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Abstract

In this paper, the viscoelastic characterization of biosamples is addressed consid-

ering a measuring technique relying on the use of a MEMS techonology-based

microgripper. A proper mechanical model is developed for the coupled non-

linear dynamics of the microsystem, composed of the measuring tool and the

specimen to be analyzed. The Maxwell liquid drop model and the generalized

Maxwell-Wiechert model are considered for the sample, and the identification of

the viscoelastic parameters is performed by implementing a genetic algorithm.
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1. Introduction

The identification of the mechanical characteristics of tissues, cells, and,

more in general, natural and synthetic biomaterials, plays an important role in

many research fields, such as biology, regenerative medicine, and diagnosis of

diseases. Mechanical characterization of biosamples is necessary for understand-

ing the role of material mechanics in disease diagnosis or progression (Mijailovic
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et al., 2018), replacing or mimicking tissues (Backman et al., 2017), and, more in

general, for validating the constitutive models and the simulation results (Zhang

et al., 2018).

For example, characterization of brain and brain-skull interface tissues (Wang

et al., 2018) is fundamental in modeling and understanding the mechanics of

traumatic brain injury (Zhang et al., 2018), blast–induced neurotrauma (Laksari

et al., 2015), and brain shift (Forte et al., 2018). Current investigations show

that brain tissue is anisotropic, non-linear, viscoelastic (Jin et al., 2013), and

that the constitutive relations obtained for a specific loading condition could not

predict the response for other loads (Miller and Chinzei, 2002). In regenerative

medicine bone scaffolds, used to guide and stimulate tissue growth, are sub-

jected to mechanical stresses. Therefore, before implantation, it is necessary to

determine whether their mechanical properties meet the specified requirements

(Vivanco et al., 2012; Prasadh and Wong, 2018).

Besides the studies on brain tissues and scaffolds, characterization and con-

stitutive modeling of skeletal muscle (Marcucci et al., 2017; Garcés-Schröder

et al., 2018), skin (Sherman et al., 2017; Hsu et al., 2018), lung (Freed and

Einstein, 2012), blood vessels (Backman et al., 2017), pericardium (Murdock

et al., 2018), articular cartilage (Marchi and Arruda, 2017), vocal fold (Erath

et al., 2017), and cornea (Whitford et al., 2018) tissues have also been the sub-

jects of extensive research efforts. It is worth noting that tissue stiffening is

a hallmark of several disease states, including fibrosis and some types of can-

cers (Pogoda et al., 2014). Regarding the circulatory system, vascular stiffness

affects blood pressure, permeability, and inflammation, driving diseases such

as pulmonary arterial hypertension, kidney disease, and atherosclerosis (Huve-

neers et al., 2015). While diseases grow to impair the function of tissues in

an organism, their initiation and development starts within individual cells. In

fact, biological materials are characterized by many levels of structures, from

the macroscopic to the microscopic scale, and their properties arise from coordi-

nated processes across this hierarchical architecture (Weiner and Wagner, 1998;

Ji and Gao, 2004).
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Since heterogeneity in cell populations has been demonstrated, the under-

standing of individual cells behavior represents a significant challenge (Altschuler

and Wu, 2010). Cells have demonstrated sensitivity to biochemical and me-

chanical stimulation: their mechanical properties change in accordance with

their functional state or in response to external stimuli. More specifically, cells

can reinforce or fluidize their cytoskeletons through polymerization of their fil-

amentous proteins, varying their structural stiffness. Cells can also generate

physical forces to interact with their physical environment. Mechanical cues or

abnormal environments can disturb their normal function, and disease states

can arise. Asthma, osteoporosis, deafness, atherosclerosis, cancer, osteoarthri-

tis, glaucoma, muscular dystrophy, and pressure ulcers can be directly caused

by or catalyzed by irregular cell mechanics (Rodriguez et al., 2013; Rodriguez

and Sniadecki, 2014; Ingber, 2003). Therefore, mechanical characterization of

single cells can provide useful information about these processes.

For example, a strong association between cell stiffness and invasive poten-

tial in pancreatic ductal adenocarcinoma cells (PDAC) was reported in (Nguyen

et al., 2016), finding that stiffer PDAC cells are more invasive than more compli-

ant cells. Moreover, while progress has been made in understanding molecular

mechanisms of breast cancer progression, characterization of the associated cel-

lular mechanical properties remains incomplete (Baker et al., 2010). Stiffness

determination represents a key aspect, because breast tumors are stiffer than

normal breast tissue, and cancer cell motility depends on the stiffness of the ex-

tracellular matrix. On the other hand, more deformable cell may have a selective

advantage for metastasis (Nguyen et al., 2016). It has been showed that ovar-

ian cancer cells are generally softer and display lower intrinsic variability in cell

stiffness than non-malignant ovarian epithelial cells (Xu et al., 2012). Besides

stiffness, also viscosity can potentially be considered as a biomarker for eval-

uating the metastatic potential of cancer cells (Hu et al., 2017). As reported

in (Zouaoui et al., 2017), the analysis of viscosity showed that healthy cells

are more viscous compared to metastatic cells. Furthermore, considering both

elastic and viscous properties may be more effective in distinguishing specific
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diseases (Rubiano et al., 2018).

The experimental techniques for investigating cell mechanics can be gener-

ally classified in force-application and force-sensing techniques. According to the

force-application techniques, a force is applied to the cell and its response (me-

chanical and/or biochemical) is recorded. These methods include micropipette

aspiration, microneedle and atomic force microscope probing (Buffinton et al.,

2015; Eng and Sampathkumar, 2018), optical trapping, magnetic twisting cy-

tometry, substrate strain. In force-sensing techniques, cells are seeded onto

deformable structures and traction forces are measured. Traction force mi-

croscopy, wrinkling membranes and micropost arrays belong to this category.

The selection of the proper technique depends on several factors, such as size of

the biological sample and feature to be acquired. Each one of these methods has

its own advantages and disadvantages, in terms of spatial and force resolution,

accuracy, detrimental effects on cell, transferability of results (Addae-Mensah

and Wikswo, 2008; Rodriguez et al., 2013).

Given the variety of experimental techniques, many mechanical models have

been proposed in literature, generally considering two different approaches. By

following the micro/nanostructural approach, several cytoskeletal models for ad-

herent cells have been derived, such as tensegrity model, tensed cable networks,

open-cell foam model. According to this approach, the cytoskeleton is the main

structural component. According to the continuum approach, the cell is consid-

ered as a continuum material, and appropriate constitutive models and related

parameters have to be experimentally determined. Many models have been pro-

posed in literature: biphasic model, liquid drop models (Newtonian, Compound

Newtonian, Shear thinning, Maxwell), solid viscoelastic models (Kelvin-Voigt,

Maxwell, Zener) (Chen et al., 2012; Lim et al., 2006). Results obtained at the

cell level can be useful in understanding the stress and strain distribution and

the mechanism of force transmission to the cytoskeleton. Therefore, the method

can serve as a basis for further studies at the sub-cell level.

After the model has been defined, the mechanical characterization of the

biosample can be formulated as a parameter estimation problem, where the
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unknowns to be identified are the stiffness and damping coefficients of the de-

termined model. Hence, the estimation problem can be solved by using least-

squares (Johnson and Faunt, 1992) or Kalman filtering (Xi et al., 2011) methods.

Other solution approaches makes use of inverse finite element method (Boon-

visut and Çavuşoǧlu, 2013; Kauer et al., 2002) or genetic algorithms (Belfiore

and Esposito, 1998; Kohandel et al., 2008; Chawla et al., 2009).

Recently, considering the increasing use of microgrippers for the manipula-

tion at the microscale (Verotti et al., 2017a; Dochshanov et al., 2017), a novel

technique for the viscoelastic characterization of soft materials was presented by

the Authors (Di Giamberardino et al., 2018). The proposed method resorted to

the use of a MEMS microgripper and to a control system based on a standard

PID regulator. According to the measurement technique, starting from the ini-

tial symmetric configuration, one arm was actuated to grip the sample, whereas

the other one served as sensing element. During the gripping task, the actu-

ated arm drove the sample towards the sensing arm, causing its displacement

from the neutral configuration. Therefore, the loss of the symmetry condition

was exploited to perform the measurement. The developed mechanical model

considered the coupled nonlinear dynamics of the microgripper-sample system

and the Kelvin-Voigt constitutive law of viscoelasticity for the specimen.

In this investigation, a novel method is presented to perform the mea-

surement task by using the MEMS microgripper. The strategy preserves the

symmetric condition with the simultaneous actuation both the gripping arms.

Furthermore, two different constitutive models and a new solution method

are proposed for the technique presented in (Di Giamberardino et al., 2018).

More specifically, the Maxwell liquid drop model and the generalized Maxwell-

Wiechert model are considered for the sample, and the estimation problem is

solved by implementing a genetic algorithm. The work is organized as follows.

The experimental technique and the mechanical models are presented in Sec-

tions 2 and 3, respectively. The solution approach is described in Section 4,

whereas the results are presented and discussed in Section 5.
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2. Experimental technique

The experimental technique adopted for the viscoelastic characterization of

the biosamples resorts to the use of the MEMS technology-based microgripper

shown in Figures 1 and 2. The gripper consists of a compliant silicon struc-

ture fabricated by applying the deep reactive-ion etching process on silicon-on-

insulator wafers (Bagolini et al., 2017). Each gripper arm is actuated by a rotary

comb drive, and the connection between the movable part and the anchored part

is achieved by means of the conjugate surfaces flexure hinge (CSFH) (Verotti

et al., 2015). During the actuation process, the deflections of the flexible el-

ements allow the arms to rotate, performing the gripping task (Cecchi et al.,

2015). Due to the electrostatic-based actuation system, the motion plane of the

gripper arms can be arranged perpendicularly or with an inclined angle with

respect to the sample support plane, in order to avoid the submersion of the

device in liquid environment.

Figure 1: SEM image of the silicon microgripper.

According to the measurement procedure presented in (Di Giamberardino

et al., 2018), the left arm of the device is actuated to grip the sample between the

jaws until the right arm reaches a predefined rotation. This angular displace-
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Figure 2: Optical microscope image of the silicon microgripper.

ment serves as reference signal for the implemented feedback control system.

Therefore, the elastic coefficient of the sample can be computed at steady state

conditions, whereas its viscosity parameter can be obtained as a function of the

input torque frequency by adding a small-amplitude sinusoidal signal to the left

arm. It is worth noting that during the measurement procedure the microgrip-

per modifies its neutral symmetric configuration to an asymmetric one.

In the present investigation, it is assumed that a control torque is exerted

by each comb drive in order to grip the cell sample. The actuation system is

therefore symmetric, and the microgripper changes its configurations preserving

the symmetry condition. This feature entails some advantages from the model-

ing and from the operational points of view. Considering the modeling aspect,

the kinematics of the system is simpler than in the previous case, and can be

represented by a simpler model. Considering the operational aspect, a unique

input signal can be set to actuate the system. The rotation of at least one of the

two arms is supposed to be measured, whereas the mechanical characteristics of

the sample are supposed to be unknown.

The exciting torques, as it can be seen in Figure 3, are applied into two

phases: (i) torque application and (ii) relaxation. During the first phase that

last 200 s, a 1.6×10−3µNm torque is applied to grip the sample. This value
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Figure 3: Evolution of the applied torques

corresponds to an electric potential difference applied to the comb drive pads

of about 17 V, as detailed in Section 3. During the second phase that last the

following 200 s, the torque is reduced down to one-fifth of the initial value, that

is 0.32×10−3µNm, in order to maintain the grip with the sample. The rotation

of one arm is recorded throughout the 400 s gripping time, and it is assumed

that a 10% random noise is present on the measured rotation response.

According to the proposed design, the distance between the jaws in neutral

configuration is equal to 150µm. This distance allow the adoption of the mi-

crogripper for the manipulation of samples with characteristic length belonging

to the range [30,120 ]µm. However, due to the symmetric configuration of the

system, this parameter can be easily set-up during the design stage without

affecting the results hereafter presented. In fact, the gripper capability to de-

termine the sample mechanics depends on the elastic properties of the device

and on the implemented algorithm used for the identification, which must be

robust with respect to the measurement noise.

It is worth noting that, by taking advantage of the device sensing and actu-

ation arrangement, the model parameters of each jaw can be obtained during

pre-operative procedures. More specifically, the stiffness and damping coeffi-

cients (ki, ci, i = {2, 4}, see Section 3) can be determined considering a stan-

dard impulse or a step response in case of no load conditions (i.e. operating the

gripper arms with no samples) (Ewins, 2009). From this test it is also possible
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to calibrate the model for the specific device in order to offset any parameter

variation due to the fabrication process.

3. Mechanical model

The compliant structure of the microgripper is schematically represented in

Figure 4 where, in operative condition, the specimen is in contact to the tweezers

tips at the points B and C. The points A and D represent the centers of rotation

(Verotti, 2018) of the left and right arms of the gripper, respectively. According

to the rigid-body replacement method (Sanò et al., 2018), a pseudo-rigid body

model (PRBM) can be obtained from the compliant structure by substituting

the constant-curvature CSFHs with revolute joints (Verotti et al., 2017b).

A D

B C

Anchor

Sample

Fingers Fingers

Figure 4: Operational condition and schematic representation of the compliant structure of

the microgripper

The PRBM, consisting of the closed chain ABCD, is illustrated in Figure 5.

The link AD and the links AB, DC, with fixed lengths, correspond to the frame

and to the gripper arms, respectively. The link BC represents the biosample

and, according to the measurement procedure, it is characterized by a variable

length. As depicted in Figure 5, the Maxwell liquid drop model with mem-
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brane stiffness and the generalized Maxwell-Wiechert model are considered as

constitutive models for the specimen.

The system configuration can be described by means of reference, target and

incremental variables, as represented in Figure 6. The reference variables (v̂)

define the system in the symmetrical configuration, where the gripper arms are

in contact to the sample but no deformations occur. The target variables (ṽ)

define the system in the deformed configuration. Therefore, the incremental

variables are defined as v = ṽ− v̂. The model parameters are listed and defined

in Table 1.

A D

B C

k c

kp

cp

B C

x

(2)

k c

kp
B C

x

(1)

k2

c2

τ2

k4

c4

τ4

Figure 5: Pseudo-rigid body model of the microgripper and constitutive models of linear

viscoelasticity: Maxwell liquid drop with membrane stiffness (1) and generalized Maxwell (2)

models.

Assuming the inertia of the sample to be negligible, the dynamical model of

the system can be described by means of the following equations,

I2θ̈2 + c2θ̇2 + cpl
2
[
θ̇2 sin θ̃2 − θ̇4 sin

(
π − θ̃4

)]
sin θ̃2

+k2θ2 − kl
[
l
(

cos θ̃2 − cos θ̂2

)
− x
]

sin θ̃2

−kpl2
(

cos θ̃2 − cos θ̂2 − cos θ̃4 + cos θ̂4

)
sin θ̃2 = τ2,

(1)
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Table 1: Nomenclature and parameters values

Par. Unit Value Definition

d [m] 5.47e−4 length of AD

l [m] 1.50e−3 length of AB and DC

û, [m] 150e−6 reference length of BC

θ̂2 [rad] 1.44 reference orientation of AB

θ̂4 [rad] 1.70 reference orientation of DC

k2, k4 [Nm] 0.30e−6 left and right arm torsional stiffness

c2, c4 [Nsm] 1.24e−12 damping coefficients of the gripper arms

I2, I4 [kgm2] 1.25e−14 left and right arm moments of inertia

ũ, u [m] target and incremental lengths of BC

θ̃2, θ2 [rad] target and incremental orientations of AB

θ̃4, θ4 [rad] target and incremental orientations of DC

τ2, τ4 [Nm] left and right comb drive input torques

k, kp [Nm−1] stiffness coefficients of the sample

c, cp [Nsm−1] damping coefficients of the sample

A D

B C

x

y

ll

û

θ̂2
θ̃2

θ̂4

θ̃4

Figure 6: Nomenclature and model parameters in neutral (soft lines) and general (hard lines)

configurations.
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I4θ̈4 + c4θ̇4 + cl2
[
θ̇4 sin

(
π − θ̃4

)
− ẋ
]

sin θ̃4 + k4θ4

−cpl2
[
θ̇2 sin θ̃2 − θ̇4 sin

(
π − θ̂4

)]
sin
(
π − θ̃4

)
+kpl

2
(

cos θ̃2 − cos θ̂2 − cos θ̃4 + cos θ̂4

)
sin
(
π − θ̃4

)
= τ4,

(2)

k
[
l
(

cos θ̃2 + cos θ̂2

)
+ x
]

+ c
(
l sin θ̃4

˙̃
θ4 − ẋ

)
= 0, (3)

representing the dynamic equilibrium of the left arm, the right arm and the

sample, respectively. From the previous nonlinear system, an approximate lin-

ear set of equations can be obtained around the reference configuration. By

assuming θ2� 1 and θ4� 1, which implies θ̃2' θ̂2 and θ̃4' θ̂4, respectively, it

follows

I2θ̈2 + c2θ̇2 + cpl
2
(
θ̇2 sin θ̂2 − θ̇4 sin θ̂4

)
sin θ̂2

+k2θ2 + kl
(
lθ2 sin θ̂2 − x

)
sin θ̂2

+kpl
2
(
θ2 sin θ̂2 − θ4 sin θ̂4

)
sin θ̂2 = τ2,

(4)

I4θ̈4 + c4θ̇4 + cl2
[
θ̇4 sin θ̂4 − ẋ

]
sin θ̂4 + k4θ4

−cpl2
[
θ̇2 sin θ̂2 − θ̇4 sin θ̂4

]
sin θ̂4

+kpl
2
(
θ2 − sin θ̂2 + θ4 + sin θ̂4

)
sin θ̂4 = τ4,

(5)

k
(
lθ2 sin θ̂2 − x

)
+ c

(
ẋ− lθ̇4 sin θ̂4

)
= 0. (6)

The system (4)-(6) is a system of second order linear differential equations with

three state variables: θ2, θ4, and x. The linear coefficients depend nonlinearly

on the system configuration that can be measured (i.e. θ̂2 and θ̂4).

The relations among torque, capacitance, and angular position can be de-

termined with reference to Figure 7. The capacitance of the comb drive Ct can

be calculated as (Chang et al., 2014; Di Giamberardino et al., 2018):

CT = ε0hθ

[
n−1∑
i=1

[lnA]
−1

+

n−1∑
i=0

[lnB]
−1

]
, (7)
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Figure 7: Geometric parameters of the comb-drive actuator.

where

A =
r0 + 2i(d+ g)

r0 + 2i(d+ g)− g
,

B =
r0 + (2i+ 1)(d+ g)

r0 + 2i(d+ g) + d
.

In eqn.(7), ε0 is the vacuum permittivity, h is the thickness of the device layer,

θ is the overlap angle, n is the number of fingers, r0 is the radius of the first

finger, and d is the finger width.

The corresponding electrostatic torque can be determined as

τ =
1

2

(
∂CT

∂θ

)
V 2 , (8)

where V is the applied voltage. Substituting eqn.(7) in eqn.(8), it follows

τ =
1

2
ε0hV

2

[
n−1∑
i=1

[lnA]
−1

+

n−1∑
i=0

[lnB]
−1

]
. (9)

Table 2 lists the values of the geometric parameters of the actuator. According

to the reported values, the voltage corresponding to the input torque of 1.6µNm

is about 17 V, whereas the applied voltage corresponding to the reduced torque

value of 0.32µNm is about 7 V.

4. Solution of the estimation problem: genetic algorithm implemen-

tation

Genetic algorithms are non derivative methods for global optimization based

on the principles of genetics and natural selection, widely used in many research
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Table 2: Geometric parameters of the comb drive actuator

Geometric parameter label Value

Thickness of the device layer h 40 µm

Finger width d 4 µm

Finger gap g 3 µm

Number of floating fingers n 66

Finger angle α 6◦

Finger stroke β 4.50◦

Finger initial overlap θ 1.50◦

Radius of the first finger r0 321µm

fields because of their many advantages, such as robustness, efficiency, and ca-

pability to deal with a large number of variables (Haupt and Haupt, 1998).

Genetic algorithms procedure generally consists of four steps (Dao et al., 2017),

that are initialization, crossover, selection and mutation. Genetic coding of pa-

rameters and formulation of fitness function have also to be considered in the

algorithm implementation.

A chromosome encodes the data defining an individual cell model within a

population. How to encode the model data in the chromosome is one of the

first choices to make in order to implement a genetic algorithm. The principal

types of encoding are binary, permutation, value, and tree. In this study, the

value encoding is used, in which each chromosome is a set of real numbers

properly encoded within a give number of bits. More specifically, it is required

to encode four independent parameters: the stiffness coefficients k and kp, and

the damping coefficients c and cp (phenotype). Each one of these values is

encoded into the chromosome (genotype) using three independent genes, one

defining the order of magnitude, and the other two genes defining the first two
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significant digits of the parameter, as:

k = 10gk1 (0.1gk2 + 0.01gk3) ,

kp = 10gkp1
(
0.1gkp2

+ 0.01gkp3

)
,

c = 10gc1 (0.1gc2 + 0.01gc3) ,

cp = 10gcp1
(
0.1gcp2 + 0.01gcp3

)
.

(10)

The adopted choice of splitting each parameter among three independent genes

allows a faster convergence of the algorithm while allowing a large span in each

parameter range and fixed precision (Zhou et al., 2017). Each gene in eqn. 10

may assume the values reported in Table 3. Therefore, the chromosome set is

{gk1
, gk2

, gk3
, gkp1

, gkp2
, gkp3

, gc1 , gc2 , gc3 , gcp1 , gcp2 , gcp3}.

The set is characterized by 12 integer genes, and each one of them can assume

few possible values (either 9 or 12, see Table 3). The physical values of each

parameter may therefore range as reported in Table 4, with two significant

digits.

Table 3: Possible values for each gene

Gene Min Max Steps

gk1 −3 8 12

gkp1
−3 8 12

gc1 −4 5 12

gcp1 −4 5 12

gk2 , gkp2 , gc2 , gcp2 1 9 9

gk3
, gkp3

, gc3 , gcp3 1 9 9

It is worth noting that the proposed algorithm does not assume the order

of magnitude of each parameter value known a priori, that is indeed provided

by the identification procedure. The initial population of models, set to 500

individuals, is generated by assigning to each gene a random value within the
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Table 4: Model parameters: ranges of values

Gene Unit Min Max

k [Nm−1] 1.1e−4 9.9e+7

kp [Nm−1] 1.1e−4 9.9e+7

c [Nsm−1] 1.1e−5 9.9e+4

cp [Nsm−1] 1.1e−5 9.9e+4

range reported in Table 3. The population evolves into the next generation by

three genetic operators: crossover (i), mutation (ii) and selection (iii).

The crossover (i) is performed between two selected individuals, called par-

ents, by exchanging parts of their genetic strings, which start from a randomly

chosen crossover point. Among the crossover types, in this study, the single-

point crossover is considered and the site for the crossover operation is selected

randomly on each chromosome.

The mutation (ii) is used to avoid local convergence of the algorithm (Esen

and Koç, 2015) by introducing random variation in the genome of some indi-

viduals. As the generations number increases, chromosomes become similar to

each other, even if a high crossover rate is determined. This situation blocks

diversity and prevents the occurrence of more powerful generations. For this

purpose, the mutation operator is used to increase diversity of chromosome in

population by altering one or more genes. In particular, the mutation operator

starts only after some new generations (at 20th, generation) with a fixed prob-

ability of occurrence, which in this case is set at 50%. A single-point mutation

is considered and the site for the mutation operation is selected randomly on

each chromosome.

The selection operator (iii) decides which chromosome will be transferred to

the next generation and which one will be eliminated, by using selection prob-

abilities of each chromosome. Several methods such as roulette-wheel, ranking,

tournament, and sharing, have been introduced for selecting genomes. In this

investigation, the ranking method was adopted. The selection of the individuals
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takes place through sorting accordingly to their fitness values obtained using an

objective function. Rank selection first ranks the population and then every

chromosome receives fitness from this ranking. The worst will have fitness 1,

second worst 2, etc., and the best will have fitness N (number of chromosomes

in population). Therefore, the best 50% of the population (250 individuals) are

kept in the next generation and are chosen to mate. These individuals generate,

through the crossover operator, 250 new individuals that take the place of the

lowest 50% of the population being discarded.

5. Simulations and results

In this study, the cell model is generated for each individual in the population

transcoding the parameter values, according to eqn. 10. A dynamic simulation

of the system, in operative condition, is performed in order to acquire the time

history of the left arm rotation (θ2), and to compared it to the target one

(supposedly measured, i.e θm2 ). For each individual, the fitness function is the

root mean square of the difference between the simulated dynamic response

of the system and the reference one. Throught the generations, the fitness

value of the most fit individual increases, reaching a stationary value. Hence,

the genetic algorithm stops and the fittest individual is selected as optimal

solution. Generally, convergence is reached around the 60th generation. Further

20 generations are computed to verify if mutation can move the optimum from

a local minimum toward a better solution, as depicted in Figure 8.

In order to test the capability of the GA in identifying the dynamic param-

eters of the sample, the first numerical simulation is performed by considering

a cell model characterized by linear viscoelastic behavior defined by the pa-

rameters values listed in Table 5. The values are adapted from Refs.(Lim et al.,

2006; Sato et al., 1990) for the case of endothelial cells (Tc) The dynamics of the

system is driven by k, kp and c, whereas the low value of cp does not affect the

evolution. A comparison between the target response of the system and the best

fit solution, obtained at the 70th generation, is reported in Figure 9. Figure 10
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Figure 8: Convergence of the genetic algorithm

Table 5: Linear viscoelastic model: comparison of target and identified values

Parameter Unit Target Identified Error [%]

k [Nm−1] 35.0 32.8 6.1

kp [Nm−1] 12.3 12.3 0

c [Nsm−1] 299.9 302.5 −0.8

cp [Nsm−1] 1e−3 1e−4 > 100

shows the evolution throughout generations of the cell dynamic parameter. It

can be noticed how, except cp, the order of magnitude of the parameters that

have a large effect on the solution is obtained around the 20th generation. The

numerical comparison between identified and reference values in Table 5 shows

that kp and c have a negligible error, whereas the error on k is lower than the

noise level added to the reference signal. The exact value of cp is not precisely

identified, but the results highlight that it has a very low value that does not

affect the response of the system.

The identification process is generally able to perform the estimation pro-

cedure also in case of simpler models, such as the Maxwell liquid drop model
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Figure 9: Linear viscoelastic model: comparisons between the response of the system and the

best fit solution obtained with the GA
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Figure 10: Linear viscoelastic model: evolution of the best fit parameters values throughout

generations

with cell membrane stiffness, where, with respect to the generalized Maxwell-

Wiechert model, kp and cp have negligible values. The system response, for the

numerical parameter listed in Table 6 (case 1), is dominated basically by the

damping value. The genetic algorithm fits correctly the response (Figure 11),

and it is able to identify with small error the key parameter c, and to catch kp

19



and k orders of magnitude.

Table 6: Liquid drop model (case 1): comparison of target and identified values

Parameter Unit Target Identified Error [%]

k [Nm−1] 9.5 6.7 29

kp [Nm−1] 1e−4 5.6e−5 44.0

c [Nsm−1] 10 9.7 2.6

cp [Nsm−1] 1e−4 0.23 > 100
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Figure 11: Liquid-drop model (case 1): comparisons of system response and best fit solution

obtained with the GA

The case corresponding to a lower value of k (1 Nm−1, case 2) is reported in

Figure 12, The response becomes affected by the k value, thus the identification

improves performing a good identification for k and c, (error below 3% ), as

shown in Table 7.

6. Conclusions

In this paper, a novel experimental technique, based on the use of a MEMS

microgripper, has been introduced in order to evaluate the mechanical charac-

teristics of biomaterials. A genetic algorithm has been implemented to solve the

parameter estimation problem. The simulations results confirm the feasibility of

the approach for the Maxwell liquid drop and the generalized Maxwell-Wiechert
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Table 7: Liquid-drop model (case 2): comparison of target and identified values

Parameter Unit Target Identified Error [%]

k [Nm−1] 1 0.97 2.6

kp [Nm−1] 1e−4 5.6e−5 44.0

c [Nsm−1] 10 9.7 2.6

cp [Nsm−1] 1e−3 0.25 > 100
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Figure 12: Liquid drop model (case 2): comparisons of system response and best fit solution

obtained with the GA

constitutive models adopted for the sample. The proposed technique appears

to be highly robust with respect to measurement noise and does not require to

assume a priori the order of magnitude of the parameter to be identified nor the

specific cell model.
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