
Semantic Web 0 (0) 1 1
IOS Press

Building Relatedness Explanations from
Knowledge Graphs
Giuseppe Pirrò a,*

a ICAR-CNR, Italian National Research Council, Rende (CS), Italy
E-mail: pirro@icar.cnr.it

Abstract. Knowledge graphs (KGs) are a key ingredient for searching, browsing and knowledge discovery activities. Motivated
by the need to harness knowledge available in a variety of KGs, we face the problem of building relatedness explanations.
Relatedness explanations are graphs that can explain how a pair of entities is related in a KG and can be used in a variety of tasks;
from exploratory search to query answering. We formalize the notion of relatedness explanation and present two algorithms.
The first, E4D (Explanations from Data) assembles explanations starting from paths in the data. The second algorithm E4S
(Explanations from Schema), starting from the KG schema, allows to find paths driven by a specific relatedness perspective.
We describe different criteria to build explanations based on information-theory, diversity and their combination. As a concrete
application, we introduce relatedness-based KG querying, which revisits the query-by-example paradigm from the perspective of
relatedness explanations. We implemented all machineries in the RECAP tool, which is based on RDF and SPARQL. We discuss
an evaluation of our explanation building algorithms and a comparison of RECAP with related systems on real-world data.

Keywords: Knolwedge Graphs, Explanations, Patterns, Relatedness-based querying

1. Introduction

Knowledge graphs (KGs) maintaining structured
data about entities are becoming a common support
for browsing, searching and knowledge discovery ac-
tivities [1]. Search engines like Google, Yahoo! and
Bing complement the classical search results with facts
about entities in their KGs. An even large number and
variety of KGs, based on the Resource Description
Framework (RDF) data format, stem from the Linked
Open Data project [2]. DBpedia, Freebase, DBLP and
Yago are just a few examples that witness the popular-
ity and spread of open KGs. KGs are a type of hetero-
geneous information network [3] where nodes repre-
sent entities and edges different types of relationships.
Extracting knowledge from KGs has applications in
many domains including information retrieval [4], rad-
icalization detection [5], twitter analysis [6], recom-
mendation [7], clustering [8], entity resolution [9], and
generic exploratory search [10].

*Part of this work was done while the author was working in the
WeST group at the University of Koblenz-Landau.

One common-need for many classes of knowledge
discovery tasks is that explaining the relatedness be-
tween entities. The availability of (visual) explanations
helps in understanding why entities are related while at
the same time allowing to discover/browse other enti-
ties of interest. The availability of explanations is use-
ful in several areas including: terrorist networks, to un-
cover the connections between two suspected terror-
ists [11]; co-author networks, to discover interlinks be-
tween researchers [12]; bioinformatics, to discover re-
lationships between biomedical terms [13]; generic ex-
ploratory search [10].

Fig. 1 (e) shows an excerpt of explanation for the
pair of entities (Metropolis, F. Lang) obtained from the
DBpedia KG. The explanation includes relationships
among entities of different types (e.g., Film, Actors, Cin-
ematographer). We can see that R. Klein-Rogge starred
Metropolis and other films (e.g., Destiny, Spione) all di-
rected by F. Lang. We can also see that T. von Harbou has
been married with both R. Klein-Rogge and F.Lang and
that she has written some films with the latter. We can
also notice that W. Ruttmann has been the cinematogra-
pher for both Metropolis and Die Nibelungen.

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:pirro@icar.cnr.it

2 Building Relatedness Explanations from Knowledge Graphs

Metropolis

starring

cinematography

Destiny

starring

Spione

director

Fritz
Lang

director

ci
ne
ma
to
gr
ap
hy

director

dire
ctor

starring

st
ar
ri
ngWalter

Ruttmann

Rudolf
Klein-Rogge

The Testament
of Dr. Mabuse

sta
rri

ng

Die Nibelungen

Thea
von Harbou

writer

writer

spouse

spouse

writer

wr
it
er

director

Metropolis Fritz Lang

director

Film Person

Explanation TemplateInput (a) (b)

PersonFilmPersonFilm directorcinematographycinematography
PersonWorkActorWork directorstarringstarring

PersonFilmPersonFilm directordirectorwriter

Candidates Explanation Patterns (c)
Fritz LangMetropolis directorstarringstarring

Fritz LangMetropolis
directorcinematographycinematography

Fritz LangMetropolis directordirectorwriter

Explanation Patterns Verification (d)(e)

Fig. 1. An excerpt of explanation from the DBpedia KG (left). Overview of the E4S algorithm (right).

The computation of relatedness explanations is usu-
ally tackled by discovering paths that link entities in
the data (e.g., [14–19]). Our first explanation-building
algorithm called Explanations From the Data (E4D pre-
sented in Section 3) [10] follows the same philos-
ophy. To guarantee better generality and scalability
E4D is SPARQL-based; it reduces the problem of find-
ing paths to that of evaluating a set of (automatically
generated) SPARQL queries and can leverage any
SPARQL-enabled (remote) KG. However, working di-
rectly at the data level may have some shortcomings.
In fact, E4D and related research (e.g., [16, 19, 20])
do not allow to build focused explanations, that is, ex-
planations concerning a particular relatedness perspec-
tive. It would be interesting, for instance, to build ex-
planations by providing one or more target predicates
that drive the process toward data that concern these
and closely related aspects only.

Therefore, we introduce a second algorithm called
Explanations from the Schema (E4S presented in Sec-
tion 4) that starts from the KG schema. The idea is to
start from explanation templates built from the entity
types of the input pair along with some target predi-
cates. Fig. 1 (b) shows the explanation template for the
entity pair (Metropolis, F. Lang) when considering direc-
tor as a target predicate. The explanation template is
then used to generate candidate explanation patterns of
bounded-length, that is, schema-compliant paths hav-
ing as endpoints the types (e.g., Film, Person) instead
of concrete entity instances (e.g., Metropolis, F. Lang).
As the search space for candidate patterns can be very
large, E4S leverages a predicate relatedness measure to
isolate the portion of the schema that is most related
to the target predicates. Fig. 1 (c) shows some can-
didate explanation patterns of length 3. These are all
plausible explanation patterns for the pair in input. We
can see for instance, that a Work (Metropolis is a Film,

which is a subclassOf Work) has some Actor starring it.
The same Actor starred other Works whose director is a
Person. Nevertheless, not all explanation patterns will
have a counterpart in the data; they need to be veri-
fied to extract knowledge useful to build an explana-
tion. Fig. 1 (d) shows that only the first two patterns
are actually verified in the data. This can be seen by
looking at Fig. 1 (e) where we notice that the first pat-
tern leads from Metropolis to F. Lang via R. Klein-Rogge
and Spione or Destiny or The Testament of Dr. Mabuse. As
for the second patter, it leads from Metropolis to F. Lang
via W. Rotmann and Die Nibelungen.

The separation between candidate explanation pat-
tern generation and verification allows to chose only
those patterns that are of most interest and proceed to
their verification according to some ranking (e.g., av-
erage relatedness between predicates in the pattern and
the target predicate). The richness of node and edge
types, the usage of meta information and the possibil-
ity to focus on the most interesting explanations first,
offers a significant advantage wrt related research. We
are not aware of any previous work that starts from the
KG schema to build relatedness explanations.
Contributions. We contribute: (i) a SPARQL-based
algorithm called E4D, which starting from a pair of en-
tities can retrieve paths interlinking them directly look-
ing at the data; (ii) a KG-schema-based algorithm E4S,
which leverages the schema to build candidate expla-
nation patterns and an algorithm for their verification
in the data; (iii) different ways to rank paths (found by
E4D and/or E4S) based on informativeness, diversity
and combinations of them; (iv) a (visual) tool called
RECAP; (v) an approach to query KGs by relatedness;
(vi) an experimental evaluation.

A preliminary version of this work, which does not
include the E4S algorithm, appeared in ISWC2015 [10].

Building Relatedness Explanations from Knowledge Graphs 3

KG Schema

Artist subclassOf Person
Actor subclassOf Actor
Film subclassOf Work
Place subclassOf Agent
Person subclassOf Agent

producer domain Work
producer range Agent
starring domain Work
starring range Actor
director domain Film
director range Person
writer domain Work
writer range Person
editing domain Film
editing range Person

director domain Work

influencedBy domain Person
influencedBy range Person

 Agent

Person

Artist

 Place

Work

Musical
Work

deathPlace

notableWorks
starring

cine
mato

grap
hy

wr
it
er

Film

pr
od
uc
er

influencedBy

di
re
ct
or

lyrics

(b)
Actor

cine
mato

grap
hy

(a) Schema Graph

edi
tin

g

dire
ctor

Inferred

subclassOf

su
bc
la
ss
Of

subclassOfsu
bc

la
ss

Of

su
bc

la
ss

Of
su

bc
la

ss
Of

Fig. 2. A KG schema (a) and its corresponding schema graph (b).

Outline. The remained of the paper is organized as fol-
lows. We introduce the problem along with the neces-
sary background in Section 2. Section 3 introduces the
E4D algorithm. Section 4 introduces our second algo-
rithm E4S, which builds explanations starting from the
KG schema. Section 5 describes different strategies to
rank/combine paths in order to build explanations. We
describe the RECAP tool implementing our algorithms
in Section 6. Section 7 discusses the experimental eval-
uation. Related Work is treated in Section 8. We con-
clude in Section 9.

2. Problem Description and Background

We now formalize the notions of KG and knowledge
base. Although there are several KGs today available
(e.g., Yahoo!, Google) we will focus on those encoded
in RDF1 widely and openly accessible on the Web for
querying via the standard SPARQL language [21].

Let U (URIs) and L (literals) be countably disjoint
infinite sets. An RDF triple is a tuple of the form
U×U×(U∪L) whose elements are referred to as sub-
ject, predicate and object, respectively. As we are in-
terested in discovering explanations in terms of nodes
and edges carrying semantic meaning for the user, we
do not consider blank nodes. We also assume an infi-
nite set V of variables disjoint from the sets U and L.
In the SPARQL language, variables in V are prefixed
with a question mark (e.g., ?x is a variable).

Definition 1. (Triple and Graph Pattern). A triple
pattern τ is a triple (xs, yp, zo)∈ (U ∪ V)(U ∪ V)(U ∪
L∪V). We denote by var(τ) the variables in τ. A graph
pattern of length k is a set of triple patterns τ1, ..τk

where (var(τi) ∩ var(τi+1) 6= ∅), i ∈ [1, k − 1].

1A list is available at http://lod-cloud.net

A Knowledge Graph (KG) is a directed node and
edge labeled multi-graph G = (V, E ,T) where V is a
set of uniquely identified vertices representing entities
(e.g., D. Lynch), E a set of predicates (e.g., director) and
T a set of triples of the form (s, p, o) representing di-
rected labeled edges, where s, o ∈ V and p ∈ E .

To structure knowledge, KGs resort to an underly-
ing schema S , which can be seen as a set of triples de-
fined by using some ontology vocabulary (e.g., RDFS,
OWL). In this paper, we focus on RDFS and specifi-
cally on entity types (and their hierarchy) and domain
and range of predicates. We denote by type(e) the set
of types of an entity e. Our approach leverages RDFS
inference rules to construct the RDFS-closure of the
KG schema [22, 23]. From the closure of the schema
we build the corresponding schema graph closure.

Definition 2. (Schema Graph Closure). Given a KG
schema closure S , its schema graph closure is defined
as GS =(Vs, Es,Ts), where each vi ∈ Vs is a node de-
noting an entity type, each pi ∈ Es denotes a predi-
cate and each (vs, pi, vt) ∈ Ts is a triple (asserted or
inferred via RDFS reasoning) where vi (resp., vt) is the
domain (resp., range) of the predicate pi.

Fig. 2 (a) shows an excerpt of the DBpedia schema
while Fig. 2 (b) of its schema closure; here, dashed
lines represent inferred triples. For instance, the triple
(Work, director, Person) is inferred from the triples (Film,
subclassOf, Work) and (Film, director, Person). Given a
predicate p, Dom(p) (resp., Range(p)) denotes the set
of nodes (i.e., entity types) in Gs having an outgoing
(resp., incoming) edge labeled with p. We refer to the
schema graph closure simply as the schema graph.

Definition 3. (Knowledge Base). A knowledge base
is a tuple of the form K=〈G,Gs, A〉where G is a knowl-
edge graph, Gs is the schema graph and A is a query
endpoint used to access data in G.

http://lod-cloud.net

4 Building Relatedness Explanations from Knowledge Graphs

2.1. Problem Description

Motivation. The high-level objective of this paper is
to tackle the problem of explaining knowledge in KGs.
As discussed in the Introduction, the availability of ex-
planations can support several applications scenarios.
The need for relatedness explanations also emerged
in the context of the SENSE4US FP7 project2, which
aimed at creating a toolkit to support information gath-
ering, analysis and policy modeling. Here, relatedness
explanations were useful to investigate and show to the
user topic connectivity3, which enabled to find out pre-
viously unknown information that is of relevance, un-
derstand how it is of relevance, and navigate it.

Input. The input of our problem is a pair (ws,wt) of
entities defined in some knowledge base K=〈G,Gs, A〉.

Output. Given K=〈G,Gs, A〉 and a pair of entities
(ws,wt), the output that we seek is a graph Ge ⊆ G; we
call such a graph the relatedness explanation between
ws and wt.

Challenges. The problem that we tackle in this pa-
per, the algorithmic solutions and their implementation
pose several challenges, among which:

(1) how to meaningfully capture the notion of ex-
planation between entities? How to control the
size of an explanation? Which kind of informa-
tion in G is useful for building an explanation?

(2) what role can the KG schema have?
(3) how to make available the machinery discussed

in the paper in a variety of KGs?

2.2. Basic Definitions

Before further delving into the discussion of the so-
lutions to the above challenges, we introduce some
definitions.

Definition 4. (Explanation). Given a knowledge base
K=〈G,Gs, A〉 and a pair of entities (ws,wt) where
ws,wt∈ G, an explanation is a tuple of the form
E=(ws,wt,Ge) where ws,wt ∈ Ge and Ge ⊆ G.

The above definition is very general; it only states
that two entities are connected via nodes and edges in a
graph Ge, which is a subgraph of the knowledge graph
G and has an arbitrary structure. The challenging as-

2http://www.sense4us.eu
3A module of the SENSE4US toolkit extracts topics from policy

documents.

pect that we face in this paper concerns how to uncover
the structure of Ge.

To tackle this challenge, we shall characterize the
desired properties of Ge. Consider the explanation
shown in Fig. 3 (a); Ge contains two types of nodes:
nodes such as n1, n3, n4 that belong to some path be-
tween ws and wt and other nodes such as n2 that do
not.

Ge

ws
n1 n4

n3

wt
n2

p1
p1

p4 p2

p2
Ge

ws
n1 n4

n3

wt
p1

p4 p2

p2
(a) (b)

Fig. 3. An explanation (a) and a minimal explanation (b).

Although the edge (n2, p1, n3) can contribute to
better characterize n3, such edge is in a sense non-
necessary as it does not directly contribute to explain
how ws and wt are related. Hence, we introduce the
notion of necessary edge.

Definition 5. (Necessary Edge). An edge (ni, pk, n j)∈G
is necessary for an explanation E=(ws,wt,Ge) if it be-
longs to a simple path (no node repetitions) between
ws and wt.

The necessary edge property enables to refine the no-
tion of explanation into that of minimal explanation.

Definition 6. (Minimal Explanation). Given a knowl-
edge base K=〈G,Gs, A〉 and a pair of entities (ws,wt)
where ws,wt∈ G, a minimal explanation is an explana-
tion E=(ws,wt,Ge) where Ge is obtained as the merge
of all simple paths between ws and wt.

Fig. 3 (b) shows a minimal explanation. Minimal
explanations enable to focus only on nodes and edges
that are in some path between ws and wt; hence,
minimal explanations preserve connectivity informa-
tion only. Representing explanations as graphs enables
users to have (visual) insights of why/how two enti-
ties are related and discover/browse other entities. An
investigation of the usefulness of graph visualization
supports is out of the scope of this paper; the reader can
refer to Herman et al. [24] for a comprehensive discus-
sion about the topic. We are now ready our first algo-
rithm, which discovers paths useful to build different
kinds of relatedness explanations by directly looking
at the KG data.

http://www.sense4us.eu

Building Relatedness Explanations from Knowledge Graphs 5

3. Explaining Relatedness from the Data (E4D)

Relatedness explanations are graphs that provide a
(concise) representation of the relatedness between a
pair of entities in a KG in terms of predicates (carrying
a semantic meaning) and other entities. The challeng-
ing question is how to retrieve explanations. Consider
the minimal explanation shown in Fig. 3 (b); it could
be retrieved by matching the pattern graph Gp shown
in Fig. 4 (nodes and edge labels are query variables)
against G. Hence, if the structure of Gp were available
one could easily find Ge; however, such structure, that
is, the right way of joining query variables represent-
ing nodes and edges in Gp is unknown before knowing
Ge. Nevertheless, since minimal explanations are built
by considering (simple) paths in the data between ws

and wt, the retrieval of such paths is the first step to-
ward building explanations via the E4D (Explanations
from the Data) algorithm.

Gp

ws wt
?n1 ?n4

?n3
?p1

?p2

?p2

?p4

Fig. 4. The pattern graph for the minimal explanation in Fig. 3 (b).

Generally speaking, paths between entities can have
an arbitrary length; in practice it has been shown that
for KGs like Facebook the average distance between
entities is bound by a value [25]. The choice of con-
sidering paths of length k in our approach is reason-
able on the light of the fact that we focus on provid-
ing explanations of manageable size that can be visu-
alized and interpreted by the user. Fig. 5 outlines our
first explanation building approach. We now describe
step (1); step (2) and (3) will be described in Section 5.

3.1. Finding Paths from the Data

A path is a sequence of edges (RDF triples) bound
by a length value k. The underlying assumption of
the E4D algorithm is to access a knowledge base
K=〈G,Gs, A〉 only via the (SPARQL) query endpoint
A. This allows to work on top of any KG for which a
query endpoint is available.

Definition 7. (k-connectivity Pattern). Given a knowl-
edge base K=〈G,Gs, A〉 a pair of entities (ws,wt)
where ws,wt∈ G and an integer k, a k-connectivity pat-
tern is a tuple of the form Ξ=〈ws,wt, T , k〉 where T is
a graph pattern of length k.

Building Explanations from Data (E4D)

Input: A pair (ws,wt), an integer k, the address of
the query endpoint A
Output: A graph Ge

(1) Find paths: we are going to describe in Section 3.1
an approach based on SPARQL queries against A to
retrieve paths between ws and wt of length k.

(2) Rank paths: we describe in Section 5 different
mechanisms to rank paths.

(3) Select and merge top-m paths: we discuss in Sec-
tion 5.4 different ways of selecting ranked paths to
build an explanation Ge.

Fig. 5. Building explanations from the data.

An example of graph pattern T is shown in Fig. 6.
Here, both nodes (but ws and wt) and edges represent
query variables. Note that in the figure, edge directions
are not reported; each edge has to be considered both
as incoming and outgoing, which corresponds to join
triple patterns in all possible ways. Indeed, by joining
each of the k triple patterns in Fig. 6 in all different
ways it is possible to obtain a set of 2k graph patterns.
These graph patterns can be used to generate SPARQL
queries.

?n1ws ?n2 wt...... ?nk
?p1 ?p2 ?p3 ?pk

Fig. 6. Structure of a query to find paths of length k.

Example 8. (Example of k-connectivity Pattern).
The 2-connectivity pattern between Metropolis (:Mt)
and F. Lang (:FL) allows to generate the following set
of 4 queries:

SELECT DISTINCT * WHERE{:Mt ?p1 ?n1. ?n1 ?p2 :FL}
SELECT DISTINCT * WHERE{:Mt ?p1 ?n1. :FL ?p2 ?n1}
SELECT DISTINCT * WHERE{?n1 ?p1 :Mt. :FL ?n1 ?p2}
SELECT DISTINCT * WHERE{?n1 ?p1 :Mt. ?n1 ?p2 :FL}

As we are going to discuss in the following, these
queries are executed in parallel (by using multi-
threading) by E4D thus significantly speeding-up up
the retrieval of paths. Note that SPARQL 1.1 supports
property paths (PPs) [21], that is, a way to discover
routes between nodes in an RDF graph. However, since
variables cannot be used as part of the path specifi-
cation itself, PPs are not suitable for our purpose; we
need information about all the constituent elements of
a path (both nodes and edges) to build explanations.

6 Building Relatedness Explanations from Knowledge Graphs

Definition 9. (Path). Given K=〈G,Gs, A〉 and a pair
of entities (ws, wt), a path ξ is a set of edges (i.e., RDF

triples): ξ(ws,wt)=ws
p1
− n1

p2
− n2

p3
− n3..nq

pk
− wt, ni ∈

G ∀i ∈ [1, q], p j ∈ G ∀ j ∈ [1, k] and − ∈ {←,→}.

In the above definition, the symbol − models the
fact that in a path we may have edges pointing in dif-
ferent directions. We denote by Labels(π) the set
of labels (RDF predicates) in ξ. Practically speaking,
paths are obtained by evaluating queries deriving from
a k-connectivity pattern; hence, ni and p j are solutions
(variable bindings) obtained from some query evalu-
ated on A. While in a k-connectivity pattern all edges
and nodes (but ws and wt) are variables, in a path there
are no variables. Fig. 7 shows an example of path ξ
where Labels(ξ)={writer,spouse}.

Fritz
LangMetropolis

writer spouse

Thea
von Harbou

Fig. 7. An example of path between Metropolis and F. Lang.

We want to stress the fact that the set of queries to
retrieve paths are automatically generated and evalu-
ated on the (remote) query endpoint A. A sketch of the
multi-thread algorithm to find paths is shown in Fig. 8.

Function FINDPATHS
(
ws,wt, k, A,m,maxT)

Input: A pair (ws, wt), an integer k, the address of the query
endpoint A, monitor class m, max num. of threads maxT .
1: Q=GENQUERIES

(
ws,wt, k) /* queries */

2: for q ∈ Q do
3: PATHTHREAD t=CREATETHREAD(q, A,m)
4: SUBMITJOB(t,maxT)

Function PATHTHREAD(q, A,m)
Input: Query q, address A, monitor m.

/* Methods in m are thread-safe */

1: Res=EXECQUERY
(
q, A) /* evaluates the query */

2: m.ADDRESULTS(Res)
3: if (m.GETQUERYCOUNT()==0 AND

m.ISLASTTHREAD()) then
4: m.RETURNRESULTS

(
)

Fig. 8. Finding paths: an overview.

The algorithm leverages a monitor class (not re-
ported here); an instance such class is denoted with m
in the pseudocode. This class controls: (i) the concur-
rent access to the shared data structures by the threads
(e.g., to add paths retrieved by queries); (ii) the termi-

nation of the algorithm that will happen when no more
queries have to be executed and no thread is active
(see lines 3-4 PATHTHREAD). Moreover, the method
SUBMITJOB (not reported here) takes care of submit-
ting threads for the executions to an executor service,
which can be configured to create a maxT number of
threads. This enables to control the degree of concur-
rency. We now move to the description of the E4S algo-
rithm, which adopts a different philosophy; instead of
starting from the evaluation of queries directly in the
KG data to obtain paths between ws and wt, it lever-
ages the schema to control which kinds of paths are
interesting to look for.

4. Explaining Relatedness from the Schema (E4S)

The choice to build explanations starting from the
data via E4D allows to obtain a potential large num-
ber of explanations covering different (and varied) re-
latedness perspectives. Nevertheless, one may be inter-
ested in the generation of explanations focused on spe-
cific relatedness perspectives. Returning to our exam-
ple, when explaining the relatedness between the film
Metropolis and F. Lang one could focus on building ex-
planations in the domain of movies. This interest can
be expressed by considering predicates like director or
writer. As anticipated in the Introduction, E4S (Explain-
ing Relatedness from the Schema) leverages the notion
of explanation template.

Definition 10. (Explanation Template). Given a
knowledge graph G=(V, E ,T), a source entity ws ∈ G,
a target entity wt ∈ G, a schema graph GS=(Vs, Es,Ts)
and a target predicate p∗ ∈ Es, an explanation template
is a triple (type(ws), p∗, type(ws)) where type(·)
is one of the types of the source (resp., target) entities.

Explanation templates are the building blocks of ex-
planation patterns.

Definition 11. (Explanation Pattern). Given a schema
graph GS = (Vs, Es,Ts), a target predicate p∗ ∈ Es

and an integer d, an explanation pattern is a sequence
T(p∗) = τ1 · τ2, · τd, such that τi=(tx,⊗pi, ty)
for i ∈ {1, ..., d}, ⊗ ∈ {�,�}, tx ∈ Dom(p∗),
ty ∈ Range(p∗), pi ∈ Es, and · denotes the composi-
tion (i.e., join) operator.

The operator ⊗ ∈ {�,�} determines the direc-
tion of an edge in the explanation pattern. By look-
ing at Fig. 2 (b), an example of explanation patterns is
T(director)=τ1 ·τ2 ·τ3 where τ1=(Work, �starring, Actor),

Building Relatedness Explanations from Knowledge Graphs 7

τ2=(Actor, �starring, Work), τ3=(Work �director, Person).
As it can be noted, these patterns only contain predi-
cates that are semantically related to the target pred-
icate. Fig. 9 gives an overview of the E4S algorithm.

Explanations from Schema (E4S)

Input: An explanation template (type(ws), p∗,
type(wt)), an integer k, and integer d, the address
of the query endpoint A
Output: A graph Ge

(1) Find top-k related predicates: we are going to de-
scribe in Section 4.1 a data-driven approach to com-
pute relatedness between predicates, which will be
used to find predicates most related to p∗.

(2) Find Candidate Explanation Patterns: we describe
in Section 4.2 an algorithm that generates candidate
explanation patterns of length d leveraging the KG
schema, the types of source and target entities and
predicates found in (1).

(3) Verify Candidate Explanation Patterns: we dis-
cuss in Section 4.3 a SPARQL-based algorithm to
verify candidate patterns that are used to build ex-
planations.

(4) Select and merge paths: paths found from verified
patterns can be ranked and merged as described in
Section 5.

Fig. 9. Building Explanations from the Schema.

4.1. Predicate Relatedness

The first ingredient of the E4S algorithm is a pred-
icate relatedness measure, which given a target predi-
cate p∗ allows to focus on the part of the schema most
related to p∗ during the candidate explanation genera-
tion, and thus of the data during candidate verification.
Given a knowledge graph G =(V, E ,T) and a pair of
predicates (pi, p j)∈ E , the relatedness measure takes
into account the co-occurrence of pi and p j in the set
of triples T and weights it by the predicate popular-
ity [26]. We now introduce its building blocks.

PF(pi, p j) = log(1 + Ci, j) (1)

where Ci, j counts the number of s and o in triples of the
form (s, pi, o) and (s, p j, o) or (o, pi, s) and (o, p j, s).

IPF is defined as follows:

IPF(p j, E) = log
|E|

|{pi : Ci, j > 0}|
(2)

Having co-occurrences for each pair (pi, p j) weighted
by the IPF allows to build a co-occurrence matrix:

wi, j(pi, p j, E) = PF(pi, p j)× IDF(p j, E) (3)

The relatedness between pi and p j is :

Rel(pi, p j) = Cosine(Wi,W j) (4)

where Wi (resp., W j) is the row of pi (resp., p j).

To give some hint about the results obtained by the
predicate relatedness measure, Table 1 shows the top-
5 most related predicates when giving as input some
predicates (in bold) defined in the DBpedia ontology.
We can see, for instance, that director is very related
to writer and producer; that spouse is very related to
child and relative and so forth. The predicate relatedness
measure seems to reasonably output semantically re-
lated predicates given a target predicate.

Table 1
Examples of related predicates in DBpedia.

director writer spouse influenced birthPlace

writer producer child influencedBy deathPlace
producer director relative author residence

musicComposer musicComposer parent notableWork country
executiveProducer composer relation spouse restingPlace

starring author starring child hometown

4.2. Finding Candidate Explanation Patterns

We now describe how the E4S algorithm generates
candidate explanation patterns. This process is handled
via Algorithm 1, which takes as input a schema graph,
a target predicate p∗, an integer d to bound the length
of the pattern, an integer k to pick the top-k most re-
lated predicates to p∗, and uses a priority queue to store
candidate explanation patterns ranked by their related-
ness wrt the target predicate p∗.

The algorithm for each of the most related predi-
cates (line 4) in parallel: performs a traversal of the
schema graph by checking that predicate pi and pred-
icate p∗ both have as source node tr (lines 7) (resp.,
ts (line 11)); this allows to build length-1 explanation
patterns that are added to the results if they allow to
reach the same node ts (line 9) (resp., tr (line 13)).

8 Building Relatedness Explanations from Knowledge Graphs

Input: A schema graph GS=(Vs, Es, Ts), a target
predicate p∗, maximum depth d, number of
related predicates k

Output: Candidate Explanation Patterns P

1 P = ∅; /* priority queue based on average relatedness to
p∗ */

2 R= getRelatedPredicates(p∗,k)
3 Parallel execution:
4 for each predicate pi ∈ R do
5 Let ∆1 = ∅
6 for (tr, pi, ts) ∈ T s do
7 if tr ∈ sourceNodes(p∗) then
8 ∆1=∆1 ∪ {(tr,→ pi, ts)}
9 if ts ∈ targetNodes(p∗) then

10 P = P ∪ {(tr,→ pi, ts)}
11 end
12 end
13 if ts ∈ sourceNodes(p∗) then
14 ∆1=∆1 ∪ {(tr,← pi, ts)}
15 if tr ∈ targetNodes(p∗) then
16 P = P ∪ {(tr,← pi, ts)}
17 end
18 end
19 end
20 for j = 2, ..., d do
21 Let ∆ j = ∅;
22 for each explanation pattern Ti ∈ ∆ j−1 do
23 for each entity type ns ∈ outNodes(Ti) do
24 for each triple (ns, p, nt) ∈ Ts s.t.

p ∈ R do
25 ∆ j = ∆ j ∪ {τ · (ns,→ p, nt)}
26 end
27 for each triple (nt, p, ns) ∈ Ts s.t.

p ∈ R do
28 ∆ j = ∆ j ∪ {τ · (ns,← p, nt)}
29 end
30 end
31 end
32 for each explanation pattern T j ∈ ∆ j do
33 if (checkTypes(τ j, p∗) = true) then
34 P = P ∪ {T j}
35 end
36 end
37 end
38 end
39 return P
Algorithm 1: findCandidateExplPatterns

Length-1 explanation patterns are expanded (line
11-25). The algorithm takes a q-length (partial) pat-
tern (with q<d) and expands it by only considering the
top-k most related predicates to p∗ (lines 19 and 21).

The expansion is done both in forward and reverse di-
rection as the schema graph is treated as undirected.
Candidate explanation patterns of at most length d are
added to the results (line 25) after checking that the
pattern starts from one of the types in Dom(p∗) and
ends in one of the types in Range(p∗) (line 24).

Theorem 12. Algorithm 1 runs in time O(d × |Es|).

Proof sketch. Algorithm 1 runs (in parallel) a d-step
traversal of the graph and at each step at most |Es|
edges (note that the algorithm in practice consid-
ers a subset R of all predicates) can be visited.
checkTypes can be done in constant type by hash-
ing domain(s) and range(s) of predicates.

4.3. Verifying Explanation Patterns

Candidate explanation patterns found via Algo-
rithm 1 represent schema-compliant ways in which
type(ws) and type(ws) could be connected in the
underlying data. To understand which explanation pat-
terns actually contribute to build a relatedness expla-
nation there is the need to verify them. A pattern is
verified if starting from ws it is possible to reach wt by
traversing the sequence of edges in it. In other words,
to verify a pattern we need to instantiate its endpoints
with ws and wt and then check if the resulting pattern
has a solution in the data. As an example, by instantiat-
ing the first explanation pattern in Fig. 1 (c), we obtain
the explanation pattern in Fig. 1 (d). This pattern is ac-
tually verified as can be seen in Fig. 1. On the other
hand, the last pattern in Fig. 1 (e) is not verified. We
now outline our approach for candidate patterns verifi-
cation, which builds upon the notion of path pattern.

Definition 13. (Path Pattern). Given a source en-
tity ws a target entity wt and a candidate explana-
tion pattern T(p∗)=τ1·...·τd with τi=(tx,⊗pi, ty) for
i ∈ {1, ..., d}, the pattern Π corresponding to T(p∗)

is defined as follows: Π(ws,wt,T(p∗))=(ws,
p1
−, ?v1) ·

(?v1,
type� , t1)·(?v1,

p2
−, ?v2)·(?v2,

type� , t2)....(?vd,
pd
−,wt)·

(?vd,
type� , td), where ∀i ∈ {1, 2, ...d}: ?vi is a query vari-

able, ti ∈ Vs an entity type and · denote the composi-
tion (join) operator. Moreover, ∀ ⊗pi∈ τi we have that
pi
− in T(p∗) becomes

pi→ in Π(ws,wt,T(p∗)) if ⊗=→
(resp.,

pi
− becomes

pi← if ⊗=←).

A path pattern basically transforms a candidate ex-
planation pattern into a SPARQL graph pattern [27]
where: (i) individual triple patterns (viz. τi) are joined

Building Relatedness Explanations from Knowledge Graphs 9

thanks to shared variables; (ii) an additional triple pat-
tern checks that, for each τi, the bindings (viz. entities
in the KG) of the variable ?vi are of the right type;
(iii) the endpoints are replaced with the source (ws) and
target entity (wt). As an example, the candidate expla-
nation pattern T(director)=τ1 · τ2 · τ3 where τ1=(Work,
�starring, Actor), τ2=(Actor, �starring, Work), τ3=(Work
�director, Person) gives the path pattern Π(T(Metropolis,
F. Lang, director))= Metropolis starring ?v1. ?v1 type Actor.
?v2 starring ?v1. ?v2 type Work. ?v2 director F. Lang.

4.3.1. Building a SPARQL Query for the Verification
At this point, from a path pattern we can build

a SPARQL query whose evaluation allows to check
whether the original candidate explanation pattern is
verified and, if so, to get a set of paths that conform to
it. The prototypical SPARQL query has the form:

SELECT DISTINCT * WHERE {

Π(ws,wt,T(p∗)) }

As an example, the SPARQL query obtained from the
path pattern Π(Metropolis, F. Lang, T(director)) is:

SELECT DISTINCT * WHERE {

Metropolis starring ?v1. ?v1 type Actor.
?v2 starring ?v1. ?v2 type Work.
?v2 starring F. Lang. }

E4S has the advantage of requiring the evaluation
of SPARQL queries more specific than those required
by E4D (see Definition 7) as predicates are fixed and
the bindings of variables are forced to be of specific
types. Moreover, note that since candidate explanation
patterns work at the level of schema, they do not need
to be generated from scratch every time. Indeed, they
can be reused when the types of the input pair and the
target predicate is the same.

5. Ranking Paths to build Explanations

We have described two different algorithms to find
paths connecting two entities ws and wt in a KG. In
both cases we may have that the number of such paths
can be prohibitively large, which can hinder the pro-
cess of making sense of an explanation. As an exam-
ple, considering the merge of all paths, as done in mini-
mal explanations (see Definition 6) may be an obstacle
toward providing concise explanations to the users. To
cope with this issue, we are going to introduce differ-

ent criteria to rank paths. Having a rank among paths
gives flexibility in choosing the set of paths that will
form an explanation. Cheng et al. provide an overview
on the topic [28].

5.1. Path Informativeness

The first approach to rank paths leverages the notion
of informativeness. Given a graph G, the informative-
ness of a path connecting a pair of entities (ws,wt)∈ G
is estimated by investigating the informativeness of its
constituent RDF predicates. This reasoning is analo-
gous to that of associating relative importance to words
in a document [29] contained in a set of documents.
We leverage the notion of Predicate Frequency Inverse
Triple Frequency (pfitf) [26].

Definition 14. (Predicate Frequency). Given G =
(V, E ,T), an entity w ∈ V and a predicate p ∈ E ap-
pearing in some triple involving w, the Predicate Fre-
quency (pf) quantifies the informativeness of p wrt w.
We distinguish between incoming pfw

i (p) and outgo-
ing pfw

o (p):

pfw
i (p,G) =

|Ti||p
|Ti|

(5)

pfw
o (p,G) =

|To||p
|To|

(6)

where |Ti||p (resp., |T0||p) is the number of triples in G
where the predicate p is incoming (resp., outgoing) in
w and |Ti| (resp., |To|) is the total number of incoming
(resp., outgoing) triples in which w is involved.

Definition 15. (Inverse Triple Frequency). Given
G=(V, E ,T) and a predicate p ∈ E , the inverse triple
frequency of p itf(p) is defined as:

itf(p,G) = log
|T |
|T ||p

(7)

where |T | is the total number of triples in G and |T ||p
the total number of triples containing p.

Definition 16. (Predicate Frequency Inverse Triple
Frequency). The Predicate Frequency Inverse Triple
Frequency is defined as pfitf(p,G)=pf×itf. One
can consider the incoming pfitfi(p,G)=pfi × itf
and outgoing pfitfo(p,G)=pfi × itf case.

An example of pfitf computation is shown in
Fig. 10. Having a way to assess the relative informa-
tiveness of a predicate wrt to an entity in a path, we
can now define the informativeness of a path.

10 Building Relatedness Explanations from Knowledge Graphs

producer

birthYear

director

writer

starring

influences

spouse

screenplay

occupation

influenced

surname

birthName

......

Predicate itf

......

0

1

2

3

4

5

6

7

8

9

10

11

63

8.06

8.58

7.97

7.89

10.60

9.15

9.35

6.73

11.18

8.27

9.05

11.27

Fritz
Lang

birthName
spouse

influenced

occupation

producer

writer

director

pf=0.017

pf=0.236

pf=0.094

pf=0.004

pf=0.008

pf=0.017

pf=0.013

63

........
0 1 2 3 4 5 6

0.137 2.02 0.330 0.086 0.307

directorproducer writer starring influences spouse owl:
sameAs

foaf:
primaryTopic

0.054 0.167 0.026

pfitf- Incoming predicates

63

........
0 1 2 3 4 5 6

0.073 0.037 0.029 0.048 0.190 0.107 0.132 0

pfitf- Outgoing predicates

spouse birthName occupationsurname influenced sameAs basedOnname

Metropolis

album
basedOn

foaf:
primaryTopicbasedOn

writer

director

pf=0.006

pf=0.005

pf=0.131

pf=0.004

pf=0.008

pf=0.003

63

........
0 1 2 3 4 5 6

0.073 0.037 0.020 0.048 0 0 0.047 0

pfitf- Incoming predicates

pfitf- Outgoing predicates

........
0 1 2 3 3 4 6 63

0 0 0 0 0 0 0 0.043

spouse birthName occupationsurname influenced sameAs basedOnname

directorproducer writer starring influences spouse owl:
sameAs

foaf:
primaryTopic

Fig. 10. An example of pfitfcomputation.

Definition 17. (Path Informativeness). Let ξ be a
path of length k. For k=1, the informativeness of ξ is:

I(ξ,G) = [pfitfws
o (p) + pfitfwt

i (p)]/2 (8)

It considers the predicate p as outgoing from ws

and incoming to wt. The second case for k=1 is
ξ(ws,wt)=ws

p←− wt where p is an incoming edge for
ws and outgoing from wt and can be treated in a similar
way. For paths of length k > 1, the informativeness is
computed as follows:

I(ξ,G) =
I(ξ(ws,w1)) + ...+ I(ξ(wk,wt))

k
(9)

5.2. Explanation Pattern Informativeness

We have discussed a method to compute path infor-
mativeness based on pfitf values obtained by con-
sidering nodes (entities), edges (predicates) and their
directions in a path. We now introduce a way of as-
sessing informativeness using path patterns (see Def-
inition 13). Intuitively, a path pattern summarize, via
variables, all paths that conform to a specific sequence
of predicates (according to their directions.)

As an example, the path pattern (Metropolis, starring,
?v1) · (?v1, type, Actor) · (?v2, starring, ?v1) · (?v2, type,
Work) · (?v2, director, F. Lang) captures different paths
where actors (e.g., R. Klein-Rogge) starred other films
directed by F. Lang besides Metropolis. According to
DBpedia there are 10 such paths that involve actors
like A. Abel and B. Helm. In the case of E4D, a set of
paths having the same set of edges along with their di-

rections and a different set of nodes can be abstracted
into a path pattern by replacing nodes with variable. In
the case of E4S, (verified) path pattern are simply ob-
tained from candidate patterns (see Definition 13). We
now define path pattern informativeness.

Definition 18. (Path pattern informativeness). Let P
be the set of path patterns and G a KG. The informa-
tiveness of a path pattern Π ∈ P is defined as:

I(Π,G) = log
|P|

|(Π,G)|
(10)

where |(Π,G)| is the number of paths sharing Π in a
graph G. In other words, |(Π,G)| is the number of dif-
ferent bindings in the solutions to the SPARQL query
used to verify Π. The usage of path patterns enables to
abstract information to be included into an explanation
by only focusing on specific patterns.

5.3. Path Diversity

We have discussed two approaches for ranking paths
based on informativeness. We now introduce a differ-
ent approach, which takes into account the variety of
predicates in a set of paths. As an example, among the
set of paths of length 3 between Metropolis and F. Lang
often include predicates related to the fact that there
are actors that (besides Metropolis) starred in other films
directed by F.Lang; this will potentially rule out other
predicates that appear in some paths if the informative-
ness of such paths is lower.

Building Relatedness Explanations from Knowledge Graphs 11

Fritz
Lang

Metropolis Fritz
Lang

director

(a) (b) spousebasedOn

Fritz
Lang

(c)

Fritz
Lang

writerwriter ?v1 ?v2 director

Person Film
Metropolis Metropolis

writer spouse

Thea
von Harbou

Metropolis

Fritz
Lang

?v1 ?v2

Person FilmMetropolis

producer writerproducer

Metropolis
Novel

author

Fig. 11. Path ranking examples: (a) most informative paths; (b) least informative path patterns; (c) most diverse path.

Definition 19. (Path Diversity). Given a source en-
tity ws, a target entity wt and two paths ξ1(ws,wt) and
ξ2(ws,wt) we define path diversity as:

δ(ξ1, ξ2)
|Labels(ξ1) ∩ Labels(ξ2)|
|Labels(ξ1) ∪ Labels(ξ2)|

(11)

The above equation computes the Jaccard index be-
tween paths in terms of their constituent RDF pred-
icates. The above definition can be used to compute
the pairwise diversity of a set of paths P . This in gen-
eral requires O(|P|2) computations. To avoid pairwise
computations, one can use min-wise hashing [30].

5.3.1. Path Ranking Strategies: an example
Consider the entity pair (Metropolis, F. Lang) and the

graph G shown in Fig. 1 (d), which includes a set of
paths some of which resulting from the verification of
the candidate explanations patterns in Fig. 1 (d). In
some cases, presenting such a set of paths altogether
may hinder the interpretation of the explanation by the
user. Hence, the ranking of paths results very useful.

Fig. 11 shows examples of paths obtained accord-
ing to the three strategies for path ranking introduced
before. In particular, Fig. 11 (a) shows the two most
informative paths according to the pfitf (see Sec-
tion 5.1). For k = 1 the path involves the predicate di-
rector while for k = 2, the informativeness takes into
account the fact that Metropolis has been written by T.
von Harbour who was married to F. Lang.

Fig. 11 (b) shows two path patterns. The first pat-
tern involves the predicates producer with intermediate
nodes representing People and Films. Information about
the 6 movies produced by E. Pommer and directed by F.
Lang is conveniently abstracted by the pattern plus the
type of entity abstracted, which enables to reduce the
size of the explanation shown to the user. The second
path pattern allows to abstract the fact that 11 movies
have been co-written by T. von Harbour and F. Lang.

Fig. 11 (c) shows the most diverse path, which in-
cludes the predicates basedOn and author that were dis-
carded when considering path informativeness. As it
can be observed, the three strategies for path ranking

give great flexibility in selecting the set of paths to
form an explanation.

5.4. Selecting and Merging Paths

Table 2 summarizes different strategies for building
explanations. The six strategies reported in the table
(but E∪), given a value m, select a subset of paths (pat-
tern) according to one of the three strategies described
in Section 5. Moreover, two strategies combine path
(pattern) informativeness and diversity. The last line
in Table 2 refers to all paths without merging them.
The merge of paths consists in considering all entities
(resp. nodes) sharing the same identifier as the same
node (resp. edge) in the explanation graph Ge.

Table 2
Path selection strategies.

Symbol Meaning
E∪ Merge all of paths without any pruning

Eξ
m Merge the top-m most informative paths

Eξ
m Merge paths belonging to the top-m most informative

path patterns

Eδ Merge pairs of paths whose value of diversity falls
in [max, (max − r)] where max is the max diversity
value over all pairs of paths and r is a % value.

Eξ,δ Merge the results of Eξ
m and Eδ

Eξ,δ Merge the results of Eξ
m and Eδ

P Set of all paths (without merge)

6. The RECAP tool and its application for
Querying Knowledge Graphs by Relatedness

We now outline the implementation of our expla-
nation framework (Section 6.1) and then describe a
concrete application of explanations for querying KGs
(Section 6.2).

12 Building Relatedness Explanations from Knowledge Graphs

(a) (b)

(c)

(d)
(e)

Fig. 12. The RECAP tool.

6.1. Implementation

We have implemented our explanation framework in
Java in a tool called RECAP, which leverages the Jena4

framework to handle RDF data and SPARQL to ac-
cess KGs via their endpoint. As previously described,
our explanation algorithms make usage of queries with
the SELECT query form for path finding and candidate
explanation pattern verification; SPARQL queries with
COUNT are used for path ranking. The tool along with
all the datasets are available upon request.

Explanations
From the Data

E4D
d

SPARQL
 Endpoint….

Parallel
queries

Knowledge
Graph

Explanation
Builder

ws
Target
entity

Source
entity

wt
Max

distance

Input

Paths of
distance

<= d

Explanation Framework Knowledge Base

d

ws
Target
entity

Source
entity

wt
Max

distance

Input

p*Target
Predicate

Schema
Graph

Candidate
Explanation

Patterns

Verification

kRelated
Predicates

Explanations
From the
Schema

E4S

Parallel
queries

RECAP GUI

Fig. 13. The RECAP architecture.

Fig. 13 gives an overview of the architecture of
the system. It consists of three main components. The
E4D component implements the E4D algorithm (Sec-
tion 3) and is responsible for both generating and ex-
ecuting (in parallel) queries to retrieve paths. The E4S

4http://jena.apache.org

component implements the E4S algorithm (Section 4).
In this case, candidate explanation patterns are gen-
erated after building the schema graph from a given
KG schema in input. The verification is done (in paral-
lel) via SPARQL and allows to retrieve a set of paths.
The Explanation Builder takes a set of paths either
from E4D or E4S and ranks them according to the in-
put method chosen by the user. Paths and then merged
to build an explanation, which is passed to the RECAP
GUI. Fig. 12 (a) shows the main GUI of the tool. The
user can specify the pair of input entities and get a short
description.

Fig. 12 (b) shows the part of the GUI that deals with
explanations. It is possible to select different kinds
of explanations (Fig. 12 (c)), and obtain a description
of each entity (Fig. 12 (d)) and edge (Fig. 12 (e)) in
the explanation graph. RECAP goes beyond related ap-
proaches (e.g., REX [18], Explass [20]) that provide
visual information about connectivity as it allows to
build different types of explanations (e.g., graphs, sets
of paths), thus controlling the amount of information
visualized. RECAP has the advantage of not requir-
ing any data preprocessing; information is obtained by
querying (remote) SPARQL endpoints.

6.2. Querying Knowledge Graphs by Relatedness

As a concrete application of explanations, we now
describe their usage for querying KGs. An explanation
E=〈ws,wt,Ge〉 can be seen as a graph including paths
that link a source and target entity. The idea is to turn
an explanation graph Ge for an entity pair (ws, wt) into
an explanation pattern possibly shared by other enti-
ties. Fig. 15 summarized our approach for querying
KGs using relatedness explanations.

http://jena.apache.org

Building Relatedness Explanations from Knowledge Graphs 13

(Query patterns)

(Pattern Instances)

(d)

(b)

(a)

(c)

Fig. 14. Querying Knowledge Graphs Using Relatedness Explanations. Path patterns (a), explanation (b), SPARQL query (c), and suggested
entities (d) ranked by popularity (PageRank [31] in this case).

Knowledge Graph Querying using Explanation

Input: A pair (ws,wt) of entities, an integer k, the
address of a query endpoint A
Output: A set of ranked (pairs of) entities

(1) Find an explanation E=(ws,wt,Ge) between ws

and wt by using E4D or E4S.

(2) Build the entity query pattern Qe associated to Ge.

(3) Query the KG with Qe (via A) and get a set of
(pairs of) entities.

(4) Rank the answers to Qe.

Fig. 15. An overview of the query answering algorithm.

We now describe step (2) and (3) that allow to ob-
tain the entity query pattern Qe from an explanation
graph Ge and, from it, a set of entity pairs. Step (4) is
described in Section 6.2.

Definition 20. (Explanation Pattern). Let E=〈ws,wt,Ge〉
be a relatedness explanation with Ge=(Ve, Ee,T e). Let
fn:Ve →V a function such that fn(vi)=?vi where V
is a set of variables. An explanation pattern is a tu-
ple E=〈?ws, ?wt,Gv

e〉 where ?ws, ?wt∈V and Gv
e =

(Vv, E ,T v) with Vv={ fn(vi), ∀vi ∈ Ve} and T v =
{(fn(si), pi, fn(oi)), ∀(si, pi, oi) ∈ T e}

Gv
e is the query graph obtained by replacing all

nodes in Ge with query variables. Basically, an expla-
nation pattern generalizes the structure of an explana-
tion by keeping edge labels only. Explanation patterns
are used to generate entity query patterns.

Definition 21. (Entity Query Pattern). Let E=〈?ws, ?wt,Gv
e〉

be an explanation pattern with Gv
e = (Vv, E ,T v) and

ti∈T v, i∈[1, k]. An entity query pattern Qe is a SPARQL
query of the form:
SELECT DISTINCT ?ws ?wt WHERE { t1 . t2. ... tk }

In the above definition, t1, ...tk are triple patterns and
. denotes the join operator; moreover, the variables
?ws and ?wt used in lieu of the entities in input. Note
that query patterns are automatically derived from ex-
planations; our approach neither requires familiarity
with SPARQL nor with the underlying data/schema.
The evaluation of a query pattern returns a set of pairs
of entities sharing the same relatedness perspective of
the input pair.

6.2.1. Ranking of Results
As the number of results of Qe can be large, we de-

scribe an approach for ranking results. The problem
of ranking results of SPARQL queries has been al-
ready studied (e.g., [32, 33]) and is not the main pur-
pose of the present paper. Inspired by the Google KG,
we consider a simple result ranking mechanism based
on the popularity of entities; specifically, we lever-
age the PageRank [31] algorithm. Given a pair of en-
tities (w1,w2) returned when evaluating Qe, we esti-
mate their popularity as (PR(w1) +PR(w2)) /2, where
PR(wi) is the PageRank value of the entity i.

Fig. 14 shows the GUI that handles querying an-
swering using relatedness explanations. In particular,
Fig. 14 (a) shows path patterns (see Definition 13)
while Fig. 14 (b) shows the instantiation of the pat-

14 Building Relatedness Explanations from Knowledge Graphs

tern selected. We can see that T. von Harbou was mar-
ried with F. Lang and she wrote the novel Metropolis on
which the film Metropolis was based. Fig. 14 (c) shows
the automatically generated SPARQL query (see Def-
inition 21). The underlying idea of our approach is to
look for other pairs of entities that share a similar re-
latedness perspective. In other words, are there other
pairs beside (Metropolis, F. Lang) for which there exist a
spouse that wrote a novel that inspired a film? Fig. 14
(d) shows entity pairs that share the same relatedness
perspective. As an example, the pair (Tales of Terror, V.
E. C. Poe) shares the perspective since the movie Tales
of Terror was based on the novel Tales of Terror written
by E. A. Poe with whom V. E. Clemm Poe was married.
Ditto for the pair (The Black Cat, V. E. Clemm Poe).

7. Evaluation

We describe an experimental evaluation of our ex-
planation framework having the following main goals:

G1: Investigate the performance and scalability of
E4D, our knowledge-graph-agnostic approach for
building explanations, which allows to: (i) use
any SPARQL-enabled KG as a source of back-
ground knowledge; (ii) avoid to set up complex
processing infrastructures (in terms of data stor-
age and computing power); (iii) work with fresh
data without having to replicate and keep them
up to date locally.

G2: Compare E4D, which builds explanations directly
by looking at paths in the data with E4S, which
starts from candidate explanation patterns found
in the KG schema. This will allow to understand
the trade-off between working with all paths
(found by E4D) and performing a later refinement
and selecting explanations patterns that are of in-
terest beforehand and then verify only those in
the data (via E4S).

G3: Investigate the usability of the RECAP tool as
compare to related tools. This allows to have an
account for the practical usability of our tool.

We describe the datasets and experimental setting in
Section 7.1. Then, in Section 7.2 we tackle G1. We
tackle G2 in Section 7.3. Finally, G3 is tackled in Sec-
tion 7.4.

7.1. Datasets and Experimental Setting

There is no standard benchmark for evaluating re-
latedness explanation algorithms and tools. Neverthe-

less, some query-sets have been defined to evaluate the
discovering of semantic associations, that is, paths be-
tween an entity pair. We considered a dataset of 74 en-
tity pairs5, by extending a dataset of 24 pairs defined by
Cheng et al. [20]. The dataset covers a fair large num-
ber of knowledge domains (i.e., entertainment, sport,
movies, companies) and thus can give insights about
the performance of our approach in different scenarios.
Table 3 summarized the algorithmic parameters con-
sidered.

Table 3
Algorithm parameters and their values

Parameter Value Meaning
k 1-3 Max. path length

m 5 Top-m most informative
paths

p 5 Top-q related predicates
used in E4S

r 0.5 Diversity range

Note that k 6 i, i ∈[1,3] means that in the same run
we consider paths of length up to i. As we will discuss
in Section 7.4, paths of length k > 3 provide little in-
sight on the relatedness of the input pair as there is a
very large number of such paths that involve interme-
diate nodes and edges that have very little in common.

All the experiments were performed on a MacBook
Pro with a 2.8 GHz i7 CPU and 16GBs RAM. Results
are the average of 3 runs.

Table 4
Knowledge Graphs used in the evaluation.

KG #triples Query Endpoint (A)

DBpedia ∼438M http://dbpedia.org/sparql

Wikidata ∼5B http://query.wikidata.org/
sparql

7.1.1. Knowledge Graphs Used
We evaluated our explanation building algorithms

by considering two different knowledge graphs (sum-
marized in Table 4). Table 4 also reports the address of
the remote (SPARQL) endpoint used to access the KG.
The first is KG is DBpedia, which includes more than
400 millions of triples6 while the second one is Wiki-
data, which includes more than 5 billions of triples6.

5Reported in reported in Appendix B
6This number has been obtained by submitting a SPARQL count

query to the endpoint.

http://dbpedia.org/sparql
http://query.wikidata.org/sparql
http://query.wikidata.org/sparql

Building Relatedness Explanations from Knowledge Graphs 15

20 40 60
Input Entity Pair (ws, wt)

0.0

0.2

0.4

0.6

Ti
m

e
(s

)

DBpedia: K 1

20 40 60
Input Entity Pair (ws, wt)

10 1

100

DBpedia: K 2

20 40 60
Input Entity Pair (ws, wt)

10 1

100

101
DBpedia: K 3

20 40 60
Input Entity Pair (ws, wt)

0.000

0.002

0.004

0.006

Ti
m

e
(s

)

Wikidata: K 1

20 40 60
Input Entity Pair (ws, wt)

10 2

100

102
Wikidata: K 2

20 40 60
Input Entity Pair (ws, wt)

10 2

100

102
Wikidata: K 3

Fig. 16. E4D: Time to find paths of increasing length in DBpedia and Wikidata.

7.2. E4D: Finding Explanations From the Data

We start our analysis of the performance of E4D by
looking at the running times of finding paths of in-
creasing length.

7.2.1. E4D: Running time
Fig. 16 shows the running times of E4D while Fig. 17

plots the number of paths found for different values of
k. Recall that for each k our algorithm retrieves paths
of length up to k. In the figures, each input pair (x-
axis) is identified by a different color. For k 6 1 the
running time is below one second on both DBpedia and
Wikidata. However, we can note in Fig. 17 that only
∼1/3 of the input pairs have at least a path of length 1
(i.e, a direct link). For k 62, on DBpedia, we can see
that the number of paths stays in the order of tens for
most pairs with a few pairs having a relatively large
number of paths (e.g., pair 38, that is, (France, Paris)).

On Wikidata the number of paths is almost an or-
der of magnitude larger with some pair (again pair 38)
having a very large number of paths. By comparing
DBpedia and Wikidata we can observe a similar trend,
although translated in terms of absolute numbers since
in the Wikidata KG pairs have a larger number of paths
interlink them. The running time in this case stays in

the order of a second on both DBpedia and Wikidata
with a few pairs requiring a larger time. In particular,
the pair (France, Paris) is somehow a corner case; it
is reasonable to have a very large number of path be-
tween the very general entities France and Paris. How-
ever, we believe that relatedness explanations are much
more interesting for other kinds of, less obviously re-
lated, input pairs as for instance pair 74 (C. Manson,
Beach Boys). For k 63, we notice the same correlation
between running times and number of paths both on
DBpedia and Wikidata. In the case of the latter, run-
ning times are now in the order of ten seconds (exclud-
ing some outliers). This time the number of paths is
in the order of hundreds for most pairs with a larger
number of entities having thousands of paths; in Wiki-
data the number of paths is in general much larger.
This comes as no surprise due to the different sizes of
the KGs, counting ∼0.5M and ∼5B of triples, respec-
tively. We want to stress the fact that running times re-
ported refer to queries on a remote endpoint, with all
the network delays included and no data filtering.

The aim of relatedness explanations is to provide
concise (visual) graphs that can shed light about why
two entities are connected. Therefore, in what follows
we investigate the size of explanations.

16 Building Relatedness Explanations from Knowledge Graphs

20 40 60
Input Entity Pair (ws, wt)

0

1

2

3

Nu
m

be
r o

f P
at

hs

DBpedia: K 1

20 40 60
Input Entity Pair (ws, wt)

100

101

102

103 DBpedia: K 2

20 40 60
Input Entity Pair (ws, wt)

100

101

102

103

104
DBpedia: K 3

20 40 60
Input Entity Pair (ws, wt)

0

1

2

3

4

Nu
m

be
r o

f P
at

hs

Wikidata: K 1

20 40 60
Input Entity Pair (ws, wt)

101

103

105
Wikidata: K 2

20 40 60
Input Entity Pair (ws, wt)

101

103

105
Wikidata: K 3

Fig. 17. E4D: Number of paths of increasing length in DBpedia and Wikidata.

7.2.2. E4D: Explanation Size
Fig. 18 shows the explanation size in terms of num-

ber of nodes and edges. Explanations considered are
built by merging all paths and are referred to as E∪ (see
Table 2). We can notice that for k 6 1, there are a few
available explanations, having between 2 and 4 nodes
(and edges). These numbers are consistent in both DB-
pedia and Wikidata.

On DBpedia, for k 6 2, most explanations have be-
tween 10 and 20 nodes with a few exceptions where
the number of nodes can be up to 80. On Wikidata,
the cluster is centered between 1 and 50 nodes with a
few having more than 100 nodes. It is interesting to see
that the number of edges is larger in Wikidata than in
DBpedia. Nevertheless, for k 6 2 the clusters of nodes
and edges mostly have the same shapes.

For k 6 3 explanations have a larger size variety
on both DBpedia and Wikidata. We can notice that the
number of nodes and edges is in the order of hundreds
for most pairs. Note that now the distribution is more
scattered, especially on Wikidata where the majority
of explanations have between 200 and 600 nodes and
between 50 and 150 edges.

We want to stress the fact that already for k 6
3, most explanations become very large. This analy-
sis suggests that considering larger values of k even
worsen the situation. Moreover, considering explana-

tions build by the merge of all paths may hinder the un-
derstandability of an (visual) explanation already for
k 6 3. Therefore, having the possibility to control the
amount of information to put into an explanation be-
comes crucial. Our path ranking strategies specifically
deal with this aspect.

7.2.3. Refining Explanations
We now discuss explanations built by considering a

subset of paths interlinking an entity pair.
In terms of running time, explanations based on

path informativeness Eξ
m (we discuss the case m=5) re-

quire to compute pfitf scores; our approach com-
putes these scores in parallel and leverages the merge
of all paths as underlying graph (see Definition 14)
thus not requiring to perform any remote query. Expla-
nations based on pattern informativeness Eξ

m (we dis-
cuss the case m=5) are less expensive since they do
not analyze the informativeness of all edges in a path.
Again, to count the instances satisfying a path we use
the merge of all paths as reference graph (see Defini-
tion 18). Building these kinds of explanations had a
minor impact (i.e., between 0.3 and 1 seconds) on the
overall running time. We do not report times since they
are almost the same as those already discussed.

What changes is the size of explanations built by
considering a subset of paths only. Indeed, Eξ

5, based

Building Relatedness Explanations from Knowledge Graphs 17

1 2 3 4 5
Number of Nodes

1

2

3

4

5

Nu
m

be
r o

f E
dg

es

DBpedia: E - K 1

20 40 60 80
Number of Nodes

10

20

30
DBpedia: E - K 2

200 400 600 800
Number of Nodes

20

40

60

80
DBpedia: E - K 3

1 2 3 4 5
Number of Nodes

1

2

3

4

5

Nu
m

be
r o

f E
dg

es

Wikidata: E - K 1

50 100 150 200
Number of Nodes

20

40

60

80

100
Wikidata: E - K 2

200 400 600 800
Number of Nodes

50

100

150

200
Wikidata: E - K 3

Fig. 18. Size of E∪ explanations in DBpedia and Wikidata consisting in the merge of all paths found by E4D.

on path informativeness, are much smaller; the typi-
cal size is ∼8 nodes and ∼7 edges on DBpedia and
∼15 nodes and ∼12 edges on Wikidata, when k 6 2 .
On the other hand, Eξ

5, based on path pattern instance,
have variable size as it depends on the number of paths
for each of the top-5 most informative patterns. In gen-
eral these are bigger than Eξ

5 explanations (∼15 nodes
and ∼12 edges on DBpedia and ∼20 nodes and ∼25
edges on Wikidata). Note that Eξ

5 explanations enable
to focus on specific aspects as they include all the in-
stantiations of each of the top-5 most informative path
patterns. We will come back on this aspect in Sec-
tion 7.3.2 when discussing E4S, which allows to chose
patterns before finding paths instead of emerging and
selecting such patterns after discovering paths as done
by E4D.

When now discuss explanations built by using a di-
versity criterion, that is, Eδ. Eδ explanations are a bit
more expensive (between 1 and 3 seconds) in terms
of running time since they require the computation of
distances between paths, even if this task leverages a
multi-thread approach. In terms of size, these explana-
tions are in the same order of magnitude as Eξ

5 on DB-
pedia, while are a bit larger in Wikidata. We hypnotize
that this behavior is due to a larger number of pred-
icates present in Wikidata, which allows to consider

a higher number of paths with the same δ value than
in DBpedia. The important point of Eδ explanations
is that they guarantee to also include rare edges po-
tentially discarded by path or pattern informativeness.
We also looked into explanations combining (top-5)
path/pattern informativeness and diversity (r=25%). In
this case the typical size is ∼20 nodes and ∼15 edges
in DBpedia and a bit larger in Wikidata. The flexibil-
ity of our approach to build explanations allowing to
decide the amount of information to be included into
an explanation is crucial toward understanding related-
ness between entities.

7.3. E4S: Explanations from the Schema

We now discuss the E4S algorithm, which makes
usage of the KG schema. We took the latest ver-
sion of the DBpedia ontology 7 and considered state-
ments about rdf:type, rdfs:subClassOf, rdfs:subPropertyOf
rdfs:domain and rdfs:range only. In fact, these are at the
core of the notion of schema graph closure that is used
by E4S (see Definition 2) to generate candidate expla-
nation patterns. In order to generate candidate expla-
nation patterns, the first of E4S step is to identify seed
predicates. While with our RECAP tool the user can

7http://downloads.dbpedia.org/2014/dbpedia_2014.owl.bz2

http://downloads.dbpedia.org/2014/dbpedia_2014.owl.bz2

18 Building Relatedness Explanations from Knowledge Graphs

20 40 60
Input Entity Pair (ws, wt)

0

100

200

#q
ue

rie
s

DBpedia: K 1

20 40 60
Input Entity Pair (ws, wt)

101

102

103 DBpedia: K 2

20 40 60
Input Entity Pair (ws, wt)

101

102

103
DBpedia: K 3

Fig. 19. E4S: Number of queries generated to verify candidate explanation patterns for each input pair.

select one or more seed predicates, to run the experi-
ments we automatized the identification of seed predi-
cates. For each input pair, we took the top-6 most infor-
mative predicates (see Definition 15) common to the
source of target entity; when there were no predicates
in common, we took the top-3 most informative pred-
icates from the source and target entity, respectively.
Then, we ran Algorithm 1 by using each of the 6 seed
predicates as input and obtained an overall set of can-
didate explanation patterns; from these, we obtained
a set of SPARQL queries used to verify such patterns
(see Section 4.3.1).

Fig. 19 shows the number of SPARQL queries gen-
erated for each input pair. We observe that the number
of queries varies from pair to pair and can reach the
order of thousands when k > 1. These queries contain
predicates that are related to the seed predicate in the
“middle” position of triple patterns. In contrast, with
E4D we have a fixed number of 2k queries containing
variables in the predicate position of triple patterns.

The peculiarity of E4S is that it allows to reduce the
number of candidates queries by focusing on those that
are interesting before verifying them in the data; where
interestingness can be defined according to e.g., infor-
mativeness and/or diversity. In what follows we inves-
tigate this aspect.

7.3.1. E4S: Running Time
We now report the running time of E4S in two differ-

ent settings: (i) when considering all queries shown in
Fig. 19; (ii) when only considering the top-5 that have
the higher semantic relatedness wrt the seed predicate.

Running times are show in Fig. 20. We can notice
that running times when considering all queries are
larger than those obtained by E4D. This comes as no
surprise since the number of queries is much larger in
this case. Nevertheless, getting reasonably (and visu-
ally) understandable explanations from E4D requires to

apply some posteriori filtering criterion like consider-
ing top-k paths, patterns, or applying a diversity crite-
rion. Hence, the final cost of building explanations via
E4D should also consider the cost of the refinement.

On the other hand, E4S allows to decide a filter-
ing criterion beforehand, thus drastically reducing the
number of queries that have to be verified. To fur-
ther investigate this aspect, we ran additional experi-
ments by verifying only the top-5 queries. In particu-
lar, we start the verification from the most semantically
related wrt the target predicate and proceed with the
query verification until 5 queries were verified (i.e., re-
turned some path). Running times in this case are re-
ported in the bottom part of Fig. 20; these are now in
the same order of magnitude as those reported by E4D.
This fact is more evident as k grows. As an example,
for k63, running times now never exceed ten seconds.
Filtering the queries to be verified introduces a signifi-
cant reduction of the running times of E4S bringing the
values to be compatible with those of E4D. Neverthe-
less, recall that E4D still requires some pruning in or-
der to produce (visually) understandable explanations
while those produced by E4S (when applying query
filtering) potentially contain less nodes and edges as
these are built considering specific predicates. We fur-
ther investigate this aspect in the next section.

7.3.2. E4S: Explanation Size
Fig. 21 reports that size of explanations found by

E4S when considering the verification of the top-5
most semantically related queries to the seed predi-
cate. We note that these explanations contain a few
edges while the number of nodes can reach the hun-
dreds (when k63). It is interesting to compare the ex-
planation sizes with those found by E4D (reported in
Fig. 18). The size reduction is clear; for instance, when
k62 the number of nodes is of at most ∼15 for E4S
while it can be up to ∼80 for E4D. This difference is

Building Relatedness Explanations from Knowledge Graphs 19

20 40 60
Input Entity Pair (ws, wt)

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(s

)

DBpedia: K 1

20 40 60
Input Entity Pair (ws, wt)

100

101 DBpedia: K 2

20 40 60
Input Entity Pair (ws, wt)

100

101

DBpedia: K 3

20 40 60
Input Entity Pair (ws, wt)

0.0

0.1

0.2

Ti
m

e
(s

)

DBpedia (top-5): K 1

20 40 60
Input Entity Pair (ws, wt)

10 2

10 1

100

101
DBpedia (top-5): K 2

20 40 60
Input Entity Pair (ws, wt)

10 2

10 1

100

101 DBpedia (top-5): K 3

Fig. 20. Running times of E4S when considering all queries (top) and the top-5 most related to the seed predicate (bottom).

more evident when k63 where we have that the num-
ber of nodes for E4D can be up to ∼700.

We want to mention that explanations found by E4S
(when filtering the queries) contain a subset of all
nodes and edges that can be found when considering
all paths (as done by the merge of all paths via E4D
or evaluating all queries generated by E4S). The main
point of E4S is exactly to allow the generation of fo-
cuses explanations, that is, explanations whose filter-
ing criterion has been decided a priori and that can be
directly “parsed" by the user.

7.4. Explanation Building Tools

We now report on the capabilities of the RECAP
tool in providing visual relatedness explanations and
its comparison with related tools. In particular, we con-
sidered RelFinder8. and Explass9 that are tools pub-
licly available. As both Explass and RelFinder only
work on DBpedia, we used DBpedia in the compari-
son.

8http://www.visualdataweb.org/relfinder/relfinder.php
9http://ws.nju.edu.cn/explass/

Setting. Twenty participants were assigned each six
random pairs among the 26 entity pairs described
in [20]. They were shown how the three systems work
and asked to use each system (with no other support)
in order to understand the relatedness between entities
in a pair. Following the methodology in [20] partic-
ipants were given a set of six questions (reported in
Appendix A); the response to each question was given
with an agreement value from 1 (min) to 5 (max). Q6
was not considered in [20]; we included it to under-
stand how users perceive the performance of the sys-
tems in terms of running time. Results are reported in
Table 5.

According to questions Q1-Q5, users perceived
RECAP and Explass as better supports to the explana-
tion task. Users reported that RelFinder does not allow
the flexible creation of explanation (e.g., by grouping
paths into patterns), which makes it hard to control
the amount of information shown. In general, RECAP
was judged to be a more comprehensive solution; it
provides both a graph-based and pattern-based explo-
ration of results and several ways of controlling the
amount of information to be shown. While RECAP
and RelFinder quickly provide information immedi-

http://www.visualdataweb.org/relfinder/relfinder.php
http://ws.nju.edu.cn/explass/

20 Building Relatedness Explanations from Knowledge Graphs

1.0 1.5 2.0 2.5 3.0
Number of Nodes

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f E
dg

es

DBpedia: E - K 1

100 101
Number of Nodes

2

4

6

8

10
DBpedia: E - K 2

100 101 102 103
Number of Nodes

5

10

15

20
DBpedia: E - K 3

Fig. 21. E4S: Explanation size on DBpedia for the top-5 most related queries.

Table 5
Questions/responses: means (standard deviation).

Question RECAP RelFinder Explass
Q1: Information overview 4.55(0.65) 3.05(0.77) 3.82(0.75)
Q2: Easiness in finding information 4.45(0.55) 4.05(0.63) 3.85(0.67)
Q3: Easiness in comparing/synthesizing info 4.62(0.62) 3.10(0.82) 4.06(0.61)
Q4: Comprehensive support 4.81(0.73) 3.42(0.77) 4.15(0.79)
Q5: Sufficient support to the task 4.67(0.81) 3.28(0.86) 4.23(0.83
Q6: Running time 4.82(0.48) 4.12(0.72) 3.18(0.52)

ately after retrieving paths, Explass requires a much
longer time. On Q6, Explass was judged to be the less
compelling system. RECAPwas judged higher than the
other two systems in all questions via LSD post-hoc
tests (p < 0.05). The inter-annotator agreement was of
0.85.

Combining multiple KGs. We asked users to also test
the capability of RECAP on the combination of DB-
pedia and Yago. In particular, starting from entities in
DBpedia, we looked at owl:sameAs links to the cor-
responding Yago entities. We then merged the explana-
tions obtained from the two KGs. Users (∼75%) per-
ceived the combination of multiple KGs as very use-
ful toward more comprehensive explanations. This is
especially true when KGs cover the same domain with
different levels of detail (DBpedia was judged more
comprehensive than Yago). The combination also pro-
duces graphs of bigger size. Indeed, the functionality
of RECAP allowing to filter information to be included
into an explanation was judged very useful (partici-
pants thought that the merge of all paths explanations
E∪ were too big already with k 6 2).

8. Related Work

We review related work along different perspectives.
Our analysis ranges from techniques to build explana-
tions and/or similar notions to implemented tools.

8.1. Relatedness Explanations

The problem of finding structures (e.g., paths, sub-
graphs) connecting entities has been tackled from dif-
ferent perspectives. Faloutsos et al. [34] consider edge
weighted graphs without labels and treat the input
graph as an electrical network in which each edge rep-
resents a resistor with conductance. The sought con-
nectivity subgraph is the one that can deliver as many
units of electrical current as possible. Along the same
line Ramakrishnan et al. [14] consider multi-relational
weighted graphs with weights assigned by looking at
the schema (e.g., class and property specificity). To
discover the subgraph connecting two entities author
resort to the same algorithm as Faloutsos et al. [34].

Our work differs in the fact that we focus on build-
ing different kinds of explanations, by also controlling
the kind and amount of information to be included,
by using two different SPARQL-based algorithms; one
that starts from the data (E4D) and the other that starts

Building Relatedness Explanations from Knowledge Graphs 21

from the schema (E4S). Besides, we provide a visual
tool (RECAP) with a concrete application of related-
ness explanations for query answering.

Heim et al. [35] devised a tool called RelFinder,
which given a pair of entities in DBpedia can produce
a graph interlinking them. Differently, from our ap-
proach that can control the final explanation graph via
path ranking ans selection strategies, the graph found
by RelFinder can quickly become too large to provide
useful insights. Moreover, we also provide E4S and de-
scribed a concrete usage of explanations for query an-
swering. REX [18] finds relationship explanations in
the context of the Yahoo! search engine. It leverages
(existing) ad-hoc algorithms for explanation enumera-
tion and pruning as well as different measures of inter-
estingness. There are some substantial differences be-
tween the work presented in this paper and REX. We
make usage of information-theoretic notions to prune
the set of paths that will contribute to the explana-
tion. While producing an explanation we take into ac-
count diversity, which allows to include into an ex-
planation also “rare" edges. We adopt a knowledge-
graph agnostic approach and relies on queries to a (re-
mote) endpoint. Moreover, our E4S algorithm allows
to start from the KG schema to build personalized ex-
planations. Last but not least, we have described a con-
crete usage of our approach for querying KGs. This is
again achieved by via SPARQL queries to a (remote)
endpoint. Voskarides et al. [36] focus on the prob-
lem of explaining relatedness making available short
text descriptions. In particular, the problem is trans-
formed into that of ranking sentences from documents
in a corpus that is related to the knowledge graph. The
approach described in this paper is entirely based on
structured information and does not require the usage
of text corpora. Indeed, our aim is to produce a graph
instead of a textual description.

8.2. Discovering Semantic Associations

A number of proposal have tackled the problem of
finding semantic associations (paths) interlinking enti-
ties. Cheng et al. [20] describe an approach to find a
flat list (top-K) of clusters and facet values for refocus-
ing and refining the search in KGs. In particular, the
approach can recommend frequent, informative, and
small-overlapping patterns by leveraging ontological
semantics, query context, and information theory. Our
work differs in the fact that we aim at building explana-
tions that are graph based on two different algorithms.
Moreover, our path ranking strategies allows to control

the amount of information that will be part of an expla-
nation thus helping the user in precisely understand-
ing why a pair of entities is related. Last but not least,
we described a concrete application of explanations for
query answering. Tiddi et al. [19] tackle the problem
of defining of a cost-function that is able to detect the
strongest relationship between two given entities in a
supervised way. Authors frame the problem into a ge-
netic programming setting and devise a technique that
can learn such cost function by only looking at the
topology of the subgraph (set of paths) connecting a
pair of entities. In particular, the output of the process
is a single path that best (in terms of the cost function)
represents the relation between two entities. We start
from the perspective of building explanations that are
graphs in an unsupervised way. We offer two different
algorithms with E4S staring from the KG schema thus
giving high flexibility in choosing which kinds of pat-
terns look interesting to build an explanation. More-
over, we present a concrete use case of querying KGs
by relatedness along with the RECAP visual tool.

Cheng et al. [37] describe an efficient graph search
algorithm for finding associations among a tuple of en-
tities, which prunes the search space by exploiting dis-
tances between entities computed based on a distance
oracle. After finding a potentially large number of such
associations, the approach performs a summarization
of notable subgroups. Our approach is SPARQL based
and can scale to very large graphs while their work
on main memory. Their approach does not use the
schema to prune/personalize the search for explana-
tions. Nevertheless, combining our schema-based ap-
proach (E4S) with theirs is interesting. Also consider-
ing a tuple of entities is an interesting line of future
work.

Bianchi et al. [38] focus on the problem of finding
the most “interesting" semantic associations by defin-
ing a ranking function, which can take into account
user preferences. The approach starts from a small
sample of semantic associations that are rated by the
user and then use it to iteratively learn a personalized
ranking function. Our approach is based on two dif-
ferent algorithms (E4D and E4S) that can build related-
ness explanations in the form of graphs. Moreover, we
have implemented the RECAP tool as we believe that
having a way to visually present explanations can help
the user in better understanding explanations. Last but
not least, as a concrete application of explanations we
have implemented a relatedness based querying mech-
anism. Nevertheless, it would be interesting to inte-

22 Building Relatedness Explanations from Knowledge Graphs

Table 6
Comparison of RECAP with related tools.

System KG O F Q L
REX [18] Yahoo! Graph No No Yes
RelFinder [35] DBpedia Graph No No Yes
Explass [20] DBpedia Paths Yes (only paths) No Yes
RECAP Any Graph/Paths Yes (paths and graphs) Yes No

grate our tool with the rating mechanism described by
the authors to drive the explanation visualization.

Anyanwu et al. [39], Kochut et al. [40] and Fionda et
al. [41] tackle the problem of association discovering
from a query language perspective. This work starts
from a specific input pair while their from a declar-
ative specification (i.e., a query) the results of which
are unknown before evaluation. Fionda et al. [42] fo-
cus on the problem fo finding graphs at the level of
schema starting from the data. Our algorithm E4S does
the reverse and focus on building data-level explana-
tions. Finally, other approaches (e.g., [15, 17, 43, 44])
focus on the problem of relation discovery while we
focus on building explanations that can be dynamically
configured to include the desired amount of informa-
tion.

8.3. Path Ranking

There is also a solid body of work about path rank-
ing. A series of papers (e.g., [45, 46]) focused on
path ranking by leveraging ontological knowledge and
information-theoretic techniques with heuristics. Ag-
garwal et al. [47] focus on ranking all the paths be-
tween any two entities by using measures like co-
hesiveness and specificity. Differently from our ap-
proach, these approaches focus on ranking only and
not on building explanations. Moreover, we devise a
general framework for explanations, two algorithms
and a tool. More recently, Cheng et al. [28] per-
form an empirical comparison of eight techniques to
rank semantic associations. The evaluation is based on
ground-truth rankings created by human experts. What
emerged is that experts generally prefer small semantic
associations consisting of entities having similar types.
Moreover, semantic associations consisting of uniform
relations and those consisting of diverse ones are both
preferred. This study suggests that the capability of
RECAP to control the size of an explanation (by select-
ing only a subset of paths) is useful as from the study
emerged that users prefer small explanations.

8.4. Comparison of RECAP with related tools

Table 6 summarizes the comparison of our approach
with related tools. The comparison is carried out along
the following dimensions: KG supported (KG), out-
put (O), filtering capabilities (F), querying capabilities
(Q), requirement of local data (L). RECAP differs from
related systems in the following main respects: as for
KG, RECAP is KG-independent; it only requires the
availability of a (remote) query endpoint. Moreover,
RECAP can combine information from multiple KGs
(by leveraging owl:sameAs links). As for O and F,
RECAP focuses on building different types of explana-
tions in the form of graphs or (sets of) paths by lever-
aging informativeness (to estimate the relative impor-
tance of edges), diversity (to include rare edges) and
their combinations. Moreover, RECAP is the only ap-
proach that can be used to query KGs (Q). As for L,
neither does RECAP assume local availability of data
nor any data preprocessing.

9. Concluding Remarks and Future Work

We have introduced a framework to generate dif-
ferent types of relatedness explanations. We have
described two different algorithms (E4D and E4S)
along with different path ranking strategies. This gives
high flexibility in controlling and selecting the pre-
ferred amount of information that a (visual) expla-
nation should contain. Explanations are a versatile
tool in many contexts, from information retrieval to
clustering. This work has also been motived by the
SENSE4US FP7 project, where there was the need to
find explanations for groups of topics emerging from
textual documents. As a concrete use case, we showed
how explanations can be used for querying knowledge
graphs in a query-by-example fashion. In the future,
we plan to integrate a user feedback mechanism that
can help in building more personalized explanations.

Building Relatedness Explanations from Knowledge Graphs 23

References

[1] C. Shi, Y. Li, J. Zhang, Y. Sun and S.Y. Philip, A survey of het-
erogeneous information network analysis, IEEE Transactions
on Knowledge and Data Engineering 29(1) (2017), 17–37.

[2] T. Heath and C. Bizer, Linked Data: Evolving the Web into a
Global Data Space, 1st edn, Morgan & Claypool, 2011. ISBN
9781608454303. http://linkeddatabook.com/.

[3] Y. Sun and J. Han, Mining heterogeneous information net-
works: principles and methodologies, Synthesis Lectures on
Data Mining and Knowledge Discovery 3(2) (2012), 1–159.

[4] N. Jayaram, A. Khan, C. Li, X. Yan and R. Elmasri, Query-
ing knowledge graphs by example entity tuples, IEEE Trans-
actions on Knowledge and Data Engineering 27(10) (2015),
2797–2811.

[5] H. Saif, T. Dickinson, L. Kastler, M. Fernandez and H. Alani,
A semantic graph-based approach for radicalisation detec-
tion on social media, in: European Semantic Web Conference,
Springer, 2017, pp. 571–587.

[6] Y. Wang, M.J. Carman and Y.-F. Li, Using Knowledge Graphs
to Explain Entity Co-occurrence in Twitter, in: Proceedings of
the 2017 ACM on Conference on Information and Knowledge
Management, ACM, 2017, pp. 2351–2354.

[7] T.D. Noia, V.C. Ostuni, P. Tomeo and E.D. Sciascio, Sprank:
Semantic path-based ranking for top-n recommendations using
linked open data, ACM Transactions on Intelligent Systems and
Technology (TIST) 8(1) (2016), 9.

[8] A. Saeedi, E. Peukert and E. Rahm, Using Link Features for
Entity Clustering in Knowledge Graphs, in: Extended Semantic
Web Conference., 2018.

[9] I. Hulpuş, N. Prangnawarat and C. Hayes, Path-based seman-
tic relatedness on linked data and its use to word and entity
disambiguation, in: International Semantic Web Conference,
Springer, 2015, pp. 442–457.

[10] G. Pirrò, Explaining and suggesting relatedness in knowledge
graphs, in: International Semantic Web Conference, Springer,
2015, pp. 622–639.

[11] A. Sheth, B. Aleman-Meza, I.B. Arpinar, C. Bertram,
Y. Warke, C. Ramakrishanan, C. Halaschek, K. Anyanwu,
D. Avant, F.S. Arpinar et al., Semantic Association Identifica-
tion and Knowledge Discovery for National Security Applica-
tions, Journal of Database Management 16(1) (2005), 33–53.

[12] V. Fionda, C. Gutierrez and G. Pirrò, Knowledge Maps of Web
Graphs, in: KR, 2014.

[13] Y. Tsuruoka, M. Miwa, K. Hamamoto, J. Tsujii and S. Ana-
niadou, Discovering and Visualizing Indirect Associations be-
tween Biomedical Concepts, Bioinformatics 27(13) (2011).

[14] C. Ramakrishnan, W.H. Milnor, M. Perry and A.P. Sheth, Dis-
covering informative connection subgraphs in multi-relational
graphs, SIGKDD Newsletter 7(2) (2005), 56–63.

[15] P.N. Mendes, P. Kapanipathi, D. Cameron and A.P. Sheth,
Dynamic Associative Relationships on the Linked Open Data
Web, in: Web Science Conference, 2010.

[16] P. Heim, S. Hellmann, J. Lehmann, S. Lohmann and T. Stege-
mann, RelFinder: Revealing Relationships in RDF Knowledge
Bases, in: Semantic Multimedia, Springer, 2009, pp. 182–187.

[17] G. Kasneci, S. Elbassuoni and G. Weikum, Ming: Mining In-
formative Entity Relationship Subgraphs, in: CIKM, ACM,
2009, pp. 1653–1656.

[18] L. Fang, A.D. Sarma, C. Yu and P. Bohannon, REX: Explaining
Relationships between Entity Pairs, VLDB 5(3) (2011), 241–
252.

[19] I. Tiddi, M. d’Aquin and E. Motta, Learning to assess linked
data relationships using genetic programming, in: Interna-
tional Semantic Web Conference, Springer, 2016, pp. 581–
597.

[20] G. Cheng, Y. Zhang and Y. Qu, Explass: Exploring Associ-
ations between Entities via Top-K Ontological Patterns and
Facets, in: ISWC, Springer, 2014, pp. 422–437.

[21] S. Harris and A. Seaborne, SPARQL 1.1 Query Language W3C
Recommendation, 2013.

[22] S. Munoz, J. Pérez and C. Gutierrez, Simple and efficient min-
imal RDFS, Web Semantics: Science, Services and Agents on
the World Wide Web 7(3) (2009), 220–234.

[23] E. Franconi, C. Gutierrez, A. Mosca, G. Pirrò and R. Rosati,
The logic of extensional RDFS, in: International Semantic Web
Conference, Springer, 2013, pp. 101–116.

[24] I. Herman, G. Melançon and M.S. Marshall, Graph Visualiza-
tion and Navigation in Information Visualization: A Survey,
IEEE Trans. on Visualization and Comp. Graph. 6(1) (2000),
24–43.

[25] J. Ugander, B. Karrer, L. Backstrom and C. Marlow, The
Anatomy of the Facebook Social Graph, arXiv preprint
arXiv:1111.4503 (2011).

[26] G. Pirrò, REWOrD: Semantic Relatedness in the Web of Data.,
in: 26th Conference on Artificial Intelligence (AAAI), 2012.

[27] J. Pérez, M. Arenas and C. Gutierrez, Semantics and com-
plexity of SPARQL, ACM Transactions on Database Systems
(TODS) 34(3) (2009), 16.

[28] G. Cheng, F. Shao and Y. Qu, An Empirical Evaluation of
Techniques for Ranking Semantic Associations, IEEE Trans-
actions on Knowledge and Data Engineering 29(11) (2017),
2388–2401.

[29] R.A. Baeza-Yates and B.A. Ribeiro-Neto, Modern Information
Retrieval, ACM Press / Addison-Wesley, 1999. ISBN 0-201-
39829-X.

[30] F. Deng, S. Siersdorfer and S. Zerr, Efficient Jaccard-based Di-
versity Analysis of Large Document Collections, in: Proceed-
ings of the 21st ACM International Conference on Information
and Knowledge Management, ACM, 2012, pp. 1402–1411.

[31] L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank
Citation Ranking: Bringing Order to the Web. (1999).

[32] K. Anyanwu, A. Maduko and A. Sheth, SemRank: ranking
complex relationship search results on the semantic web, in:
Proceedings of the 14th international conference on World
Wide Web, ACM, 2005, pp. 117–127.

[33] S. Magliacane, A. Bozzon and E. Della Valle, Efficient execu-
tion of top-k SPARQL queries, in: The Semantic Web–ISWC
2012, Springer, 2012, pp. 344–360.

[34] C. Faloutsos, K.S. McCurley and A. Tomkins, Fast Discovery
of Connection Subgraphs, in: SIGKDD, ACM, 2004, pp. 118–
127.

[35] P. Heim, S. Lohmann and T. Stegemann, Interactive Relation-
ship Discovery via the Semantic Web, in: ESWC, Springer,
2010, pp. 303–317.

[36] N. Voskarides, E. Meij, M. Tsagkias, M. De Rijke and
W. Weerkamp, Learning to explain entity relationships in
knowledge graphs, in: Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th

http://linkeddatabook.com/

24 Building Relatedness Explanations from Knowledge Graphs

International Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), Vol. 1, 2015, pp. 564–574.

[37] G. Cheng, D. Liu and Y. Qu, Efficient algorithms for associa-
tion finding and frequent association pattern mining, in: Inter-
national Semantic Web Conference, Springer, 2016, pp. 119–
134.

[38] F. Bianchi, M. Palmonari, M. Cremaschi and E. Fersini, Ac-
tively learning to rank semantic associations for personalized
contextual exploration of knowledge graphs, in: European Se-
mantic Web Conference, Springer, 2017, pp. 120–135.

[39] K. Anyanwu and A. Sheth, ρ-Queries: enabling querying for
semantic associations on the semantic web, in: Proceedings of
the 12th international conference on World Wide Web, ACM,
2003, pp. 690–699.

[40] K.J. Kochut and M. Janik, SPARQLeR: Extended SPARQL
for semantic association discovery, in: European Semantic Web
Conference, Springer, 2007, pp. 145–159.

[41] V. Fionda and G. Pirrò, Explaining Graph Navigational
Queries, in: European Semantic Web Conference, Springer,
2017, pp. 19–34.

[42] V. Fionda and G. Pirrò, Meta Structures in Knowledge Graphs,
in: International Semantic Web Conference, Springer, 2017,
pp. 296–312.

[43] N. Nakashole, G. Weikum and F. Suchanek, Discovering and
Exploring Relations on the Web, VLDB 5(12) (2012), 1982–
1985.

[44] I. Traverso-Ribón, G. Palma, A. Flores and M.-E. Vidal, Con-
sidering semantics on the discovery of relations in knowl-
edge graphs, in: European Knowledge Acquisition Workshop,
Springer, 2016, pp. 666–680.

[45] B. Aleman-Meza, C. Halaschek, I.B. Arpinar and A.P. Sheth,
Context-aware semantic association ranking (2003).

[46] B. Aleman-Meza, C. Halaschek-Weiner, I.B. Arpinar, C. Ra-
makrishnan and A.P. Sheth, Ranking Complex Relationships
on the Semantic Web, Internet Computing, IEEE 9(3) (2005),
37–44.

[47] N. Aggarwal, S. Bhatia and V. Misra, Connecting the Dots:
Explaining Relationships Between Unconnected Entities in a
Knowledge Graph, in: International Semantic Web Confer-
ence, Springer, 2016, pp. 35–39.

Appendix A. Questions used in the user evaluation

Fig. 22 shows the full text of the questions used in
the user study and comparison of RECAP with related
tools (see Section 7.4. of the paper).

Fig. 22. Questions used in the evaluation.

Appendix B. Dataset

The following tables show the input pairs.

Table 7
Pairs from 1 to 37

Pair Source Entity (ws) Target Entity (wt)
1 Conchita Martínez Monica Seles

2 Nike Inc. Tiger Woods

3 Jack Kirby Iron Man

4 Apple Inc. Sequoia Capital

5 Albert Einstein Giuseppe Peano

6 Ingrid Bergman Isabella Rossellini

7 John F. Kennedy Jacqueline Kennedy Onassis

8 Barack Obama George W. Bush

9 Walt Disney Roy O. Disney

10 Julia Roberts Emma Roberts

11 Garry Marshall Hector Elizondo

12 Andrew Jackson John Quincy Adams

13 Frank Herbert Brian Herbert

14 Abraham Lincoln George Washington

15 Tom Cruise Katie Holmes

16 Christian Bale Christopher Nolan

17 Hal Roach Stan Laurel

18 Danielle Steel Nora Roberts

19 Richard Gere Carey Lowell

20 Leonardo DiCaprio Kate Winslet

21 Capcom Sega

22 Aldi Lidl

23 Universal Studios Paramount Pictures

24 IBM Hewlett-Packard

25 Last Action Hero Terminator 2: Judgment Day

26 Forbes Bloomberg L.P.

27 Charmed Buffy the Vampire Slayer

28 Nanga Parbat Broad Peak

29 Manhattan Bridge Brooklyn Bridge

30 Ford Motor Company Lincoln MKT

31 Donald Knuth Stanford University

32 Dennis Ritchie C (programming language)

33 Ludwig van Beethoven Symphony No. 5 (Beethoven)

34 Uranium-235 Uranium-238

35 Microsoft Office C++

36 Steven Spielberg Minority Report

37 France Paris

Building Relatedness Explanations from Knowledge Graphs 25

Table 8
Pairs from 38 to 74

Pair Source Entity (ws) Target Entity (wt)
38 Statoil Oslo

39 Justin Leonard Australia

40 York Mark Prescott

41 Japan Southern California Open

42 Spain Kenny Dalglish

43 Northampton Hampshire County Cricket Club
44 Vienna Jackie McNamara

45 Mother Teresa Holy See

46 New York Yankees John Marzano

47 Trans World Airlines Long Island

48 Moscow Kremlin Boris Yeltsin

49 Mexico Grupo Santander

50 Italy Venice

51 Jack Charlton Republic of Ireland

52 NAC Breda FC Groningen

53 Don Wengert Baltimore

54 Switzerland Martina Hingis

55 Alexandra Fusai Japan

56 Italy Ferrari

57 East Fife F.C. Arbroath F.C.

58 Alan Turing Computer scientist

59 David Beckham Manchester United F.C

60 Microsoft Microsoft Excel

61 Steven Spielberg Catch Me If You Can

62 Boeing C-40 Clipper Boeing

63 Arnold Palmer Sportsman of the Year

64 Bjarne Stroustrup C+

65 Nicole Kidman Tom Cruise

66 Manchester United F.C Malcolm Glazer

67 Boeing Boeing 727

68 David Beckham A.C. Milan

69 Beijing 2008 Summer Olympics

70 Microsoft Microsoft Office

71 Metropolis (1927 film) Fritz Lang

72 David Lynch Dune (film)

73 Thea von Harbou Fritz Lang

74 Charles Manson The Beach Boys

	Introduction
	Problem Description and Background
	Problem Description
	Basic Definitions

	Explaining Relatedness from the Data (E4D)
	Finding Paths from the Data

	Explaining Relatedness from the Schema (E4S)
	Predicate Relatedness
	Finding Candidate Explanation Patterns
	Verifying Explanation Patterns
	Building a SPARQL Query for the Verification

	Ranking Paths to build Explanations
	Path Informativeness
	Explanation Pattern Informativeness
	Path Diversity
	Path Ranking Strategies: an example

	Selecting and Merging Paths

	The RECAP tool and its application for Querying Knowledge Graphs by Relatedness
	Implementation
	Querying Knowledge Graphs by Relatedness
	Ranking of Results

	Evaluation
	Datasets and Experimental Setting
	Knowledge Graphs Used

	E4D: Finding Explanations From the Data
	E4D: Running time
	E4D: Explanation Size
	Refining Explanations

	E4S: Explanations from the Schema
	E4S: Running Time
	E4S: Explanation Size

	Explanation Building Tools

	Related Work
	Relatedness Explanations
	Discovering Semantic Associations
	Path Ranking
	Comparison of RECAP with related tools

	Concluding Remarks and Future Work
	References
	Appendix A. Questions used in the user evaluation
	Appendix B. Dataset

