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Multiparameter estimation is a general problem that aims at measuring unknown physical quantities, obtaining high
precision in the process. In this context, the adoption of quantum resources promises a substantial boost in achievable
performances with respect to the classical case. However, several open problems remain to be addressed in the multi-
parameter scenario. A crucial requirement is the identification of suitable platforms to develop and experimentally test
novel efficient methodologies that can be employed in this general framework. We report the experimental imple-
mentation of a reconfigurable integrated multimode interferometer designed for simultaneous estimation of two op-
tical phases. We verify the high-fidelity operation of the implemented device and demonstrate quantum-enhanced
performances in two-phase estimation with respect to the best classical case, post-selected to the number of detected
coincidences. This device can be employed to test general adaptive multiphase protocols due to its high reconfigur-
ability level, and represents a powerful platform to investigate the multiparameter estimation scenario. ©2019Optical

Society of America under the terms of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.6.000288

1. INTRODUCTION

Quantum metrology aims at exploiting quantum resources to
enhance sensitivity in the estimation of unknown physical param-
eters with respect to what can be achieved with classical ap-
proaches [1,2]. This field of research is increasingly active and
represents one of the most promising applications of quantum
information theory [3–6]. In the single parameter case, the esti-
mation of an unknown physical quantity with classical resources is
bounded by the standard quantum limit (SQL), stating that the
achievable error on the unknown parameter scales as ν−1∕2, ν
being the number of particles. Such a limit can be improved
by adopting quantum resources, defining the more fundamental
Heisenberg limit (HL) scaling as ν−1 [3–5]. Recently, the first un-
conditional violation of the SQL was reported in Ref. [7]. Given a
probe preparation, the optimal limit for single parameter estima-
tion can always be saturated by appropriately choosing the per-
formed measurement [8], and thus the HL effectively represents
the ultimate achievable precision limit.

A natural generalization of quantum metrology aims at extend-
ing such results to the simultaneous estimation of more than a
single parameter. Indeed, the capability of obtaining quantum-en-
hanced performances in the multiparameter case is particularly
relevant [9], since a large variety of estimation problems involve
more than a single physical quantity. Notable examples are phase
imaging [10–12], measurements on biological systems [13,14],
magnetic field imaging [15], gravitational wave parameters esti-
mation [16,17], sensing technologies [18,19], quantum sensing

networks [20], quantum process tomography [21–24], and state
estimation [25].

Although multiparameter estimation holds a broad range of
applications, there are still several open questions with respect
to the single parameter case. For instance, while the theoretical
framework for the single parameter scenario is well established
[26], few recipes to saturate the ultimate bounds are known in
the multiparameter case [1,27–31]. Due to possible non-commu-
tativity of the quantum measurements required to simultaneously
optimize the estimation of different parameters [32], it may not
be possible to optimally estimate all parameters at the same time.
In the case of d compatible parameters, a reduction in resources
by a factor d can be obtained with respect to single individual
estimations [33]. On the one side, simultaneous multiparameter
estimation can surpass the individual optimized strategies, but the
definition of general quantum bounds still requires additional in-
vestigations. On the other side, several physical processes are char-
acterized by dynamics that require intrinsically the simultaneous
treatment of all relevant parameters.

In the last few years, several theoretical investigations on
multiparameter estimation have been reported [9,31,34–39],
while experimental tests are surprisingly few. These include the
simultaneous estimation of phase and its diffusion noise
[40–42], phase and quality of the probe state [43], the discrimi-
nation of an actual signal from parasitic interference [44], and
quantum-enhanced tomography of an unknown unitary process
by multiphoton states [21].
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It is thus crucial to identify a specific scenario and correspond-
ing suitable experimental platform to investigate multiparameter
estimation tasks. Such a scenario is provided by the multiphase
problem, where the parameters to be estimated are a set of optical
phases. Several theoretical works have been reported in this direc-
tion [6,20,31,39,45–54]. Very recent results reported necessary
and sufficient conditions to define the optimal projective mea-
surements for pure states [31], with a subsequent extension to
general probe states [53]. Furthermore, generalized matrix
bounds and optimal states have been defined in Ref. [55].
Nevertheless, no experimental realizations have been reported
yet. The most suitable platform to implement multiphase estima-
tion tasks is provided by integrated multiarm interferometers in-
jected by multiphoton states [46]. Such a platform presents
several advantages in terms of stability, tunability, and compact-
ness of the devices [56–59].

In this work, we report on an integrated three-mode interfer-
ometer built through the femtosecond laser writing (FLW) tech-
nique [14,60], to implement quantum multiphase estimation
tasks. Such a device is composed of two cascaded tritters [61]
and includes six reconfigurable thermo-optic phase shifters.
We show that the device achieves high fidelity of operation
throughout the full dynamical range. Then, we demonstrate ex-
perimentally the capability to achieve quantum-enhanced perfor-
mances in multiphase estimation by using two-photon input
states with respect to classical strategies, post-selected to the num-
ber of detected coincidences. Finally, we show that the same

device can be employed to tune the input and output transfor-
mations to investigate the role of measurement operators in this
scenario. The device reconfigurability can be exploited to imple-
ment general adaptive multiphase estimation protocols [62–64],
thus providing a promising platform to develop appropriate meth-
odologies for this task.

2. FABRICATION AND CHARACTERIZATION

The integrated device, working at 785 nm, is composed as shown
in Fig. 1(a). The input state is prepared by a first unitary (UA),
where a reconfigurable thermo-optic phase shifter is employed to
perform fine-tuning of the implemented transformation. Then,
the prepared state propagates through three internal waveguides
with dynamical control of two independent phases between the
three paths, ensured by four thermo-optic phase shifters. Finally,
the output state undergoes a second unitary transformation UB ,
implemented with the same layout of UA, which is employed at
the measurement stage. When the reconfigurable phases of UA

and UB are set to �π∕2, they act as a balanced tritter, and
the devices permit engineering a reconfigurable three-mode
Mach–Zehnder interferometer (see Supplement 1).

A. Fabrication

The photonic chip was fabricated by FLW, adopting a Yb-based
cavity-dumped femtosecond laser oscillator operating at the out-
put repetition rate of 1 MHz, and producing laser pulses of 300 fs
duration and 1030 nm wavelength. The substrate employed was a

Fig. 1. Experimental apparatus. (a) Layout of the integrated reconfigurable device. Three straight waveguide segments are included between two
multiport splitters UA and UB . The dynamical control of the phases is achieved by thermo-optic phase shifters. Central inset: conceptual scheme
of the interferometer. Top left inset: layout of the multiport splitters UA,B , each composed of three directional couplers (TA,B

1,2,3, green regions) and
a dynamically reconfigurable phase (φTA,B , red). By appropriately tuning φTA,B , the two multiport splitters can be set to operate as balanced tritters.
(b) Parametric down-conversion source for generation of single-photon and two-photon states. The dotted path is employed to inject classical light into
the device for device alignment. The generated photons (p1 and p2) are coupled in single-mode fibers and sent to the integrated device. (c) Coupling and
detection stage. Photons are coupled to the device by an input fiber array (single-mode operation), and collected with a second fiber array (multimode
operation). For single-photon inputs, photon (p2) is directly measured to act as a trigger. For two-photon inputs, both photons are injected in the
interferometer, and the output state is measured by adding a set of fiber beam splitters to detect bunching events. PDC, parametric down-conversion;
SHG, second-harmonic generation; DM, dichroic mirror; HWP, half-wave plate; PBS, polarizing beam splitter; IF, interference filter; PC, polarization
controller; FBS, fiber beam splitter; APD, avalanche photodiode.
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commercial borosilicate glass (EagleXG, from Corning). The ir-
radiation parameters used for the waveguide inscription are
250 nJ pulse energy and 30 mm/s substrate scan speed. The laser
beam was focused 30 μm beneath the sample top surface by
means of a microscope objective with 0.6 NA. The waveguide
shallow depth was chosen to obtain an efficient control of the
light phase by means of thermal shifters positioned on top of
the circuit. The polarization of the writing beam was linear
and set perpendicular with respect to the sample translation di-
rection. With this fabrication configuration, we obtained single-
mode waveguides at the operating wavelength of 785 nm, with
1∕e2 mode diameter of 7.2 μm × 8.4 μm and propagation losses
<0.8 dB∕cm for the vertically polarized mode.

The thermal shifters that control tritter operation and inter-
ferometric phases were added to the photonic chip following
the procedure presented in Ref. [56]. A thin and uniform gold
layer (thickness of ≈60 nm ) was sputtered on top of the glass
sample after the inscription of the waveguides. The gold layer
was then patterned by FLW, in order to define the electrical cir-
cuit and the resistors above the waveguides, used as local heaters.
As irradiation parameters, we used the second harmonic (at
515 nm) of the same laser employed for the waveguide writing,
focused with a 0.6 NA objective on the glass surface, with a pulse
energy of 100 nJ and a scan speed of 2 mm/s. Each ablated line
was scanned eight times, in order to avoid parasitic shortcuts
within the circuit. The resistors were fabricated with a width
of 100 μm and a length in the waveguide direction ranging from
5 mm to 7 mm, which gives resistance values in the range 60–
100 Ω. Standard electrical pins were directly glued on top of the
circuit terminations, in order to facilitate the connection of our
device with external power supplies.

B. Characterization of the Device

As a first step after the fabrication process, we characterize the
integrated interferometer, in order to determine the relevant static
parameters (beam-splitter transmittivities and internal phases
when no voltage is applied) and dynamical response of the device.
In detail, a voltage V Ri

applied on the resistor Ri produces power
dissipation PRi

� V 2
Ri
∕Ri; the temperature gradient in the chip

induces a different phase shift along each optical path.
Considering the combined action of multiple resistors, the
resulting phase shifts are given by

Δϕj �
X6

i�1

�αjiPRi
� αNL

ji P2
Ri
�, (1)

where Δϕj�j � 1, 2� are variations of the two independent phases
of the three-arm interferometer (see inset in Fig. 1), namely,
Δϕ1 � φ1 − φref and Δϕ2 � φ2 − φref . Furthermore, αij and
αNL
ij are, respectively, the linear and nonlinear response coeffi-

cients associated with the dissipation PRi
. The linear terms

depend on all the geometric, thermal, and optical properties of
the device [56], while nonlinear terms are associated with
variations in the resistance value due to temperature increase.

The characterization procedure is performed with single-
photon inputs, generated by exploiting a 785 nm photon-pair
spontaneous parametric down-conversion (SPDC) source, con-
sisting in a type-II beta barium borate (BBO) nonlinear crystal
pumped by a 392.5 nm wavelength pump field [see Figs. 1(b)
and 1(c)]. This allows measuring the input–output probabilities
P�i → j� from input i to output j. A detailed explanation of the

full procedure and the corresponding results are reported in
Supplement 1. The high quality of operation of the device is con-
firmed by the average fidelity of the device, calculated using the
characterized parameters, with respect to the set of achievable
transformations in which both tritters are considered to be ideal.
Indeed, the fidelity hF iΔϕ1,Δϕ2

, averaged over the interferometer
phase differences �Δϕ1,Δϕ2�, reaches a value hFiΔϕ1,Δϕ2

�
0.963� 0.015. Here, fidelity is defined as F � jTr�Ũ
�Δϕ1,Δϕ2�U †�Δϕ1,Δϕ2��j∕m, where U �Δϕ1,Δϕ2� and
Ũ �Δϕ1,Δϕ2� are, respectively, the ideal and reconstructed trans-
formations for phases �Δϕ1,Δϕ2�. By exploiting the results of the
characterization process, it is possible to control arbitrary phase
differences between the interferometer arms by applying a suitable
voltage on resistors Ri.

3. MULTIPHASE ESTIMATION ON A CHIP

After performing the characterization process, two-photon mea-
surements are performed as a function of phase differences Δϕ1

and Δϕ2, by setting transformations UA and UB as balanced trit-
ters. Phases are tuned by varying voltages applied to resistors R1

and R2. The results are shown in Fig. 2 and are compared with the
theoretical predictions based upon the fit parameters obtained
from the characterization process. Two-photon inputs are ob-
tained by injecting both photons generated by the source into the
integrated device [see Figs. 1(b) and 1(c)]. Two-photon coinci-
dences are then recorded between the output detectors of the
chip. The indistinguishability of the photon pairs injected into
the chip was estimated from the visibility of a Hong–Ou–Mandel
interference experiment, which gave the value V � 0.95� 0.01.

As shown in Fig. 2, the measured two-photon output proba-
bilities present a very good agreement with the theoretical model
obtained by the reconstruction process. This demonstrates the
capability to control device transformation by simultaneously op-
erating on multiple thermo-optic phase shifters (additional inde-
pendent single-photon measurements are reported in Supplement
1). The correct operation of the device is also confirmed by the
capability of preserving quantum coherence during evolution. In
Fig. 3, we show the coincidence detection measurements with
two-photon inputs, as a function of the relative time delay δτ.
The latter is varied through adjustable delay lines, thus allowing
tuning the degree of indistinguishability between the two input
particles. The reported data show a clear signature of quantum
interference when tuning the regime from indistinguishable to
distinguishable particles.

A. Experimental Multiphase Estimation

The present device can be directly employed to test and develop
multiphase estimation protocols able to reach quantum-enhanced
performances. When dealing with multiphase estimation in a
�n� 1�-mode multiarm interferometer, the unknown parameters
Φ � �Δϕ1,Δϕ2,…,Δϕn� are the n independent phases relative
to a reference arm. To perform their simultaneous estimation, an
initial state ρ0 is prepared by a unitary transformation UA and
evolves through a transformation UΦ that encodes the informa-
tion on the phases. Then, such information is extracted by a
measurement Π̂x . Finally, a suitable estimator Φ̂�x� �
�Δϕ̂1�x�,Δϕ̂2�x�,…,Δϕ̂n�x�� provides an estimate of the phases
by exploiting the m measurement results x � �x1,…, xm�.
The phase sensitivity of an estimator, given a choice of the
measurement operators, is quantified by its covariance matrix:
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C�Φ�ij �
P

x �Φ̂�x� −Φ�x��i �Φ̂�x� −Φ�x��j P�xjΦ�, with i, j �
1,…, n. The precision in a multiparameter estimation experiment
can be evaluated as the trace of the covariance matrix, correspond-
ing to the sum of the individual errors, in the form of the
following chain of inequalities [1]:

Xn

i�1

Var�Δϕi� ≥
Tr�I−1�Φ��

m
≥
Tr�H−1�Φ��

m
, (2)

where I�Φ� is the Fisher information matrix, H�Φ� is the
quantum Fisher information matrix, and m is the number of
measurements. Optimal precision is achieved when the equality
is saturated. In a more general form, such inequality should be
written in matrix form as C�Φ� ≥ I−1�Φ�

m ≥ H−1�Φ�
m , where the

chain of inequality defines, respectively, the Cramer–Rao
(CRB) and the quantum Cramer–Rao (QCRB) bounds.
Indeed, as shown recently in Ref. [55], the full covariance matrix
has to be considered for a complete treatment of the sensitivity
bounds. In particular, a one-by-one comparison between a desired
target scenario (described by a Fisher information matrix Î ) and a
given benchmark state (described by Ĥ) can be performed by cal-
culating the number of positive eigenvalues of Î − Ĥ. This analy-
sis provides the number of independent combinations of the
parameters where a sensitivity enhancement can be achieved
by using the target state.

To verify the performance of the implemented device in this
scenario, we then evaluate the Fisher Information matrix I with
two-photon inputs from the reconstructed parameters. Here,

transformations UA and UB are set as balanced tritters. The re-
sults are shown in Fig. 4 and compared with the corresponding
calculations from an ideal three-mode balanced interferometer.
We observe that, for all input states, regions can be identified that
provide a value of Tr�I−1� lower than the optimal bound achiev-
able with two distinguishable single-photon inputs, quantified by
the corresponding matrix H [39,46,48]. While regions corre-
sponding to quantum-enhanced performances are smaller than
for an ideal device, the minimum of Tr�I−1� achieved by the
implemented interferometer is close to the ideal value.
Nevertheless, by exploiting adaptive protocols, such performances
can be extended to all pairs of phases if only a single region
performs better than with classical resources.

We then verify that enhanced estimation can be actually
achieved by using an appropriate estimator. In Fig. 5, we show
the results for a maximum likelihood (ML) approach in a local
estimation framework for �Δϕ1,Δϕ2� � �−1.159, 2.810� and
input (2,3). The ML approach provides an estimate of the
phases by maximizing the likelihood function L�Φ� �Q

k, l P�23 → kl�nkl , where nkl is the number of measured events
on output �k, l�. We observe that the overall error on both param-
eters, quantified by

P
iVar�Δϕi�, drops below the bound with the

optimal separable inputs. More specifically, the achieved perfor-
mance, exploiting m two-photon events (2m total photons) over-
comes the scenario in which the phases are estimated
simultaneously (Hsim) or separately (Hsep), with classical inputs
having the same overall number of photons (2m) [39]. The

Fig. 2. (a)–(f ) Two-photon probabilities P�23 → ij� as a function of the phase differences Δϕ1 and Δϕ2. The latter are varied, changing the dissipated
powers on resistors R1 and R2. In all plots, dots are experimental data, while surfaces are the theoretical expectations from the circuit characterization
process. Error bars are standard deviations due to the Poissonian statistics of the measured single-photon counts and two-photon coincidences. The good
agreement between model and experimental data is quantified by the average R2 value over all output combinations hR2i � 0.835. In the model, photon
indistinguishability of V � 0.95 is taken into account.
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obtained enhancement with respect to a classical input is achieved
in a post-selected scenario. Furthermore, the estimation of both
parameters is achieved with comparable errors, thus leading to a
symmetric estimation of the two phases. Finally, we can also com-
pare the sensitivities relative to the full covariance matrices by
using the approach of [55] discussed above. More specifically,
we find that our system (I ) permits, for some pairs of phases,
obtaining a sensitivity enhancement in both the two linearly in-
dependent combinations of the phases with respect to the scenario
where the parameters are estimated separately (Hsep) by means of
classical probes and also with respect to optimal simultaneous
classical estimation (Hsim). Indeed, both matrix differences I −
Hsep and I −Hsim have two positive eigenvalues.

The obtained enhancement can be extended to all pairs of
phases by considering the application of adaptive estimation pro-
tocols [46,62–64]. This can be achieved with our device by ex-
ploiting the additional resistors R3 and R4 present in the circuit.
The capability of performing adaptive protocols is particularly
crucial in this multiparameter scenario, where the achievement
of optimal [27–29] or symmetric [46] errors in all parameters
is not always possible.

B. Tuning Input and Output Transformations

The tunability of the device allows implementing different inter-
ferometers besides those composed by two cascaded tritters. This
is obtained by varying the phases in resistors RTA and RTB , and by
exploiting the additional resistors R3 and R4 (see Supplement 1
for the characterization of resistors in UA and UB). More specifi-
cally, let us consider the layout in Fig. 6(a). The additional phases
on R3 and R4 are employed to configure the device such that
UBUA � I (up to a set of output phases). The implemented

(a)

(b)

Fig. 3. Two-photon measurements P�23 → kl� for an input state with
a single photon on modes (2,3) as a function of the relative time delay δτ,
normalized over the photon Hong–Ou–Mandel width σ. (a) Phase values
set at Δϕ1 � 1.745 and Δϕ2 � −0.349. (b) Phase values set at Δϕ1 �
1.048 and Δϕ2 � 2.444. Points are experimental data, while dashed
lines are predictions from the reconstructed parameters. [Red, output
(1,2); green, output (1,3); blue, output (2,3); black, output (1,1); cyan,
output (2,2); purple, output (3,3)]. Photon indistinguishability is intro-
duced in the predictions by mixing the probability with indistinguishable
and distinguishable photons with a parameter e−�δτ∕σ�

2
. Error bars are

standard deviations due to the Poissonian statistics of the measured
two-photon coincidences.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Cramer–Rao bound Tr�I−1� for multiphase estimation with two-photon input states. (a)–(c) CRB for the implemented device evaluated from
the reconstructed parameters. (a) Input (1,2); (b) input (1,3); and (c) input (2,3). (d)–(f ) CRB for the ideal three-mode interferometer. (d) Input (1,2);
(e) input (1,3); and (f ) input (2,3). In the ideal interferometer case, points where the Fisher information matrix is singular are not shown. Regions
included within white closed curves highlight the presence of improved performances with respect to the QCRB with two distinguishable single-photon
inputs.
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transformations UA and UB , different from balanced tritters, are
reported in Supplement 1. This corresponds to tuning the device
transformation as the identity I for �Δϕ1,Δϕ2� � �0, 0�. This
scenario is particularly relevant in the multiparameter estimation
context in order to saturate inequality (2). Indeed, recent work
[31], providing the conditions for projective measurements to
saturate such a bound, has shown that such measurements include
projection over the initial state, thus requiring UBUA � I . The
results are shown in Figs. 6(b) and 6(c). More specifically, we
observe that the single-photon input–output probabilities
P�i → j� closely resemble the identity matrix [see Fig. 6(b)] at
�Δϕ1,Δϕ2� � �0, 0�, with a similarity S � 1

3

P
3
i�1 P�i → i� �

0.979� 0.008. Similar results are observed for two-photon in-
puts [see Fig. 6(c)], thus showing the capability of tuning the
input and output transformations by exploiting the additional
phases embedded in the interferometer.

C. Perspectives: Improving Sensitivity with
Multiphoton Inputs

Sensitivity in multiphase estimation with the implemented device
can be improved by changing the input state. For instance, let us
consider a three-photon input where all modes are injected with a
single photon. By evaluating the quantum Fisher information
matrix H obtained after application of UA, we obtain
Tr�H−1� ≃ 0.527, which is close to the value 0.5 obtained for
an ideal interferometer. The actual sensitivity after measuring

Fig. 5. Results of a maximum likelihood estimator for local phase
estimation at �Δϕ1,Δϕ2� � �−1.159, 2.810� with input (2,3). Points,
experimental data, obtained by averaging over 100 random sequences
of m coincidence events (2m photons) drawn from the measured N ev �
1230 two-photon events. Top plot, red dashed line corresponds to
Tr�I−1�, black dashed line to the optimal sensitivity Tr�H−1� with
2m distinguishable single-photon inputs, and black dotted line to the
optimal sensitivity when the phases are estimated separately with classical
inputs. Bottom plot, green points (data) and line �I−1�1∕211 correspond to
δ�Δϕ1�; blue points (data) and line �I−1�1∕222 correspond to δ�Δϕ2�.

Fig. 6. (a) Conceptual layout employed to tune the input and output
transformations UA and UB . (b) Experimental single-photon probability
measurements (blue bars) at �Δϕ1,Δϕ2� � �0, 0�, compared with the
identity corresponding to the ideal case (red bars). (c) Experimental
two-photon probability measurements for input (1,3) and output
(1,3) as a function of (Δϕ1,Δϕ2) by tuning voltages applied to resistors
R1 and R2. (b), (c) Transformations UA and UB are set to reach the
condition UBUA � I (up to a set of output phases) as described in
the main text.

Fig. 7. Cramer–Rao bound Tr�I−1� for multiphase estimation with a
three-photon input state (1,2,3). (a) CRB for the implemented device
evaluated from the reconstructed parameters, and (b) CRB for the ideal
three-mode interferometer. In the ideal interferometer case, points where
the Fisher information matrix is singular are not shown. Regions included
within white closed curves highlight the presence of improved perfor-
mances with respect to the QCRB with three optimal distinguishable
single-photon inputs.
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the output state by applying transformation UB is quantified by
the CRB Tr�I−1�, shown in Fig. 7. We observe that improved
sensitivity can be achieved with the implemented device, leading
to minTr�I−1� ≃ 0.584, lower than the bound ≃0.5� ffiffiffi

2
p

∕3
that is obtained by sending three distinguishable single photons
prepared in the optimal state.

4. CONCLUSION AND DISCUSSION

In order to fully disclose the potential of multiparameter estima-
tion, several open problems are currently under investigation,
from both theoretical and experimental sides. In this context it is
crucial to identify suitable platforms that can be employed to de-
velop new methodologies and to benchmark their performances.

In this paper, we have shown experimentally the capability of
performing multiphase estimation in a reconfigurable integrated
photonic chip realized via the femtosecond micromachining tech-
nology. Within such a platform, the adoption of active thermo-
optic phase shifters in a complex interferometric layout allows
investigating experimentally the simultaneous estimation of more
than one Hamiltonian parameter. By properly tuning the input
state, we have shown that such a platform allows reaching quan-
tum-enhanced performances with respect to what can be achieved
with separable states, in a post-selected scenario to the number of
detected coincidences. Furthermore, additional optical phase
shifters fabricated in the device increase the number of available
control parameters. In this way, we provide an experimental dem-
onstration of a benchmark platform for the paradigmatic scenario
of multiphase estimation in multimode interferometers.

Interesting perspectives can be envisaged starting from the pre-
sented results. On the one side, enlarging the dimensionality of
the system will enable the investigation of a richer landscape [46].
On the other side, the capability of fabricating devices with addi-
tional controlled phases will allow to develop and test novel adap-
tive protocols [46,62–64], or to tune the detection operator
searching for the optimal measurement [31]. These ingredients
can be combined in the same platform to develop a novel class
of optimal protocols, allowing to efficiently extract information
on an unknown set of parameters with minimal resource commit-
ment. Finally, our platform is also suitable for the inclusion of
other integrated elements allowing for all-in-chip processes: la-
ser-written nonlinear waveguides, generating single photons
[65], and microfluidic channels, enabling actual sensing experi-
ments on fluid solutions [14]. This would allow all-in-chip multi-
phase estimation experiments, thus exploiting the potential of the
platform.
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