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Abstract

Objective Several focal muscle vibration (fMV) and whole body vibration (WBV) protocols have been designed to promote
brain reorganization processes in patients with stroke. However, whether fMV and WBYV should be considered helpful tools to
promote post-stroke recovery remains still largely unclear.

Methods We here achieve a comprehensive review of the application of fMV and WBV to promote brain reorganization
processes in patients with stroke. By first discussing the putative physiological basis of fMV and WBYV and then examining
previous observations achieved in recent randomized controlled trials (RCT) in patients with stroke, we critically discuss possible
strength and limitations of the currently available data.

Results We provide the first systematic assessment of fMV studies demonstrating some improvement in upper and lower limb
functions, in patients with chronic stroke. We also confirm and expand previous considerations about the rather limited rationale
for the application of current WBV protocols in patients with chronic stroke.

Conclusion Based on available information, we propose new recommendations for optimal stimulation parameters and strategies
for recruitment of specific stroke populations that would more likely benefit from future fMV or WBYV application, in terms of
speed and amount of post-stroke functional recovery.
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Introduction strategies, the global burden of stroke has progressively in-

creased [2]. Stroke prevalence in 2013 has almost doubled

Stroke is the second leading cause of death after ischemic
heart disease and the third leading cause of disability-
adjusted life years (DALY) worldwide [1]. Despite the signif-
icant decline of stroke mortality rates due to the introduction
of new acute stroke therapies and innovative prevention
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that in 1990, and the absolute number of people affected by
stroke has substantially increased worldwide over the same
time period, suggesting that global stroke burden continues
to increase [3]. A current relevant issue concerns the design
of new pharmacological and non-pharmacological strategies
to promote post-stroke recovery [4—6]. Among non-
pharmacological techniques possibly helpful to promote
post-stroke functional recovery, increasing attention has re-
cently been paid to protocols based on muscle vibration.
Muscle vibration was first used in 1892 when Jean-Martin
Charcot, who was the most celebrated and powerful clinical
neurologist of the nineteenth century, delivered a lecture on
the topic of vibratory therapy in neurologic disorders:
“Vibration therapeutics: Application of rapid and continuous
vibrations to the treatment of certain nervous system disorders”
[7]. In his lecture, Charcot summarized the historical back-
ground of vibration therapy and then focused on his own clin-
ical experience in patients with Parkinson’s disease (PD).
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Charcot died 1 year later, and although Gilles de la Tourette
continued to study vibration therapy, Charcot’s observations
were largely forgotten [8]. About a century later, Hagbarth
and Eklund (1968) studied the motor effects of fMV in patients
with various types of central motor disorders, in particular,
those associated with spasticity and rigidity [9]. In spastic pa-
tients, Hagbarth and Eklund observed that vibration potentiated
or reduced voluntary power (and range of movement) depend-
ing upon whether the subject tried to contract the vibrated mus-
cle or its antagonist [9]. Later, Bishop studied the neurophysi-
ologic characteristics of the vibratory stimulation and possible
associated clinical applications and found a beneficial effect
induced by muscle vibration in spasticity disorders (i.e., re-
duced the strength of spasticity and potentiated weak voluntary
movement) [10]. More recently, a growing number of re-
searchers have tested various muscle vibration protocols includ-
ing focal muscle vibration (fMV) and whole body vibration
(WBV) aimed to elicit active modulation of sensory afferent
inputs to the central nervous system [11]. Converging evidence
from experimental studies raises the hypothesis that fMV and
WBYV might induce brain reorganization sensorimotor process-
es in healthy humans [12-20]. Several researchers have also
investigated the possible beneficial effect of various fMV and
WBV protocols in patients with stroke in order to promote
functional recovery through brain reorganization sensorimotor
processes. However, whether fMV or WBYV protocols can be
considered new strategies possibly helpful for promoting post-
stroke recovery remains largely unclear.

Here, a workgroup of researchers expert in the field has crit-
ically reviewed and discussed 10 years of randomized controlled
studies (RCT) investigating the effect of fMV and WBYV proto-
cols, in patients with stroke. We focused our attention on the
fMV and WBYV techniques because these vibration protocols
share putative physiological mechanisms possibly able to pro-
mote beneficial brain reorganization sensorimotor processes, in
patients with stroke. The effect of WBV in patients with chronic
stroke has been discussed only in a single previous review [21]
thus covering only in part the topic. So far, none have reviewed
systematically WBV and fMV studies in patients with chronic
stroke in order to clarify the real impact of these vibration pro-
tocols on post-stroke motor recovery. Given the significant
amount of recent research in the field and the heterogeneity of
previous methodologies used and findings reported, the need for
a comprehensive and updated review is relevant. We have first
summarized the technical aspects and physiological basis of
fMV and WBYV and then critically re-examined the main meth-
odological aspects and findings achieved in the previous RCT
using fMV and WBYV in patients with stroke.

Literature research strategy and criteria

The literature search was performed by means of the following
databases: MEDLINE, Scopus PubMed, Web of Science,
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EMBASE and the Cochrane Library. Literature criteria includ-
ed the following terms: “stroke” OR “chronic stroke” AND
“vibration,” “stroke” OR “chronic stroke” AND “training,”
“stroke” OR “chronic stroke” AND “rehabilitation,” “post-
stroke recovery” AND “vibration.” Studies considered for eli-
gibility were only RCTs published from January 2007 to
July 2018 implying fMV and WBYV for the treatment of patients
with chronic stroke. The reference lists of retrieved articles were
also manually searched for additional studies. Furthermore, re-
views, reports, and unpublished articles were not considered in
this study (Fig. 1). Owing to the heterogeneity in methodology
used and outcome measures reported in previous studies, we
organized a narrative review according to the International
Narrative Systematic assessment, INSA tool [22].

Section 1
Focal muscle vibration

Vibration is a mechanical oscillation, i.e., a periodic alterna-
tion of force, acceleration over time. During vibration, energy
is transferred from an actuator (i.e., the vibration device) to a
resonator (i.e., the human body, or parts of it). fMV is com-
monly achieved using a mechanical stimulation placed over
the target muscle using a transducer connected to a control
unit; the device and the control unit are able to generate a
vibratory stimulus characterized by specific parameters
(Fig. 2). The two main parameters to be selected for fMV
include amplitude and frequency of vibration. The extent of
the oscillatory movement (peak-to-peak displacement in mm)
determines the amplitude of fMV, while the repetition rate of
the oscillation cycles denotes the frequency of fMV.
According to the specific parameters used (e.g., amplitude
and frequency) and site of application, fMV can co-activate
a mixture of cutaneous mechanoreceptors such as Pacinian
and Meissner’s corpuscles (rapidly adapting receptors) and
Ruffini corpuscle and Merkel’s disk [23-25]. In addition,
Golgi tendon organs are also responsive to fMV even though
this effect likely occurs during muscle contraction, reflecting
the threshold for Ib afferents activation [26-28]. However,
when fMV is applied over the muscle belly or its tendon,
muscle spindle primary endings (Ia fibers) are thought to be
the most responsive receptors to fMV [29-31]). Each cycle of
the vibratory stimulus is thought to stretch the muscle and
selectively excite the primary endings of the muscle spindles
causing them to fire once for each cycle of vibration [32].
Most authors seem to agree that the optimum amplitude of
the vibratory stimulus is less than 0.5 mm because a greater
value tends to lead to an overflow of the stimulus into the
surrounding muscles and bone [33]. Hence, fMV given at
0.2-0.5 mm amplitude over a relaxed muscle is a powerful
and selective stimulus of activity in Ia afferents by entraining
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Fig. 1 Literature search and study
selection

Total 93 were identified

using database searching

17 irrelevant studies have
been excluded by scanning
title and abstract

4

76 full text reviewed

4

58 articles were excluded:

e Review article nonspecific to vibration and
stroke (14)

e Not RTC(42)

e Participants were post-acute stroke (2)

18 studies (10 about focal muscle
vibration and 8 about whole muscle
vibration) have been included in this

study.

the discharge rate of primary muscle spindle endings [25, 30,
34]. FMV at amplitudes lower than 0.5 mm is commonly used
also to avoid the Tonic vibration reflex (TVR) first described
by Eklund and Hagbarth [35, 36]. In early physiological stud-
ies in healthy subjects, Bishop observed that increases in the
amplitude of vibration increases the strength of the TVR [10]
which has been described as a variant of the classic myotatic
reflex in response to a vibratory stimulus of low amplitude (<

3 mm) at a frequency of about of 100 Hz [37]. During fMV,
vibration applied at amplitudes < 0.5 mm is currently used to
avoid the TVR which may prevent the voluntary tuning of
muscle activation, owing to the involuntary muscle contrac-
tion. Concerning the frequency of fMV, it is known that the la
afferent firing rate is entrained linearly with vibration frequen-
cies up to 70-80 Hz, followed by a subharmonic increase at
higher frequencies, with sharp falls often observed at frequen-
cies between 150 and 200 Hz [25, 30]. Majority of studies
seem to indicate that an increase in the frequency of the vibra-
tory stimulus is accompanied by an increase in the strength of
the TVR [29, 38, 39]. Accordingly, most of the authors have
used a frequency around 100 Hz and found this to be satisfac-
tory for most applications [34, 40]. During fMV applications,
sometimes subjects kept a steady contraction of the target

muscle at 5% of the maximal force, under visual EMG feed-
back. Voluntary contraction is used because it has been shown
that voluntary muscle activity increases response to fMV, most
likely through fusimotor co-activation and subsequent in-
crease in spindle discharge [26].

FMV in chronic stroke

Several studies have investigated the clinical application of MV
in patients with chronic stroke in order to promote post-stroke
recovery [41]. The four basic indications for focal vibration in
neurorchabilitation, regardless of the neurological pathology in
question, are (1) to reduce spasticity, (2) to facilitate muscle
contraction of functional activity, (3) to stimulate the proprio-
ceptive system to obtain an efficient motor control in functional
activities, and (4) to provide a proprioceptive training and restore
sensorimotor organization in movement disorders [41].

The demographic data and clinical features of participants
are shown in detail in Table 1. A detailed description of pur-
poses, technical aspects of fMV, outcome measures, the
timing of follow-up, and finally main results achieved by each
of the studies here reviewed are shown in Table 2. The mean
age of the patients examined is similar among studies. With
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Fig. 2 A representative instrument for the application of focal muscle
vibration

the exception of the study of Marconi et al. [15] and Conrad
et al. [43], in the remaining studies, the male/female ratio is
slightly unbalanced in favor of males [42, 44-50]. The time

interval between stroke onset and fMV application varied sig-
nificantly among studies since the four studies enrolled pa-
tients at a 4—6-month period from the stroke [42, 45-47],
whereas the remaining studies applied fMV at least 12 months
following stroke. Only four studies have provided information
concerning the description of type (ischemic or hemorrhagic
stroke), localization (cortical or subcortical, affected hemi-
sphere), and extension of stroke [44, 46, 47, 50]. Only two
studies reported stroke localization in detail (lesions detected
by CT or MRI were classified as cortical or subcortical, and
divided into frontal, fronto-parietal, parietal, fronto-parietal-
temporal, or parietal-temporal) [15, 48]. Although the side of
the affected hemisphere (left or right) was generally balanced
among studies, two studies included patients with predomi-
nant left stroke [47, 48], whereas a third study did not report
the affected body side [49].

Most of the studies applied fMV over the upper limb mus-
cles with the exception of two studies [42, 46] applying MV
over lower limb muscles. In the upper limb studies, fMV was
delivered over different target muscles ranging from a single
target muscle [43, 48] to three muscles treated simultaneously
by means of a double application of the device such as BB and
FR in Marconi et al. [25] and Tavernese et al. [47], and PP and
BB in Caliandro et al. [44] and Celletti et al. [S0] and then, the
third muscle alone. Concerning the specific target muscles,
several studies applied fMV over the wrist flexors muscles
alone [15, 43-45, 47, 48], or in combination with synergic
muscles such as the biceps brachialis [15, 47] or biceps

Table 1  Demographic data and clinical features of patients with chronic stroke in studies applying focal muscle vibration (fMV)
Study Group N Gender (M/F) Age (years) Duration of disease Side (L/R) Type (I/H)
Paoloni et al. [42] EG 22 19/3 59.5(13.3) 1.85 (0.59) year 11/11 N/A
CG 22 20/2 62.6 (9.5) 1.86 (0.61) year 10/12 N/A
Conrad et al. [43] EG 10 4/6 55.5+5.35 8.8 £6.87 year 7/3 N/A
CG 5 2/3 56.2+4.2 N/A 2/3 N/A
Marconi et al. [15] EG 15 9/6 63.6+7.6 39.9 4+ 28.8 month 6/9 N/A
CG 15 8/7 66.3+11.0 40.6 +25.1 month 7/8 N/A
Caliandro et al. [44] EG 28 20/8 57.42+12.79 100.71 + 82.76 month 14/14 18/10
CG 21 14/7 61.85+15.74 96.4 + 66.84 month 12/9 15/7
Noma et al. [45] EG 12 8/4 57.5 (38-83) 21.5 (8-156) week 7/5 N/A
CG (rest) 12 8/4 61 (27-83) 16 (7-139) week 4/8 N/A
CG (stretch) 12 9/3 61.5 (41-83) 16.5 (8-291) week 5/7 N/A
Lee et al. [46] EG 16 13/3 53.31+8.37 56.94 +25.73 month 8/8 10/6
CG 15 11/4 55.73+8.27 49.93 +29.97 month 7/8 9/6
Tavernese et al. [47] EG 24 21/3 58.9+14.7 19.1 +18.9 month 16/8 24/0
CG 20 18/2 583+124 25.9+21.8 month 14/6 20/0
Casale [48] EG 15 9/6 65.13+£5.84 N/A 13/2 N/A
CG 15 9/6 64.2+5.05 N/A 14/1 N/A
Costantino et al. [49] EG 17 11/6 62.59+15.39 N/A N/A N/A
CG 15 10/5 60.47+16.09 N/A N/A N/A
Celletti et al. [50] EG + RMP 6 4/2 43 (31-68) 6 (2-33) year 3/3 3/3
EG+CP 6 472 43 (30-57) 2.5 (2-4) year 42 2/4
CG 6 4/2 62.5 (46-69) 5.5 (2-7) year 2/4 42
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brachialis coupled with the pectoralis minor [44, 50] or finally
in the hand [45]. By contrast, other studies applied fMV over
extensor muscles [42, 46, 49] in order to improve flexor mus-
cles spasticity. Again, several studies delivered fMV over a
single muscle such as the triceps brachii alone [48] or in as-
sociation with the Estensoris carpi radialis [49]. Studies ap-
plying fMV over lower limb muscles implied vibration of the
peroneus longus and tibialis anterior [42] or at the Achilles
and tibialis anterior tendon [46]. Concerning the simultaneous
contraction of the treated muscles, only three studies adopted
this paradigm [15, 44, 50].

Concerning fMV parameters, vibration amplitude varied
significantly among studies ranging from 10 um [42, 47],
15 um [46], 0.2-0.5 mm [15, 44] to 2 mm [48, 49]. A single
study did not clarify the amplitude of fMV [43]. The frequen-
cy used in the studies varied from 70 to 120 Hz except for
Costantino [49] who used a frequency of 300 Hz. The dura-
tion of MV and the number of sessions also varied among
studies, ranging from a single session [43, 45], to three con-
secutive days [15, 44, 50] or even more (about 10—12 sessions
in four studies) [42, 47—49]. Finally, a single study applied
fMV repeatedly for 30 times [46].

Outcome measures varied among studies, ranging
from clinical evaluation made by standardized clinical
scales (spasticity) to experimental environments includ-
ing behavioral measurement (kinematics and gait analy-
sis), and finally neurophysiological measures including
TMS and EMG. For the upper limb, evaluations were
done by analyzing reaching movements. Tavernese et al.
[47] evaluated the reaching movement variation before
and after fMV, while Conrad et al. [43] evaluated the
hand kinematics and muscle activity during target track-
ing not only before and after but also during vibration.
Interestingly, Marconi et al. [15] evaluated vibration ef-
fects on cortical activity using TMS. For the lower
limbs, the evaluation was done on gait parameters by
using a gait analysis system [42] or in association with
postural and balance measures [46]. All the other stud-
ies used a clinical outcome scale in order to evaluate
spasticity [44, 45, 48, 50] or hand function [44, 48-50].
Noma et al. [45] used also F wave parameters to eval-
uate spasticity. A detailed description of the main results
achieved by the fMV studies reviewed is shown in
Table 2.

Section 2
Whole body vibration
WBYV consists of a mechanical stimulus characterized by

an oscillatory movement portrayed by specific parameters
such as amplitude, frequency, and finally magnitude

(acceleration) of oscillations. The magnitude of oscilla-
tions is commonly reported in g or g-force values accord-
ing to the following formula: g=[D (27 x Hz)2]/9.81,
where D indicates the displacement of the platform (ampli-
tude of WBYV) [51, 52]. WBV is practically delivered by
means of a vibrating platform where participants stand in a
static position or move dynamically (Fig. 3). Two different
types of WBYV have been reported. The first type of WBV
is achieved by means of a platform that vibrates in a pre-
dominantly vertical direction with 4-mm peak-to-peak am-
plitude. Differently, the second type of WBV is given
through a platform able to rotate around an antero-
posterior horizontal axis. Contrarily from the first type of
WBY, the second type of WBYV implies an asynchronous
application of vibration to the left and right foot and thus
an asymmetric perturbation of the legs [53]. Given that, as
for MV, also WBYV is thought to entrain muscle spindles
and subsequently, alpha-motoneuron firing rate possibly
leading to the TVR [51], several authors have investigated
the possible beneficial effects of WBV to boost muscle
strengthening and improving proprioception control in
healthy athletes [51]. The frequencies used for exercise
range from 15 to 44 Hz and displacements range from 3
to 10 mm. Acceleration values range from 0.3 to 15 g
(where g is the Earth’s gravitational field or 9.81 m/s-2)
[51, 52]. Thus, vibration provides a perturbation of the
gravitational field during the time course of the interven-
tion [51, 52].

Fig. 3 A representative instrument for the application of whole-body
vibration
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WBYV in chronic stroke

In the present section, we review the RCT studies applying
WBYV in patients with chronic stroke with the aim of promot-
ing post-stroke recovery. The demographic data and clinical
features are shown in detail in Table 3. A detailed description
of purposes, technical aspects of WBYV, outcome measures,
timing of follow-up, and finally main results achieved by each
of the studies here reviewed are shown in Table 4.

The age of patients recruited in all the previously published
WBYV studies is generally comparable with a rather balanced
proportion of males and females in two studies [55, 59] but not
in the other six studies (unbalanced with a majority of males).
Although all patients enrolled in the WBYV studies have been
classified as chronic stroke patients, the exact time interval
between stroke and WBYV application varied significantly.
All the studies enrolled patients at least 6 months following
a stroke except for Brogérdhet at al. [54] who did not clarify
the time interval from stroke and WBYV application. A limita-
tion of the WBYV studies concerns the lack of a clear and
detailed description of the type (ischemic or hemorrhagic
stroke), localization (cortical or subcortical, affected hemi-
sphere), and extension of stroke.

Concerning the specific parameters used during WBYV,
there was a variety of protocols with frequencies ranging from
5 to 40 Hz [55, 56, 59, 61] and amplitudes ranging from
0.44 mm to 6 mm. Ranges of accelerations applied during
WBYV have been not clarified. The duration of WBV also
varied significantly among studies ranging from 30 s to
2.5 min. Moreover, most of the WBYV studies planned repeat-
ed sessions of WBV ranging from 17 [59] to 30 [61] with the
exception of two studies [57, 58] who evaluated the effect of a

single WBYV session. Liao [61] investigated the effect of low-
intensity and high-intensity WBV with respect to sham
stimulation.

The outcome variables measured to clarify the possible
beneficial effects of WBYV included clinical, neurophysiolog-
ical, and behavioral data. Some authors evaluated the sever-
ity of spasticity by means of the Modified Ashworth scale
[56, 58], others calculated the H/M ratio [58], while some
measured balance [59] or muscle strength [54, 55, 57, 60,
61]. Outcome measures also included serum level of specific
collagen proteins [56] or ultrasound evaluation of muscle
structure [59]. The effect of WBV on all these clinical, neu-
rophysiological, and behavioral measures is rather inconsis-
tent. Pang [56] found differences in the severity of spasticity,
whereas Tankisheva et al. [55] did not. However, a benefi-
cial effect of WBV on muscle strength in patients with
chronic stroke was reported by both studies. Chan et al.
[58] found a significant reduction of spasticity clinically
tested by means of the Modified Ashworth scale and by
using the H/M ratio. Other studies, however, did not confirm
the effect of WBYV on muscle strength in patients with chron-
ic stroke [54, 59, 60]. Studies evaluating balance before and
after WBV found no beneficial effect in chronic stroke pa-
tients [59]. Similarly, measures of clinical functional evalu-
ation in chronic stroke patients such as the 6 Minute
Walking Test [60, 61], Timed Up and Go test [57], and
Berg Balance Scale [62] revealed non-significant effects of
WBYV. Concerning the exact timing of clinical, neurophysi-
ological, or behavioral evaluations before and after WBYV,
many studies have made the evaluation before and soon
after WBV [54, 57-59, 61] or at 1 month [56, 60] and
6 weeks following WBV [55]. A detailed description of

Table 3 Demographic data and clinical features of patients with chronic stroke in studies applying whole body vibration (WBV)
Study Group N Gender (M/F) Age (years) Duration of disease Side (L/R) Type (V/H)
Brogardh et al. [54] EG 16 13/3 61.3+8.5 37.4 +31.8 months 9/7 14/2
CG 15 12/3 63.9+5.8 33.1 +29.2 months 7/8 13/2
Tankisheva et al. [55] EG 7 4/3 574+13 7.71 + 8.6 years 4/3 6/1
CG 8 6/2 65.3+3.7 5.28 + 3.6 years 4/4 5/3
Pang et al. [56] EG 41 26/15 57.3+11.3 4.6 + 3.5 years 20/21 20/21
CG 41 32/9 574+11.1 5.3 +4.2 years 14/27 21/20
Silva et al. [57] EG 28 19/9 60.75+11.8 40.85 + 68.76 months 17/11 25/3
CG 10 8/2 58.1+8.14 39.6 + 63.55 months 7/3 8/2
Chan et al. [58] EG 15 10/5 56.07 + 11.04 30.4 +25.8 months 12/3 10/5
CG 15 11/4 54.93 +7.45 38.87 + 38.22 months 7/8 5/10
Marin et al. [59] EG 11 6/5 62.3+10.6 4.3 +2 years 5/6 10/1
CG 9 5/4 64.4+7.6 4.3 + 3 years 5/4 72
Lau et al. [60] EG 41 26/15 57.3+11.3 4.6+ 3.5 years 20/21 20/21
CG 41 32/9 574+11.1 5.3 +4.2 years 14/27 21/20
Liao et al. [61] EG LWBV 28 20/8 60.8+8.3 8.5+5.2 years 20/8 12/16
EG HWBV 28 18/10 62.9+10.2 8.1 +£4.2 years 19/9 12/16
CG 28 24/4 59.8+9.1 9.0 +£4.6 years 12/16 11117
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Table 4  Characteristics of the cited RCT studies regarding whole body
vibration (WBYV). CTs C-telopeptide of type I collagen cross-links, BAP
bone-specific alkaline phosphatase, MAS Modified Ashworth Scale, BBS

Berg Balance scale, VAS visual analogic scale, 7UG Timed Up and Go
test, 6MWT 6-Minute Walk Test

Author Purpose WBYV (frequency, amplitude, Outcome measure Follow—up Results

(year) side of the application, time)

Pang [56]  To investigate the The device that generates Serum level of (CTs) and Baseline, No significant effect on
effect of WBVon vertical WBV. Frequency (BAP). Concentric knee immediately serum levels of CTx and

BAP

A significant time effect in
the concentric knee flexion
power

after 24 session
program and
1 month after
the termination

flexion and extension
power. MAS

bone turnover, leg
muscle strength,
motor function and
spasticity

range 20-30 Hz and
amplitude from
0.60-0.44 mm. Three
times per week for

8 weeks (total 24 sections)
of training following a
specific protocol preceded
by 15 min of warm-up ex-
ercises

Tankisheva To investigate the Vertical vibration platform, 3

et al. effect of a 6-week times a week for 6 weeks.
[55] WBYV training pro- Progressively increasing
gram the intensity by increasing
the frequency (35 to
40 Hz) or the amplitude
(1.7 and 2.5 mm)
Sessions 1-12: 5
bounds x 30 s
Sessions 13—18: 17
bounds x 60 s
Marin et al. To analyze the effects ~ Vibration platform with an
[59] of WBV on lower increase in frequency
limb muscle (from 5 to 21 Hz), sets
architecture, muscle (from 4 to 7), and time per
strength, and set (from 30 to 60 s)
balance during 17 sessions.
Amplitude ranged
between 4 and 6 mm peak
to peak
Chan etal. To investigate the A single session of vertical
[58] effect of a single WBYV with a magnitude of
session of WBV 12 Hz and an amplitude of
training on ankle 4 mm
plantar flexion Subjects were positioned on
spasticity and gait the platform in semi-squat
performance position and the time
course included two
10-min periods of vibra-
tion with a 1-min rest in-
terval
Brogardh  To evaluate the effects 12 sessions of WBYV training
et al. of WBYV training (twice weekly during
[54] 6 weeks) on a vibrating
platform
The EG trained on a vibrating
platform with an
amplitude of 3.75 mm
The CG trained on a vibrating
platform with an
amplitude of 0.2 mm. The
frequency on both
platforms was set to 25 Hz
Liao etal.  To investigate the Patients were randomly

[61] effects of different
WBY intensities on
body

functions/structures

assigned a low-intensity
WBYV (frequency 20 Hz
1 mm amplitude),
high-intensity WBV

of training

Ashworth scale (score 0-4)

applied on the intervention
gastrocnemius, soleus, period of
quadriceps, hamstrings, 6 weeks and

after 6 weeks
of follow-up

adductors, and psoas
muscles

Knee extension and flexion
strength with an isokinetic
dynamometer

Sensory organization test for
postural control

Ultrasound evaluation of
muscle architecture. BBS.
Muscle strength

Before and after
treatment

MAS. Subject experience of Before and after
the influence of ankle treatment
spasticity on ambulation
was scored by VAS. The
maximal amplitude of H
reflex and the
Hmax/Mmax ratio to as-
sess ankle spasticity. The
time up and go test. A
force plate was used to
measure foot pressure

Isokinetic and isometric knee Pre- and
muscle strength (primary post-training
outcome measures),
muscle tone, balance, gait
performance, and
perceived participation
(secondary outcome
measures) were assessed
during 2 h before and after
the WBYV training

Knee muscle strength At baseline and

(isokinetic dynamometry), post--
knee and ankle joint intervention
spasticity with MAS,

balance (Mini Balance

Significant knee difference in
knee MAS score

Baseline, after the No significant differences in

the Ashworth scale; a
significant difference in
isometric knee extension
strength

Increased muscle thickness
observed in both groups.
No statistically significant
difference observed in the
BBS and in muscle
strength

Hmax/Mmax ratio
significantly decreased in
the EG

Time up and go significantly
improved in EG

MAS and VAS showed a
significant difference
between EG and CG

No significant differences
were found in any
outcome measures
between the EG and CG
after 6 weeks

Significant time effect for
muscle strength, TUG
distance, and oxygen
consumption rate achieved
during the 6-MWT, the
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Table 4 (continued)

Author Purpose WBYV (frequency, amplitude, Outcome measure Follow—up Results
(year) side of the application, time)
activity, and partici- (frequency 30 Hz, 1 mm Evaluation Systems Test), Mini Balance Evaluation
pation amplitude), or CG mobility (TUG), walking Systems Test, the
endurance (6MWT), Activities-specific Balance
balance self-efficacy Confidence scale, and the
(Activities-specific Short-Form 12 Health
Balance Confidence Survey physical composite
scale), participation in dai- score domain
ly activities (Frenchay
Activity Index), perceived
environmental barriers to
societal participation
(Craig Hospital Inventory
of Environmental Factors),
and quality of life
(Short-Form 12 Health
Survey)
Silvaetal.  To investigate the One session of WBV Simultaneous Before and after ~ No effects on the group and
[57] acute effects of (frequency of 50 Hz and electromyography of the vibration time interaction relative to
WBYV on motor amplitude of 2 mm) affected and unaffected therapy variables affected side
function comprising four 1-min se- tibialis anterior and rectus rectus femoris, unaffected
ries with 1-min rest inter- femoris muscles bilaterally side rectus femoris,
vals between series in in voluntary isometric affected side tibialis
three body positions: bi- contraction; the 6MWT; anterior, unaffected side
pedal stances with the the Stair-Climb Test; and tibialis anterior, and the
knees flexed to 30° and the TUG Stair-Climb Test
90° and a unipedal stance
on the paretic limb
Lau et al. To examine the The EG received 9-15 min of Balance (BBS), mobility At baseline, Significant improvement in
[60] efficacy of WBV in WBYV (vertical vibration; (10-m walk test and immediately balance, mobility, muscle
optimizing frequency =20-30 Hz 6MWT), knee muscle after the strength, and fall-related
neuromotor amplitude = 0.44-0.60 strength (isokinetic 8-week training  self-efficacy measures in

mm, peak

acceleration = 9.5-15.8)
while performing a variety
of dynamic leg exercises
on the vibration platform.
The CG performed the
same exercises without
vibration. The subjects
underwent their respective
training three times a week
for 8 weeks

performance and
reducing falls

dynamometry), and
fall-related self-efficacy
(activities-specific balance
confidence scale)

and at 1-month
follow-up

both groups after the
8-week treatment period

the main results achieved by the WBYV studies is shown in
Table 4.

Discussion

Muscle vibration seems to be a safe method possibly helping
to improve the outcome of stroke patients. Despite the grow-
ing amount of literature in this research field, a relevant num-
ber of issues remain still unsolved. First, to analyze the role of
a rehabilitative intervention in stroke patients, it should be
mainly taken into account that stroke is a heterogeneous

@ Springer

condition, thus entailing different degrees of damage with
different recovery mechanisms. In this view, there is a lack
of RCTs designed to investigate how the potential for stroke
recovery and the benefit from rehabilitation strategies vary
according to stroke (lesion) characteristics. Indeed, most of
the studies that analyzed the effects of fMV/WBYV on stroke
recovery did not report subgroup analysis focused on the dif-
ferent lesion localizations, or yet extent and number of brain
lesions. It is known that the global burden and persistence of
post-stroke functional deficit crucially reflect infarct size and
lesion location (e.g., cortical or subcortical stroke). Patients
with cortical stroke are known to manifest worse baseline
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National Institute of Health Scale/Score (i.e., stroke severity)
on average than patients with subcortical lesions. Conversely,
a single subcortical white matter damage would result in cor-
tical differentiation causing widespread cortical dysfunction
or severe motor impairment and poor motor recovery [63,
64]. Hence, when evaluating the effect of fMV/WBYV on
post-stroke recovery, it should be taken into account that the
efficacy would depend on the specific pattern of brain damage
[62]. Only a few sporadic case series have been carried out
specifically on this issue. A single study from Marconi [15]
reported that fMV-induced effects on 31 chronic stroke pa-
tients varied depending on whether the stroke was cortical or
subcortical. However, further RCTs with larger cohorts of
subjects are needed to verify these observations. Beyond cor-
tical and subcortical stroke localization, other clinical features
would influence the degree of post-stroke recovery such as
stroke severity upon admission [65], hemispheric lateraliza-
tion, stroke volume, number of lesions and patients’ charac-
teristics such as gender and age [66], and presence of aphasia
or visual field deficit [66].

A further aspect concerns the optimal timing of interven-
tion. Motor recovery is thought to be almost completed within
10 weeks by stroke occurrence, and stroke recovery reaches a
plateau 3 to 6 months after stroke onset [67]; accordingly,
most of the post-stroke rehabilitation guidelines suggest to
begin the rehabilitation program in the very early phase of
acute stroke. Since the very first hours after stroke, the role
of changes in perilesional and remote brain regions triggered
by the focal brain lesion, and the role of the recruitment of
remote or secondary brain structures might play a role in the
various degrees of motor recovery [68, 69].

Another relevant point concerns the putative physiological
mechanisms responsible for the beneficial effect induced by
vibration protocols. Several studies in animals and in humans
have demonstrated that experimental modulation of proprio-
ceptive inputs to the CNS can re-shape cortical mapping in the

sensorimotor region, owing to use-dependent plasticity pro-
cesses [70-73]. For instance, limb immobilization can deteri-
orate cortical motor representation of the target body region,
reduce cortical excitability, and degrade motor learning [70,
71]. Hence, it might be argued that the fMV/WBV-induced
selective stimulation of muscle spindles might elicit changes
in afferent sensory inputs to the CNS possibly leading to ben-
eficial cortical/subcortical brain reorganization sensorimotor
processes in various neurological conditions imposing limb
immobilization such as stroke. It is known that in patients with
stroke, the severity of motor deficit reflects two main patho-
physiological processes: (1) loss of function due to neuronal
loss and (2) maladaptive use-dependent plasticity in survived
cortical/subcortical regions operating in both the affected and
unaffected hemisphere [74]. Stroke-induced limb immobiliza-
tion would, therefore, imply reduced afferent inputs to the
CNS driving to low activation of cortical/subcortical motor
maps coupled with increased inhibition from survived brain
regions. As a result, reduced use-dependent cortical plasticity
would further deteriorate the motor outcome and delay signif-
icantly the timing of post-stroke functional recovery [74].
Hence, we speculate that fMV/WBYV would, in theory, pro-
mote post-stroke functional recovery by enhancing proprio-
ceptive inputs to the CNS and inducing beneficial cortical and
subcortical reorganization processes based on re-balancing
and shaping of cortical and subcortical sensori-motor
representations.

A final comment concerns the direct comparison between
the amount of after-effects induced by fMV and WBY, in
terms of post-stroke motor recovery. The experimental and
clinical data coming from the RCT studies point to the fragility
of the WBYV after-effects when compared to MV, in patients
with stroke. The inconsistent results observed in previous
WBYV studies in stroke would reflect a number of methodo-
logical reasons including the relevant variability in the stimu-
lating parameters and experimental design used. A possible

Table 5 Recommendation for
optimal technical application of
focal muscle vibration (fMV) and
whole body vibration (WBV)

MV Frequency
Amplitude

Target muscle

State of the muscle during the

intervention
Duration
Design
WBV Frequency
Amplitude

Acceleration

State of the muscle during the

intervention
Duration

Design

70-120 Hz [19,29, 4648, 5054, 85]

10 um—1 mm [19, 45, 47, 51-53, 59]

Upper limb: flexor muscles [19, 45, 47, 50, 51, 59]

Lower limb: less clear, preferentially extensor muscles [52, 53]
Mild tonic contraction [19, 45, 47, 50, 52]

10-30 min [19, 42, 45-47, 52, 53, 59]
Repetitive sessions [19, 42, 45-47, 52, 53, 59]
20-40 Hz [57, 58, 60, 62, 65]

1-4 mm [56-58, 60, 63, 64]

Not clear, presumably between 0.3 and 15 g [62]
Mild tonic contraction [56-58, 60, 62—65]

Variable between maximum 10-15 min [58,61-65]
Repetitive sessions [56-58, 60, 65]
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future scenario would also imply different target stroke popu-
lations for the two muscle vibration techniques. Repetitive
sessions of fMV would be more suitable for
neurorehabilitative applications in patients with post-stroke.
By contrast, stroke patients manifesting gait and balance im-
pairment would, in theory, benefit from repetitive WBV appli-
cations due to the possible beneficial effect of perturbation of
the gravitational field [51, 52].

Based on the currently available experimental and clinical
data here examined, through this narrative review, we propose
a new recommendation for optimal technical application of
fMV and WBYV in patients with stroke (Table 5). Our recom-
mendation also includes new proposed strategies for the re-
cruitment of specific cohorts of patients with the aim to in-
crease the likelihood for a vibration-induced beneficial symp-
tomatic effect in terms of post-stroke motor recovery. Future
studies with fMV/WBYV should be designed in patients with
cortical rather than subcortical strokes that may imply more
severe white matter lesions which in turn preclude motor re-
covery after stroke [74]. In addition, fMV and WBYV should be
applied in patients with acute or subacute stroke rather than in
chronic stroke thus increasing the likelihood for the occur-
rence of cortical reorganization processes (cortical plasticity),
well-known crucial mechanisms underlying motor recovery
after stroke [74]. It should be taken into account that optimal
response to muscle vibration would require active target mus-
cle contraction during the intervention (Table 5). Accordingly,
future studies should recruit patients with consistent and re-
sidual muscle force and exclude those with severe muscle
weakness.

In conclusion, we suggest that future studies should be
designed in clinically homogeneous cohorts of patients with
stroke taking into account our proposed recommendation for
optimal technical application of fMV and WBV. Moreover,
besides the evaluation of patient’s clinical features by means
of clinical scales, future studies should also include standard-
ized outcome measures based on more advanced and objec-
tive technologies. This study design would finally allow a
better comparison between fMV and WBYV in terms of symp-
tomatic improvement in patients with stroke.
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Modified Ashworth Scale; MEP, motor-evoked potentials; M1, Motricity
index; PT, physiotherapy; RMT, resting motor threshold; rMV, repetitive
muscle vibration; SICI, short-interval intracortical inhibition; TMS, trans-
cranial magnetic stimulation; TUG, Timed Up and Go test; VAS, visual
analogic scale; VNRS, Verbal Numerical Rating Scale of pain; WBYV,
whole body vibration; 6MWT, 6

Minute Walk Test; WMFT, Wolf Motor Function Test
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