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Abstract. Let f be a positive homogeneous function of degree 0 defined
on the sphere Σ of the space Rn and let Φα be the symbol of the integral
operator ∫

Rn

f((x− y)/|x− y|)
|x− y|n−α

u(y)dy, u ∈ C∞0 (Rn)

with 0 < α < n. We study differentiability properties of the restriction of Φα

to the unit sphere Σ in the spaces H l
p(Σ) for p ∈ (1,∞). Here H l

p(Σ) denotes

the space of Bessel potentials with the norm ‖f‖Hl
p(Σ) = ‖(δ + I)l/2f‖Lp(Σ),

δ being the Beltrami operator on the sphere. We prove that, if f ∈ Lp(Σ)
then Φα|Σ ∈ H`

p(Σ) for any ` ≤ n/2 − α − |p−1 − 2−1|(n − 2). Conversely,

if Φα|Σ ∈ H`
p(Σ), with ` ≥ n/2− α+ |p−1 − 2−1|(n− 2), then f ∈ Lp(Σ).

The results are sharp.

1 Introduction

Let Σ be the unit sphere in the space Rn centered at the origin and let f be
a positive homogeneous function of degree zero defined through the space
Rn \ 0 and suppose that f ∈ Lp(Σ) with p > 1. Let us consider the integral
operator

Kαu(x) =

∫
Rn
Kα(x− y)u(y)dy, u ∈ C∞0 (Rn) (1.1)
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where the kernel has the form

Kα(x) =
f(ϑ)

|x|n−α
, x ∈ Rn \ 0, ϑ =

x

|x|

with 0 < α < n, x = (x1, ..., xn) and y = (y1, ..., yn) are points in Rn. The
integral (1.1) is called a generalized Riesz potential. The function f(ϑ) is
the characteristic of the n− dimensional integral operator (1.1) with kernel
Kα(x). If α = 0 then (1.1) is a singular integral ([16]) and the function K0

exists as a generalized function if ([9, p.310])∫
Σ
f(ϑ)dσϑ = 0 . (1.2)

We denote by F the Fourier transform of functions given on Rn

f̂(x) = (Ff)(x) =

∫
Rn
f(y)eix·ydy, x · y = x1y1 + ...+ xnyn.

The Fourier transform of the kernel Kα(x), understood in the sense of gen-
eralized functions ([9], cf. also [12]), is called the symbol of the integral
operator. We denote the symbol by Φα(y) = Fx→yKα = (Aαf)(y). Since
the kernel Kα(x) is a positive homogeneous (generalized) function of degree
−n + α, then the symbol is a homogeneous function of degree −α. We re-
mark that, when α = n/2 and Kn/2(x) = f(ϑ)|x|−n/2 is an eigenfunction of
the Fourier transform with eigenvalue λ, then

An/2f(ω) = λf(ω), λ4 = (2π)2n .

Eigenfunctions of the Fourier transform in the sense of generalized functions
are studied in [12, 13].

If α = 0 the following integral representation for the symbol Φ0 by its
characteristic f was obtained by Calderón and Zygmund ([16, p.249])

Φ0(ω) = A0f(ω) =

∫
Σ
f(ϑ)

(
log

1

| cos γ|
− iπ

2
sign (cos γ)

)
dσϑ , ω ∈ Σ,

γ denoting the angle between the vectors ϑ and ω. The symbol Φ0, as well as
the characteristic f , is a homogeneous function of degree 0 with zero mean
on Σ. The singular kernel |x|−nf(ϑ), which is homogeneous of degree −n,
can be uniquely recovered by its Fourier transform Φ0 ([17, Theorem 2.16,
p.116]).
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We denote by H l
p(Σ) the space of Bessel potentials on the sphere (cf.,

e.g., [1]). If 1 < p < ∞ and −∞ < l < ∞ the space H l
p(Σ) consists of

functions f defined on Σ such that (δ + I)l/2f ∈ Lp(Σ), with the norm

‖f‖Hl
p(Σ) = ‖(δ + I)l/2f‖Lp(Σ)

([14, Proposition 2.3.2]). Here δ denotes the Beltrami operator on the sphere
(the spherical part of the Laplace operator), I the identity operator and
|| · ||Lp(Σ) is the norm in Lp(Σ). The space C∞(Σ) is dense in H l

p(Σ).
The differentiability properties of the symbol Φ0 of the singular integral∫

Rn

f((x− y)/(|x− y|))
|x− y|n

u(y)dy

in the spaceW l
2(Σ) = H l

2(Σ), l > 0, were studied by Mikhlin [16], Agranovich
[3] and Mikhailova-Gubenko [15] and are expressed in the following theorem.

Theorem 1.1. ([16, Theorem 7.1, p. 266]) The symbol of a singular integral

satisfies the relation Φ0 ∈ H
n/2
2 (Σ) if and only if the characteristics f ∈

L2(Σ).

Gadzjiev in [7, 8] described the smoothness of Φ0 = A0f with f ∈ Lp(Σ)
in terms of the space H l

p(Σ) with p ∈ (1,∞). Gadjiev’s results can be
formulated as follows.

Theorem 1.2. ([7, 8]) Let 1 < p <∞ and `0 = (n− 2)
∣∣p−1 − 2−1

∣∣. Then

f ∈ Lp(Σ)⇒ Φ0 ∈ Hn/2−`0
p (Σ) (1.3)

Φ0 ∈ Hn/2+`0
p (Σ)⇒ f ∈ Lp(Σ) . (1.4)

The implication given are sharp.

The imbedding (1.3) means that if the characteristic f belongs to Lp(Σ)
and is orthogonal to 1 on Σ, then the corresponding symbol Φ0 belongs to

H
n/2−`0
p (Σ) and

||Φ0||Hn/2−`0
p (Σ)

≤ C ||f ||Lp(Σ)

where the constant C does not depend on f . The optimality of (1.3) means
that there exists a function f ∈ Lp(Σ) such that the corresponding symbol
Φ0 does not belong to H`

p(Σ) for any ` > n/2− `0.
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The imbedding (1.4) means that if Φ0 belongs to H
n/2+`0
p (Σ) then there

exists a function f ∈ Lp(Σ) with zero mean value on the sphere such that
Φ0 = A0f and

||f ||Lp(Σ) ≤ C ||Φ0||Hn/2+`0
p (Σ)

.

Moreover, for any ` < n/2 + `0 there exists a symbol Φ0 ∈ H`
p(Σ) such that

the corresponding characteristic f does not belong to Lp(Σ).
Kryuchkov in [10, 11] extended the description of A0Lp(Σ) given by

Gadjiev by including spaces H l
q(Σ) for q 6= p.

Questions about the connection between the smoothness of the charac-
teristic f and of the symbol Φα have been studied by Samko ([19]) in the
space Cλ(Σ) and by Plamenevskii and Judovin ([18]) in the space H l

2(Σ).
The aim of this paper is to study the differentiability properties of the

restriction of the symbol Φα to the unit sphere, with 0 < α < n, in terms
of the spaces H l

p(Σ) with 1 < p < ∞. This problem consists in finding
conditions on the indices ` and s such that

f ∈ Lp(Σ)⇒ Φα ∈ H`
p(Σ) , Φα ∈ Lp(Σ)⇒ f ∈ Hs

p(Σ) .

The main tool for obtaining our results is the use of the multipliers on the
sphere.

The article is organized as follows. In Section 2 we introduce an in-
tegral representation over the sphere of the symbol Φα by means of the
characteristic f and a representation in the form of a series of spherical
functions. The last representation is employed to study the differentiability
properties of the symbol Φα. In Section 3 we prove that, if f ∈ Lp(Σ) then
Φα ∈ H`

p(Σ) with ` ≤ n/2−α−|p−1−2−1|(n−2), while Φα 6∈ H`
p(Σ) for any

` > n/2− α− |p−1 − 2−1|(n− 2). In Section 4 we prove that if Φα ∈ H l
p(Σ)

with ` ≥ n/2−α+ |p−1− 2−1|(n− 2) then there exists f ∈ Lp(Σ) such that
Aαf = Φα, while the assertion fails for any ` < n/2−α+ |p−1−2−1|(n−2).

2 Analysis of the symbol Φα

The symbol Φα is homogeneous of degree −α (i.e. Φα(tx) = t−αΦ(x), t > 0)
and can be viewed as an operator applied to the characteristic. Indeed, we
have

Φα(y) =

∫
Rn

f( x
|x|)

|x|n−α
eix·ydx =

∫
Σ
f(ϑ)dσϑ

∫ ∞
0

Rα−1eiRρω·ϑdR

= |y|−α
∫

Σ
f(ϑ)dσϑ

∫ ∞
0

Rα−1eiRω·ϑdR .
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Here ω, ϑ are unit vectors, ρ = |y|, R = |x|, x = (R,ϑ), y = (ρ, ω), ω · ϑ =
ω1ϑ1 + ...+ ωnϑn. For all 0 < α < n ([9, p.171])∫ ∞

0
Rα−1eiRσdR = eiα

π
2 Γ(α)(σ + i0)−α .

Then, for ω ∈ Σ,

Φα(ω) = eiα
π
2 Γ(α)

∫
Σ

(ω · ϑ+ i0)−αf(ϑ)dσϑ, 0 < α < n .

The expression (x+ i0)−α with a real variable x and a complex exponent α
is understood in the distributional sense ([9, p.60]), namely

(x+ i0)−α = x−α+ + e−i α πx−α− , α 6= 1, 2, ...

(x+ i0)−m = x−m − iπ (−1)m−1

(m− 1)!
δ(m−1)(x), m = 1, 2, ...

Here we used the standard notation

xα+ =

{
xα x > 0
0 x < 0

xα− =

{
0 x > 0
|x|α x < 0

with δ being the Dirac distribution. (x + i0)α is an entire function in the
parameter α.

We denote the operator taking the characteristic into the symbol by Aα
that is Φα|Σ = Aα f . Summarizing, the operator Aα can be expressed in
terms of f by the formula

(A0f)(ω) =

∫
Σ

(
log

1

| cos(ω · ϑ)|
− iπ

2
sign (cos(ω · ϑ))

)
f(ϑ)dσϑ,

(Aαf)(ω) = eiα
π
2 Γ(α)

∫
Σ

((ω · ϑ)−α+ + e−i α π(ω · ϑ)−α− )f(ϑ)dσϑ,

α 6= 0, 1, 2, 3, ...

(Amf)(ω) = im(m− 1)!

∫
Σ

((ω · ϑ)−m − iπ(−1)m−1

(m− 1)!
δ(m−1)(ω · ϑ))f(ϑ)dσϑ,

m = 1, 2, 3, ....

We denote by Y
(k)
m,n(ω) the spherical functions of order m in the n di-

mensional space, ω is a point of the unit sphere Σ. The upper index k
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numbers the linearly independent spherical functions of the same order m
and it varies between the bounds

1 ≤ k ≤ km,n = (2m+ n− 2)
(m+ n− 3)!

(n− 2)!m!
.

The functions Y
(k)
m,n(ω) are supposed to be orthonormal in L2(Σ). The spher-

ical functions are eigenfunctions of the Beltrami operator δ and the corre-
sponding eigenvalues are λm,n = m(m+ n− 2) ([16, p.215]).

We expand the characteristic f in a series of spherical functions (Fourier
- Laplace series)

f(θ) =
∞∑
m=0

km,n∑
k=1

f (k)
m Y (k)

m,n(θ) , θ ∈ Σ (2.5)

where

f (k)
m =

∫
Σ
f(ϑ)Y (k)

m,n(ϑ)dσϑ.

If α = 0, by the assumption (1.2) f is ortogonal to 1 on Σ, then f
(1)
0 = 0

and the series (2.5) starts from m = 1. For f ∈ Lp(Σ), 1 ≤ p ≤ ∞, the
convergence of (2.5) can be understood in generalized sense ([6, p.42]). If
f ∈ C∞(Σ), then (2.5) converges absolutely and uniformly.

Definition 2.1. Any operator acting on functions f in (2.5) by the formula

Tf =
∞∑
m=0

tm

km,n∑
k=1

f (k)
m Y (k)

m,n(θ)

is called an operator with multipliers {tm}. The numbers {tm} are called
(p, q)−multipliers on the sphere Σ if

||Tf ||Lq(Σ) ≤ C ||f ||Lp(Σ) .

An operator acting boundedly from Lp(Σ) to Lq(Σ) is called an operator of
strong type (p, q). We henceforth denote this as follows: {tm} ∈ Mpq or
{tm} ∈Mp if p = q.

With the notations ω = y/|y| and ϑ = x/|x|, as a consequence of the
Bochner formula ([5, p.807]), we have∫

Rn

Y
(k)
m,n(ϑ)

|x|n−α
eiy·xdx = µm(α)

Y
(k)
m,n(ω)

|y|α
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with

µm(α) = im πn/22α
Γ
(
m+α

2

)
Γ
(
m+n−α

2

) .
It follows that, for ω ∈ Σ,

AαY
(k)
m,n(ω) = Fx→y(

Y
(k)
m,n(ϑ)

|x|n−α
)(ω) =

∫
Rn

Y
(k)
m,n(ϑ)

|x|n−α
eiω·xdx = µm(α)Y (k)

m,n(ω).

For functions f given in (2.5), the restriction of the symbol Φα on the sphere
is defined by the series ([18, p.210])

Φα(ω) =

∞∑
m=0

µm(α)

km,n∑
k=1

f (k)
m Y (k)

m,n(ω) (2.6)

and, according to Definition 2.1, the symbol Φα is an operator with the
multipliers {µm(α)}.
Since the symbol Φα is the Fourier transform of the kernel f(ϑ)|x|−n+α, by
applying the inverse Fourier transform (understood in the sense of general-
ized functions) we get

f(ϑ) = |x|n−α(F−1
y→xΦα) , ϑ =

x

|x|
, ω =

y

|y|
.

Hence the function f defines an operator whose symbol on the sphere co-
incides with Φα and we denote f = A−1

α Φα. The multipliers on the sphere
associated to the operator A−1

α are {(µm(α))−1}.
Theorem 1.1 is based on the following theorem, proved by Mikhlin ([16])

for integer values of l and improved indipendently by Agranovich ([3]) and
Mikhailova-Gubenko ([15]).

Theorem 2.1. Let l be a real number. Assume that a function f admits
the expansion (2.5). Then f ∈ H l

2(Σ) if and only if

∞∑
m=0

km,n∑
k=1

m2l|f (k)
m |2 <∞ . (2.7)

For the integral operator (1.1) and p = 2 the following result, based on
Theorem 2.1, holds.

Theorem 2.2. Let 0 < α < n. Then f ∈ L2(Σ) if and only if Φα|Σ ∈
H

n
2
−α

2 (Σ).
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Proof. By Stirling’s formula [2, 6.1.39]

Γ(p/2) ≈
√

2π e−p/2(p/2)(p−1)/2 p→∞

we obtain
µm(α) ≈ (2π)n/2mα−n/2 m→∞ . (2.8)

Let f ∈ L2(Σ). Therefore, since by Theorem 2.1 the series (2.7) converges,
we deduce that

∞∑
m=0

km,n∑
k=1

mn−2α(µm(α))2|f (k)
m |2 < +∞.

Keeping in mind (2.6) and Theorem 2.1 we conclude that Φα|Σ ∈ H
n
2
−α

2 (Σ).

Conversely, let Φα|Σ ∈ H
n
2
−α

2 (Σ). Then g = (δ + I)
n
2
−αΦα|Σ ∈ L2(Σ)

and ||g||L2(Σ) = ||Φα||
H
n
2−α
2 (Σ)

. Without loss of generality we assume that

Φα ∈ C∞(Σ), it follows that g ∈ C∞(Σ) and, denoting by

g(ω) =

∞∑
m=0

km,n∑
k=0

g(k)
m Y (k)

m,n(ω), ω ∈ Σ

the Fourier decomposition of g, we have

Φα = (δ + I)α−
n
2 g =

∞∑
m=0

km,n∑
k=0

(1 +m(m+ n− 2))α−
n
2 g(k)
m Y (k)

m,n .

Since Φα ∈ H
n
2
−α

2 (Σ), from Theorem 2.1 we have

∞∑
m=0

mn−2α(1 +m(m+ n− 2))2α−n
km,n∑
k=0

|g(k)
m |2 <∞

and, for (2.8), also

∞∑
m=0

(µm(α))−2(1 +m(m+ n− 2))2α−n
km,n∑
k=0

|g(k)
m |2 <∞ .

We infer that

A−1
α Φα(ω) =

∞∑
m=0

(µm(α))−1(1 +m(m+ n− 2))α−
n
2

km,n∑
k=0

g(k)
m Y (k)

m,n(ω)

belongs to L2(Σ).
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Remark 2.1. Theorem 2.2 states that, if the domain of definition of the

operator Aα is L2(Σ), then the range is H
n/2−α
2 (Σ) that is

AαL2(Σ) = H
n/2−α
2 (Σ).

In the particular case α = n/2 it is clear that An/2L2(Σ) = L2(Σ).

The case p 6= 2 will be considered in the following sections.

3 Differentiability properties of the symbol Φα

A sufficient condition for an operator on the sphere to be bounded in Lp(Σ)
is contained in the next theorem by Strichartz.

Theorem 3.1. ([20]) Let t(x) be a function of a single variable such that
for some constant C

|xkt(k)(x)| ≤ C, k = 0, 1, ..., s.

If tm = t(m), m = 0, 1, ... then {tm} ∈ Mp for all p ∈ (1,∞) satisfying the
condition |p−1 − 2−1| < s(n− 1)−1.

Remark 3.1. If s = [n/2] is the integer part of n/2 then {tm} ∈Mp for all
p ∈ (1,∞). Indeed, suppose that n = 2r. Then, for any 1 < p < 2 we have

1

2
<

1

p
< 1 < 1 +

1

2n− 2
=

1

2
+

n/2

n− 1
⇒ 0 <

1

p
− 1

2
<

n/2

n− 1
=

s

n− 1
;

for any p ≥ 2 we have

1

2
≥ 1

p
> 0 >

1

2
− n/2

n− 1
⇒ 0 ≤ 1

2
− 1

p
<

n/2

n− 1
=

s

n− 1
.

If n = 2r + 1 and s = [n/2] = r then the condition

|p−1 − 2−1| < s

n− 1
=

1

2
⇔ 0 <

1

p
< 1

is satisfied for any p > 1.

We use Theorem 3.1 to study the multipliers

τm = τm(α) =

Γ

(
m+ α

2

)
Γ

(
m+ n− α

2

)mn/2−α , m = 1, 2, ..., τ0 = 1. (3.9)

The following Lemma can be proved by induction.
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Lemma 3.1. ([11, Lemma 7, p. 173]) Let g(x) be solution of the equation
g′(x) = a(x)g(x) in (x0,∞), x0 > 0, where a(x) ∈ C∞((x0,∞)). Then

g(k)(x) = g(x)
∑

Aj0,j1,...,jk−1
(a(x))j0(a(1)(x))j1 ....(a(k−1)(x))jk−1 ,

where the Aj0,j1,...,jk−1
are constants, and the summation is over nonnegative

j0, ..., jk−1 such that j0 + 2j1 + ...+ kjk−1 = k.

Theorem 3.2. Let 0 < α < n. Consider the sequence {τm(α)} defined in
(3.9). Then {τm(α)} and {(τm(α))−1} belong to Mp for any p ∈ (1,∞).

Proof. If α = n/2 then τm(α) = 1, for any m ≥ 1. Suppose that α 6= n/2.
The functions

g1(x) =

Γ

(
x+ α

2

)
Γ

(
x+ n− α

2

)xn/2−α, g2(x) =

Γ

(
x+ n− α

2

)
Γ

(
x+ α

2

) 1

xn/2−α

satisfy, respectively, the equations

g′1(x) = aα(x)g1(x), g′2(x) = −aα(x)g2(x)

for x ≥ x0 > 0, where

aα(x) =
1

2
bα(x) +

(n
2
− α

) 1

x
, bα(x) = ψ

(
x+ α

2

)
− ψ

(
x+ n− α

2

)
.

Here ψ denotes the Digamma function [2, 6.3.1]

ψ(x) =
Γ′(x)

Γ(x)
.

We denote by [α] the greatest integer less than or equal to α and denote by
β = α− [α]. It is clear that 0 ≤ β < 1.

For all α : n− α > α we have

bα(x) =

n−2[α]−1∑
s=0

(
ψ

(
x+ α+ s

2

)
− ψ

(
x+ α+ s+ 1

2

))
+ ψ

(
x+ n− α

2
+ β

)
− ψ

(
x+ n− α

2

)
(3.10)

and, for α : n− α < α we have
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bα(x) =

2[α]−n+1∑
s=0

(
ψ

(
x+ n− α+ s+ 1

2

)
− ψ

(
x+ n− α+ s

2

))
+ ψ

(
x+ α

2

)
− ψ

(
x+ α

2
+ 1− β

)
. (3.11)

We prove that

y |(ψ(y)− ψ(y + ξ))| ≤ C0 y ≥ y0 > 0, 0 < ξ ≤ 1

and, more generally, for k ≥ 0,

yk+1|ψk(y)− ψk(y + ξ)| ≤ Ck y ≥ y0 > 0, 0 < ξ ≤ 1 (3.12)

where

ψk(y) =
dk

dyk
ψ(y), ψ0(y) = ψ(y).

We use the asymptotic formula [2, 6.3.16]

ψ0(1 + y) = −γ +
∞∑
p=1

(
1

p
− 1

y + p

)
, y 6= −1,−2, ...

and, for k ≥ 1 [2, 6.4.10]

ψk(y) = (−1)k+1k!

∞∑
p=0

1

(y + p)k+1
, y 6= 0,−1,−2, ...

Hence,

ψ0(y + ξ)− ψ0(y) =
∞∑
p=0

(
1

y + p
− 1

y + p+ ξ

)
.

and, keeping in mind that 0 < ξ ≤ 1, we have

0 < ψ0(y + ξ)− ψ0(y) ≤ ψ0(y + 1)− ψ0(y).

We have

ψk(y + ξ)− ψk(y) = (−1)k+1k!

∞∑
p=0

(
1

(y + p+ ξ)k+1
− 1

(y + p)k+1

)
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If k is even,

0 ≤ ψk(y + ξ)− ψk(y) = k!
∞∑
p=0

(
1

(y + p)k+1
− 1

(y + p+ ξ)k+1

)

≤ k!

∞∑
p=0

(
1

(y + p)k+1
− 1

(y + p+ 1)k+1

)
= ψk(y + 1)− ψk(y)

Similarly, if k is odd,

0 ≤ ψk(y)− ψk(y + ξ) = k!

∞∑
p=0

(
1

(y + p)k+1
− 1

(y + p+ ξ)k+1

)

≤ k!
∞∑
p=0

(
1

(y + p)k+1
− 1

(y + p+ 1)k+1

)
= ψk(y)− ψk(y + 1).

Hence, by using the recurrence formula [2, 6.4.6]

ψk(y + 1) = ψk(y) + (−1)kk!y−k−1

we get (3.12). From (3.12), (3.10) and (3.11) it follows that

xk+1|a(k)
α (x)| ≤ Ck, k ≥ 0, x ≥ x0 > 0 .

Hence, applying Lemma 3.1, we obtain

|xkg(k)
1 (x)| ≤ c1, |xkg(k)

2 (x)| ≤ c2 k = 0, 1, 2....

It follows from Theorem 3.1 that the multipliers τm = g1(m) and τ−1
m =

g2(m) belong to Mp for any p ∈ (1,∞).

We make use of the following theorem of Askey and Wainger regarding
p-multipliers on the sphere.

Theorem 3.3. ([4, Theorem 4]) Let `0 = |p−1 − 2−1|(n− 2) and

am(β) = imm−β, m = 1, 2, ..., a0(β) = 0.

Then
am(β) ∈Mp if β > `0

and
am(β) 6∈Mp if β < `0 .
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A refinement of Theorem 3.3 is obtained by Gadjiev.

Theorem 3.4. ([8, Theorem 2]) Let `0 = |p−1 − 2−1|(n− 2) and am(`0) =
imm−`0. Then am(`0) is a (p, p)-multiplier for any p ∈ (1,∞).

The following assertion will be used to obtain the main result of the
section.

Lemma 3.2. ([10, Lemma 9, p. 178]) If wm = zmtm and {tm}, {t−1
m } ∈Mp,

p ∈ (1,∞), then {wm} ∈Mp,q if and only if {zm} ∈Mp,q.

We are in a position to prove the main theorem.

Theorem 3.5. Let 1 < p < ∞, 0 < α < n and `0 = |p−1 − 2−1|(n − 2).
Then the operator Aα is bounded from Lp(Σ) to H`

p(Σ) for ` ≤ n/2−α− `0.
The result is sharp.

Proof. We show that (I + δ)`/2Aα is an operator of strong type (p, p) for
` ≤ n/2− α− `0 and is not such an operator for ` > n/2− α− `0.
We recall that to the operator (I + δ)`/2 there corresponds the multipliers
{(1 +m(m+ n− 2))`/2} ([16, p.262]). Then, we have

(I + δ)`/2Aαf = πn/22α
∞∑
m=0

am(`, α)

km,n∑
k=1

f (k)
m Y (k)

m,n

where {am(`, α)} are the multipliers corresponding to the operator (I +
δ)`/2Aα. They have the form

am(`, α) = µm(α)(1+m(m+n−2))`/2 = im
Γ
(
m+α

2

)
Γ
(
m+n−α

2

)(1+m(m+n−2))`/2 .

We represent am(`, α) = tmzm where

zm = imm−(n/2−`−α)

tm = τm(α)(1 +m(m+ n− 2))`/2m−`

and {τm(α)} is defined in (3.9).
We have (1 +m(m+ n− 2))`/2m−` ∈Mp for any `. Indeed, we can write

(1 +m(m+ n− 2))`/2m−` =
(m+ a

m

)`/2(m+ b

m

)`/2
, a, b ∈ R

13



and, applying Theorem 3.1, we prove that each factor belongs to Mp for any
`. Keeping in mind Theorem 3.9 and Lemma 3.2 we get that tm ∈ Mp, for
any p ∈ (1,∞). Theorem 3.3 ensures that

am(`, α) ∈Mp if ` < n/2− α− |p−1 − 2−1|(n− 2) (3.13)

am(`, α) 6∈Mp if ` > n/2− α− |p−1 − 2−1|(n− 2) .

If we apply Theorem 3.4 we can insert the equality sign in (3.13).

We can reformulate Theorem 3.5 as follows.

Theorem 3.6. Let 1 < p < ∞, 0 < α < n and `0 = |p−1 − 2−1|(n − 2).
There are continuous embeddings

AαLp(Σ) ⊂ H`
p(Σ) (3.14)

for ` ≤ n/2− α− `0. The embeddings (3.14) are the best possible.

4 Differentiability properties of the characteristic

In this section we prove a theorem characterizing the influence of the symbol
Φα on the properties of the corresponding characteristic. Namely, we are
looking for the values of the index ` such that the condition Φα ∈ H`

p(Σ)
ensures that f ∈ Lp(Σ).

Theorem 4.1. Let 1 < p <∞ and `0 = |p−1−2−1|(n−2). Let Φα ∈ H`
p(Σ)

with ` ≥ n/2 − α + `0. Then there exists a function f ∈ Lp(Σ) such that
Φα = Aαf and

||f ||Lp(Σ) ≤ C ||Φα||H`
p(Σ) .

Equivalently, if ` ≥ n/2− α+ `0 then

H`
p(Σ) ⊂ AαLp(Σ).

These embeddings are optimal.

Proof. Let Φα ∈ H`
p(Σ). Suppose that Φα ∈ C∞(Σ) and let

Φα(ω) =
∞∑
m=0

km,n∑
k=1

φ(k)
m Y (k)

m (ω), ω ∈ Σ.
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Then

A−1
α Φα(ω) =

∞∑
m=0

(µm(α))−1

km,n∑
k=1

φ(k)
m Y (k)

m (ω) .

By definition of the space H`
p(Σ) we have g := (I + δ)`/2Φα ∈ Lp(Σ) and

||Φα||H`
p

= ||g||Lp . Since Φα ∈ C∞(Σ) then g ∈ C∞(Σ) . Let

g(ω) =

∞∑
m=0

km,n∑
k=1

g(k)
m Y (k)

m (ω)⇒ g1(ω) = g(−ω) =

∞∑
m=0

km,n∑
k=1

(−1)mg(k)
m Y (k)

m (ω).

We deduce that

A−1
α Φα(ω) = A−1

α (I + δ)−`/2g(ω) =
∞∑
m=0

bm(`, α)

km,n∑
k=1

(−1)mg(k)
m Y (k)

m,n(ω)

where the multipliers {bm(`, α)} have the form

bm(`, α) = im π−n/22−α
Γ
(
m+n−α

2

)
Γ
(
m+α

2

) (1 +m(m+ n− 2))−`/2 .

Let us represent the multiplier bm(`, α) in the form bm(`, α) = tmzm , with
zm = immn/2−`−α,

tm = π−n/22α(τm(α))−1(1 +m(m+ n− 2))−`/2m`

and τm(α) given in (3.9). It was shown in Theorem 3.2 that (τm(α))−1 ∈Mp

for any p ∈ (1,∞). If we apply Theorems 3.3 and 3.4 to the multipliers {zm}
we get {zm} ∈ Mp if ` ≥ n/2 − α + `0 and {zm} 6∈ Mp if ` < n/2 − α + `0.
Hence {bm(`, α)} ∈Mp if ` ≥ n/2− α+ `0, and

||A−1
α Φα||Lp(Σ) ≤ C ||g1||Lp(Σ) = C ||Φα||H`

p(Σ),

and {bm(`, α)} 6∈Mp if ` < n/2− α+ `0.

It follows from Theorems 3.5 and 4.1 that the range R(Aα) of the oper-
ator Aα, defined on Lp(Σ), satisfies the relations

Hn/2−α+`0
p (Σ) ⊂ R(Aα) ⊂ Hn/2−α−`0

p (Σ) , `0 = |p−1− 2−1|(n− 2) (4.15)

and the embeddings (4.15) are best possible.
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