Figure A5.
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Figure A5. Low-pass signal representation of MPPM signals.
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In other words, even though the physical mechanism is different, MPPM signals admit a complex
low-pass representation analog to QAM signals; this in turns means that complex equalization filtering
can be realized after matched filtering and phase-quadrature demodulation operated at receiver side.

Automatic Phase Controls

Since bMPPM[n] is a binary sequence, the sampled complex low-pass received signal r(nTc) (6)
results improper complex [29]. As shown in Figure A6, this in turn implies that, due to both noise
and channel effects, the complex samples r(nTc) result to be scattered around a straight line whose
orientation is substantially determined by the channel phase.

-1 -0.5 0 0.5 1
In-phase

-1

-0.5

0

0.5

1

Q
ua

dr
at

ur
e

Figure A6. Snapshot of samples of the complex signal r(nTc) .

In summary, the improper complexity of r(nTc) can be fruitfully exploited to devise blind
estimation of the phase rotation induced by the channel. Since the application of the nonlinearity
(16) requires such a phase to be already compensated, we have experienced good results using the
following simple automatic phase control loop, to be operated with φREF = 0 and also sketched in
Figure A7.

φ[n] = φ[n−1]+λ

[
φREF −

1
2

angle
(
x[n] ejφ[n−1]

)]
(A4)

REF
f

[ ]nf

[ ]j n
e

f

[ ]x n

Ä l.0 5( )2×

1
z

-

++
+_

complex
from

phase

angle

Figure A7. Block diagram of automatic phase control loop.

Since the phase loop (A4) retrieves the phase modulo π, it remains a sign ambiguity to resolve by
using differential encoding or exploiting the skewness of MPPM signals for M≥4.
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