Differentiability properties of the symbol of a
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Abstract. Let f be a positive homogeneous function of degree 0 defined
on the sphere ¥ of the space R™ and let ®, be the symbol of the integral

operator

(x—y)/Ix—vy])

R™ x —y["@

with 0 < a < n. We study differentiability properties of the restriction of ®,,
to the unit sphere ¥ in the spaces H]lJ(E) for p € (1,00). Here H;,(E) denotes
the space of Bessel potentials with the norm HfHHé(E) =|(6 + [)l/szLp(E)’
d being the Beltrami operator on the sphere. We prove that, if f € L,(X)
then @,y € Hﬁ(E) for any £ <n/2 —a— |[p~! — 271 (n — 2). Conversely,
if oly € HY(E), with £ > n/2—a+ |p~' —271(n —2), then f € Ly(%).
The results are sharp.

u(y)dy, ue Cg(R")

1 Introduction

Let X be the unit sphere in the space R™ centered at the origin and let f be
a positive homogeneous function of degree zero defined through the space
R™\ 0 and suppose that f € L,(X) with p > 1. Let us consider the integral
operator

Kou(x) = - Kao(x —y)u(y)dy, we C5(R") (1.1)
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where the kernel has the form

Kox)= LW L cpmvo, 9= X

e x

with 0 < a < n, x = (x1,...,x,) and y = (y1,...,yn) are points in R™. The
integral (1.1) is called a generalized Riesz potential. The function f(1J) is
the characteristic of the n— dimensional integral operator (1.1) with kernel
K, (x). If @ =0 then (1.1) is a singular integral ([16]) and the function K
exists as a generalized function if ([9, p.310])

/ F(@)doy = 0. (1.2)
>

We denote by F the Fourier transform of functions given on R”
Fx)=(FHE = | fy)e™Ydy, x-y =101+ -+ Tln:
Rn

The Fourier transform of the kernel K, (x), understood in the sense of gen-
eralized functions ([9], cf. also [12]), is called the symbol of the integral
operator. We denote the symbol by ®,(y) = Fxmy Ko = (Ao f)(y). Since
the kernel K, (x) is a positive homogeneous (generalized) function of degree
—n + «, then the symbol is a homogeneous function of degree —a.. We re-
mark that, when a = n/2 and K, 5(x) = f(J)[x|~ "/2 is an eigenfunction of
the Fourier transform with eigenvalue A, then

Apppf(w) =Af(w),  X'=(2m)™

Eigenfunctions of the Fourier transform in the sense of generalized functions
are studied in [12, 13].

If « = 0 the following integral representation for the symbol ®q by its
characteristic f was obtained by Calderén and Zygmund ([16, p.249)])

Dp(w) = Ao f(w /f < ]cosy\ - i;rsign(cosxy)> dog,w € 3,

~ denoting the angle between the vectors ¥ and w. The symbol ®(, as well as
the characteristic f, is a homogeneous function of degree 0 with zero mean
on Y. The singular kernel |x|™" f(19), which is homogeneous of degree —n,
can be uniquely recovered by its Fourier transform ®¢ ([17, Theorem 2.16,
p.116]).



We denote by HIZJ(E) the space of Bessel potentials on the sphere (cf.,
eg, [1]). If 1 < p < oo and —oo < | < oo the space H;,(E) consists of
functions f defined on X such that (§ + I)"/2f € L,(X), with the norm

£l sy = 1166 + D2 £ 1)
p

([14, Proposition 2.3.2]). Here § denotes the Beltrami operator on the sphere
(the spherical part of the Laplace operator), I the identity operator and
I+ ||z, () is the norm in L,(%). The space C°(X) is dense in H},(E).

The differentiability properties of the symbol ®( of the singular integral

f(x=y)/(x=y)

R® Ix —y["

u(y)dy

in the space Wi(X) = HL(X),1 > 0, were studied by Mikhlin [16], Agranovich
[3] and Mikhailova-Gubenko [15] and are expressed in the following theorem.

Theorem 1.1. (16, Theorem 7.1, p. 266]) The symbol of a singular integral
satisfies the relation &g € Hg/z(Z) if and only if the characteristics f €
Ly(X).

Gadzjiev in [7, 8] described the smoothness of ®g = Ao f with f € L,(X)
in terms of the space Hlé(Z) with p € (1,00). Gadjiev’s results can be
formulated as follows.

Theorem 1.2. ([7, 8]) Let 1 < p < oo and ly = (n —2)|p~ —27|. Then

feLyD) = & HY* (%) (1.3)
Dy € HY*T0(S) = f € Ly(D). (1.4)

The implication given are sharp.

The imbedding (1.3) means that if the characteristic f belongs to L, (%)
and is orthogonal to 1 on 3, then the corresponding symbol ®g belongs to
H;/Q_ZO(Z) and

H¢)0|’H;L/27ZO(Z) S C HfHLp(E)
where the constant C' does not depend on f. The optimality of (1.3) means

that there exists a function f € L,(X) such that the corresponding symbol
®( does not belong to Hg(E) for any ¢ > n/2 — 4.



The imbedding (1.4) means that if ®; belongs to Hy, / 2+EO(E) then there
exists a function f € L,(X) with zero mean value on the sphere such that
(po = Aof and

1112, < C 1ol v, -

Moreover, for any ¢ < n/2 + £y there exists a symbol & € Hﬁ(E) such that
the corresponding characteristic f does not belong to Ly(%).

Kryuchkov in [10, 11] extended the description of AgL,(X) given by
Gadjiev by including spaces H, CII(Z) for q # p.

Questions about the connection between the smoothness of the charac-
teristic f and of the symbol ®, have been studied by Samko ([19]) in the
space C*(X) and by Plamenevskii and Judovin ([18]) in the space H(%).

The aim of this paper is to study the differentiability properties of the
restriction of the symbol @, to the unit sphere, with 0 < a < n, in terms
of the spaces H},(E) with 1 < p < oo. This problem consists in finding
conditions on the indices ¢ and s such that

FELYD) = o € HY(E), Qo€ Ly(D)= feHD).

The main tool for obtaining our results is the use of the multipliers on the
sphere.

The article is organized as follows. In Section 2 we introduce an in-
tegral representation over the sphere of the symbol ®, by means of the
characteristic f and a representation in the form of a series of spherical
functions. The last representation is employed to study the differentiability
properties of the symbol ®,. In Section 3 we prove that, if f € L,(3) then
®, € Hg(E) with £ <n/2—a—|p~t —271(n—2), while &, ¢ Hg(E) for any
{>n/2—a—|p~' =27 (n—2). In Section 4 we prove that if ®, € HL(X)
with £ > n/2 —a+ |p~! — 271 (n — 2) then there exists f € L,(X) such that
A f = ®,, while the assertion fails for any £ < n/2—a+|p~! —271|(n—2).

2 Analysis of the symbol ¢,

The symbol ®, is homogeneous of degree —a (i.e. @, (tx) =t *P(z),t > 0)
and can be viewed as an operator applied to the characteristic. Indeed, we
have

Pa(y) :/R f(m) XV dx = /Ef(ﬂ)daﬁ /000 RO 1w g

n ‘X’nfa

= [y[™® / f(9)doy / R e UdR.
b)) 0
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Here w, ¥ are unit vectors, p = |y|, R = |x|, x = (R,¥),y = (p,w), w9 =
w11 + ... + wpty. For all 0 < a < n ([9, p.171])

/ Ro‘_leiRJdR:emgr(a)(a—{—i())_a.
0

Then, for w € X,

By () = €31 (a) /E(w 9+ i0) " f()dog,  O<a<n.

The expression (z 4 i0)~* with a real variable x and a complex exponent «
is understood in the distributional sense ([9, p.60]), namely

(x+1i0)"* =27 +e "2 T2, a#1,2,..
(_1)m—1

W(S(mil)(x), m = 1,2,...
m — .

(x4+i0) " =2 ™ —in

Here we used the standard notation

o ¢ >0 o 0 x>0
x - €T =
+ 0 <0 |z|* =<0

with 0 being the Dirac distribution. (x + ¢0)® is an entire function in the
parameter «.

We denote the operator taking the characteristic into the symbol by A,
that is |y = A, f. Summarizing, the operator A, can be expressed in
terms of f by the formula

(Aof)(w) = /E <log |COS(3J‘19)| - %Tsign (cos(w - 19))) f(¥)doy,

(Auf)(w) = €3T(a) / (- D)7 + e (w - 9) =) f(0)do,
a#0,1,2,3, ...

— im(—1)""

1
(An)e) = (=D [ (@) = T D 0)) 10,

b))
m=1,23,...

We denote by Yﬁ%(w) the spherical functions of order m in the n di-
mensional space, w is a point of the unit sphere ¥. The upper index k



numbers the linearly independent spherical functions of the same order m
and it varies between the bounds

— 3!
1<k < kypn = (2m+n—2)m
The functions Yrglkq)z(w) are supposed to be orthonormal in Ly(X). The spher-
ical functions are eigenfunctions of the Beltrami operator ¢ and the corre-
sponding eigenvalues are Ay, , = m(m +n — 2) ([16, p.215]).

We expand the characteristic f in a series of spherical functions (Fourier
- Laplace series)

oo kmn
= > fyke), oex (2.5)
m=0 k=1

where

19 = [ 1)y 0oy,
2

If & = 0, by the assumption (1.2) f is ortogonal to 1 on X, then fél) =0
and the series (2.5) starts from m = 1. For f € LP(X), 1 < p < oo, the
convergence of (2.5) can be understood in generalized sense ([6, p.42]). If
f € C>®(X), then (2.5) converges absolutely and uniformly.

Definition 2.1. Any operator acting on functions f in (2.5) by the formula

kmn

Tf= Zt me YiE(0)
m=0

is called an operator with multipliers {t,,}. The numbers {t,,} are called
(p, q)—multipliers on the sphere ¥ if

T fllLym) < Clf L) -

An operator acting boundedly from Ly(X) to Ly(X) is called an operator of
strong type (p,q). We henceforth denote this as follows: {t,,} € My, or

{tm} € My, if p=gq.

With the notations w = y/|y| and ¥ = x/|x|, as a consequence of the
Bochner formula ([5, p.807]), we have

(k (k)
/ Y, Zyxdx :Mm(a) , ((;L))
n IX\” ° M



with

T

pm (@) = 1™ n/22am72n(24'
I (m5==)

It follows that, for w € X,
®) )
Ym n Ym n zw-x
AV @) = Faoy (I 0) = [T 6% — () ),
x| re [X|

For functions f given in (2.5), the restriction of the symbol ®, on the sphere
is defined by the series ([18, p.210])

=3 tml@) Y FPYE) () (2.6)
m=0

and, according to Definition 2.1, the symbol ®, is an operator with the
multipliers {, («)}.
Since the symbol ®@,, is the Fourier transform of the kernel f(9)|x|~"*t% by
applying the inverse Fourier transform (understood in the sense of general-
ized functions) we get
) = Ix"(Fy o), 9= oy w=

Hence the function f defines an operator whose symbol on the sphere co-
incides with ®, and we denote f = A;'®,. The multipliers on the sphere
associated to the operator A1 are {(um ()1}

Theorem 1.1 is based on the following theorem, proved by Mikhlin ([16])

for integer values of [ and improved indipendently by Agranovich ([3]) and
Mikhailova-Gubenko ([15]).

Theorem 2.1. Let I be a real number. Assume that a function f admits
the expansion (2.5). Then f € HY(X) if and only if

[ee) km,n
Z Zm21|f7gf)|2<oo. (2.7)
m=0 k=1

For the integral operator (1.1) and p = 2 the following result, based on
Theorem 2.1, holds.

Theorem 2.2. Let 0 < o« < n. Then f € Lao(X) if and only if ®,|s €
H “(D).



Proof. By Stirling’s formula [2, 6.1.39]
D(p/2) = Vame P2 (p/2)P" 02 p = oo
we obtain
fim (@) = (20)"2m2 M . (2.8)
Let f € La(X). Therefore, since by Theorem 2.1 the series (2.7) converges,

we deduce that
k n

oD m T (@) < oo,

1

3

£
Il

m=0

Keeping in mind (2.6) and Theorem 2.1 we conclude that ®,|x € HQ% (®).

Conversely, let ®u|y; € Hf‘a(z). Then g = (6 4+ 1)2 %D, |y € Lo(X)
and ||g|z, () = [|® O‘HHQ —a .. Without loss of generality we assume that

o, € C*(X), it follows that g € C*(X) and, denoting by

(e 9] knLn

Zng mn weEX

m=0 k=0
the Fourier decomposition of g, we have

o0 kmn
n

O, =(0+1)* 2 2221+mm+n—2)) ()Y().
m=0 k=0

Since @, € Hffa(E), from Theorem 2.1 we have

) km,n
S (1 mm - 2))% Y g2
m=0 k=0
and, for (2.8), also
00 k/'m,n
> (@) 721+ m(m +n — 2)227 3 |02
m=0 k=0
We infer that
0o k:m,n
- Z (o ()11 +m(m +n — 2))0‘*% gﬁi“)YnS’f%(w)
m=0 k=0
belongs to Lo(Y). =



Remark 2.1. Theorem 2.2 states that, if the domain of definition of the
operator Ay is La(X), then the range is HS/Q_Q(E) that is

AnLy(S) = HY* (%),
In the particular case o =n/2 it is clear that Ay 3 La(%) = La(X).

The case p # 2 will be considered in the following sections.

3 Differentiability properties of the symbol ¢,
A sufficient condition for an operator on the sphere to be bounded in L,(X)
is contained in the next theorem by Strichartz.

Theorem 3.1. (/20]) Let t(z) be a function of a single variable such that
for some constant C

W) () <C, k=0,1,..,s.

If ty, = t(m), m = 0,1,... then {t,,} € M, for all p € (1,00) satisfying the
condition |p~! — 271 < s(n —1)7L.

Remark 3.1. If s = [n/2] is the integer part of n/2 then {t,,} € M, for all
€ (1,00). Indeed, suppose that n = 2r. Then, for any 1 < p < 2 we have

Pologapy Lo tym2 g L L n2 s
2 " p m—2 2 n-1 p 2 n—-1 n—-1"
for any p > 2 we have
11 1 n/2 1 1 n/2 s
-2>2->0>-- =>0<-—-=-< = :
27 p 2 n-—1 -2 p n—-1 n-1
Ifn=2r+1 and s = [n/2] = r then the condition
1 1
pl-2l< 2 =-s0<-<1
n—1 2 P

1s satisfied for any p > 1.
We use Theorem 3.1 to study the multipliers

r <m+ a>
2 mre . =12,

Tm=7m<a>=r<m+na) ,

2

The following Lemma can be proved by induction.



Lemma 3.1. ([11, Lemma 7, p. 173]) Let g(x) be solution of the equation
g (x) = a(z)g(z) in (xo,00), g > 0, where a(x) € C*°((zg,00)). Then

99 @) = 9(@) 3 Apsis (@@ (@ @) 0D (@),

where the Aj, j, ... ., are constants, and the summation is over nonnegative
70y -y Je—1 Such that jo + 251 + ... + kjr_1 = k.

Theorem 3.2. Let 0 < o < n. Consider the sequence {1 ()} defined in
(3.9). Then {Tm(a)} and {(tm ()"t} belong to M, for any p € (1,00).

Proof. If @« = n/2 then 7,,(a) = 1, for any m > 1. Suppose that o # n/2.

The functions
T+« r+n—a«o«
I r{=Q——
< 2 > n/2—a < 2 > 1
x )=

(@) = r (:1:4—721—04) ’ g2(w) = r (m—;—a) zn/2—a

satisfy, respectively, the equations

9i(x) = aa(@)g1(x),  ga(x) = —aa(x)g2(z)

for x > zg > 0, where
0ale) = gale) + (5 -0) 2. valr) =0 (T5) —u (FHE2).

Here 1 denotes the Digamma function [2, 6.3.1]

I'(a)
[(2)

P(x) =

We denote by [a] the greatest integer less than or equal to o and denote by
B =a—a]. It is clear that 0 < 5 < 1.
For all @ : n — a > « we have

n—2[a]—1

= E o) (22

s=0
+w<$+z_a+/8> —w<x+g_o‘) (3.10)

and, for a : n — a < a we have

10



We prove that

ylW(y) vy +)<Ch y>y>0, 0<¢<1

and, more generally, for k£ > 0,

V() — ey + €< Cr y>y >0, 0<E<1 (3.12)

where

k
mwziw@,%@zww

We use the asymptotic formula [2, 6.3.16]

and, for k > 1 [2, 6.4.10]

oo

dily) = (DR Y

p=0

W, y#07—1,—2,

Hence,
oo

(= o) =3 (4 - ).

p=0

and, keeping in mind that 0 < £ < 1, we have

0 < vo(y+&) —voly) < voly+1) —vo(y).
We have

oo

Bty + ) = 0nlo) = (DY (o )

S \y+p+ O (y+p)tH

11



If k is even,

0<n(y+&) —vrly) = Z<y+p)k+1_(y+p+§)k+1>
<KDY ((y+p)k+1 - (y+p+1)k+1) =tr(y +1) = vr(y)

p=0

Similarly, if k£ is odd,

o 1
0<n(y) —vr(y+¢& = Z<y+pk+1_(y+p+£)k+l>
<k!p§%((y+p)’f+1 _(y+p+1)’““> oy L,

Hence, by using the recurrence formula [2, 6.4.6]
Ukly +1) = ¥r(y) + (=1 kly !
we get (3.12). From (3.12), (3.10) and (3.11) it follows that
"o (2)| < Cp, E>0, 2>x0>0.
Hence, applying Lemma 3.1, we obtain
12g P (@) < er, el (@) <en k=0,1,2....

It follows from Theorem 3.1 that the multipliers 7,,, = g1(m) and 7,,} =
g2(m) belong to M, for any p € (1, c0). O

We make use of the following theorem of Askey and Wainger regarding
p-multipliers on the sphere.

Theorem 3.3. ([, Theorem }]) Let ¢y = [p~* — 27 t|(n — 2) and
am(B) = i™m =P, m=1,2,..., ap(B)=0.

Then

and



A refinement of Theorem 3.3 is obtained by Gadjiev.

Theorem 3.4. ([8, Theorem 2]) Let £y = [p~! — 27t (n —2) and a,,(fy) =
imm=%. Then an () is a (p,p)-multiplier for any p € (1,00).

The following assertion will be used to obtain the main result of the
section.

Lemma 3.2. ([10, Lemma 9, p. 178]) If Wy, = zmtm and {tm}, {t;1} € My,
€ (1,00), then {wn} € My 4 if and only if {zm} € M.

We are in a position to prove the main theorem.

Theorem 3.5. Let 1 < p < o0, 0 <a <n and by = |p~! —271|(n - 2).
Then the operator Ay is bounded from L,(X) to Hé(E) fort <n/2—a—1{.
The result is sharp.

Proof. We show that (I + 5)8/2140[ is an operator of strong type (p,p) for
¢ <n/2—a—{yand is not such an operator for £ > n/2 —a — {.

We recall that to the operator (I + 5)6/ 2 there corresponds the multipliers
{(1 +m(m+n—2))2} ([16, p.262]). Then, we have

(I+8)PA0f =722 am(6,0) > fRYE
m=0 k=1

where {a,,(¢,«)} are the multipliers corresponding to the operator (I +
6)¢/2A,. They have the form

T
am(l, @) = pm (@) (1+m(m+n—2))"2 =™ G i Zy) 1+m(m~+n—2))"2.
2
We represent a,, (¢, o) = t,, 2y, where
2y = imm—(n/Q—K—a)

tm = Tm (@) (1 +m(m +n—2))2m™*

and {7, ()} is defined in (3.9).
We have (1 +m(m +n —2))2m=¢ € M, for any £. Indeed, we can write

a,beR

0 _ (m+ a)z/z(er b)e/27

— N2
I4+mm+n—-2)""m - -

13



and, applying Theorem 3.1, we prove that each factor belongs to M, for any
¢. Keeping in mind Theorem 3.9 and Lemma 3.2 we get that ¢,, € M, for
any p € (1,00). Theorem 3.3 ensures that

am(l,) € M, if L<n/2—a—|pt—27(n-2) (3.13)
am(ly) g M, if £>n/2—a—|pt—27Y(n-2).
If we apply Theorem 3.4 we can insert the equality sign in (3.13). O
We can reformulate Theorem 3.5 as follows.

Theorem 3.6. Let 1 <p < oo, 0 < a<n and ly = [p~! —27Y(n —2).
There are continuous embeddings

AaLy(S) C Hy(S) (3.14)

fort <n/2 —a—1{ly. The embeddings (3.14) are the best possible.

4 Differentiability properties of the characteristic

In this section we prove a theorem characterizing the influence of the symbol
®,, on the properties of the corresponding characteristic. Namely, we are
looking for the values of the index ¢ such that the condition ®, € Hg(E)
ensures that f € L,(X).

Theorem 4.1. Let 1 < p < oo and {y = |[p~' —27|(n—2). Let &, € HS(Z)
with £ > n/2 — a + Ly. Then there exists a function f € Ly(X) such that
®, = A.f and

AL, < Cli®allmes)

Equivalently, if £ > n/2 — o+ £y then
H(Z) C AaLy(D).
These embeddings are optimal.

Proof. Let ®, € HI‘;(E). Suppose that ®, € C*°(X) and let

kmn

o0
=> > ¢yP(w), wex.
m=0 k=1

14



Then

00 km,n
A 00 (@) = D (pm(@) > 6PV (w)
m=0 k=1

By definition of the space HJ(3) we have g := (I + 0)2®, € L,(X) and
\|<I>a||H£ = ||gl|z,- Since ®, € C*°(X) then g € C*°(X) . Let

o0 km,n oo km,n
9w) =YD gV (W) = giw) = g(—w) = D > (=" V P (w),
m=0 k=1 m=0 k=1

We deduce that

AL Ba(w) = AT +8)Pg(w) = Y bn(l) Y (-1)" gV (w)
m=0 k=1
where the multipliers {b,,(¢, @)} have the form
b (€, ) = i™ w—"/Qz—am@ + m(m +n—2))"?
o I (59) '

Let us represent the multiplier by, (¢, ) in the form b, (¢, @) = t;, 2, , with
n/2—l—a

Zm = 1"'m
b = 77220 (1 (0)) "1 (1 + m(m + n — 2)) /2

and 7,,, () given in (3.9). It was shown in Theorem 3.2 that (7,,,(«)) ™! € M,
for any p € (1,00). If we apply Theorems 3.3 and 3.4 to the multipliers {z,}
we get {zm} € My if £ >n/2 —a+ Ly and {2} & M, if £ <n/2 — o+ .
Hence {b,,(¢,a)} € My if £ > n/2 — o+ £y, and
~1 o
145 @allz, ) < Cllaillr, ) = CH‘I’aHHg(z)a
and {b,,(¢,0)} & My if £ <n/2 — o+ 4. O

It follows from Theorems 3.5 and 4.1 that the range R(A,) of the oper-
ator A,, defined on L,(X), satisfies the relations

and the embeddings (4.15) are best possible.

15
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