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Abstract
Objective Several focal muscle vibration (fMV) and whole body vibration (WBV) protocols have been designed to promote
brain reorganization processes in patients with stroke. However, whether fMVand WBV should be considered helpful tools to
promote post-stroke recovery remains still largely unclear.
Methods We here achieve a comprehensive review of the application of fMV and WBV to promote brain reorganization
processes in patients with stroke. By first discussing the putative physiological basis of fMV and WBV and then examining
previous observations achieved in recent randomized controlled trials (RCT) in patients with stroke, we critically discuss possible
strength and limitations of the currently available data.
Results We provide the first systematic assessment of fMV studies demonstrating some improvement in upper and lower limb
functions, in patients with chronic stroke. We also confirm and expand previous considerations about the rather limited rationale
for the application of current WBV protocols in patients with chronic stroke.
Conclusion Based on available information, we propose new recommendations for optimal stimulation parameters and strategies
for recruitment of specific stroke populations that would more likely benefit from future fMVor WBVapplication, in terms of
speed and amount of post-stroke functional recovery.
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Introduction

Stroke is the second leading cause of death after ischemic
heart disease and the third leading cause of disability-
adjusted life years (DALY) worldwide [1]. Despite the signif-
icant decline of stroke mortality rates due to the introduction
of new acute stroke therapies and innovative prevention

strategies, the global burden of stroke has progressively in-
creased [2]. Stroke prevalence in 2013 has almost doubled
that in 1990, and the absolute number of people affected by
stroke has substantially increased worldwide over the same
time period, suggesting that global stroke burden continues
to increase [3]. A current relevant issue concerns the design
of new pharmacological and non-pharmacological strategies
to promote post-stroke recovery [4–6]. Among non-
pharmacological techniques possibly helpful to promote
post-stroke functional recovery, increasing attention has re-
cently been paid to protocols based on muscle vibration.

Muscle vibration was first used in 1892 when Jean-Martin
Charcot, who was the most celebrated and powerful clinical
neurologist of the nineteenth century, delivered a lecture on
the topic of vibratory therapy in neurologic disorders:
“Vibration therapeutics: Application of rapid and continuous
vibrations to the treatment of certain nervous system disorders”
[7]. In his lecture, Charcot summarized the historical back-
ground of vibration therapy and then focused on his own clin-
ical experience in patients with Parkinson’s disease (PD).
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Charcot died 1 year later, and although Gilles de la Tourette
continued to study vibration therapy, Charcot’s observations
were largely forgotten [8]. About a century later, Hagbarth
and Eklund (1968) studied the motor effects of fMV in patients
with various types of central motor disorders, in particular,
those associated with spasticity and rigidity [9]. In spastic pa-
tients, Hagbarth and Eklund observed that vibration potentiated
or reduced voluntary power (and range of movement) depend-
ing upon whether the subject tried to contract the vibrated mus-
cle or its antagonist [9]. Later, Bishop studied the neurophysi-
ologic characteristics of the vibratory stimulation and possible
associated clinical applications and found a beneficial effect
induced by muscle vibration in spasticity disorders (i.e., re-
duced the strength of spasticity and potentiated weak voluntary
movement) [10]. More recently, a growing number of re-
searchers have tested variousmuscle vibration protocols includ-
ing focal muscle vibration (fMV) and whole body vibration
(WBV) aimed to elicit active modulation of sensory afferent
inputs to the central nervous system [11]. Converging evidence
from experimental studies raises the hypothesis that fMV and
WBVmight induce brain reorganization sensorimotor process-
es in healthy humans [12–20]. Several researchers have also
investigated the possible beneficial effect of various fMV and
WBV protocols in patients with stroke in order to promote
functional recovery through brain reorganization sensorimotor
processes. However, whether fMV or WBV protocols can be
considered new strategies possibly helpful for promoting post-
stroke recovery remains largely unclear.

Here, a workgroup of researchers expert in the field has crit-
ically reviewed and discussed 10 years of randomized controlled
studies (RCT) investigating the effect of fMVand WBV proto-
cols, in patients with stroke. We focused our attention on the
fMV and WBV techniques because these vibration protocols
share putative physiological mechanisms possibly able to pro-
mote beneficial brain reorganization sensorimotor processes, in
patients with stroke. The effect of WBV in patients with chronic
stroke has been discussed only in a single previous review [21]
thus covering only in part the topic. So far, none have reviewed
systematically WBV and fMV studies in patients with chronic
stroke in order to clarify the real impact of these vibration pro-
tocols on post-stroke motor recovery. Given the significant
amount of recent research in the field and the heterogeneity of
previous methodologies used and findings reported, the need for
a comprehensive and updated review is relevant. We have first
summarized the technical aspects and physiological basis of
fMVand WBVand then critically re-examined the main meth-
odological aspects and findings achieved in the previous RCT
using fMVand WBV in patients with stroke.

Literature research strategy and criteria

The literature search was performed by means of the following
databases: MEDLINE, Scopus PubMed, Web of Science,

EMBASE and the Cochrane Library. Literature criteria includ-
ed the following terms: “stroke” OR “chronic stroke” AND
“vibration,” “stroke” OR “chronic stroke” AND “training,”
“stroke” OR “chronic stroke” AND “rehabilitation,” “post-
stroke recovery” AND “vibration.” Studies considered for eli-
gibility were only RCTs published from January 2007 to
July 2018 implying fMVandWBV for the treatment of patients
with chronic stroke. The reference lists of retrieved articles were
also manually searched for additional studies. Furthermore, re-
views, reports, and unpublished articles were not considered in
this study (Fig. 1). Owing to the heterogeneity in methodology
used and outcome measures reported in previous studies, we
organized a narrative review according to the International
Narrative Systematic assessment, INSA tool [22].

Section 1

Focal muscle vibration

Vibration is a mechanical oscillation, i.e., a periodic alterna-
tion of force, acceleration over time. During vibration, energy
is transferred from an actuator (i.e., the vibration device) to a
resonator (i.e., the human body, or parts of it). fMV is com-
monly achieved using a mechanical stimulation placed over
the target muscle using a transducer connected to a control
unit; the device and the control unit are able to generate a
vibratory stimulus characterized by specific parameters
(Fig. 2). The two main parameters to be selected for fMV
include amplitude and frequency of vibration. The extent of
the oscillatory movement (peak-to-peak displacement in mm)
determines the amplitude of fMV, while the repetition rate of
the oscillation cycles denotes the frequency of fMV.
According to the specific parameters used (e.g., amplitude
and frequency) and site of application, fMV can co-activate
a mixture of cutaneous mechanoreceptors such as Pacinian
and Meissner’s corpuscles (rapidly adapting receptors) and
Ruffini corpuscle and Merkel’s disk [23–25]. In addition,
Golgi tendon organs are also responsive to fMVeven though
this effect likely occurs during muscle contraction, reflecting
the threshold for Ib afferents activation [26–28]. However,
when fMV is applied over the muscle belly or its tendon,
muscle spindle primary endings (Ia fibers) are thought to be
the most responsive receptors to fMV [29–31]). Each cycle of
the vibratory stimulus is thought to stretch the muscle and
selectively excite the primary endings of the muscle spindles
causing them to fire once for each cycle of vibration [32].
Most authors seem to agree that the optimum amplitude of
the vibratory stimulus is less than 0.5 mm because a greater
value tends to lead to an overflow of the stimulus into the
surrounding muscles and bone [33]. Hence, fMV given at
0.2–0.5 mm amplitude over a relaxed muscle is a powerful
and selective stimulus of activity in Ia afferents by entraining
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the discharge rate of primary muscle spindle endings [25, 30,
34]. FMVat amplitudes lower than 0.5 mm is commonly used
also to avoid the Tonic vibration reflex (TVR) first described
by Eklund and Hagbarth [35, 36]. In early physiological stud-
ies in healthy subjects, Bishop observed that increases in the
amplitude of vibration increases the strength of the TVR [10]
which has been described as a variant of the classic myotatic
reflex in response to a vibratory stimulus of low amplitude (<
3 mm) at a frequency of about of 100 Hz [37]. During fMV,
vibration applied at amplitudes < 0.5 mm is currently used to
avoid the TVR which may prevent the voluntary tuning of
muscle activation, owing to the involuntary muscle contrac-
tion. Concerning the frequency of fMV, it is known that the Ia
afferent firing rate is entrained linearly with vibration frequen-
cies up to 70–80 Hz, followed by a subharmonic increase at
higher frequencies, with sharp falls often observed at frequen-
cies between 150 and 200 Hz [25, 30]. Majority of studies
seem to indicate that an increase in the frequency of the vibra-
tory stimulus is accompanied by an increase in the strength of
the TVR [29, 38, 39]. Accordingly, most of the authors have
used a frequency around 100 Hz and found this to be satisfac-
tory for most applications [34, 40]. During fMVapplications,
sometimes subjects kept a steady contraction of the target

muscle at 5% of the maximal force, under visual EMG feed-
back. Voluntary contraction is used because it has been shown
that voluntarymuscle activity increases response to fMV,most
likely through fusimotor co-activation and subsequent in-
crease in spindle discharge [26].

FMV in chronic stroke

Several studies have investigated the clinical application of fMV
in patients with chronic stroke in order to promote post-stroke
recovery [41]. The four basic indications for focal vibration in
neurorehabilitation, regardless of the neurological pathology in
question, are (1) to reduce spasticity, (2) to facilitate muscle
contraction of functional activity, (3) to stimulate the proprio-
ceptive system to obtain an efficient motor control in functional
activities, and (4) to provide a proprioceptive training and restore
sensorimotor organization in movement disorders [41].

The demographic data and clinical features of participants
are shown in detail in Table 1. A detailed description of pur-
poses, technical aspects of fMV, outcome measures, the
timing of follow-up, and finally main results achieved by each
of the studies here reviewed are shown in Table 2. The mean
age of the patients examined is similar among studies. With

Fig. 1 Literature search and study
selection
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the exception of the study of Marconi et al. [15] and Conrad
et al. [43], in the remaining studies, the male/female ratio is
slightly unbalanced in favor of males [42, 44–50]. The time

interval between stroke onset and fMVapplication varied sig-
nificantly among studies since the four studies enrolled pa-
tients at a 4–6-month period from the stroke [42, 45–47],
whereas the remaining studies applied fMVat least 12 months
following stroke. Only four studies have provided information
concerning the description of type (ischemic or hemorrhagic
stroke), localization (cortical or subcortical, affected hemi-
sphere), and extension of stroke [44, 46, 47, 50]. Only two
studies reported stroke localization in detail (lesions detected
by CT or MRI were classified as cortical or subcortical, and
divided into frontal, fronto-parietal, parietal, fronto-parietal-
temporal, or parietal-temporal) [15, 48]. Although the side of
the affected hemisphere (left or right) was generally balanced
among studies, two studies included patients with predomi-
nant left stroke [47, 48], whereas a third study did not report
the affected body side [49].

Most of the studies applied fMVover the upper limb mus-
cles with the exception of two studies [42, 46] applying fMV
over lower limb muscles. In the upper limb studies, fMV was
delivered over different target muscles ranging from a single
target muscle [43, 48] to three muscles treated simultaneously
bymeans of a double application of the device such as BB and
FR inMarconi et al. [25] and Tavernese et al. [47], and PP and
BB in Caliandro et al. [44] and Celletti et al. [50] and then, the
third muscle alone. Concerning the specific target muscles,
several studies applied fMV over the wrist flexors muscles
alone [15, 43–45, 47, 48], or in combination with synergic
muscles such as the biceps brachialis [15, 47] or biceps

Table 1 Demographic data and clinical features of patients with chronic stroke in studies applying focal muscle vibration (fMV)

Study Group N Gender (M/F) Age (years) Duration of disease Side (L/R) Type (I/H)

Paoloni et al. [42] EG
CG

22
22

19/3
20/2

59.5 (13.3)
62.6 (9.5)

1.85 (0.59) year
1.86 (0.61) year

11/11
10/12

N/A
N/A

Conrad et al. [43] EG
CG

10
5

4/6
2/3

55.5 ± 5.35
56.2 ± 4.2

8.8 ± 6.87 year
N/A

7/3
2/3

N/A
N/A

Marconi et al. [15] EG
CG

15
15

9/6
8/7

63.6 ± 7.6
66.3 ± 11.0

39.9 ± 28.8 month
40.6 ± 25.1 month

6/9
7/8

N/A
N/A

Caliandro et al. [44] EG
CG

28
21

20/8
14/7

57.42 ± 12.79
61.85 ± 15.74

100.71 ± 82.76 month
96.4 ± 66.84 month

14/14
12/9

18/10
15/7

Noma et al. [45] EG
CG (rest)
CG (stretch)

12
12
12

8/4
8/4
9/3

57.5 (38–83)
61 (27–83)
61.5 (41–83)

21.5 (8–156) week
16 (7–139) week
16.5 (8–291) week

7/5
4/8
5/7

N/A
N/A
N/A

Lee et al. [46] EG
CG

16
15

13/3
11/4

53.31 ± 8.37
55.73 ± 8.27

56.94 ± 25.73 month
49.93 ± 29.97 month

8/8
7/8

10/6
9/6

Tavernese et al. [47] EG
CG

24
20

21/3
18/2

58.9 ± 14.7
58.3 ± 12.4

19.1 ± 18.9 month
25.9 ± 21.8 month

16/8
14/6

24/0
20/0

Casale [48] EG
CG

15
15

9/6
9/6

65.13 ± 5.84
64.2 ± 5.05

N/A
N/A

13/2
14/1

N/A
N/A

Costantino et al. [49] EG
CG

17
15

11/6
10/5

62.59 ± 15.39
60.47 ± 16.09

N/A
N/A

N/A
N/A

N/A
N/A

Celletti et al. [50] EG +RMP
EG +CP
CG

6
6
6

4/2
4/2
4/2

43 (31–68)
43 (30–57)
62.5 (46–69)

6 (2–33) year
2.5 (2–4) year
5.5 (2–7) year

3/3
4/2
2/4

3/3
2/4
4/2

Fig. 2 A representative instrument for the application of focal muscle
vibration

Neurol Sci



Ta
bl
e
2

C
ha
ra
ct
er
is
tic
s
of

ci
te
d
R
C
T
st
ud
ie
s
re
ga
rd
in
g
fo
ca
lm

us
cl
e
vi
br
at
io
n
(f
M
V
)i
n
pa
tie
nt
s
w
ith

st
ro
ke
.E

G
ex
pe
ri
m
en
ta
lg
ro
up
,C

G
co
nt
ro
lg
ro
up
,F

R
C
fl
ex
or

ca
rp
ir
ad
ia
lis
,B

B
bi
ce
ps

br
ac
hi
i,
rM

V
re
pe
tit
iv
e
m
us
cl
e
vi
br
at
io
n,
R
M
T
re
st
in
g
m
ot
or

th
re
sh
ol
d,
TM

S
tr
an
sc
ra
ni
al
m
ag
ne
tic

st
im

ul
at
io
n,
SI
C
Is
ho
rt
-i
nt
er
va
li
nt
ra
co
rt
ic
al
in
hi
bi
tio

n,
IC
F
in
tr
ac
or
tic
al
fa
ci
lit
at
io
n,
M
E
P
m
ot
or
-e
vo
ke
d
po
te
nt
ia
l,
P
T

ph
ys
io
th
er
ap
y,

W
M
F
T
W
ol
f
M
ot
or

F
un
ct
io
n
Te
st
,
FA

S
Fu

nc
tio

na
l
A
bi
lit
y
Sc
al
e,

M
A
S
M
od
if
ie
d
A
sh
w
or
th

Sc
al
e,

F
M
A
-U

E
Fu

gl
-M

ey
er

A
ss
es
sm

en
t
of

se
ns
or
im

ot
or

fu
nc
tio

n
af
te
r
st
ro
ke

fo
r
up
pe
r

ex
tr
em

ity
,J
TT

Je
bs
en
-T
ay
lo
r
H
an
d
F
un
ct
io
n
Te
st
,V

N
R
S
V
er
ba
lN

um
er
ic
al
R
at
in
g
S
ca
le
of

pa
in
,M

IM
ot
ri
ci
ty

in
de
x

A
ut
ho
r
(y
ea
r)

P
ur
po
se

F
oc
al
vi
br
at
io
n
(f
re
qu
en
cy
,a
m
pl
itu

de
,

si
de

of
th
e
ap
pl
ic
at
io
n,
tim

e)
O
ut
co
m
e
m
ea
su
re

Fo
llo

w
–u
p

R
es
ul
ts

Pa
ol
on
ie
ta
l.

[4
2]

To
ev
al
ua
te
if
th
e
ap
pl
ic
at
io
n
of

se
gm

en
ta
lm

us
cl
e
vi
br
at
io
n
to

an
kl
e

do
rs
if
le
xo
r
m
us
cl
e
ca
n
im

pr
ov
e

w
al
ki
ng

A
ll
th
e
pa
rt
ic
ip
an
ts
un
de
rw

en
ta

50
-m

in
ge
ne
ra
lp

hy
si
ca
lt
he
ra
py

se
ss
io
n,
3

tim
es

a
w
ee
k,
ov
er

a
pe
ri
od

of
4
w
ee
ks
.P

ar
tic
ip
an
ts
in

th
e
E
G
al
on
e

re
ce
iv
ed

ad
di
tio

na
l1

2
se
ss
io
ns

ov
er

4
w
ee
ks

ov
er
th
e
pe
ro
ne
us

lo
ng
us

an
d

tib
ia
lis

an
te
ri
or

fo
r
30

m
in
pe
r
se
ct
io
n

in
tr
ai
ns

of
6
s,
di
vi
de
d
by

1-
s
pa
us
es
;

fr
eq
ue
nc
y
12
0
H
z.
A
m
pl
itu

de
w
as

se
t

at
10

μ
m

G
ai
ta
na
ly
si
s
as
se
ss
m
en
t:

tim
e-
di
st
an
ce
,k
in
em

at
ic
s
an
d

su
rf
ac
e
el
ec
tr
om

yo
gr
ap
hy

da
ta
.

1
m
on
th

A
si
gn
if
ic
an
td

if
fe
re
nc
e
in

th
e
E
G
w
as

ob
se
rv
ed

in
ga
it
sp
ee
d,
un
af
fe
ct
ed

si
de

sw
in
g
ve
lo
ci
ty
,s
tr
id
e
le
ng
th

on
bo
th
th
e
pa
re
tic

an
d
no
rm

al
si
de
s,
an
d

to
e-
of
f
pe
rc
en
ta
ge

on
th
e
no
rm

al
si
de

C
on
ra
d
et
al
.

[4
3]

To
te
st
th
e
hy
po
th
es
is
th
at
te
nd
on

vi
br
at
io
n
m
ay

im
pr
ov
e
up
pe
r
ar
m

tr
ac
ki
ng

pe
rf
or
m
an
ce

70
H
z
te
nd
on

vi
br
at
io
n
ap
pl
ie
d
to

th
e

sk
in

ad
ja
ce
nt

to
th
e
fo
re
ar
m

fl
ex
or

te
nd
on
s

E
va
lu
at
io
n
of

th
e
tr
ia
lf
oc
us
ed

on
ha
nd

pa
th

ki
ne
m
at
ic
s
an
d

m
us
cl
e
ac
tiv

ity
du
ri
ng

ta
rg
et

tr
ac
ki
ng
.

D
ur
in
g
th
e
tr
ia
ls

T
ra
ck
in
g
pe
rf
or
m
an
ce

in
th
e
ha
nd

pa
th

le
ng
th
im

pr
ov
ed

an
d
a
de
cr
ea
se

in
th
e

m
us
cl
e
ac
tiv

ity
du
ri
ng

m
ov
em

en
tw

as
ob
se
rv
ed

M
ar
co
ni

et
al
.

[1
5]

To
ev
al
ua
te
lo
ng
-l
as
tin

g
ch
an
ge
s
of

rM
V
th
er
ap
y
in

th
e
up
pe
r
lim

b
10
0
H
z,
am

pl
itu

de
ra
ng
e
0.
2–
0.
5
m
m

ap
pl
ie
d
ov
er

th
e
FR

C
an
d
B
B
;r
M
V

in
te
rv
en
tio

n
w
as

ap
pl
ie
d
fo
r
3

co
ns
ec
ut
iv
e
da
ys
,3

tim
es

a
da
y,
w
ith

ea
ch

ap
pl
ic
at
io
n
la
st
in
g
10

m
in

Pe
ak
-t
o-
pe
ak

M
E
P
am

pl
itu

de
s
to

si
ng
le
pu
ls
e
T
M
S:

R
M
T,

m
ap

ar
ea

an
d
vo
lu
m
e,
S
IC
I
an
d
IC
F.

B
ef
or
e,
1
h,
1
w
ee
k,

an
d
2
w
ee
ks

af
te
r

th
e
in
te
rv
en
tio

n
en
de
d

R
ed
uc
tio

n
in
R
M
T
an
d
in
cr
ea
se
in
m
ot
or

m
ap

ar
ea
s
in

th
e
vi
br
at
ed

m
us
cl
es

on
ly

in
th
e
rM

V
+
P
T
gr
ou
p,
w
ith

an
in
cr
ea
se

in
m
ap

vo
lu
m
es

fo
r
al
l

m
us
cl
es

C
al
ia
nd
ro

et
al
.

[4
4]

To
ex
am

in
e
th
e
cl
in
ic
al
ef
fe
ct
of

fM
V
on

th
e
m
ot
or

fu
nc
tio

n
of

th
e
up
pe
r
lim

b
Si
nu
so
id
al
di
sp
la
ce
m
en
to

f
0.
2–
0.
5
m
m

(p
ea
k
to

pe
ak
);
fo
rc
es

be
tw
ee
n
7
an
d

9
N
.V

ib
ra
tio

n
fr
eq
ue
nc
y
at
10
0
H
z.

A
pp
lic
at
io
n
on

th
e
pe
ct
or
al
is
m
in
or
,

bi
ce
ps

br
ac
hi
ia
nd

fl
ex
or

ca
rp
i

m
us
cl
es

fo
r
3
co
ns
ec
ut
iv
e
da
ys
,3

tim
es

a
da
y,
w
ith

ea
ch

ap
pl
ic
at
io
n

la
st
in
g
10

m
in

Im
pr
ov
em

en
to

f
m
or
e
th
an

0.
37

po
in
ts
in
th
e
FA

S
of

th
e
W
M
FT

an
d
M
A
S
.

B
ef
or
e
th
e
tr
ea
tm

en
t

an
d
1
w
ee
k
an
d

1
m
on
th

af
te
r
th
e

tr
ea
tm

en
t

A
si
gn
if
ic
an
td

if
fe
re
nc
e
in

th
e

ex
pr
es
si
on

of
th
e
W
M
FT

FA
S
sc
or
es

ov
er

tim
e
in

th
e
E
G

N
om

a
et
al
.

[4
5]

To
in
ve
st
ig
at
e
w
he
th
er

th
e
di
re
ct

ap
pl
ic
at
io
n
of

vi
br
at
or
y
st
im

ul
i

in
hi
bi
ts
sp
as
tic
ity

in
th
e
he
m
ip
le
gi
c

up
pe
r
lim

bs
of

po
st
-s
tr
ok
e
pa
tie
nt
s

R
es
tg

ro
up
:5

m
in

re
la
x.
St
re
tc
h
gr
ou
p:

5
m
in
of

m
ax
im

al
ex
te
ns
io
n
of

el
bo
w
,

w
ri
st
an
d
fi
ng
er
s

E
G
:3

or
2
sp
he
ri
ca
l,
ru
bb
er
,

vi
ny
l-
co
ve
re
d
he
ad

of
5-
cm

vi
br
at
or
s

(p
os
iti
on
ed

on
th
e
ha
nd
-a
nd
-f
or
ea
rm

an
d
on

th
e
up
pe
r
ar
m
)
w
ith

a
fr
e-

qu
en
cy

of
91

H
z
an
d
an

am
pl
itu

de
of

1.
0
m
m

ap
pl
ie
d
fo
r
5
m
in

M
A
S
sc
or
es

an
d
F-
w
av
e.

B
ef
or
e,
im

m
ed
ia
te
ly

af
te
r
an
d
30

m
in

af
te
r
ea
ch

in
te
rv
en
tio

n

R
ed
uc
tio

n
of

F
w
av
e
am

pl
itu

de
,F

/M
ra
tio

,a
nd

F-
w
av
e
pe
rs
is
te
nc
e
af
te
r

vi
br
at
io
n;

di
ff
er
en
ce
s
be
tw
ee
n
th
e

tw
o
gr
ou
ps

L
ee

et
al
.[
46
]

To
in
ve
st
ig
at
e
th
e
ef
fe
ct
of

a
lo
ca
l

vi
br
at
io
n
st
im

ul
us

tr
ai
ni
ng

pr
og
ra
m

on
po
st
ur
al
sw

ay
an
d
ga
it
in

st
ro
ke

pa
tie
nt
s

L
oc
al
vi
br
at
io
n
st
im

ul
us

tr
ai
ni
ng

pr
og
ra
m
fo
r3
0
m
in
a
da
y,
fi
ve

tim
es
a

w
ee
k,
fo
r
6
w
ee
ks
.T

w
o
os
ci
lla
to
rs

at
ta
ch
ed

to
th
e
he
el
on

th
e
pa
re
tic

si
de

A
fo
rc
e
pl
at
e
w
as

us
ed

to
m
ea
su
re

po
st
ur
al
sw

ay
un
de
r
tw
o

co
nd
iti
on
s:
st
an
di
ng

w
ith

ey
es

op
en
ed

an
d
ey
es

cl
os
ed
.G

ai
t

P
os
tu
ra
ls
w
ay

ve
lo
ci
ty
an
d
di
st
an
ce

w
ith

ey
es
-o
pe
n
an
d
cl
os
ed

co
nd
iti
on
s

sh
ow

ed
a
si
gn
if
ic
an
td

ec
re
as
e
in

th
e

Neurol Sci



T
ab

le
2

(c
on
tin

ue
d)

A
ut
ho
r
(y
ea
r)

P
ur
po
se

F
oc
al
vi
br
at
io
n
(f
re
qu
en
cy
,a
m
pl
itu

de
,

si
de

of
th
e
ap
pl
ic
at
io
n,
tim

e)
O
ut
co
m
e
m
ea
su
re

Fo
llo

w
–u
p

R
es
ul
ts

an
d
on
e
os
ci
lla
to
r
at
th
e
ac
hi
lle
s
an
d

tib
ia
lis

an
te
ri
or

te
nd
on
.V

ib
ra
tio

n
st
im

ul
us

w
as

pr
ov
id
ed

at
an

os
ci
lla
tio

n
fr
eq
ue
nc
y
of

90
H
z
an
d
a

15
-μ
m

st
im

ul
us

am
pl
itu

de

ab
ili
ty

w
as

m
ea
su
re
d
us
in
g
th
e

G
A
IT
R
ite

sy
st
em

E
G
;a
ls
o
ch
an
ge
s
in

ve
lo
ci
ty
,

ca
de
nc
e,
an
d
pa
re
tic

st
ep

le
ng
th

Ta
ve
rn
es
e
et
al
.

[4
7]

To
im

pr
ov
e
th
e
up
pe
r
lim

b
m
ot
or

fu
nc
tio

n
Pa
tie
nt
s
in

th
e
E
G
re
ce
iv
ed

2
w
ee
ks

of
ge
ne
ra
lp

hy
si
ca
lt
he
ra
py

as
so
ci
at
ed

w
ith

lo
w
am

pl
itu

de
vi
br
at
io
n
th
er
ap
y

at
a
fi
xe
d
fr
eq
ue
nc
y
of

12
0
H
z
ov
er

th
e
bi
ce
ps

br
ac
hi
ia
nd

fl
ex
or

ca
rp
i

ul
na
ri
s;
vi
br
at
io
n
am

pl
itu

de
w
as

10
μ
m
;3

0
m
in

st
im

ul
at
io
n
in

tr
ai
ns

of
6
s
di
vi
de
d
by

1-
s
pa
us
es
;t
ot
al

60
m
in

ge
ne
ra
ls
es
si
on

fo
r
fi
ve

tim
es

a
w
ee
k
fo
r
2
w
ee
ks
.T

he
C
G
re
ce
iv
ed

2
w
ee
ks

of
ge
ne
ra
lp

hy
si
ca
lt
he
ra
py

K
in
em

at
ic
an
al
ys
is
of

re
ac
hi
ng

m
ov
em

en
t.

A
tb

as
el
in
e
an
d

2
w
ee
ks

af
te
r

tr
ea
tm

en
t

N
or
m
al
iz
ed

je
rk

si
gn
if
ic
an
tly

im
pr
ov
ed

in
th
e
E
G
.S

ig
ni
fi
ca
nt

im
pr
ov
em

en
ts

fo
r
m
ea
n
lin

ea
r
ve
lo
ci
ty
,m

ea
n

an
gu
la
r
ve
lo
ci
ty

in
th
e
sh
ou
ld
er
,

di
st
an
ce

to
ta
rg
et
at
th
e
en
d
of

th
e

m
ov
em

en
ta
nd

m
ov
em

en
td

ur
at
io
n

C
as
al
e
[4
8]

To
ev
al
ua
te
sp
as
tic
ity

re
du
ct
io
n
on

fl
ex
or
s
an
d
bi
ce
ps

br
ac
hi
im

us
cl
e,
an
d

w
he
th
er

th
e
ef
fe
ct
la
st
ed

lo
ng
er

th
an

th
e
st
im

ul
at
io
n
pe
ri
od

Pn
eu
m
at
ic
vi
br
at
or
:c
on
ta
ct
su
rf
ac
e

2
cm

2
,f
re
qu
en
cy

10
0
H
z,
am

pl
itu

de
2
m
m
;m

ea
n
pr
es
su
re

25
0
m
B
ar
;

ap
pl
ic
at
io
n
on

th
e
tr
ic
ep
s
br
ac
hi
if
or

30
m
in
,e
ac
h
se
ss
io
n
fo
r
5

co
ns
ec
ut
iv
e
da
ys
,f
or

2
w
ee
ks

M
A
S
fo
r
sp
as
tic
ity

an
d

ro
bo
t-
ai
de
d
m
ot
or

ta
sk
s
ch
an
g-

es
fo
r
fu
nc
tio

na
lm

od
if
ic
at
io
n.

48
h
af
te
r
th
e
fi
ft
h

se
ct
io
n
an
d
48

h
af
te
r
th
e
la
st

se
ss
io
n

In
E
G
,t
he

va
lu
es

of
M
A
S
si
gn
if
ic
an
tly

im
pr
ov
ed
.T

ra
je
ct
pa
ra
m
et
er

sh
ow

ed
be
tte
r
re
su
lts

in
th
e
E
G

C
os
ta
nt
in
o

et
al
.[
49
]

To
ev
al
ua
te
th
e
ef
fe
ct
s
of

lo
ca
lm

us
cl
e

hi
gh

fr
eq
ue
nc
y
m
ec
ha
no
-a
co
us
tic

vi
-

br
at
or
y
tr
ea
tm

en
to

n
gr
ip

m
us
cl
e

st
re
ng
th
,m

us
cl
e
to
nu
s,
di
sa
bi
lit
y
an
d

pa
in

in
po
st
-s
tr
ok
e
in
di
vi
du
al
s
w
ith

up
pe
r
lim

b
sp
as
tic
ity

12
se
ss
io
ns

(3
tim

es
pe
r
w
ee
k
ov
er

4
w
ee
ks
)
w
er
e
pe
rf
or
m
ed

em
pl
oy
in
g

vi
br
at
io
ns

se
tw

ith
a
fr
eq
ue
nc
y
of

30
0
H
z
an
d
am

pl
itu

de
of

2
m
m

fo
r

30
m
in

on
th
e
tr
ic
ep
s
br
ac
hi
ia
nd

th
e

ex
te
ns
or

m
us
cl
es

of
th
e
up
pe
r
lim

b.
T
he

pa
re
tic

up
pe
r
lim

b
w
as

po
si
tio

ne
d
on

a
ri
gi
d
su
rf
ac
e
an
d

pa
rt
ic
ip
an
ts
w
er
e
re
qu
ir
ed

to
m
ai
nt
ai
n

is
om

et
ri
c
co
nt
ra
ct
io
n
of

th
e
tr
ea
te
d

m
us
cl
e

H
an
d
G
ri
p
St
re
ng
th

Te
st
w
ith

hy
dr
au
lic

dy
na
m
om

et
er
;M

A
S;

Q
ui
ck

D
A
SH

S
co
re

F
M
A
-U

E
;

JT
T;

V
N
R
S
.

A
tb
as
el
in
e,
at
th
e
en
d

of
tr
ea
tm

en
t

(4
-w

ee
ks
)

Im
pr
ov
em

en
to

f
m
us
cl
e
st
re
ng
th

an
d
a

de
cr
ea
se

of
m
us
cl
e
to
nu
s,
di
sa
bi
lit
y,

an
d
pa
in

C
el
le
tti

et
al
.

[5
0]

To
ex
am

in
e
th
e
ef
fe
ct
of

fM
V
on

th
e

m
ot
or

fu
nc
tio

n
of

th
e
up
pe
r
lim

b
co
up
le
d
w
ith

pr
og
re
ss
iv
e
m
od
ul
ar

re
ba
la
nc
in
g
re
ha
bi
lit
at
io
n
ap
pr
oa
ch

or
as
so
ci
at
ed

w
ith

co
nv
en
tio

na
lt
he
ra
py

ve
rs
us

co
nv
en
tio

na
lt
he
ra
py

al
on
e

10
0
H
z
of

fr
eq
ue
nc
y
an
d
0.
2–
0.
5
m
m
of

am
pl
itu

de
vi
br
at
io
n
ap
pl
ie
d
in

3
co
ns
ec
ut
iv
e
da
ys

ov
er

th
e
pe
ct
or
al
is

m
in
or

an
d
bi
ce
ps

br
ac
hi
i

si
m
ul
ta
ne
ou
sl
y
(3
0
m
in
)
an
d
ov
er
th
e

fl
ex
or

ca
rp
i(
ot
he
r
30

m
in
)
fo
r
3

co
ns
ec
ut
iv
e
da
ys
,3

tim
es

a
da
y,
w
ith

ea
ch

ap
pl
ic
at
io
n
la
st
in
g
10

m
in

M
A
S;

W
M
FT

;M
I
fo
r
up
pe
r
lim

b
B
ef
or
e
an
d
af
te
r

6
w
ee
ks

of
ex
er
ci
se
s

M
ot
or

fu
nc
tio

n
im

pr
ov
em

en
t

Neurol Sci



brachialis coupled with the pectoralis minor [44, 50] or finally
in the hand [45]. By contrast, other studies applied fMVover
extensor muscles [42, 46, 49] in order to improve flexor mus-
cles spasticity. Again, several studies delivered fMV over a
single muscle such as the triceps brachii alone [48] or in as-
sociation with the Estensoris carpi radialis [49]. Studies ap-
plying fMVover lower limb muscles implied vibration of the
peroneus longus and tibialis anterior [42] or at the Achilles
and tibialis anterior tendon [46]. Concerning the simultaneous
contraction of the treated muscles, only three studies adopted
this paradigm [15, 44, 50].

Concerning fMV parameters, vibration amplitude varied
significantly among studies ranging from 10 μm [42, 47],
15 μm [46], 0.2–0.5 mm [15, 44] to 2 mm [48, 49]. A single
study did not clarify the amplitude of fMV [43]. The frequen-
cy used in the studies varied from 70 to 120 Hz except for
Costantino [49] who used a frequency of 300 Hz. The dura-
tion of fMV and the number of sessions also varied among
studies, ranging from a single session [43, 45], to three con-
secutive days [15, 44, 50] or even more (about 10–12 sessions
in four studies) [42, 47–49]. Finally, a single study applied
fMV repeatedly for 30 times [46].

Outcome measures varied among studies, ranging
from clinical evaluation made by standardized clinical
scales (spasticity) to experimental environments includ-
ing behavioral measurement (kinematics and gait analy-
sis), and finally neurophysiological measures including
TMS and EMG. For the upper limb, evaluations were
done by analyzing reaching movements. Tavernese et al.
[47] evaluated the reaching movement variation before
and after fMV, while Conrad et al. [43] evaluated the
hand kinematics and muscle activity during target track-
ing not only before and after but also during vibration.
Interestingly, Marconi et al. [15] evaluated vibration ef-
fects on cortical activity using TMS. For the lower
limbs, the evaluation was done on gait parameters by
using a gait analysis system [42] or in association with
postural and balance measures [46]. All the other stud-
ies used a clinical outcome scale in order to evaluate
spasticity [44, 45, 48, 50] or hand function [44, 48–50].
Noma et al. [45] used also F wave parameters to eval-
uate spasticity. A detailed description of the main results
achieved by the fMV studies reviewed is shown in
Table 2.

Section 2

Whole body vibration

WBV consists of a mechanical stimulus characterized by
an oscillatory movement portrayed by specific parameters
such as amplitude, frequency, and finally magnitude

(acceleration) of oscillations. The magnitude of oscilla-
tions is commonly reported in g or g-force values accord-
ing to the following formula: g = [D (2π × Hz)2]/9.81,
where D indicates the displacement of the platform (ampli-
tude of WBV) [51, 52]. WBV is practically delivered by
means of a vibrating platform where participants stand in a
static position or move dynamically (Fig. 3). Two different
types of WBV have been reported. The first type of WBV
is achieved by means of a platform that vibrates in a pre-
dominantly vertical direction with 4-mm peak-to-peak am-
plitude. Differently, the second type of WBV is given
through a platform able to rotate around an antero-
posterior horizontal axis. Contrarily from the first type of
WBV, the second type of WBV implies an asynchronous
application of vibration to the left and right foot and thus
an asymmetric perturbation of the legs [53]. Given that, as
for fMV, also WBV is thought to entrain muscle spindles
and subsequently, alpha-motoneuron firing rate possibly
leading to the TVR [51], several authors have investigated
the possible beneficial effects of WBV to boost muscle
strengthening and improving proprioception control in
healthy athletes [51]. The frequencies used for exercise
range from 15 to 44 Hz and displacements range from 3
to 10 mm. Acceleration values range from 0.3 to 15 g
(where g is the Earth’s gravitational field or 9.81 m/s-2)
[51, 52]. Thus, vibration provides a perturbation of the
gravitational field during the time course of the interven-
tion [51, 52].

Fig. 3 A representative instrument for the application of whole-body
vibration

Neurol Sci



WBV in chronic stroke

In the present section, we review the RCT studies applying
WBV in patients with chronic stroke with the aim of promot-
ing post-stroke recovery. The demographic data and clinical
features are shown in detail in Table 3. A detailed description
of purposes, technical aspects of WBV, outcome measures,
timing of follow-up, and finally main results achieved by each
of the studies here reviewed are shown in Table 4.

The age of patients recruited in all the previously published
WBV studies is generally comparable with a rather balanced
proportion ofmales and females in two studies [55, 59] but not
in the other six studies (unbalanced with a majority of males).
Although all patients enrolled in the WBV studies have been
classified as chronic stroke patients, the exact time interval
between stroke and WBV application varied significantly.
All the studies enrolled patients at least 6 months following
a stroke except for Brogårdhet at al. [54] who did not clarify
the time interval from stroke and WBVapplication. A limita-
tion of the WBV studies concerns the lack of a clear and
detailed description of the type (ischemic or hemorrhagic
stroke), localization (cortical or subcortical, affected hemi-
sphere), and extension of stroke.

Concerning the specific parameters used during WBV,
there was a variety of protocols with frequencies ranging from
5 to 40 Hz [55, 56, 59, 61] and amplitudes ranging from
0.44 mm to 6 mm. Ranges of accelerations applied during
WBV have been not clarified. The duration of WBV also
varied significantly among studies ranging from 30 s to
2.5 min. Moreover, most of the WBV studies planned repeat-
ed sessions of WBV ranging from 17 [59] to 30 [61] with the
exception of two studies [57, 58] who evaluated the effect of a

single WBV session. Liao [61] investigated the effect of low-
intensity and high-intensity WBV with respect to sham
stimulation.

The outcome variables measured to clarify the possible
beneficial effects of WBV included clinical, neurophysiolog-
ical, and behavioral data. Some authors evaluated the sever-
ity of spasticity by means of the Modified Ashworth scale
[56, 58], others calculated the H/M ratio [58], while some
measured balance [59] or muscle strength [54, 55, 57, 60,
61]. Outcome measures also included serum level of specific
collagen proteins [56] or ultrasound evaluation of muscle
structure [59]. The effect of WBV on all these clinical, neu-
rophysiological, and behavioral measures is rather inconsis-
tent. Pang [56] found differences in the severity of spasticity,
whereas Tankisheva et al. [55] did not. However, a benefi-
cial effect of WBV on muscle strength in patients with
chronic stroke was reported by both studies. Chan et al.
[58] found a significant reduction of spasticity clinically
tested by means of the Modified Ashworth scale and by
using the H/M ratio. Other studies, however, did not confirm
the effect of WBVon muscle strength in patients with chron-
ic stroke [54, 59, 60]. Studies evaluating balance before and
after WBV found no beneficial effect in chronic stroke pa-
tients [59]. Similarly, measures of clinical functional evalu-
ation in chronic stroke patients such as the 6 Minute
Walking Test [60, 61], Timed Up and Go test [57], and
Berg Balance Scale [62] revealed non-significant effects of
WBV. Concerning the exact timing of clinical, neurophysi-
ological, or behavioral evaluations before and after WBV,
many studies have made the evaluation before and soon
after WBV [54, 57–59, 61] or at 1 month [56, 60] and
6 weeks following WBV [55]. A detailed description of

Table 3 Demographic data and clinical features of patients with chronic stroke in studies applying whole body vibration (WBV)

Study Group N Gender (M/F) Age (years) Duration of disease Side (L/R) Type (I/H)

Brogardh et al. [54] EG
CG

16
15

13/3
12/3

61.3 + 8.5
63.9 + 5.8

37.4 + 31.8 months
33.1 + 29.2 months

9/7
7/8

14/2
13/2

Tankisheva et al. [55] EG
CG

7
8

4/3
6/2

57.4 + 13
65.3 + 3.7

7.71 + 8.6 years
5.28 + 3.6 years

4/3
4/4

6/1
5/3

Pang et al. [56] EG
CG

41
41

26/15
32/9

57.3 + 11.3
57.4 + 11.1

4.6 + 3.5 years
5.3 + 4.2 years

20/21
14/27

20/21
21/20

Silva et al. [57] EG
CG

28
10

19/9
8/2

60.75 + 11.8
58.1 + 8.14

40.85 + 68.76 months
39.6 + 63.55 months

17/11
7/3

25/3
8/2

Chan et al. [58] EG
CG

15
15

10/5
11/4

56.07 + 11.04
54.93 + 7.45

30.4 + 25.8 months
38.87 + 38.22 months

12/3
7/8

10/5
5/10

Marin et al. [59] EG
CG

11
9

6/5
5/4

62.3 + 10.6
64.4 + 7.6

4.3 + 2 years
4.3 + 3 years

5/6
5/4

10/1
7/2

Lau et al. [60] EG
CG

41
41

26/15
32/9

57.3 + 11.3
57.4 + 11.1

4.6 + 3.5 years
5.3 + 4.2 years

20/21
14/27

20/21
21/20

Liao et al. [61] EG LWBV
EG HWBV
CG

28
28
28

20/8
18/10
24/4

60.8 ± 8.3
62.9 ± 10.2
59.8 ± 9.1

8.5 ± 5.2 years
8.1 ± 4.2 years
9.0 ± 4.6 years

20/8
19/9
12/16

12/16
12/16
11/17
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Table 4 Characteristics of the cited RCT studies regarding whole body
vibration (WBV). CTs C-telopeptide of type I collagen cross-links, BAP
bone-specific alkaline phosphatase,MASModified Ashworth Scale, BBS

Berg Balance scale, VAS visual analogic scale, TUG Timed Up and Go
test, 6MWT 6-Minute Walk Test

Author
(year)

Purpose WBV (frequency, amplitude,
side of the application, time)

Outcome measure Follow–up Results

Pang [56] To investigate the
effect of WBVon
bone turnover, leg
muscle strength,
motor function and
spasticity

The device that generates
vertical WBV. Frequency
range 20–30 Hz and
amplitude from
0.60–0.44 mm. Three
times per week for
8 weeks (total 24 sections)
of training following a
specific protocol preceded
by 15 min of warm-up ex-
ercises

Serum level of (CTs) and
(BAP). Concentric knee
flexion and extension
power. MAS

Baseline,
immediately
after 24 session
program and
1 month after
the termination
of training

No significant effect on
serum levels of CTx and
BAP

A significant time effect in
the concentric knee flexion
power

Significant knee difference in
knee MAS score

Tankisheva
et al.
[55]

To investigate the
effect of a 6-week
WBV training pro-
gram

Vertical vibration platform, 3
times a week for 6 weeks.
Progressively increasing
the intensity by increasing
the frequency (35 to
40 Hz) or the amplitude
(1.7 and 2.5 mm)

Sessions 1–12: 5
bounds × 30 s

Sessions 13–18: 17
bounds × 60 s

Ashworth scale (score 0–4)
applied on the
gastrocnemius, soleus,
quadriceps, hamstrings,
adductors, and psoas
muscles

Knee extension and flexion
strength with an isokinetic
dynamometer

Sensory organization test for
postural control

Baseline, after the
intervention
period of
6 weeks and
after 6 weeks
of follow-up

No significant differences in
the Ashworth scale; a
significant difference in
isometric knee extension
strength

Marin et al.
[59]

To analyze the effects
of WBVon lower
limb muscle
architecture, muscle
strength, and
balance

Vibration platform with an
increase in frequency
(from 5 to 21 Hz), sets
(from 4 to 7), and time per
set (from 30 to 60 s)
during 17 sessions.
Amplitude ranged
between 4 and 6 mm peak
to peak

Ultrasound evaluation of
muscle architecture. BBS.
Muscle strength

Before and after
treatment

Increased muscle thickness
observed in both groups.
No statistically significant
difference observed in the
BBS and in muscle
strength

Chan et al.
[58]

To investigate the
effect of a single
session of WBV
training on ankle
plantar flexion
spasticity and gait
performance

A single session of vertical
WBV with a magnitude of
12 Hz and an amplitude of
4 mm

Subjects were positioned on
the platform in semi-squat
position and the time
course included two
10-min periods of vibra-
tion with a 1-min rest in-
terval

MAS. Subject experience of
the influence of ankle
spasticity on ambulation
was scored by VAS. The
maximal amplitude of H
reflex and the
Hmax/Mmax ratio to as-
sess ankle spasticity. The
time up and go test. A
force plate was used to
measure foot pressure

Before and after
treatment

Hmax/Mmax ratio
significantly decreased in
the EG

Time up and go significantly
improved in EG

MAS and VAS showed a
significant difference
between EG and CG

Brogardh
et al.
[54]

To evaluate the effects
of WBV training

12 sessions of WBV training
(twice weekly during
6 weeks) on a vibrating
platform

The EG trained on a vibrating
platform with an
amplitude of 3.75 mm

The CG trained on a vibrating
platform with an
amplitude of 0.2 mm. The
frequency on both
platforms was set to 25 Hz

Isokinetic and isometric knee
muscle strength (primary
outcome measures),
muscle tone, balance, gait
performance, and
perceived participation
(secondary outcome
measures) were assessed
during 2 h before and after
the WBV training

Pre- and
post-training

No significant differences
were found in any
outcome measures
between the EG and CG
after 6 weeks

Liao et al.
[61]

To investigate the
effects of different
WBV intensities on
body
functions/structures

Patients were randomly
assigned a low-intensity
WBV (frequency 20 Hz
1 mm amplitude),
high-intensity WBV

Knee muscle strength
(isokinetic dynamometry),
knee and ankle joint
spasticity with MAS,
balance (Mini Balance

At baseline and
post--
intervention

Significant time effect for
muscle strength, TUG
distance, and oxygen
consumption rate achieved
during the 6-MWT, the
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the main results achieved by the WBV studies is shown in
Table 4.

Discussion

Muscle vibration seems to be a safe method possibly helping
to improve the outcome of stroke patients. Despite the grow-
ing amount of literature in this research field, a relevant num-
ber of issues remain still unsolved. First, to analyze the role of
a rehabilitative intervention in stroke patients, it should be
mainly taken into account that stroke is a heterogeneous

condition, thus entailing different degrees of damage with
different recovery mechanisms. In this view, there is a lack
of RCTs designed to investigate how the potential for stroke
recovery and the benefit from rehabilitation strategies vary
according to stroke (lesion) characteristics. Indeed, most of
the studies that analyzed the effects of fMV/WBV on stroke
recovery did not report subgroup analysis focused on the dif-
ferent lesion localizations, or yet extent and number of brain
lesions. It is known that the global burden and persistence of
post-stroke functional deficit crucially reflect infarct size and
lesion location (e.g., cortical or subcortical stroke). Patients
with cortical stroke are known to manifest worse baseline

Table 4 (continued)

Author
(year)

Purpose WBV (frequency, amplitude,
side of the application, time)

Outcome measure Follow–up Results

activity, and partici-
pation

(frequency 30 Hz, 1 mm
amplitude), or CG

Evaluation Systems Test),
mobility (TUG), walking
endurance (6MWT),
balance self-efficacy
(Activities-specific
Balance Confidence
scale), participation in dai-
ly activities (Frenchay
Activity Index), perceived
environmental barriers to
societal participation
(Craig Hospital Inventory
of Environmental Factors),
and quality of life
(Short-Form 12 Health
Survey)

Mini Balance Evaluation
Systems Test, the
Activities-specific Balance
Confidence scale, and the
Short-Form 12 Health
Survey physical composite
score domain

Silva et al.
[57]

To investigate the
acute effects of
WBVon motor
function

One session of WBV
(frequency of 50 Hz and
amplitude of 2 mm)
comprising four 1-min se-
ries with 1-min rest inter-
vals between series in
three body positions: bi-
pedal stances with the
knees flexed to 30° and
90° and a unipedal stance
on the paretic limb

Simultaneous
electromyography of the
affected and unaffected
tibialis anterior and rectus
femoris muscles bilaterally
in voluntary isometric
contraction; the 6MWT;
the Stair-Climb Test; and
the TUG

Before and after
vibration
therapy

No effects on the group and
time interaction relative to
variables affected side
rectus femoris, unaffected
side rectus femoris,
affected side tibialis
anterior, unaffected side
tibialis anterior, and the
Stair-Climb Test

Lau et al.
[60]

To examine the
efficacy of WBV in
optimizing
neuromotor
performance and
reducing falls

The EG received 9–15 min of
WBV (vertical vibration;
frequency = 20–30 Hz
amplitude = 0.44–0.60
mm, peak
acceleration = 9.5–15.8)
while performing a variety
of dynamic leg exercises
on the vibration platform.
The CG performed the
same exercises without
vibration. The subjects
underwent their respective
training three times a week
for 8 weeks

Balance (BBS), mobility
(10-m walk test and
6MWT), knee muscle
strength (isokinetic
dynamometry), and
fall-related self-efficacy
(activities-specific balance
confidence scale)

At baseline,
immediately
after the
8-week training
and at 1-month
follow-up

Significant improvement in
balance, mobility, muscle
strength, and fall-related
self-efficacy measures in
both groups after the
8-week treatment period

Neurol Sci



National Institute of Health Scale/Score (i.e., stroke severity)
on average than patients with subcortical lesions. Conversely,
a single subcortical white matter damage would result in cor-
tical differentiation causing widespread cortical dysfunction
or severe motor impairment and poor motor recovery [63,
64]. Hence, when evaluating the effect of fMV/WBV on
post-stroke recovery, it should be taken into account that the
efficacy would depend on the specific pattern of brain damage
[62]. Only a few sporadic case series have been carried out
specifically on this issue. A single study from Marconi [15]
reported that fMV-induced effects on 31 chronic stroke pa-
tients varied depending on whether the stroke was cortical or
subcortical. However, further RCTs with larger cohorts of
subjects are needed to verify these observations. Beyond cor-
tical and subcortical stroke localization, other clinical features
would influence the degree of post-stroke recovery such as
stroke severity upon admission [65], hemispheric lateraliza-
tion, stroke volume, number of lesions and patients’ charac-
teristics such as gender and age [66], and presence of aphasia
or visual field deficit [66].

A further aspect concerns the optimal timing of interven-
tion. Motor recovery is thought to be almost completed within
10 weeks by stroke occurrence, and stroke recovery reaches a
plateau 3 to 6 months after stroke onset [67]; accordingly,
most of the post-stroke rehabilitation guidelines suggest to
begin the rehabilitation program in the very early phase of
acute stroke. Since the very first hours after stroke, the role
of changes in perilesional and remote brain regions triggered
by the focal brain lesion, and the role of the recruitment of
remote or secondary brain structures might play a role in the
various degrees of motor recovery [68, 69].

Another relevant point concerns the putative physiological
mechanisms responsible for the beneficial effect induced by
vibration protocols. Several studies in animals and in humans
have demonstrated that experimental modulation of proprio-
ceptive inputs to the CNS can re-shape cortical mapping in the

sensorimotor region, owing to use-dependent plasticity pro-
cesses [70–73]. For instance, limb immobilization can deteri-
orate cortical motor representation of the target body region,
reduce cortical excitability, and degrade motor learning [70,
71]. Hence, it might be argued that the fMV/WBV-induced
selective stimulation of muscle spindles might elicit changes
in afferent sensory inputs to the CNS possibly leading to ben-
eficial cortical/subcortical brain reorganization sensorimotor
processes in various neurological conditions imposing limb
immobilization such as stroke. It is known that in patients with
stroke, the severity of motor deficit reflects two main patho-
physiological processes: (1) loss of function due to neuronal
loss and (2) maladaptive use-dependent plasticity in survived
cortical/subcortical regions operating in both the affected and
unaffected hemisphere [74]. Stroke-induced limb immobiliza-
tion would, therefore, imply reduced afferent inputs to the
CNS driving to low activation of cortical/subcortical motor
maps coupled with increased inhibition from survived brain
regions. As a result, reduced use-dependent cortical plasticity
would further deteriorate the motor outcome and delay signif-
icantly the timing of post-stroke functional recovery [74].
Hence, we speculate that fMV/WBV would, in theory, pro-
mote post-stroke functional recovery by enhancing proprio-
ceptive inputs to the CNS and inducing beneficial cortical and
subcortical reorganization processes based on re-balancing
and shaping of cortical and subcortical sensori-motor
representations.

A final comment concerns the direct comparison between
the amount of after-effects induced by fMV and WBV, in
terms of post-stroke motor recovery. The experimental and
clinical data coming from the RCTstudies point to the fragility
of the WBV after-effects when compared to fMV, in patients
with stroke. The inconsistent results observed in previous
WBV studies in stroke would reflect a number of methodo-
logical reasons including the relevant variability in the stimu-
lating parameters and experimental design used. A possible

Table 5 Recommendation for
optimal technical application of
focal muscle vibration (fMV) and
whole body vibration (WBV)

fMV Frequency 70–120 Hz [19,29, 46–48, 50–54, 85]

Amplitude 10 μm–1 mm [19, 45, 47, 51–53, 59]

Target muscle Upper limb: flexor muscles [19, 45, 47, 50, 51, 59]

Lower limb: less clear, preferentially extensor muscles [52, 53]

State of the muscle during the
intervention

Mild tonic contraction [19, 45, 47, 50, 52]

Duration 10–30 min [19, 42, 45–47, 52, 53, 59]

Design Repetitive sessions [19, 42, 45–47, 52, 53, 59]

WBV Frequency 20–40 Hz [57, 58, 60, 62, 65]

Amplitude 1–4 mm [56–58, 60, 63, 64]

Acceleration Not clear, presumably between 0.3 and 15 g [62]

State of the muscle during the
intervention

Mild tonic contraction [56–58, 60, 62–65]

Duration Variable between maximum 10–15 min [58,61–65]

Design Repetitive sessions [56–58, 60, 65]
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future scenario would also imply different target stroke popu-
lations for the two muscle vibration techniques. Repetitive
s e s s i on s o f fMV wou l d be mo r e s u i t a b l e f o r
neurorehabilitative applications in patients with post-stroke.
By contrast, stroke patients manifesting gait and balance im-
pairment would, in theory, benefit from repetitiveWBVappli-
cations due to the possible beneficial effect of perturbation of
the gravitational field [51, 52].

Based on the currently available experimental and clinical
data here examined, through this narrative review, we propose
a new recommendation for optimal technical application of
fMV and WBV in patients with stroke (Table 5). Our recom-
mendation also includes new proposed strategies for the re-
cruitment of specific cohorts of patients with the aim to in-
crease the likelihood for a vibration-induced beneficial symp-
tomatic effect in terms of post-stroke motor recovery. Future
studies with fMV/WBV should be designed in patients with
cortical rather than subcortical strokes that may imply more
severe white matter lesions which in turn preclude motor re-
covery after stroke [74]. In addition, fMVandWBV should be
applied in patients with acute or subacute stroke rather than in
chronic stroke thus increasing the likelihood for the occur-
rence of cortical reorganization processes (cortical plasticity),
well-known crucial mechanisms underlying motor recovery
after stroke [74]. It should be taken into account that optimal
response to muscle vibration would require active target mus-
cle contraction during the intervention (Table 5). Accordingly,
future studies should recruit patients with consistent and re-
sidual muscle force and exclude those with severe muscle
weakness.

In conclusion, we suggest that future studies should be
designed in clinically homogeneous cohorts of patients with
stroke taking into account our proposed recommendation for
optimal technical application of fMV and WBV. Moreover,
besides the evaluation of patient’s clinical features by means
of clinical scales, future studies should also include standard-
ized outcome measures based on more advanced and objec-
tive technologies. This study design would finally allow a
better comparison between fMVand WBV in terms of symp-
tomatic improvement in patients with stroke.
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